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STABLE WINDINGS

BY JEAN BERTOIN AND WENDELIN WERNER1

CNRS and University of Cambridge

We derive the asymptotic laws of winding numbers for planar isotropic
Ž .stable Levy processes and walks of index a g 0, 2 .´

1. Introduction. This paper deals with the asymptotic behaviour of
winding numbers of planar isotropic stable processes. The asymptotic study
of the winding numbers of a planar Brownian motion B was initiated by

Ž . Ž .Spitzer 1958 , who proved the following celebrated result: If u , t G 0t
denotes the continuous determination of the argument of B started away
from the origin, then 2u rlog t converges in distribution toward a standardt

wŽ . xCauchy law as t ª `. We refer to Yor 1992 , Chapter 5 and the references
therein for much more on this topic. Our main purpose is to present an
analogue of Spitzer’s theorem, when the Brownian motion is replaced by an

Ž . Žisotropic stable Levy process of index a g 0, 2 the winding number u is´
.then defined by ‘‘filling in the jumps with straight lines’’ .

Ž .Because the latter is transient which contrasts with the Brownian case ,
one expects that it will wind more slowly, and actually our main result

'implies that u r log t converges in distribution to some centered Gaussiant
law as t ª `. In Section 4, we show that a similar result holds for the
isotropic stable random walk.

Our approach is closely related to that we used in Bertoin and Werner
Ž .1994 to investigate Brownian windings. Typically, we shall not work di-
rectly with the stable process, but rather with an analogue of the
Ornstein]Uhlenbeck process obtained from Z by an exponential change of
scale and speed. The point is that this new process is positive recurrent, so
that ergodic theory applies. The second key ingredient, which follows from a

Ž .result due to Graversen and Vuolle-Apiala 1986 , is that u suitably time-
changed is in fact a symmetric Levy process.´

The paper is structured as follows: We first recall and derive relevant facts
concerning isotropic planar stable processes. Then we state and prove our
main result on the asymptotic behaviour of the stable winding number.
Finally, in Section 4, we consider the random walk analogue.

Ž .2. Preliminaries. Let z s Z , t G 0 be a standard isotropic stablet
Ž .process of index a g 0, 2 valued in the complex plane. In other words, Z has
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stationary independent increments, its sample path is right-continuous and
Ž .has left limits i.e. cadlag , and

² : < <a� 4E exp i l, Z s exp yt l� 4Ž .0 t

for all t G 0 and l g C, where P refers to the law of the process Z startedz
² :from z g C, and ? , ? refers to the Euclidean inner product. We will

implicitly work from now on under the law P s P , unless otherwise stated.1
Recall that Z is transient, that is,

< <lim Z s ` almost surely,t
tª`

and that single points are polar,

P Z s z for some t ) 0 s 0Ž .t

for all z g C.
In the sequel, it will be useful to invoke the expression of Z as a subordi-

Ž .nated planar Brownian motion. Specifically, let B s B , t G 0 denote at
Ž Ž . .complex-valued Brownian motion started from 1 and let S s S t , t G 0 be

an independent stable subordinator with index ar2 started from 0, that is,

E exp ymS t s exp ytmar2� 4 � 4Ž .Ž .
Ž .for all t G 0, m G 0. Then the process B , t G 0 is a standard isotropic2 SŽ t .

stable process of index a . Recall that the Levy measure of S, that is, the´
intensity of its jumps, is

a
y1ya r2s 1 ds.�s) 042G 1 y ar2Ž .

It follows that the Levy measure n of Z is´
`a

y1ya r2n dx s s P B y 1 g dx dsŽ . Ž .H 2 s2G 1 y ar2Ž . 0

`a 2y2ya r2 < <s s exp y x r 4s ds dx ,Ž .Ž .Hž /8p G 1 y ar2Ž . 0

and finally

a 2y1qa r2 G 1 q ar2Ž . y2ya< <1 n dx s x dx .Ž . Ž .
p G 1 y ar2Ž .

Because Z is discontinuous, one cannot define its winding number u just
Ž .as for Brownian motion via the continuous determination of its argument ,

but it is easy to circumvent this difficulty. Consider a path on a finite time
w xinterval 0, t and ‘‘fill in’’ the gaps due to the jumps with line segments. We

w x Ž .obtain the curve of a continuous function f : 0, 1 ª C, with f 0 s 1. Since 0
Ž .is polar and Z has no jumps across 0, almost surely, we have f u / 0 for

w xevery u g 0, 1 . The final value of the continuous determination of the
Ž .argument of f , which takes the value 0 at f 0 , does not depend on the actual

Ž .choice for f ; we denote it by u and call u s u , t G 0 the process of thet t
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winding number of Z around 0. It is clear that u has cadlag paths, no jumps
of absolute length greater than p and that, for all t G 0,

Zt
exp iu s .Ž .t < <Zt

Conversely, the three preceding properties characterize the winding number
process.

We now recall the following result due to Graversen and Vuolle-Apiala
Ž .1986 . Introduce the clock

t ya< <H t s Z ds, t G 0,Ž . H s
0

and its inverse

T u s inf t G 0, H t ) u .� 4Ž . Ž .
< <Then the scaling property of Z yields that the process Z r Z , u G 0, isT Žu. T Žu.

a Levy process valued in the unit circle. Let us mention at this stage that this´
< <property is definitely correct, but that the independence between Z and

< < < <Z r Z stated in the same paper is incorrect. Indeed, the processes ZT Ž?. T Ž?. T Ž?.
< <and Z r Z jump at the same times, which implies that they cannot beT Ž?. T Ž?.

Ž . < < < <independent. As the time change T ? depends only upon Z , Z and
< <Z r Z are not independent either.T Ž?. T Ž?.

We then deduce the following lemma.

Ž .LEMMA 1. The time-changed process u , u G 0 is a real-valued sym-T Žu.
metric Levy process. It has no Gaussian component and its Levy measure has´ ´

w xsupport in yp , p .

PROOF. It is clear from the foregoing text that u is a real-valued Levy´T Ž?.
w xprocess and that its Levy measure has support in yp , p . The symmetry´

assertion is plain from the isotropy of Z. The feature that u has noT Ž?.
Gaussian component is intuitively clear, because Z has no Gaussian compo-
nent either. To be rigorous, we can use a result of Blumenthal and Getoor
Ž . w .1961 on the Holder continuity of stable processes. For every r g 1r2, 1ra ,¨

< < yrlim Z y 1 t s 0 a.s.t
tª0q

It is easy to deduce that

< < yrlim u t s 0 a.s.,T Ž t .
tª0q

w Ž .which implies using, e.g., Theorem IV.6 in Gihman and Skorohod 1975 ,
xpage 332 that u has no Gaussian component. IT Ž?.

The next lemma describes the Levy measure of u . Denote by dz the´ T Ž?.
Ž .Lebesgue measure on C and, for every complex number z / 0, let f z

Ž xdenote the determination of its argument valued in yp , p .
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LEMMA 2. The Levy measure of u is the image of the Levy measure n of´ ´T Ž?.
Ž . ŽŽ .2 . Ž .Z by the mapping z ª f 1 q z . As a consequence, E u s uk a , whereT Žu.

a 2y1qa r2 G 1 q ar2Ž . y2ya 2< < < <2 k a s z f 1 q z dz .Ž . Ž . Ž .H
p G 1 y ar2Ž . C

PROOF. The jumps of the winding number are induced by those of the
stable process. The precise relation is in the obvious notation

Du s u y u s f Z rZ s f 1 q DZ rZ .Ž . Ž .Ž .t t ty t ty t ty

� 4So, if for every a g C _ 0 , we denote by m the image of the Levy measure n´a
Ž .of Z under the mapping z ª f 1 q zra , an application of the compensation

Ž x w .formula shows that for every measurable function f : yp , p ª 0, ` ,

E f Du s E 1 f DuŽ .Ž .Ý ÝT Žu. �H Ž t .F14 tž / ž /
0FuF1 tG0

`

s E 1 m f dtŽ .H �H Ž t .F14 Z tž /0

1 a< <s E Z m f du .Ž .H T Žu. ZT Žu.ž /0

On the other hand, the scaling property shows that the image of n by a
< <yacontraction z ª zra is a n , so that

< <yam s a m .a 1

In conclusion,

E f Du s m f f ,Ž .Ž .Ž .Ý T Žu. 1ž /
0FuF1

Ž .which proves our first assertion. The second follows immediately, using 1
and the absence of Gaussian component for u . IT Ž?.

Ž .We now focus on some special values of a : Note that k a - ` for every
Ž .a g 0, 2 and

3 lim k a s `,Ž . Ž .
aª2y

which is hardly surprising. More intriguing is the fact that

p 2

4 lim k a s .Ž . Ž .
3aª0q

Ž .One can rewrite 2 as
ar2

` p
2a 2 G 1 q ar2 ru dr duŽ .

5 k a s .Ž . Ž . H H 1qar22p G 1 y ar2Ž . 0 0 1 q r y 2r cos uŽ .
Ž .For a s 1 i.e., for the Cauchy process , this expression can be explicitly

computed. First use the fact that
` r dr 1

s ;H 3r22 1 y u0 1 q r y 2ruŽ .
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Ž . Ž .see, for example, formula 2.264 6 in Gradshteyn and Ryzhik 1980 . This
yields that

p
21 u du

k 1 s .Ž . H' 1 y cos up 2 0

Integrating by parts twice, one finds

'y4 2 pr2
k 1 s log sin u du.Ž . Ž .H

p 0

Using the trick

1 sin 2uŽ .pr2 pr2 pr2
log sin u du s log cos u du s log duŽ . Ž .H H H ž /2 20 0 0

1 p log 2pr2
s log sin u du y ,Ž .H2 40

one gets
'6 k 1 s 2 2 log 2,Ž . Ž .

which is numerically approximatively 1.96 and smaller than the limit for
Ž . Ž . Ž .k 0 q . Hence the function k a is not monotonous on 0, 2 .

3. Asymptotic windings for stable processes. We now state the main
result of this paper:

THEOREM 1. The family of processes

ry1r2u , t G 0Ž .expŽr t .

Žw . .converges in distribution on D 0, ` , R endowed with the Skorohod topology,
Ž . Ž .as r ª `, to b , t G 0 , where b s b , t G 0 is a standard one-dimen-cŽa .t t

sional Brownian motion started from 0 and

a 2y1ya r2
y2ya 2< < < <c a s z f 1 q z dz .Ž . Ž .H

p C

Let us first make some remarks:

1. It is interesting to recall that in the Brownian case, one can extend
Spitzer’s theorem and get convergence in the sense of finite-dimensional

w Ž .xdistributions but not in the sense of Skorohod see Durrett 1984 .
2. Because Z is transient, the difference between u and the winding number

around an arbitrary fixed point z / 1 is bounded and converges as time
goes to infinity. As a consequence, the extension of Theorem 1 to the
winding numbers about several points is obvious. This contrasts again

Ž .with the Brownian case; see Pitman and Yor 1986 .
3. It is possible to reinforce Theorem 1 and state a strong limit theorem,

using, for example, the strong approximation results of Komlos, Major and´
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Ž .Tusnady 1976 . This can be used to derive sample path properties for u´
such as the law of the iterated logarithm. We leave the precise statements

Ž .to the interested readers and refer to Bertoin and Werner 1994 and the
references therein for the analogous results in the Brownian case.

Ž . wŽ . Ž . Ž .x4. Numerically, as for k a 3 , 4 and 6 , one gets
2p '7 lim c a s , lim c a s ` and c 1 s 2 2 log 2,Ž . Ž . Ž . Ž .

3aª0q aª2y

Ž . Ž .which implies that the function c a is not monotonous on 0, 2 .

We now proceed to the proof of Theorem 1, which is divided into several
steps. Introduce the process

Z̃ s exp yura Z , u G 0,Ž .u exp u

which bears the same relationship to Z as the Ornstein]Uhlenbeck process
˜Ž .does to Brownian motion. Breiman 1968 pointed out that Z is a stationary

Ž .Markov process under P . If we denote by p ? the semigroup of Z, that is,0 t

p z s P Z g dz rdz for z g C,Ž . Ž .t 0 t

˜Ž .then the semigroup q ? of Z is given byu

q x , y s p eu ra y y x e2 u raŽ . Ž .u expŽu.y1

y2ra y1rau 2 u ra u u ras e y 1 e p e y 1 e y y x ,Ž . Ž . Ž .Ž .1

8Ž .

where the ultimate identity stems from the scaling property.
The key point is the following lemma.

˜LEMMA 3. Z is ergodic.

˜ ˜ ˜Ž .PROOF. Let P be the law of Z started at z and let FF be its naturalz u uG 0
filtration. Consider an invariant event L and let

˜f z s P L .Ž . Ž .z

The theorem of convergence of martingales gives that for every z,

˜ ˜<1 s lim P L FF a.s.Ž .�L4 z u
uª`

Because L is invariant, the Markov property yields

˜ ˜ ˜<P L FF s f Z a.s.Ž . Ž .z u u

˜ ˜Ž . Ž Ž ..On the other hand, we have f z s E f Z , that is,z u

9 f z s q z , a f a da.Ž . Ž . Ž . Ž .H u
C

Ž .For every fixed z, we deduce from 8 that

10 lim q z , a s p a pointwiseŽ . Ž . Ž .u 1
uª`
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and since

q z , a da s 1 s p a da,Ž . Ž .H Hu 1
C C

Ž . 1Ž .Sheffe’s lemma implies that the convergence in 10 holds in L da . Letting´
˜Ž . Ž .u ª ` in 9 , we now find that f is constant and thus P L s 0 or 1. Iz

We now deduce the following limit theorem for the clock:

COROLLARY 1. Almost surely,

H eu G 1 y ar2Ž . Ž .ya11 lim s 2 .Ž .
u G 1 q ar2uª` Ž .

PROOF. A change of variables yields
exp u uya yau ˜< < < <H e y H 1 s Z ds s Z dvŽ . Ž . H Hs v

1 0

and the ergodic theorem ensures that almost surely,

H euŽ . ya< <lim s E Z .Ž .0 1uuª`

Ž < <ya .It remains to calculate E Z . The representation of Z as a subordinated0 1
Brownian motion gives

yar2ya ya< < < <E Z s E 2S 1 E B .Ž .Ž .Ž . Ž .Ž .0 1 0 0 1

Using the identity

`1
yc yqt cy1q s e t dt for c g 0, 1 ,Ž .H

G cŽ . 0

we get

`1yar2 y1qa r2E S 1 s E exp ytS 1 t dtŽ . Ž .Ž .Ž .Ž . H0 G ar2Ž . 0

`1
ar2 y1qa r2s exp yt t dtŽ .H

G ar2Ž . 0

`2 1
s s exp ys ds s .Ž .H

a G ar2 G 1 q ar2Ž . Ž .0

On the other hand,

< <ya ya r2E B s 2 G 1 y ar2Ž .Ž .0 1

and the corollary is proven. I

PROOF OF THEOREM 1. Because u can be thought of as a symmetric
centered Levy process u with finite variance, time-changed by an increas-´ T Ž?.
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ing clock H, u is a square-integrable martingale and according to Lemma 2,

² :u , u s k a H t .Ž . Ž .t

Ž y1r2 .Thus the process r u , u G 0 is also a square-integrable martingaleexpŽr u.
with bracket

y1² : r ur u , u s k a H e rr .Ž . Ž .expŽr u.

According to Corollary 1, the right-hand side converges almost surely as
r ª ` to

uk a 2ya G 1 y ar2 rG 1 q ar2 .Ž . Ž . Ž .
Because the jumps of u are bounded in absolute value by p , the theorem now

Ž .follows from Theorem VIII.3.11 in Jacod and Shiryaev 1987 . I

4. Asymptotic windings of stable random walks. In this section, we
Ž .are going to compare the windings around 0 of the stable process Z , t G 0t

Ž .and of the stable random walk Z , n g N . Windings of planar random walksn
Ž .with finite second moments have been investigated by Belisle 1989 , who´

showed that they behave asymptotically like large windings of a Brownian
motion. In contrast, windings of stable random walks behave eventually
exactly like windings of stable processes:

Ž .Let Z and u be defined as in the previous section. We denote by w , n G 0n
Ž . Žthe windings number around 0 of the stable random walk Z , n G 0 againn

.defined by filling in the gaps by straight lines .
Note that for all n G 0,

< <12 w y w s u y u provided that u y u - p .Ž . nq1 n nq1 n nq1 n

We are going to establish the following proposition, which in particular
w Ž . x 'combined with 12 and Theorem 1 implies that w r c a log n convergesŽ .n
in law toward a normal Gaussian random variable.

< <PROPOSITION 1. Almost surely, u y u - p for all large enough n.nq1 n

Ž .The proof is based on a Borel]Cantelli-type argument. For every x g 0, `0
and n G 1, one has

< < < < < < <P u y u G p Z s x s P u G p .Ž . Ž .nq1 n n 0 x 10

In order to estimate this probability, we first put down some notation and
recall a couple of relevant results. We define the stopping time

< <s s inf t G 0, u G p .� 4t

Suppose that x ) 1 and let us consider the points A and B in the complex0
plane defined by

< < < <� 4A , B s z g C, z y x s x r2, R z - x , I z s x r2 ,Ž . Ž . '½ 50 0 0 0

Ž . Ž .where R z and I z stand for the real and imaginary part of z, respec-
tively. Let V denote the convex cone with vertex at x , whose boundary0
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� < Ž . < 4contains A and B. Let P denote the strip z, I z - x r2 and D the' 0
disk of radius x r2 centered at x . We then define the sets0 0

P s D l P ,0

P s D _ P ,1

P s V _ D ,2

P s C _ P j P j P s C _ D j V .Ž . Ž .3 0 1 2

� 4Note that x g P . For i g 1, 2, 3 , the corresponding hitting times T are0 0 i
defined by

� 4T s inf t ) 0, Z g P .i t i

Ž .Also, let T s min T , T , T . Geometric considerations show that T F s .1 2 3
�We are going to estimate the probability of the three events T s T F1

4 � 4 � 4s - 1 , T s T F s - 1 and T s T F s - 1 separately. We will essentially2 3
Ž .use the fact that if X , t G 0 denotes a standard symmetric one-dimensionalt

Žstable process of index a started from 0 for instance the imaginary part of
. wZ , then for some fixed constant c and for all x ) 1, one has see, e.g.,0

Ž .xZolotarev 1986

< < < < ya13 P sup X ) xr2 F 2 P X ) xr2 F c x .Ž . Ž .s 1 0ž /
s-1

In particular, this implies that

< < < < < < ya14 P sup Z ) x F 2 P Z ) x F 4P X ) xr2 F 2c x .Ž . Ž . Ž .0 s 0 1 0 1 0ž /
s-1

w xSuppose T s T F s - 1. Then, for some t g T , T q 1 ,1 1 1

R Z F 0 F R Z y x r2Ž . Ž .t T 01

Ž .otherwise, s G T q 1 ) 1 . Hence, the strong Markov property at T , to-1 1
Ž .gether with 13 , yields readily that

yayar2 2 y3ar215 P T s T F s - 1 F c x c x s c x .Ž . Ž . Ž . Ž . Ž . Ž .x 1 0 0 0 0 0 00

w xSimilarly, if T s T F s - 1, then for some t g T , T q 1 ,3 3 3

< <I Z y I Z ) x r2.Ž . 'Ž .t T 03

Hence,
2 y3ar216 P T s T F s - 1 F c x .Ž . Ž . Ž . Ž .x 3 0 00

X Ž . � < <Let us put x s 2 arcsin 1r x and define U s inf t ) 0, Z y Z )'0 0 t 0
4 Xx r2 . Note that V is a wedge of angle x with vertex at x . The isotropy of0 0 0

Z shows that

P T s T F s - 1 F P U - 1 and Z g PŽ . Ž .x 2 x U 20 0

xX x0 0
< <F 2 P Z )0 1ž /2p 217Ž .

c0 yaXF x x .Ž .0 0p
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Ž . Ž . Ž .Combining 15 , 16 and 17 shows eventually that for some constant
c ) 0, for all x ) 1,1 0

Ž .ymin 3ar2, aq1r2P s - 1 F c x .Ž . Ž .x 1 00

In particular, we choose « ) 0 small enough such that « - 1r2, «a - 1r2
Ž .and 1 q « a - 2. Then

Ž .ya 1q«P s - 1 F c x .Ž . Ž .x 1 00

Thus, for all n G 1,

< < < < < <ya Ž1q« .18 P u y u G p F P Z F 1 q c E Z .Ž . Ž . Ž . Ž .nq1 n n 1 n

Let us now consider the stable process Y s Z y 1, which is started from 0
and therefore has the usual scaling property. Symmetry considerations and
the scaling property for Y show that

< < < < < < y1ra19 P Z F 1 F P Y F 1 s P Y F n .Ž . Ž . Ž . Ž .n n 1

ŽHowever, as the density of Y in the plane is bounded this can be seen, for1
instance, by inverting the Fourier transform of Y , or alternatively using1

.explicit computations as in Corollary 1 ,

< < y1ra y2ra20 P Y F n F c nŽ . Ž .1 2

for some fixed c . Similarly, symmetry considerations and the scaling prop-2
erty of Y show that

< <ya Ž1q« . < <ya Ž1q« . yŽ1q« . < <ya Ž1q« .21 E Z F E Y F n E Y .Ž . Ž . Ž . Ž .n n 1

This last expectation is finite since the density of Y in the plane is bounded1
Ž . Ž . Ž .and a 1 q « - 2. Eventually, for some constant c , for all n G 1, 18 , 19 ,3

Ž . Ž .20 and 21 imply that

< < y2ra yŽ1q« .P u y u G p F c n q n .Ž .Ž .nq1 n 3

Note that 2ra ) 1. Thus, Borel]Cantelli’s lemma implies Proposition 1.

5. Remarks. We now conclude with some remarks.

1. It seems likely that our results still hold in the more general case, where
the isotropy hypothesis is relaxed. For example, if Z is a a-stable planar
process, such that no projection of Z is a subordinator, one expects
Theorem 1 will be true. However, our proofs do not generalize to this case,
partially because the time-changed argument is not a symmetric Levy´
process anymore.

Ž 1 2 3. 32. Suppose X s X , X , X is a Brownian motion in R started from
Ž . 31, 0, 0 . Consider the local time of X at 0 and its right-continuous inverse
Ž . Ž Ž ..t , l G 0 . It is well known that log t t rlog t converges almost surelyl

Ž 1 2 .toward 2 as t ª `. On the other hand, the process Z s X , X is thent Ž?. t Ž?.
a Cauchy process, for which Theorem 1 applies. Hence, if c denotes the

Ž .winding number of the process Y , t G 0 defined ast

Y s Z ,t s Ž t .
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� 3 4 Žwith s s sup s F t, X s 0 i.e., Y is the last-visited point on the planes t
� 4 . 'x s 0 by X before time t , then c r log t is asymptotically Gaussian.3 t
Hence, the trace of a three-dimensional Brownian motion on a plane winds
differently than Brownian motion itself.

Acknowledgment. We thank Antoine Chambert-Loir for his kind assis-
Ž .tance, without which we would not have computed the explicit value of c 1 .
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