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RANDOM WALKS AND HARMONIC FUNCTIONS ON INFINITE
PLANAR GRAPHS USING SQUARE TILINGS

BY ITAI BENJAMINI AND ODED SCHRAMM

The Weizmann Institute

We study a wide class of transient planar graphs, through a geometric
model given by a square tiling of a cylinder. For many graphs, the
geometric boundary of the tiling is a circle and is easy to describe in

Žgeneral. The simple random walk on the graph converges with probability
.1 to a point in the geometric boundary. We obtain information on the

harmonic measure and estimates on the rate of convergence. This allows
us to extend results we previously proved for triangulations of a disk.

1. Introduction. In this paper, we continue our study of harmonic
w xfunctions on planar graphs initiated in 1 . Here, we will focus on the simple

w xrandom walk and the Dirichlet problem. In 1 we proved that any bounded
valence transient planar graph admits nonconstant bounded Dirichlet har-
monic functions. This was then extended to a wider family of graphs and

w xmanifolds. The key idea in 1 was to look for a useful geometric representa-
tion of the graph. This was done via circle packings. Further assuming that G

Ž .is the 1-skeleton of a triangulation of a disk, we were able to solve the
Dirichlet problem for the circle packing representation of G. Here, using a
different geometric model for the graph, we can solve a similar Dirichlet
problem for planar graphs which are not triangulations of a disk. In particu-
lar, our results apply to bounded valence, planar graphs, with one transient
end.

We apply an infinite version of a theorem of Brooks, Smith, Stone and
w xTutte 2 , to get a square tiling representation of the graph. The squares in

the tiling will be indexed by edges of G. It turns out that the square tiling is
natural and useful in studying the random walk on the graph. The tiling will

w xtake place in a cylinder C = 0, 1 , where C s RrhZ, for some h to be
determined. For many graphs, the geometric boundary of the corresponding

� 4tiling will be the circle C s C = 1 . In general, it will be contained in
� 4 w .C = 1 j C = 0, 1 , where C ; C has Lebesgue measure zero. The simple0 0

random walk on G, realized on the square tiling, converges with probability 1
� 4to a point on C = 1 . Moreover, the harmonic measure is absolutely continu-

� 4ous with respect to Lebesgue measure on C = 1 , with Radon]Nikodym
derivative bounded from above and below. Thus, we will be able to solve the

1 � 4Dirichlet problem for L functions on C = 1 .
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FIG. 1.

The tiling plays the same role as conformal uniformization does for planar
domains. In fact, the proof of its existence illustrates parallels with the
continuous theory. In a way, it is a discrete analogue of Riemann’s mapping

Ž .theorem. The circle packing theorem provides another such analogue.
The tiling depends on the choice of a base vertex in G, but essentially on

nothing more. The harmonic measure for the simple random walk starting at
� 4the base is actually equal to Lebesgue measure on C = 1 . We suspect that

� 4C = 1 is a geometric realization of the Poisson boundary of the graph.
ŽWe will mainly consider uniquely absorbing planar graphs since that is
.the widest class of graphs for which the current techniques apply .

Ž .DEFINITION. Let G s V, E be a connected, locally finite, transient, pla-
nar graph embedded in R2. A set W of vertices in G is absorbing if with
positive probability a random walk on G visits V y W only finitely many
times. G is said to be uniquely absorbing if for every finite subgraph G ; G0
there is exactly one connected component D of R2 y G such that V l D is0
absorbing.

We shall now clarify what we mean by an embedding of G in R2. Given a
< <graph G, we let G denote the metric space constructed as follows. Start with

V, and for every edge e g E, with vertices v, u, say, glue the endpoints of an
w x < <isometric copy I of the interval 0, 1 to the two vertices v, u. Let G be thee
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union D I j V modulo the identifications, with the path metric. An embed-e e
< < 2ding of G in the plane is a 1]1 continuous map f : G ª R . Note that a

graph G is planar iff G admits an embedding in R2.

REMARK 1. The property of being uniquely absorbing depends on the
embedding of G; that is, a graph may have two embeddings in R2 so that it is
uniquely absorbing in one embedding, but not in the other.

REMARK 2. Recall that G has one end if for every finite subgraph G ; G0
there is exactly one infinite connected component of G y G . We shall say0
that G is end convergent if for every such G there is exactly one absorbing0
component of G y G . Suppose, as above, that G is connected, locally finite,0
transient and embedded in R2. With these assumptions, the following easy
implications are valid: G is a triangulation of an open disk « G has one end
« G is end convergent « G is uniquely absorbing. Conversely, if G is a
triangulation of a plane domain that is uniquely absorbing, then G is end
convergent.

The following several sections will be devoted to a more thorough study of
harmonic functions on uniquely absorbing planar graphs. As a by-product,
another proof that any planar, bounded valence, transient, graph has noncon-
stant, harmonic, Dirichlet functions is obtained. The next section contains
some background and notation. The finite and infinite square tiling theorems
are the main topic of Sections 3 and 4. The rest of the paper studies the
simple random walk on G, realized on the tiling. This is used then to solve
the Dirichlet problem for uniquely absorbing graphs.

It is interesting to contrast the circle packing and square tilings model of a
graph. The latter is a linear creature, hence simpler and more closely related
to random walks and harmonic functions, as will be clear subsequently. The

w xcircle packing theorem was more suitable in 1 , mainly because one can
produce a packing where none of the disks degenerates to a point. This has
the virtue of providing a more faithful geometric model of the graph. With
square tilings, it is unavoidable in general that some of the squares degener-
ate to points. Another advantage of the circle packing theory is that it is
inherently Mobius invariant, as the analytic theory.¨

Another motivation for invoking square tilings is the possible generaliza-
tion to nonreversible random walks on planar graphs. Recently, R. Kenyon
extended the finite square tiling theorem to a trapezoid tiling theorem. Under
some assumptions, it is possible to produce an infinite variant of Kenyon’s
tilings along the lines of the tiling theorem that follows. The probabilistic
interpretation of this has the potential to extend our work to the setup of
nonreversible random walks. We are currently pursuing this direction with
R. Kenyon and Y. Peres.

w x w xFinally, for more background and related work, see 1 , Woess’s survey 6
w xand Soardi’s recent book 5 .
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Ž .2. Notations and terminology. Let G s V, E be a graph. G may
have more than one edge between two vertices, but there is no reason to allow
loops. The set of vertices incident with an edge e will be denoted  e. This is
always a subset of V that contains two vertices.

The graphs we shall consider will be connected and locally finite. The latter
means that the number of edges incident with any particular vertex is finite.

Initially, the graph G is unoriented, but for notational reasons we also
ªŽ . Ž .consider oriented edges. An oriented or directed edge e is a pair e, v ,

where e g E and v g  e. For such an oriented edge, the vertex v is called the
ªŽ .initial vertex and is also denoted e 0 , and the other vertex is the terminal

ª ªŽ . < <vertex and will be denoted e 1 . We also let e denote the original unoriented
ª ª< <e and ye will denote the other orientation of e .

ª
The set of all oriented edges will usually be denoted E. The collection of

ªŽ .edges incident with a vertex v will be denoted E v and the set of e g E with
ªŽ . Ž .e 0 s v will be denoted E v . The valence, or degree, of a vertex v is just the

Ž .cardinality of E v . G has bounded valence if there is a finite upper bound for
the degrees of its vertices.

ª
Let f : V ª R be some function. Then df is the function df : E ª R defined

by
df e s f e 1 y f e 0 .Ž . Ž . Ž .Ž . Ž .

We also define the gradient of f to be equal to df :

=f e s df e .Ž . Ž .
ª

A function j: E ª R is a flow on G if it satisfies

j ye s yj eŽ . Ž .
ª

for every e g E. For example, for any f : V ª R, df is a flow. The divergence
of a flow j is the function div j: V ª R defined by

div j v s j e .Ž . Ž .Ý
ªŽ .egE v

If div j s 0, then j is divergence-free. A flow with source v is a flow j such
Ž .that div j u s 0 for every u / v. We shall say that a j is a flow with source v

Ž . Ž . Ž .and sink u when div j w s 0 for w / v, u and div j v G 0 G div j u . If j is
a flow with source v and possibly a sink, the flux of j is defined as its

Ž .divergence at v, flux j s div j v .
For an f : V ª R, we set

D f s div =f .
Then D f : V ª R is known as the discrete laplacian of f. If D f s 0, then f is
harmonic, while if D f s 0 on a subset V 9 ; V, we say that f is harmonic in
V 9. Equivalently, f is harmonic iff its value at any v g V is equal to the
average of the values at the neighbors of v.

ª ª< Ž . < < Ž . <For a flow j and an e g E we let j e denote j e , where e is any
orientation of e. The norm of a flow j is defined by

22 215 5 < <j s j e s j e .Ž . Ž .Ý Ý2
ª egEegE
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The collection of all flows with finite norm is a Hilbert space with the inner
product given by

1j ? i s j e i e .Ž . Ž .Ý2
ª

egE

The Dirichlet energy of a function f : V ª R is defined by

5 5 2DD f s df .Ž .

Ž .A Dirichlet function is an f : V ª R with DD f - `. The space of all
Ž .Dirichlet functions on G is denoted D G . If we choose some base vertex

Ž .v g V, then D G becomes a Hilbert space with inner product given by0

f ? g s f v g v q df ? dg .Ž . Ž .0 0

Ž . Ž .The topology of D G does not depend on the choice of v . Let D G denote0 0
Ž .the closure of the set of all finitely supported functions in G and let HD G

Ž .denote the harmonic functions in D G .
Ž .The simple random walk on a locally finite graph G s V, E starting at a

Ž Ž . Ž . . Ž .vertex v is the Markov process v 1 , v 2 , . . . on V such that v 1 s v and0 0
the transition probability from a vertex v to a vertex u is equal to the
number of edges joining v to u divided by the degree of v. A connected graph
G is said to be transient if there is a positive probability that a simple
random walk that starts at a vertex v will never visit v again. It is easy to0 0
see that this does not depend on the initial vertex v . A nontransient graph is0
recurrent.

w x3. The finite tiling theorem. Brooks, Smith, Stone and Tutte 2 have
Ž .shown how to associate a square tiling of a rectangle to a triple G, v , v ,0 1

where G is a finite connected planar graph, and v , v are two distinct0 1
vertices that belong to the same face of G. In this section we shall associate a

Ž .square tiling of a cylinder to a triple G, v , v , where G is a finite connected0 1
planar graph, and v , v are any two distinct vertices. This is not a significant0 1

w xgeneralization of the result of 2 . Nevertheless, we have decided to include a
w xcomplete proof, since we found the proof in 2 somewhat hard to follow and

because we want to present the proof in a way that stresses the analogy to
complex analysis.

One curious thing about this tiling theorem is that the squares in the tiling
Žcorrespond to edges in the graph. There is a similar tiling theorem from

w x .which the tiling theorem of 2 follows , where vertices in the graph corre-
w x w xspond to rectangles in the tiling with specified aspect ratios; see 3 and 4 .

Ž w x. Ž .THEOREM 3.1 cylinder tiling essentially 2 . Let G s V, E be a planar
connected finite graph, embedded in the plane and let v , v g V be distinct.0 1

Ž .For v g V let h v denote the probability that a random walk that starts at v
ªqŽ .will reach v before reaching v . For v g V let E v denote the set of directed1 0
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ª ªyŽ . Ž Ž .. Ž Ž .. Ž . Ž .edges e g E v such that h e 1 G h e 0 s h v and let E v denote the set
ªŽ . Ž Ž .. Ž .of directed edges e g E v such that h e 1 F h v . Set

h s h e 1Ž .Ž .Ý
ªŽ .egE v0

and let C be the circle of length h, C s RrhZ. Then there is a square tiling S
w xof the cylinder C = 0, 1 with the following properties.

Ž . Ži The squares in the tiling are indexed by the edges of G, S s S :e
.e g E .

Ž .ii The interiors of the squares are disjoint and the union of the squares is
w x Ž w x .C = 0, 1 . That is, S is a tiling of C = 0, 1 .

Ž . � 4 Ž . Ž .iii When e g E,  e s v, u and h v G h u , the square S has the forme
w Ž . Ž .x Ž . Ž .S s I = h u , h v , where I is a closed subarc of C with length h v y h u .e e e

ª
ª ªIf e is an orientation of e g E, we set I s I , S s S .e e e e

Ž .iv For every v g V, set
I s I .Dv e

Ž .egE v

Then I is connected andv

� 4I s I s I for v g V y v , v .D Dv e e 0 1
ª ªq yŽ . Ž .egE v egE v

We are using a relaxed definition for ‘‘square’’: We allow S to be a singlee
Ž .point this happens when h takes the same value on both vertices of e and

w xwe allow S to be of the form C = I, where I is an interval of length h in 0, 1e
Žthis happens when v and v are in different connected components of0 1

� 4.G y e .
Ž . � 4The geometric meaning of 4 is that for each v g V y v the segment1

� Ž .4 w xI = h v ; C = 0, 1 is the union of the bottom edges of the squares Sv e
w Ž . xsatisfying S ; C = h v , 1 and is equal to the union of the top edges of thee

w Ž .x � 4squares satisfying S ; C = 0, h v , if v g V y v .e 0
The tiling S will depend on the embedding of G in the plane and the

choice of v , v , but essentially on nothing more than that, and will prove0 1
very useful later on.

One can give the following alternative definition for h: It is the only
Ž . Ž . � 4function satisfying h v s 0, h v s 1, which is harmonic in V y v , v .0 1 0 1

PROOF OF THEOREM 3.1. Note that

� 43.1 dh e s 0 for v g V y v , v .Ž . Ž .Ý 0 1
ª� Ž . 4egE : e 0 sv

� 4This follows from the fact that h is harmonic in V y v , v . In other words,0 1
dh is a flow with source v and sink v . The flux of dh, the total flow from0 1
v , is equal to h:0

3.2 h s dh e .Ž . Ž .Ý
ªŽ .egE v0
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ª Ž .Also note that Ý Ý dh e s 0, Since every oriented edge appearsv g V eg EŽv .
once in the sum, and the contributions of the two orientations of an unori-

Ž . Ž .ented edge cancel each other. Therefore, 3.1 and 3.2 imply

3.3 h s y dh e .Ž . Ž .Ý
ªŽ .egE v1

Ž .Let G* s V *, E* denote the dual graph of G. The set of directed edges of
ª ª

G* will be denoted by E*. If e g E, there is a unique edge e* of G* that
crosses e. Moreover, there is a unique orientation of e* such that when
walking along e* in the given orientation you find e crossing from ‘‘left to
right.’’ We refrain from giving the technical definition here. Let ) e denote the
edge e* with this particular orientation.

ª Ž . Ž .Now define ) dh: E* ª R by setting ) dh ) e s dh e .

Ž U U U .LEMMA 3.2. Let g* s e , e , . . . , e be a closed path in G*. Then1 2 n
n

U3.4 ) dh e s khŽ . Ž .Ý j
js1

for some integer k.

U Ž . U Ž .That g* is a closed path means that e 1 s e 0 holds for j s 1, 2, . . . ,j jq1
U Ž . U Ž .n y 1 and e 1 s e 0 .n 1

PROOF OF LEMMA 3.2. First suppose that g* is a simple closed path; that
U Ž . U Ž .is, e 1 / e 1 for distinct j, k and when n s 2 the edges of g* are not thej k

two orientations of one unoriented edge of G*. Let D be the bounded
connected component of R2 y g*. Consider the sum

dh e .Ž .Ý Ý
ªvgVlD Ž .egE v

The contribution of an unoriented edge e g E to this sum is zero if both
vertices of e are outside D. It is also zero if both vertices of e are inside D,
since the two terms corresponding to the different orientations of e cancel
each other. The contribution of an edge e g E with vertices v, u such that

Ž . Ž .v g D, u f D to the sum is h u y h v . Therefore, we have
n

U3.5 ) dh e s « dh e ,Ž . Ž . Ž .Ý Ý Ýj
ªjs1 vgVlD Ž .egE v

where « s 1, if g* is oriented positively around D, and « s y1, if g* is
Ž . Ž . Ž . Ž .oriented negatively around D. Now 3.4 follows from 3.1 , 3.2 , 3.3 and

Ž .3.5 .
In general, g* can always be written as a disjoint union of simple closed

paths and of paths of length 2 consisting of a single unoriented edge of G*
traversed in both directions. We have seen that the statement of the lemma
holds for simple closed paths, and it clearly holds for the other closed paths of
length 2. The general case follows. I
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Ž .PROOF OF THEOREM 3.1 continued . Let C be the circle C s RrhZ. The
lemma allows us to define a function u : V * ª C as follows. Choose some

U Ž U U U .arbitrary v g V *. For any v* g V * let g* s e , e , . . . , e be a path from0 1 2 n
vU to v* and set0

n
Uu v* s ) dh e mod h .Ž . Ž . Ž .Ý j

js1

Ž .The lemma implies that the value u v* is independent of the choice of g*.
ª

Note that for any edge e g E we have

dh e ' u ) e 1 y u ) e 0 mod h .Ž . Ž . Ž . Ž .Ž . Ž .
ªFor any e g E we define the arc I ; C as follows. Let e be e oriented soe

ª ªŽ Ž .. Ž Ž ..that h e 1 G h e 0 and let I ; C be the positively oriented arc of lengthe
ª ªŽ . Ž Ž ..dh e whose initial point is u ) e 0 . This defines the arcs, and the collection
Ž . Ž .S s S : e g E is then defined as in Theorem 3.1 iii .e

Ž .To see that these are ‘‘squares’’ we must verify that dh e F h for every
ª w . Ž .e g E. Indeed, choose t g 0, 1 and let V be the set of v g V with h v F t.t
Ž . Ž .From 3.1 and 3.2 , we get

dh e s h .Ž .Ý Ý
ªvgV Ž .t egE v

ªŽ .This is also equal to Ý dh e , where the sum extends over all e g E withe
Ž . Ž .e 0 g V and e 1 f V . The terms in this last sum are all positive, so wet t

Ž . Ž Ž .. Ž Ž ..have dh e F h, when h e 0 - t - h e 1 . Since this is valid for every
w . Ž .t g 0, 1 , we get dh e F h, as required.

Ž . w xWe shall now prove 2 ; that is, that S is a tiling of C = 0, 1 . Let x be
� Ž . 4 Ž .some point in C y u v* : v* g V * and let x g R satisfy x ' x mod h .˜ ˜

� 4Consider some vertex v g V y v , v and let e , e , . . . , e be the edges0 1 0 1 ny1
emanating from v in counterclockwise order. For any integer j let e s e ,j j9

Ž . Ž .Ž .where j9 s j mod n . Also set f s ) e 1 ; that is, f g V * corresponds toj j j
the face of R2 y G that lies t othe left of the edge e . Let u g R be such thatj 0

Ž . Ž . Ž .u ' u f mod h and define inductively u s u q dh e . Clearly, u '0 0 jq1 j jq1 j
Ž . Ž . Ž .u f mod h . Equation 3.1 implies that u s u . Consequently, the numberj n 0

� 4of j in the range 0, . . . , n y 1 such that u - x - u is equal to the number˜j jq1
Ž .of j in this range such that u ) x ) u . Because x / u . This implies that˜j jq1 jª ªq yŽ . Ž .the number of e g E v with x g I is equal to the number of e g E ve

� 4with the same property. Since this is valid for any v g V y v , v , it easily0 1
Ž .follows that the number of squares S that contain the point x, t ise

w x � Ž . 4independent of t, when t is in the range 0, 1 y h v : v g V .
On the other hand, if we replace the above v with v , then the sequence u0 j

would be monotone nondecreasing and u s h q u . Consequently, for t gn 0
w x Ž . Ž .0, 1 sufficiently close to 0, there is precisely one e g E v such that x, t g0

Ž . Ž � Ž . 4. Žw x � Ž . 4.S . Hence for every x, t g C y u v* : v* g V * = 0, 1 y h v : v g Ve
there is precisely one square in S that contains it. This shows that S is a

w xtiling of C = 0, 1 .
The remaining claims of the theorem now easily follow. I
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4. The infinite tiling theorem. We now generalize the tiling theorem
to infinite, transient, planar, uniquely absorbing graphs.

Ž . Ž .THEOREM 4.1 infinite cylinder tiling . Let G s V, E be a planar, con-
nected, transient graph, embedded in the plane, which is uniquely absorbing.

Ž .Let v be a vertex in G and, for v g V, let h v denote the probability that a0 ªqŽ .random walk that starts at v will never reach v . For v g V let E v denote0ª ªyŽ . Ž Ž .. Ž . Ž .the set of edges e g E v such that h e 1 G h v and let E v denote the set
ª

ªŽ . Ž Ž .. Ž . Ž Ž ..of edges e g E v such that h e 1 F h v . Let h s Ý h e 1 and let Ceg EŽv .0

be the circle of length h, C s RrhZ. Then there is a square tiling S of the
w .cylinder C = 0, 1 with the following properties.

Ž . Ži The squares in the tiling are indexed by the edges of G, S s S :e
.e g E .

Ž .ii The interiors of the squares are disjoint.
Ž . � 4 Ž . Ž .iii When e g E,  e s v, u and h v G h u , the square S has the forme

w Ž . Ž .x Ž . Ž .S s I = h u , h v , where I is a closed subarc of C with length h v y h u .e e e
ª

ª ªIf e is an orientation of e g E, we set I s I , S s S .e e e e
Ž .iv For every v g V, set

I s I .Dv e
Ž .egE v

Then I is connected andv

� 4I s I s I for v g V y v .D Dv e e 0
ª ªqŽ . Ž .egE v egEy v

Ž . w . � 4 w xv For almost every x g C, for every t g 0, 1 , the segment x = 0, t is
contained in the union of finitely many squares in S.

w .The claim that S is a tiling of C = 0, 1 merely means that the interiors of
the squares are disjoint and that the union of all the squares in S is dense in

w . Ž .C = 0, 1 . It follows from 5 that each component of the complement of the
tiling is a vertical line segment.

Figure 1 shows the tiling corresponding to the septagonal traingulation,
where each vertex has seven neighbors.

w xWe will need the following result, which is a special case of 6 ,
Theorem 8.1.

Ž .LEMMA 4.2. Let G s V, E be a locally finite connected transient graph
Ž .and let v g V. Let h v denote the probability that a random walk starting at0

v g V will never reach v . Then dh is the optimal flow with source v on G;0 0ª
that is, if i: E ª R is a flow with source v on G, then0

< <flux iŽ .
5 5 5 54.1 i G dh .Ž .

flux dhŽ .
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Moreover, we have

5 5 24.2 flux dh s dh .Ž . Ž .

We do not include a proof of the lemma, but remark that it may be proved
by first establishing an analogous statement for flows with a source and a
sink on a finite graph, then taking an exhaustion of G by finite graphs and
deducing the infinite case from the finite case.

PROOF OF THEOREM 4.1. For positive integers n, let V n denote the set of
n Ž n n.vertices of G with distance at most n from v . Let G s V , E denote the0

restriction of G to V n. Since Gn is finite and G is uniquely absorbing, there is
a unique connected component Dn of R2 y Gn such that V l Dn is absorbing.

n Ž n n.Construct a new planar graph G9 s V 9 , E9 , as follows. Put a new vertex
v n in Dn. Let V 9n s V n j v n. For every edge e g E that connects a vertex v1 1
in V n to a vertex in V l Dn put an edge e9 from v to vn and let E9n be the1
union of En and these new edges e9. It is clear that the embedding of Gn can

n Ž n n.be extended to an embedding of G9 s V 9 , E9 .
Žn.Ž . nNow let h v denote the probability that a random walk on G9 that

starts at v will reach v n before reaching v . Apply the finite cylinder tiling1 0
Ž . n n Ž n n.theorem Theorem 3.1 to each G9 , to yield tilings S s S : e g E9 ofe

Ž Žn. . w x Žn.Ž . Ž .Rrh Z = 0, 1 , say. It is easy to verify that h v ª h v as n ª ` for
Ž . Žn.every v g V in fact, the convergence is monotone . Clearly, h ª h and the

fact that G is transient insures that h ) 0. Pick a subsequence of n s 1, 2, . . .
so that the coordinates of each square Sn, e g E converge as n ª ` in thise

Ž nsubsequence. Actually, if we normalize the tilings S by an appropriate
rotation of C Žn., then it is not necessary to take a subsequence; the squares

. Ž . w xwould converge. Let S s S : e g E be the limit configuration in C = 0, 1 ,e
where C s RrhZ.

First, it is clear that each S is a square, in our broad use of this term.e
w . Ž .Moreover, each S is in C = 0, 1 , because h v - 1 for each v g V. All thee

other claims in the theorem are immediate consequences of the corresponding
n Ž . wstatements for the tilings S , except for 5 and the fact that the tiling is

w . Ž .xdense in C = 0, 1 , which follows from 5 .
Ž .In the proof of 5 , we shall use Lemma 4.2. For every x g C there is a

Ž . w x w Ž .. � 4 w xmaximal t x g 0, 1 such that for every t g 0, t x the segment x = 0, t
is contained in finitely many of the squares S .eª ªWe define i: E ª R as follows. Let e g E and let e be an orientation of e

ª ª ªŽ Ž .. Ž Ž .. Ž .such that h e 1 G h e 0 . Set i e to be the measure of the set of x g C
ª ª� 4 w Ž .. Ž . Ž .such that the segment x = 0, t x intersects S and set i ye s yi e . Ite

Ž . Ž .follows from 2 and 4 that i is a flow on G with source v . Observe that0
Ž . Ž . Ž . Ž . 5 5 5 5flux i s length C s flux dh . Therefore, 4.1 gives i G dh . However, we

ª
< Ž . < < Ž . < Ž .clearly have i e F dh e for every e g E, and i e has always the same

ªŽ . Ž . Ž .sign as dh e . Hence, i e s dh e for every e g E.
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w . Ž . w . Ž .Let A ; C = 0, 1 be the set of all x, t g C = 0, 1 such that t - t x .
< Ž . < < Ž . <Note that for each e g E the are of A l S is equal to dh e i e . Therefore,e

we have

t x dx s area A s area A l SŽ . Ž . Ž .ÝH e
xgC egE

< < < < 5 5 2s dh e i e s dh .Ž . Ž .Ý
egE

4.3Ž .

5 5 2 Ž . Ž . Ž .Now, recall that dh s flux dh s h, by 4.2 . So the integral in 4.3 is
Ž .equal to h, which is the length of C. However, t x F 1 everywhere, so we get

Ž . Ž .t x s 1 for almost every x g C. This proves 5 . I

5. Existence of harmonic functions. Throughout this section, we shall
let G, v , h, h, C, S and I be as in Theorem 4.1. In particular, we will0 v
assume that G is a bounded valence, uniquely absorbing, planar graph. We
shall use V to denote the least upper bound for the degrees of the vertices of
G, and shall assume that V - `.

Ž .NOTATIONS. Let C9 be the set of all x g C such that for every t g 0, 1
� 4 w xthe interval x = 0, t intersects only finitely many squares in the tiling S

and x is not in the boundary of any I for e g E. Note that C9 has fulle
Ž .measure in C, by Theorem 4.1 v .

ªŽ .Given x g C9 and t g 0, 1 , there is precisely one directed edge e g E
Ž . Ž Ž .. Ž Ž .. Ž .such that x, t g S and h e 0 - t F h e 1 . In other words, x, t is in thee

Ž .square S , but not on its bottom edge. We will let v x, t denote the vertexe
Ž .e 1 .

For every v g V we let x be some arbitrary point in I .v v

THEOREM 5.1. Let f: C ª R be a continuous function on C. Then there is
a bounded harmonic function g: V ª R that satisfies

lim g v x , t s f xŽ . Ž .Ž .
tª1

for every x g C9. The limit is uniform in x. If f is Lipschitz, then g has finite
Dirichlet energy.

The proof of this theorem will be completed in Section 7.

LEMMA 5.2. Let f: C ª R be a Lipschitz function with Lipschitz constant
ˆ ˆŽ . Ž .M - `. Define f v s f x for v g V. Then the Dirichlet energy of f satis-v

fies

ˆ 2 2DD f F 4V M h - `.Ž .
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PROOF. Let e be some edge of G with vertices v, u. Recall that I and Iv u
both contain I . Hence I l I / B and we havee v u

ˆ ˆ 2 2< < < <f v y f u s f x y f xŽ . Ž . Ž . Ž .v u

22F M d x , xŽ .v u

22F M length I q length IŽ . Ž .Ž .v u

2 22F 2 M length I q length I .Ž . Ž .Ž .v u

Since every vertex v belongs to at most V edges, we get

1 2ˆ ˆ ˆ< <DD f s f e 1 y f e 0Ž . Ž .Ž . Ž .Ž . Ý2
ª

egE

22F 4V M length I .Ž .Ý v
vgV

5.1Ž .

ªqŽ . Ž .The length of I is equal to the sum of length I over all e g E v , wherev eªqŽ .E v is as in the tiling Theorems 3.1 and 4.1. Hence
2

2length I s length IŽ . Ž .Ýv ež /ªŽ .egE v

ª 2< <F E v length IŽ . Ž .Ý e
ªŽ .egE v

2F V length I .Ž .Ý e
ªŽ .egE v

Ž .This with 5.1 gives
22 2ˆDD f F 4V M length IŽ .Ž . Ý e

egE

s 4V2M 2 area SŽ .Ý e
egE

2 2 w 2 2F 4V M area C = 0, 1 s 4V M h.Ž .
and the proof is complete. I

We are now ready to prove the following weak form of Theorem 5.1.

LEMMA 5.3. Let f: C ª R be a Lipschitz function on C. Then there is a
bounded harmonic function f : V ª R with finite Dirichlet energy such that

Ž Ž .. Ž . 1lim f v x, t s f x in L .t ª1

ˆŽ . Ž .PROOF. Define f v s f x as in Lemma 5.2. From that lemma we knowv
ˆ Ž .that f has finite Dirichlet energy. Let s g 0, 1 and let V denote the set ofs

Ž .vertices v g V such that h v - s. It is easy to see that in the collection of all
ˆ Ž .functions g: V ª R that are equal to f outside of V there is a uniques
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function with least Dirichlet energy. Denote this minimizer by g . From thes
fact that g is a minimizer, it readily follows that g is harmonic in V , thats s s

ˆ ˆŽ . Ž . < Ž . < < Ž . < < Ž . <DD g F D f and that sup g v F sup f v F sup f x .s v s v x ªŽ .Fix some t g 0, 1 . For every x g C9 let g denote the set of e g E suchx
Ž Ž .. Ž Ž ..that t - h e 0 F h e 1 and x g I . Note that g are the edges of a directede x

Ž . Ž . Ž .path that starts at v x, t and contains all v x, t with t g t, 1 . Since for
Ž .every d ) 0 there are at most finitely many v with length I ) d , it followsv
ˆŽ Ž .. Ž Ž .. Ž .from the continuity of f that lim g v x, t s lim f v x, t s f xt ª 1 s t ª 1

holds for every x g C9. We can calculate

< <f x y g v x , t dxŽ . Ž .Ž .H s
xgC 9

< <s lim g v x , t y g v x , t dxŽ . Ž .Ž . Ž .H s s
tª1xgC 9

5.2Ž .

< <F dg e dx .Ž .ÝH s
xgC 9 eggx

Ž Ž .. Ž Ž .. Ž Ž ..Now consider any edge e, oriented so that h e 0 F h e 1 . If h e 0 - t,
Ž Ž ..then e f g for every x g C9. On the other hand, if h e 0 G t, the set ofx

x g C9 such that e g g is contained in I . Therefore, the contribution of suchx e
Ž . Ž . < Ž . < Ž .an edge to the last integral in 5.2 is at most length I dg e . Let m e s 0c s

Ž Ž .. Ž Ž .. Ž . Ž .if h e 0 - t or h e 1 - t, and m e s length I , otherwise. Then we cane
Ž .rewrite 5.2 as

< <f x y g v x , t dxŽ . Ž .Ž .H s
xgC 9

< <F m e dg eŽ . Ž .Ý s
egE

2 2< <F m e dg eŽ . Ž .Ý Ý s( (
egE egE

5.3Ž .

ˆw' 'F area C= t , 1 DD g F h 1yt DD f .'. Ž . Ž .Ž . Ž .s

Ž . < Ž . < < Ž . <Since for every s g 0, 1 and every v g V we have g v F sup f x ,s x
Ž . Ž .there is some sequence of s , s , . . . in 0, 1 tending to 1 so that f v s1 2

Ž .lim g v exists for every v g V. Clearly, f is harmonic and satisfiesn sn ˆŽ . Ž .DD f F DD f - `. Moreover, since the functions g are uniformly boundeds
Ž Ž .. Ž Ž ..and f v x, t s lim g v x, t pointwise, we haven sn

< <lim g v x , t y f v x , t dx s 0.Ž . Ž .Ž . Ž .H snn xgC 9

Ž .This and 5.3 gives

ˆ< < 'f x y f v x , t dx F h 1 y t DD f ,Ž . Ž . Ž .Ž . Ž .H
xgC 9

which proves the lemma. I
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We now have the following theorem:

THEOREM 5.4. Let f : V ª R have finite Dirichlet energy. Then the limit
Ž Ž .. 1Ž .lim f v x, t exists in L C .t ª1

PROOF. The arguments in the proof of Lemma 5.3 show that the L1

Ž Ž .. Ž Ž .. Ž .distance from f v x, t to f v x, t9 considered as functions of x tends to
< <zero as t y t9 ª 0. I

6. Behavior of the random walk. We use the assumptions and nota-
tions of the previous section.

Ž Ž . Ž . .THEOREM 6.1. Let v 0 , v 1 , . . . be a simple random walk on G starting
Ž .at any vertex v 0 s v. Then with probability 1 the limit x s lim x exists.n vŽn.

We will also get quite explicit estimates for the rate of convergence of xvŽn.
Ž .in terms of the speed at which h x ª 1.vŽn.

LEMMA 6.2. Let A m C be an arc in C and let L be the length of the
complementary arc C y A. Let V be the set of vertices v g V such thatA

Ž . Ž .x g A. Let p, t g 0, 1 and let Q A, t, p be the set of x g C9 y A such thatv
w . Ž .for every t9 g t, 1 the probability that the random walk that starts at v x, t9

will ever reach V is smaller than p. ThenA

4' 'length Q A , t , p G L y 6 Vrp hL 1 y t .Ž . Ž .Ž .

Here ‘‘length’’ means one-dimensional Lebesgue measure. The point is that
Ž .the length of Q A, t, p tends to L as t ª 1.

Ž .PROOF OF LEMMA 6.2. Let s g t, 1 be close to 1. As before, let V denotes
Ž .the set of vertices v g V such that h v - s. Let « ) 0 be some number to be

Ž .determined later. For x g C let f x be the minimum of « and the distance
ˆŽ . Ž .from x to A, and set f v s f x for v g V. Since f has Lipschitz constantv

1, Lemma 5.2 gives
ˆ 2DD f F 4V h .Ž .

ˆLet g be the function that is equal to f outside of V y V and has leasts s A
Dirichlet energy subject to this requirement. Then g is harmonic in V y V .s s a
Moreover,

ˆ 26.1 DD g F DD f F 4V h .Ž . Ž . Ž .s

Ž .Let B be the set of points x g C9 such that f x s « . Using the method of
proof of Lemma 5.3, it can easily be established that

< < wsup « y g v x , t9 : t9 g t , 1 dx� 4Ž . .Ž .H s
xgB

w ''F area B = t , 1 DD g s L y 2« 1 y t DD g .' '. Ž . Ž . Ž . Ž .Ž . s s
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Ž .This and 6.1 give

< < w '6.2 sup « y g v x , t9 : t9 g t , 1 dx F 2V hL 1 y t .� 4Ž . Ž . . Ž .Ž .H s
xgB

Ž . Ž . w .Consider some x g B y Q A, t, p . There is some t9 x g t, 1 such that
Ž Ž ..the probability that the random walk which starts at v x, t9 x will reach VA

Ž .is at least p. Therefore, there is some s x - 1 such that with probability at
least pr2 this random walk will reach V before it gets to V y V . For anyA sŽ x .

Ž . Ž Ž Ž ... Ž .s ) s x , we then have g v x, t9 x F « 1 y pr2 , because g F « every-s s
where, g is harmonic in V y V and g s 0 on V .s s A s A

Ž . Ž . Ž .Let Z A, t, p, s denote the set o x g B y Q A, t, p such that s x - s.
w Ž . Ž .We can make sure that Z A, t, p, s is measurable by, say, choosing s x

x � < Ž Ž .. <minimal. The previous paragraph shows that sup e y g v x, t9 : t9 gs
w .4 Ž . Ž .t, 1 G e pr2 for x g Z A, t, p, s . Therefore, using 6.2 , we find that

y1 y1'length Z A , t , p , s F 4V hL 1 y t « p .Ž . Ž .Ž .

Ž . Ž .However, B y Q A, t, p s D Z A, t, p, s and this union is monotone.s-1
Consequently,

length Q A , t , p G length B y lim length Z A , t , p , sŽ . Ž . Ž .Ž . Ž .
sª1

y1 y1'G length B y 4V hL 1 y t « pŽ . Ž .
y1 y1's L y 2« y 4V hL 1 y t « p .Ž .

4' 'Choosing « s Vrp hL 1 y t now establishes the lemma. IŽ .

Ž . Ž Ž . Ž . .LEMMA 6.3. Let p g 0, 1 , u g V and let j s v 0 , v 1 , . . . be a random
Ž .walk that starts at v 0 s u. Then

Prob sup d x , x ) Lr2 F p ,Ž .vŽn. už /
n

where

3
2'64 V h 1 y h uŽ .Ž .

L s .
p

PROOF. Let A be the arc of C consisting of all points x such that
Ž .d x, x G Lr2 and let V be the set of vertices v g V such that x g A.u A v

Ž Ž ..Let t s 1 y 2 1 y h u rp. As before, V will denote the set of v g V witht
Ž .h v - t.

Let E be the event that the walk j reaches V and let E be the event0 A 1
that j reaches V . The probability that a random walk starting at a vertex vt

Ž .will reach v is equal to 1 y h v . Therefore, the probability that j will reach0
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Ž Ž ..v conditioned on the event E is at least 1 y t s 2 1 y h u rp. So we have0 1

1 y h u s Prob j reaches vŽ . Ž .0

<G Prob j reaches v E Prob EŽ .Ž .0 1 1

1 y h uŽ .
G 2 Prob E .Ž .1p

Therefore,
6.3 Prob E F pr2.Ž . Ž .1

ŽUsing the notations and conclusion of Lemma 6.2 our usage of L is
.compatible with the lemma , we have

4' 'length Q A , t , pr2 ) L y 9 Vrp hL 1 y t .Ž . Ž .Ž .
With the definitions of L and t, this gives

length Q A , t , pr2 ) Lr2.Ž .Ž .
Ž . � Ž .This implies that Q A, t, pr2 intersects any half of the arc x g C: d x, xu

4 Ž . � 4- Lr2 . Consequently, there are x , x g Q A, t, pr2 such that x , x1 2 1 2
separates x from A in C.u

Ž . Ž .Let E be the event there is an n s 0, 1, 2, . . . such that i v n9 f V for2 A
Ž . Ž . Ž .all n9 s 0, 1, . . . , n y 1, ii v n f V and iii I contains x or x . Sincet vŽn. 1 2

� 4I l I / B for every j s 0, 1, 2, . . . and x , x separates x from A,vŽ j. vŽ jq1. 1 2 u
we have E y E ; E . So we may estimate0 1 2

Prob E F Prob E y E q Prob EŽ . Ž . Ž .0 0 1 1

s Prob E y E l E q Prob EŽ . Ž .Ž .0 1 2 1

<F Prob E E q pr2.Ž .0 2

Ž . Ž .In the last inequality we have used 6.3 . Since x , x g Q A, t, pr2 , the1 2
Ž .probability that a random walk that starts at any vertex of the form v x , t9j

with j s 1, 2 and t9 G t will ever reach a vertex v with x g A is at mostv
Ž . Ž Ž Ž ... Ž < .pr2. If x g I , then v n s v x , h v n . Hence Prob E E F pr2. Thusj vŽn. j 0 2

Ž .we have Prob E F p, proving the lemma. I0

Ž .LEMMA 6.4. Let G s V, E be a connected transient graph and let v g V0
Ž .be some vertex. For v g V let h v denote the probability that the random

Ž Ž . Ž . .walk that starts at v will never reach v and let v 0 , v 1 , . . . be a random0
Ž . Ž Ž ..walk on G that starts at an arbitrary vertex v 0 . Then lim h v n s 1 withn

probability 1.

Ž . Ž .PROOF. Let p n be the probability that v j s v for some j G n. For0
Ž .every n there is an n9 such that the probability that v j s v for some0

Ž .jsn, nq1, . . . , n9 is greater than p n r2. Set n s0 and inductively n s0 jq1X Ž .n q 1. The walk has a probability of at least p n r2 to visit v at some timej j 0
� 4t g n , n q 1, . . . n y 1 . Hence the expected number of visits of the walkj j jq1
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Ž .to v is at least Ý p n r2. Because G is transient, this must be finite. Hence0 j j
Ž . Ž .p n ª 0 as j ª `. Since p n is monotone decreasing, it follows thatj
Ž .p n ª 0 as n ª `.

Ž . Ž Ž ..Now note that p n is the expected value of 1 y h v n . Since h F 1
Ž . Ž Ž .. 1always, we get from p n ª 0 that h v n ª 1 in L . This implies the

lemma. I

We will now see that Theorem 6.1 follows immediately from Lemmas 6.3
and 6.4.

PROOF OF THEOREM 6.1. Let « ) 0. Let n be the least integer such that
Ž Ž .. 6h v n ) 1 y « . Lemma 6.4 tells us that with probability 1 such as n exists.

Ž .Lemma 6.3 with p s « and u s v n tells us that
3

2'Prob sup d x , x ) 32 V h « F « .Ž .vŽn. vŽn9.ž /
n9)n

Hence with probability at least 1 y « , we have
3

2'lim sup d x , x F 64 V h « .Ž .vŽm. vŽk .
m , kª`

Ž .Since this holds for every « , it follows that lim sup d x , x s 0m , k ª` vŽm vŽk .
with probability 1, which implies that lim x exists with probability 1. In vŽn.

7. More about harmonic functions.

DEFINITION. Given a v g V, we let m denote the hitting measure on C. Inv
other words, m is the measure that assigns to each Borel subset A ; C thev

Ž Ž . Ž . Ž . . Ž .probability that for a random walk v 0 , v 1 , v 2 , . . . that starts at v 0 s v,
we shall have lim x g A.n vŽn.

1Ž .LEMMA AND DEFINITION 7.1. Let f: C ª R be a function in L m . Definev0

P f v s f x dm x .Ž . Ž . Ž . Ž .H v
C

Ž . Ž .Then P f : V ª R is harmonic in V. The function P f will be called the
Poisson integral of f.

We shall see subsequently that m is equal to Lebesgue meaure on C.v01Ž . 1Ž .Therefore, L m s L C .v0

PROOF OF LEMMA 7.1. Let v, v9 g V. Let p be the probability that a
random walk that starts at v will reach v9. Clearly, p ) 0. For any measur-

Ž . Ž .able A ; C we have m A G pm A . This together with the correspondingv v 9
1Ž .opposite inequality imply that a function is in L m if and only if it is inv

1Ž . Ž .L m . Hence P f is well defined. If u , . . . , u are the neighbors of a vertexv 9 1 k
Ž .u, then clearly m is the average of m , . . . , m . This shows that P f isu u u1 k

harmonic. I
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Ž .PROOF OF THEOREM 5.1. Take g s P f . It is an easy consequence from
Ž Ž .. Ž .Lemma 6.3 that g v x, t ª f x as t ª 1 uniformly in x g C9.

ˆNow suppose that f is Lipschitz. Recall our construction of the function f:
V ª R, the functions g and their limit f in the proof of Lemma 5.3. Theres

< Ž .we have shown that f has finite Dirichlet energy. Now note that g v ys
Ž .Ž . < ŽP f v is small for v f V , if s is close to 1. Again, this follows froms

. < Ž . Ž Ž . <Lemma 6.3. Hence, g v y P f v is small for every v g V, for s close to 1.s
Ž . Ž .Ž . Ž .This gives then f v s P f v s g v , so g has finite Dirichlet energy. I

The following proposition shows that in a certain limited sense the har-
monic function with prescribed boundary values is unique.

PROPOSITION 7.2. Let f: C ª R be continuous and let f : V ª R be har-
monic. Suppose that

f x s lim f v x , tŽ . Ž .Ž .
tª1

Ž .uniformly for x g C9. Then f s P f .

1Ž . Ž .PROOF. First, since f is bounded, f g L m and P f exists.v0
Ž Ž ..Let « ) 0. From the uniform convergence of f v x, t to f we know that if

d ) 0 is chosen sufficiently small, then
< <f v y f x - «r2Ž . Ž .v

Ž .holds for every v g V satisfying h v ) 1 y d . It is also easy to see that
Lemma 6.3 and the continuity of f imply that

< <P f v y f x - «r2Ž . Ž . Ž .v

Ž .holds for every v g V satisfying h v ) 1 y d , if d is sufficiently small.
< Ž . Ž .Ž . < Ž .Hence f v y P f v - « is true for all v with 1 y h v sufficiently small.

< Ž . Ž .Ž . <Now Lemma 6.4 shows that f v y P f v - « for every v g V. Since
« ) 0 is arbitrary, this completes the proof. I

THEOREM 7.3. m is equal to Lebesgue measure on C.v0

Ž .PROOF. Let f: C ª R be a Lipschitz function and let f s P f . We know
5 5from the proof of Theorem 5.1 that f has finite Dirichlet energy; that is, =f

is finite. Since f is harmonic, =f is a divergence-free flow on G. For t g R,
Ž . Ž .=h q t =f is a flow on G with source v and flux =h q t =f s flux =h .0

However, we know from Lemma 4.2 that =h is the least energy flow on G
Ž .with source v and flux =h . Therefore0

d 25 57.1 0 s =h q t =f s 2 =h ? =f .Ž .
dt ts0

We now make an argument similar to one given in the proof of Lemma 5.3.
ª Ž . Ž .For each x g C9, let b denote the set of e g E so that e 0 F e 1 and Sx e

� 4 w .intersects the segment x = 0, 1 . Then b is the collection of edges of ax
Ž .directed path that starts at v and contains every v x, t .0
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We compute,

f v y f x dx s f v y lim f v x , t dxŽ . Ž . Ž . Ž .Ž .H H0 0ž /
tª1xgC xgC 9

s df e dx .Ž .ÝH ž /
xgC 9 egbx

7.2Ž .

Now we want to see that the last expression is absolutely convergent.
Consider,

< <7.3 df e dx .Ž . Ž .ÝH ž /
xgC 9 egbx

ª
We may examine the contribution of any edge e g E to this expression.

Ž Ž .. Ž Ž ..Suppose that h e 0 F h e 1 . Then the set of x g C9 such that e g b isx
< Ž . < Ž . < < < <exactly C9 l I , which has length dh e . Hence, 7.3 is equal to =h ? =f -e

Ž .`. This means that the last expression in 7.2 is absolutely convergent, and
the same kind of argument shows that it is equal to =h ? =f , which we know is

Ž .zero from 7.1 . Hence we get

f x dm s P f v s f v s f x dx .Ž . Ž . Ž . Ž . Ž .H Hv 0 00
xgC xgC

Since this is true for every Lipschitz f: C ª R, the theorem follows. I

QUESTION 7.4. Is C a realization of the Poisson boundary of G?

8. When G is not end convergent. Theorem 5.1 shows that on any
transient, bounded valence, planar, uniquely absorbing graph G, there are

w xnonconstant, bounded, harmonic, Dirichlet functions. In 1 , we have proved
this without the assumption that G is uniquely absorbing. This latter as-
sumption is easy to get rid of, because of the following theorem, which is

Ž w x .known see 5 , page 79 .

THEOREM 8.1. Let G be a bounded valence connected graph, which is
transient but not end convergent. Then there are nonconstant, bounded har-
monic functions on G with finite Dirichlet energy.

PROOF. Since G is not end convergent, there is a finite set K ; V such
that there is more than one absorbing component of G y K. This implies that
one can write V y K as a disjoint union V y K s A j B, such that A and B
are absorbing and the vertices of each component of G y K are contained
either in A or in B. With probability 1 a random walk on G will visit K only
finitely many times. Hence it is either eventually in A or eventually in B. For

Ž .any v g V let h v be the probability that a random walk that starts at v
will eventually stay in A. It is clear that h is a bounded nonconstant
harmonic function. We shall show that it also has finite energy.

Let V be the set of vertices in V with distance at most n to K. Let y :n n
V ª R be the function that is 0 on B y V , 1 in A y V and harmonic in V .n n n



I. BENJAMINI AND O. SCHRAMM1238

Because with probability 1 the random walk visits K finitely many times, it
is not difficult to see that h ª h pointwise as n ª `. This implies thatn

8.1 DD h F lim sup DD h .Ž . Ž . Ž .n
n

Now
1DD h s dh e h e 1 y h e 0Ž . Ž . Ž . Ž .Ž . Ž .Ž .Ýn n n n2

ª
egE

s y dh e h vŽ . Ž .Ý Ý n n
ªvgV Ž .egE v

8.2Ž .

s y h v div dh v s y div dh v .Ž . Ž . Ž .Ý Ýn n n
vgV vgAyVn

Since K disconnects A from B, and dh has finite support, it follows thatn

8.3 y div dh v s dh e ,Ž . Ž . Ž .Ý Ýn n
ªvgA Ž .egE A , K

ª ªŽ . Ž . Ž .where E A, K denotes the set of all e g E with e 0 g A and e 1 g K.
Ž . Ž .However, div dh s 0 in V , so it follows from 8.2 and 8.3 thatn n

< < < <DD h F dh e F dh e .Ž . Ž . Ž .Ý Ý Ýn n n
ª ªvgKŽ . Ž .egE A , K egE v

Ž .Taking the lim sup and using 8.1 , we get

< <DD h F dh e - `,Ž . Ž .Ý Ý
ªvgK Ž .egE v

which establishes the claim. I

Acknowledgment. The first author would like to thank R. Pemantle for
the friendly support via NSF Grant DMS-93-53149.

REFERENCES

w x Ž .1 BENJAMINI, I. and SCHRAMM, O. 1995 . Harmonic function on planar graphs and almost
planar manifolds, via circle packings. Invent. Math. To appear.

w x Ž .2 BROOKS, R. L., SMITH, C. A. B., STONE, A. H. and TUTTE, W. T. 1940 . The dissection of
squares into squares. Duke Math. J. 7 312]340.

w x Ž .3 CANNON, J. W., FLOYD, W. J. and PARRY, W. R. 1994 . Squaring rectangles: the finite
Riemann mapping theorem. The Mathematical Heritage of Wilhelm Magnus}Groups,
Geometry and Special Functions. Amer. Math. Soc., Providence, RI. To appear.

w x Ž .4 SCHRAMM, O. 1993 . Square tilings with prescribed combinatorics. Israel J. Math. 84 97]118.
w x Ž .5 SOARDI, P. M. 1994 . Potential Theory on Infinite Networks. Lecture Notes in Math. 1590

187. Springer, Berlin.
w x Ž .6 WOESS, W. 1994 . Random walks on infinite graphs and groups}a survey on selected topics.

Bull. London Math. Soc. 26 1]60.

THE WEIZMANN INSTITUTE

MATHEMATICS DEPARTMENT

REHOVOT 76100
ISRAEL

E-MAIL: itai@sunset.huji.ac.il


