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ON THE SHARP MARKOV PROPERTY FOR GAUSSIAN
RANDOM FIELDS AND SPECTRAL SYNTHESIS

IN SPACES OF BESSEL POTENTIALS

BY LOREN D. PITT AND RAINA S. ROBEVA

University of Virginia and Sweet Briar College

Let � = {φ(x) :x ∈ R
2} be a Gaussian random field on the plane. For

A ⊂ R
2, we investigate the relationship between the σ -field F (�,A) =

σ {φ(x) :x ∈ A} and the infinitesimal or germ σ -field
⋂

ε>0 F (�,Aε),

where Aε is an ε-neighborhood of A. General analytic conditions are
developed giving necessary and sufficient conditions for the equality of
these two σ -fields. These conditions are potential theoretic in nature and
are formulated in terms of the reproducing kernel Hilbert space associated
with �. The Bessel fields �β satisfying the pseudo-partial differential
equation (I − �)β/2φ(x) = Ẇ (x), β > 1, for which the reproducing kernel
Hilbert spaces are identified as spaces of Bessel potentials Lβ,2, are studied
in detail and the conditions for equality are conditions for spectral synthesis
in Lβ,2. The case β = 2 is of special interest, and we deduce sharp conditions
for the sharp Markov property to hold here, complementing the work of
Dalang and Walsh on the Brownian sheet.

Introduction. We consider a stochastically continuous mean-zero real-valued
random field � = {φ(x) :x ∈ R

n}. Our focus in this paper is the relationship
between the sharp σ -field

F (�,�)
def= σ

{
φ(x) :x ∈ �

}
and the germ σ -field

F (�,�)
def= ⋂

ε>0

F (�,�ε),

with �ε denoting the uniform neighborhood {x : dist(x,�) < ε} of �. Writing �̄

for the closure of � and equating σ -fields that differ only by null sets,

F (�,�) ⊆ F (�,�) and F (�,�) = F (�, �̄).

If � ⊂ R
n is a closed set separating R

n into complementary open sets D+
and D−, and if F (�,D+) and F (�,D−) are conditionally independent given
F (�,�), we will say that � satisfies the germ field Markov property at �.
If � satisfies the more restrictive condition with F (�,D+) and F (�,D−)
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GAUSSIAN RANDOM FIELDS 1339

conditionally independent given F (�,�), we will say that � satisfies the sharp
Markov property at �.

There is no universal agreement in the literature on terminology concerning the
Markov properties of random fields; see Dalang and Walsh (1992), Pitt (1971)
and Rozanov (1982). In particular, Dalang and Walsh (1992) use slightly different
definitions for both Markov properties in which the two germ σ -fields F (�,D−)

and F (�,D+) are replaced with the sharp fields F (�,D−) and F (�,D+). For
our purposes, our definition has the advantage since, in the typical cases of interest
when � is the boundary of both sets D+ and D−, the relationship between the two
Markov properties is relatively direct and elementary. Namely, in this case,

F (�,�) ⊆ F (�,D+) ∩ F (�,D−),

and, modulo null sets, F (�,D+) and F (�,D−) are not conditionally indepen-
dent over any proper sub-σ -field of F (�,�). We can thus state the following
result.

PROPOSITION A. Suppose that � is a closed set separating R
n into comple-

mentary open sets D+ and D−, with � = D− ∩D+. Then � = {φ(x) :x ∈ R
n} sat-

isfies the sharp Markov property at � iff � satisfies the germ field Markov property
at � and the identity

F (�,�) = F (�,�)(1)

holds.

These considerations raise some fundamental questions.

QUESTION 1. What conditions on the closed set � ⊂ R
n imply that (1) holds?

Similarly, the seminal results of Dalang and Walsh on the sharp Markov
property and their use of the fields F (�,D−) and F (�,D+), rather than
F (�,D−) and F (�,D+), raise the same questions for open sets.

QUESTION 2. If O ⊂ R
n is open, what conditions on O imply that

F (�,O) = F (�,O)(2)

holds?

In this paper these two questions are studied in detail for the case of Gaussian
random fields. Our approach is essentially based on the reproducing kernel Hilbert
space H = H(�) (defined in Section 2) associated with �. It converts these
problems into spectral synthesis problems in the space H and is, in principle, very
general. However, in practice, the approach requires detailed structural knowledge
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of the space H = H(�), and this is not generally available. For this reason, we
present the conceptual formulation of this approach restricted to the family of
continuous, mean-zero, stationary Gaussian fields �β = � = {φ(x) :x ∈ R

2} on
the plane which satisfy the stochastic pseudo-differential equations

(I − �)β/2φ(x) = Ẇ (x), x ∈ R
2,(3)

where β > 1 is constant and Ẇ (x) is a stationary Gaussian white noise on R
2.

REMARK. For reasons explained below, we call these Bessel fields of index β .
A Fourier calculation (see Section 3) shows that �β has spectral density given by

�β(λ) = �(λ) = 1

(2π)2

1

(1 + |λ|2)β , λ ∈ R
2,

and covariance function

ρ(x, y) = Eφ(x)φ(y) = G2β(x − y),

where, for any β > 0, Gβ is defined to be the inverse Fourier transform of
(1 + |λ|2)−β/2. Note that Gβ is the Bessel kernel of index β and is essentially
a Bessel function of the third kind [see Adams and Hedberg (1996), page 11].

The reproducing kernel spaces H(�β) are easily identified: each u in H(�β)

is square integrable, and the H(�β) norm of u is given by

‖u‖2
β,2 =

∫
R2

(1 + |λ|2)β |û(λ)|2 dλ,

where û(λ) = ∫
R2 e−ix·λu(x) dx is the Fourier transform of u. When β = m is

an integer, this is the Sobolev space of functions with L2-derivatives of order not
greater than m. For noninteger β , the norm is given by the same expression as
above but now the space is identified as the space of Bessel potentials Lβ,2(R2) of
order β . The spaces Lβ,2(R2) have been thoroughly studied [see Stein (1970) and
Adams and Hedberg (1996) for details].

The paper is organized as follows: For the reader’s convenience, we have
gathered together references, notation and essential facts on Bessel potential
spaces in Section 1. Readers familiar with this material can skip the section or use
it as a guide for notation. The general formulation of the problems in the setting of
the reproducing kernel Hilbert spaces is given in Section 2. The case of β = 2,

(I − �)φ(x) = Ẇ (x), x ∈ R
2,

deserves special attention. Because of its original occurrence in Whittle (1954), it
is called the Whittle field. It is the simplest, most familiar and most interesting of
the Bessel fields. In addition, nearly all key ideas used in treating the general case
occur in the Whittle case. For this reason, Section 3 presents the Whittle field in
complete detail. The discussion is extended to general β > 1 in Section 4.
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RESULTS ON THE WHITTLE FIELD. We now state our principal results for
the Whittle field. Except for Theorem 3.11 and related material in Section 3.4,
these results were announced in Pitt and Robeva (1994) and are proved in the
dissertation of Robeva (1997). When � = {φ(x) :x ∈ R

2} is the Whittle field,
the associated reproducing kernel space H is identified as the Sobolev space
L2,2(R2) of continuous square-integrable functions on the plane that have weak
L2-derivatives of first and second orders. Let Clog(A) denote logarithmic capacity
on R

2. It is known that each function u ∈ L2,2(R2) is, off a set A with Clog(A) = 0,
differentiable. For u ∈ L2,2(R2), we write u|S = 0 when the restriction of u to a
set S ⊆ R

2 vanishes and ∇u|S = 0 to indicate that, off a set of zero logarithmic
capacity, the restriction of ∇u to S vanishes.

THEOREM 1 (3.1). For the Whittle field � and a set S ⊆ R
2, F (�,S) =

F (�,S) iff u ∈ L2,2 and u|S = 0 implies ∇u|S = 0 except on a set of logarithmic
capacity 0.

This result, which follows from a theorem on spectral synthesis in L2,2(R2) of
Hedberg (1981) (presented below as Theorem 1.5), is the basis for our subsequent
analysis. It has an immediate corollary that F (�,S) = F (�,S) holds for any
sufficiently small set S satisfying Clog(S) = 0. As we shall see, this also holds for
any sufficiently irregular set �.

Following Saks (1937), page 262, we define a contingent of a set. For points
x �= y ∈ R

2, we let l(x, y) denote the line in R
2 that contains x and y. If x is an

accumulation point of a set S ⊆ R
2, and if l is a line through x, we will say that

l is a contingent of S at x provided there is a sequence of points yn �= x in S that
converges to x with limn→∞ l(x, yn) = l. We let Contg(S, x) denote the set of all
contingents to S at x. For a subset S ⊆ R

2, we say that S has a tangent at x ∈ S

provided that Contg(S, x) contains a unique line. We write T (S) for the set of
points in S at which S has a tangent. We have the following result.

THEOREM 2 (3.2). Let S ⊆ R
2 be closed. If Clog(T (S)) = 0, then F (�,S) =

F (�,S).

The problem of identifying S for which F (�,S) �= F (�,S) is essentially
that of identifying level sets S of functions in L2,2(R2) with gradients that do
not vanish identically on S. Using a change-of-variable argument, we prove the
following result.

THEOREM 3 (3.6). If � = {γ (s) : s ∈ [0,1]} is a smooth curve for which
γ ′(s) �= 0 is Hölder continuous with exponent α > 1/2, then F (�,�) �= F (�,�).
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It is possible to strengthen Theorem 3.6 in a quantitative manner by considering
the sharp field to be the tangential part of F (�,�) and introducing the normal
component Fn(�,�) generated by generalized normal derivatives of the form∫

�
f (x) ∂nφ(x) dσ (x) ≡ lim

h→0

∫
�

f (x)
φ(x + hn(x)) − φ(x)

h
dσ (x).(4)

Here σ denotes the arc length, n(x) is a continuous unit normal vector to � and
f (x) is a continuous function defined on �.

Associated with the σ -fields F (�,�) and Fn(�,�) are two subspaces of
the Hilbert space L2(�,�,P ), defined as the closed linear spans H(�,�) =
sp{φ(x), x ∈ S}L2 and Hn(�,�) = sp{∫� f (x) ∂nφ(x) dσ (x) :f ∈ C(�)}L2 . The
assumption that � is Gaussian implies [see, e.g., Rozanov (1982), page 41]

that F (�,S) = σ(H(�,S)) and Fn(�,S) = σ(Hn(�,S)), and if H(�,S)
def=⋂

H(�,O), with the intersection taken over all neighborhoods O of S, F (�,S) =
σ(H(�,S)). Thus, F (�,S) = F (�,S) if and only if H(�,S) = H(�,S).
Moreover, we have the following result.

THEOREM 4 (3.11). Let � = {γ (s) : s ∈ [0,1]} be a smooth C1-curve with
γ ′(s) �= 0.

(i) For any f ∈ C(�), the quantity
∫
� f (x) ∂nφ(x) dσ (x) defined by (4)

exists. Moreover, H(�,�) + Hn(�,�) is dense in H(�,�);
(ii) If � = {γ (s) : s ∈ [0,1]} is a smooth simple curve and γ ′(s) �= 0 is Hölder

continuous with exponent α > 1/2, then there is a positive angle between the two
spaces H(�,�) and Hn(�,�). Thus, the sum H(�,�) + Hn(�,�) is closed in
L2(P ) and

H(�,�) = H(�,�) + Hn(�,�).

(iii) If � is straight (i.e., a line segment), then H(�,�) and Hn(�,�) are
orthogonal.

REMARK. The significance of part (ii) derives from Gebelein’s inequality
[see, e.g., Dym and McKean (1976), page 66], which implies that the degree of
dependence between the two σ -fields F (�,�) = σ(H(�,�)) and σ(Hn(�,�))

is comparable to the cosine of the angle between H(�,�) and Hn(�,�). It is also
of note that this degree of dependence can increase as the curve � becomes less
smooth. In fact, we use a lacunary trigonometric series construction to show that
the condition α > 1/2 in this theorem is essentially the best possible.

THEOREM 5 (3.7). If 0 < α < 1/2, there is a smooth curve � = {γ (s) : s ∈
[0,1]} with γ ′(s) �= 0 being Hölder continuous with exponent α and F (�,�) =
F (�,�).
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The following results concern open sets.

THEOREM 6 (3.4). FD(�,D) = F D(�,D) holds for any bounded connected
open set D.

EXAMPLE 1 (3.5). There exists a bounded open set D ⊂ R
2 for which

F (�,D) �= F (�,D).

A corollary of Theorem 3.4, concerning the germ field Markov property for the
Whittle field �, is that for closed separating sets � for which the complementary
open sets D+ and D− are connected and satisfy D+ ∩ D− = �, the germ field
Markov property of � at �, as defined in this paper, coincides with the germ field
Markov property as defined in Dalang and Walsh (1992). In fact, this follows since
F (�,D−) = F (�,D−) and F (�,D+) = F (�,D+).

NOTATION CONVENTIONS. R
n is the n-dimensional Euclidean space, a point

x ∈ R
n is denoted by x = (x1, . . . , xn) the Euclidean inner product is x · y =

x1y1 +· · ·+xnyn, and the norm is |x| = (x ·x)1/2. In R
2, (x, y) ∈ R

2 is sometimes
used to avoid subindices. For an arbitrary set S ⊂ R

n, S̄ denotes its closure,
So denotes its interior and Sc = R

n \ S is its complement. The n-dimensional
Lebesgue measure of S is denoted by |S|. The indicator function of the set S is
denoted by 1S . If {[ai, bi]} is a finite set of intervals, linear combinations of their
indicator functions are called simple functions. The open ball with center x and
radius r is denoted by B(x, r).

We write (∂/∂xj )u = ∂ju and the gradient ∇u = (∂1u, . . . , ∂nu). Higher
derivatives are denoted by Dκu = ∂

κ1
1 · · · ∂

κn
n , where κ = (κ1, . . . , κn) is a

multiindex of positive integers. We denote |κ| = κ1 + · · · + κn. We also write ∇mu

for the vector (Dκu)|κ|=m of all derivatives of order m and |∇mu| for its Euclidean
norm.

The class of infinitely differentiable functions on � is denoted by C∞(�), and
C∞

0 (�) is the subset of functions with compact support on �. For an integer m ≥ 0
and 0 < α ≤ 1, Cm,α(�) is the Hölder class of functions on � with m continuous
derivatives such that the derivatives of highest order are Hölder continuous of
order α. Cm,α

0 (�) is the class of all Cm,α(�)-functions with compact support on �.
The Schwartz class of rapidly decreasing C∞-functions is denoted by S.

We use c to denote a constant whose value may change from one line to another.

1. Bessel potential function spaces. We collect here basic facts on Bessel
potential and Sobolev spaces. We will use these results only on R

2 and with
p = 2, but because there is no added difficulty in discussing the general case
of R

n, we do so here. Let Gβ , β ∈ R, be the Bessel kernel of order β defined

as the inverse Fourier transform of Ĝβ(λ) = (1 + |λ|2)−β/2
. For β > 0, Gβ is an
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L1-function and is continuous for β > n. For a general exponent β , Ĝβ(λ), λ ∈ R
n,

is identified as a tempered distribution. If f is in the Schwartz class S of rapidly
decreasing C∞-functions, then Ĝβf̂ ∈ S. The pseudo-differential operators Gβ =
(I − �)−β/2, β ∈ R, have Bessel potential representations

f = Gβ(g) = Gβ ∗ g, β ∈ R,

with

g = G−β(f ) = (I − �)β/2f.

From the definition of Gβ ,

GβGγ = Gβ+γ and G−1
β = G−β.

When β > 0, Gβ(x) decays exponentially at ∞. At 0, for 0 < β < n, the
asymptotics are

Gβ(x) = O(|x|−n+β) as |x| → 0

and, for β = n,

Gn(x) = O

(
log

1

|x|
)

as |x| → 0

[see, e.g., Stein (1970), page 135, or Adams and Hedberg (1996), page 13]. For
β ∈ R and g ∈ Lp(Rn), 1 ≤ p ≤ ∞, the space of Bessel potentials is defined by

Lβ,p = Lβ,p(Rn) = {
u : u = Gβ(g), g ∈ Lp(Rn)

}
,

with norm given by ‖u‖β,p = ‖Gβ ∗ g‖
β,p

= ‖g‖p , where ‖ · ‖p denotes the
Lp-norm [see, e.g., Adams and Hedberg (1996), page 11].

The C∞
0 is dense in Lβ,p and the dual space of Lβ,p is L−β,p′

, with pp′ =
p + p′ for all β ∈ R and 1 < p < ∞. For α < β , the inclusion Lα,p ⊂ Lβ,p holds
and ‖u‖α,p ≤ ‖u‖β,p . When β ≥ 0 is an integer, the space Lβ,p can be identified
with the Sobolev space Wβ,p of weakly differentiable functions of order β:

Wβ,p(Rn)
def=

{
u ∈ Lp :

∫
Rn

∑
0≤|k|≤β

|∇ku|p < ∞
}

and the norm ‖u‖Wβ,p = (
∫
Rn

∑
0≤|k|≤β |∇ku|p)1/p is equivalent to the norm

of Lβ,p [Stein (1970), page 135].
The following interpolation result [Triebel (1984), page 69] shows how the

Bessel potential spaces extend the chain of Sobolev spaces.

THEOREM 1.1. If 0 < θ < 1 and β = (1 − θ)β0 + θβ1, then the interpolation
spaces of exponent θ between the Bessel spaces Lβ0,p0 and Lβ1,p1 is Lβ,p , where
1/p = (1 − θ)/p0 + θ/p1.
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It is shown in Stein (1970), page 136, that a function u ∈ Lβ,p if and only
if u ∈ Lβ−1,p and, for each j , ∂ju ∈ Lβ−1,p. Moreover, the norms ‖u‖β,p

and ‖u‖β−1,p + ‖∇u‖β−1,p are equivalent. When βp > n, the functions in
Lβ,p(Rn) are continuous but not for βp ≤ n [Adams and Hedberg (1996),
Chapter 6]. A useful way of measuring the deviation from continuity is given by
the (β,p)-capacity [see Adams and Hedberg (1996), Chapter 2]. The capacity of
a set S ⊆ R

n can be defined as

Cβ,p(S) = inf
{‖g‖p

Lp :g ≥ 0, Gβ ∗ g ≥ 1 on S
}
.(1.1)

A property of points will be said to hold (β,p)-quasieverywhere [(β,p)-q.e.]
if it holds for all points except those belonging to a set of (β,p)-capacity 0.
A function u, defined (β,p)-q.e. on R

n, is called (β,p)-quasicontinuous if for
each ε > 0 there is an open set D with Cα,p(D) < ε such that f is continuous
on R

n \ D.

THEOREM 1.2 [Adams and Hedberg (1996), Chapter 6]. Let u ∈ Lβ,p(Rn)

and βp ≤ n. After possible redefinition on a set of measure 0, u is (β,p)-
quasicontinuous. Moreover, if u and v are two (β,p)-quasicontinuous functions
such that u(x) = v(x) a.e., then u(x) = v(x) (β,p)-q.e.

If u ∈ Lβ,p , 1 < p ≤ n/β, and S ⊂ R
n are arbitrary, then the trace of u on S,

denoted u|S , is the restriction to S of any (β,p)-quasicontinuous representative
of u. In particular, u|S = 0 or ∇u|S = 0 means these statements hold q.e.

THEOREM 1.3 [Stoke (1984)]. Let u ∈ Lβ,p , where β ≥ 1 and 1 ≤ p < ∞
are such that βp > n but (β − 1)p ≤ n. Then u is differentiable (β − 1,p)-q.e.

It is useful to recast the quasicontinuity of functions in Lβ,p as fine continuity.
If 1 < p ≤ n/β , a set S ⊂ R

n is called (β,p)-thin at a point x ∈ R
n if∫ 1

0

(
Cβ,p(S ∩ B(x, r))

rn−βp

)p′−1 dr

r
< ∞,

where pp′ = p + p′. Otherwise, S is said to be (β,p)-thick at x. If x ∈ R
n, the

set O ⊂ R
n, x ∈ O, is a (β,p)-fine neighborhood of x if the set Oc is (β,p)-thin

at x. A set S ⊂ R
n is (β,p)-finely open if it is a (β,p)-fine neighborhood of all of

its points. A function u, defined for x ∈ S ⊂ R
n, is (β,p)-finely continuous at x if

the set {y ∈ S : |f (y) − f (x)| ≥ ε} is (β,p)-thin at x for all ε > 0.

THEOREM 1.4 [Adams and Hedberg (1996), page 177]. A function f is
(β,p)-quasicontinuous iff f is (β,p)-finely continuous (β,p)-q.e.
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For a set S ⊂ R
n, denote by L

β,p
00 (S) the closure in Lβ,p(Rn) of the functions

u ∈ Lβ,p with compact support contained in S. If S is open, then L
β,p
00 (S) is the

closure in Lβ,p(Rn) of C∞
0 (S). The following result is due to Hedberg (1981) for

integer order Bessel spaces (Sobolev spaces) and generalized by Netrusov [Adams
and Hedberg (1996), page 281] for β > 0.

THEOREM 1.5. Let β > 0, 1 < p < ∞, u ∈ Lβ,p(Rn) and S ⊂ R
n be

arbitrary. Then the following statements are equivalent:

(i) Dκu|S = 0 for all multiindices κ , 0 ≤ |κ| < β;
(ii) u ∈ L

β,p
00 (Sc);

REMARKS. (1) Only the p = 2 case occurs in what follows. For n − 2β > 0,
the capacity Cβ,2 defined by (1.1) is equivalent to the capacity defined through
the power kernel k(x) = 1/|x|n−2β from classical potential theory [Adams and
Hedberg (1996), Chapter 5]. More precisely, if k(x) ≥ 0 is a decreasing continuous
extended real-valued function on [0,∞], the k-energy of a positive measure µ is
E(k,µ) = ∫

Rn

∫
Rn k(|x − y|) dµ(x) dµ(y). Then, for compact sets A ⊆ R

n, define
the k-capacity of A as

k − C(A) = sup
µ

{
1

E(k,µ)
: suppµ ⊆ A, µ(A) = 1

}
,(1.2)

and, for an arbitrary S ⊆ R
n,

k − C(S) = sup
A

{
k − C(A) : A is compact ,A ⊆ S

}
.(1.3)

When n − 2β = 0, the capacity (1.1) is equivalent to the classical logarithmic
capacity Clog(S).

(2) If �t is the t-dimensional Hausdorff measure, �t(S) < ∞ implies k −
C(S) = 0 for k(x) = 1/|x|t [Falconer (1985), Theorem 6.4], and therefore
�n−2β(S) < ∞ implies Cβ,2(S) = 0.

(3) When β ≤ 1/2 and S is a line segment, the energy integral for the power
kernel k(x) = 1/|x|n−2β diverges, and therefore Cβ,2(S) = 0. For β > 1/2, the
line segments have positive Cβ,2-capacity.

(4) When p = 2 and 0 < β < 2, the spaces Lβ,2 are characterized in terms of
the L2-modulus of continuity and the L2-modulus of smoothness,

ω(t) =
(∫

Rn
|u(x + t) − u(x)|2 dx

)1/2

and

ω̃(t) =
(∫

Rn
|u(x + t) + u(x − t) − 2u(x)|2 dx

)1/2

.
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THEOREM 1.6 [See, e.g., Stein (1970), page 141]. Let u ∈ L2(Rn).

(i) Suppose 0 < β < 1. Then u ∈ Lβ,2(Rn) if and only if∫
Rn

(ω(t))2

|t|n+2β
dt < ∞.

(ii) Suppose 0 < β < 2. Then u ∈ Lβ,2(Rn) if and only if∫
Rn

(ω̃(t))2

|t|n+2β
dt < ∞.

Theorem 1.6 extends to Bessel spaces of general indices γ > 0: if γ = m + β ,
m-integer, and 0 < β < 1 or 0 < β < 2, then u ∈ Lγ,2 iff u ∈ Lm,2 and the proper
integrability condition (i) or (ii) is satisfied.

2. Gaussian random fields. Here we show that for a stochastically contin-
uous real-valued Gaussian random field � the equality F (�,S) = F (�,S) is
equivalent to an approximation condition in the reproducing kernel Hilbert space
associated with � (Theorem 2.2).

Let � = {φ(x) : x ∈ R
2} be a real-valued mean-zero Gaussian random field

defined over a complete probability space (�,�,P ) and let F (�,S) and F (�,S)

be the sharp and the germ σ -fields of � for a set S, as defined in the Introduction.
Associated with these σ -fields, as described in the Introduction, are two subspaces
of the Hilbert space L2(P ) = L2(�,�,P ):

1. H(�,S)
def= sp{φ(x), x ∈ S}L2 —the closed linear subspace of L2(P ) obtained

as the closed linear span of {φ(x), x ∈ S} in L2(P );

2. H(�,S)
def= ⋂

H(�,O), with the intersection taken over all neighborhoods O

of S.

The assumption that � is Gaussian implies [see, e.g., Rozanov (1982), page 41]
that

F (�,S) = σ(H(�,S)), F (�,S) = σ
(
H(�,S)

)
,

and thus

F (�,S) = F (�,S) if and only if H(�,S) = H(�,S).(2.1)

We rephrase this in terms of the reproducing kernel Hilbert space associated
with � as follows.

Let H(�,S) be the space of functions on R
2 given by

H(�,S) = {
u(x)

def= EXφ(x) :X ∈ H(�,S)
}
,

with the inner product

〈u1, u2〉H = 〈u1, u2〉 = EX1X2,
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where u1(x) = EX1φ(x) and u2(x) = EX2φ(x).
It is clear that each function ρ(x, ·), x ∈ S, determined by the correspondence

y �→ ρ(x, y), belongs to H(�,S) and that:

(i) the map J : X �→ EXφ(x) determines an isometry between H(�,S) and
H(�,S);

(ii) H(�,S) is spanned by the functions {ρ(x, ·), x ∈ S};
(iii) for each u ∈ H(�,S), the reproducing property u(x) = 〈u,ρ(x, ·)〉 holds.

Here H(�) = H(�,R
2) is the reproducing kernel Hilbert space of � and ρ is

the reproducing kernel of H(�).
Setting

H(�,S) = ⋂
O⊃S̄

H(�,O),

the isometry (i), maps the spaces H(�,S) and H(�,S) of random variables onto
the function subspaces H(�,S) and H(�,S) of H(�), and from (2.1) it follows
that

F (�,S) = F (�,S) if and only if H(�,S) = H(�,S).(2.2)

The following elementary result identifies the orthogonal complement of
H(�,S) in H(�) and is fundamental for our discussion.

PROPOSITION 2.1. For u ∈ H(�), u ∈ H(�,S)⊥ iff u(x) = 0 holds for all
x ∈ S.

PROOF. Observe that u ⊥ H(�,S) iff 〈u,ρ(x, ·)〉 = 0 holds for all x ∈ S. But
the reproducing property (iii) of ρ gives u(x) = 〈u,ρ(x, ·)〉 and the result follows.

�

This result prompts the following notation. Let

H0(�,S)
def= {

u ∈ H(�) : u(x) = 0 for x ∈ S
}

(2.3)

and

H00(�,S)
def= ∪H0(�,O),(2.4)

where the union is over all neighborhoods O of S̄ and the closure is taken in the
norm of H(�).

Our principal result in this section is the following criterion.

THEOREM 2.2. For a continuous Gaussian random field � and a set S,
F (�,S) = F (�,S) iff H0(�,S) = H00(�,S), that is, iff each function in
H0(�,S) is a limit in the norm of H(�) of a sequence of functions that vanish on
neighborhoods of S̄.
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PROOF. By (2.2), F (�,S) = F (�,S) holds iff H(�,S) = H(�,S) and
thus the spaces H(�,S) and H(�,S) are equal if and only if their orthogonal
complements are equal. It only remains to identify the orthogonal complement of
H(�,S) as H00(�,S), which follows directly from the definition of H(�,S) and
Proposition 2.1. �

REMARKS. (1) In analogy with the classical results of Beurling (1948),
approximation results such as Theorem 2.2 are called spectral synthesis theorems.
If H0(�,S) = H00(�,S), the set S is said to admit spectral synthesis in the
function space H(�).

(2) The geometric conditions on S under which the approximation in Theo-
rem 2.2 is possible depend on the structure of the reproducing kernel Hilbert
space. For example, for the Bessel fields of order β , H(�) = Lβ,2(R2). We
identify H00(�,S) = L

β,2
00 (Sc) (see Section 1 and the comment preceding The-

orem 1.5), and therefore the necessary and sufficient conditions for spectral syn-
thesis H0(�,S) = H00(�,S) follow from Theorem 1.5.

3. The Whittle field. We present a detailed analysis of the Whittle field
� = {�(x), x ∈ R

2} of conditions when the sharp and germ σ -fields are equal.
Note that � satisfies the stochastic differential equation

(I − �)φ(x) = Ẇ (x), x ∈ R
2.(3.1)

Here Ẇ is a Gaussian white noise with EẆ(A)Ẇ(B) = |A∩B|. The major results
from this section were listed in the Introduction.

The operator I − � has an inverse given by convolution with the Bessel kernel
G2(x), and we can write

φ(x) =
∫

R2
G2(x − y)Ẇ (y) dy,(3.2)

and so Eφ(x)φ(y) = G2 ∗ G2(x − y). Taking Fourier transforms on both sides,
we obtain the spectral representation of the covariance function

ρ(x, y) = 1

(2π)2

∫
Rn

ei(x−y)·λ(1 + |λ|2)−2 dλ

=
∫

R2
ei(x−y)·λ �(λ)dλ,

(3.3)

where �(λ) = (2π(1 + |λ|2))−2. The family {eix·λ : x ∈ R
2} spans L2(R2,�) and

the functions u ∈ H(�) are given by

u(x) =
∫

R2
eix·λf (λ)�(λ)dλ = G2 ∗ g(x),(3.4)

where f satisfies
∫
R2 |f (λ)|2(1 + |λ|2)−2 dλ < ∞ and ĝ(λ) = f (λ)(1 +

|λ|2)−1 ∈ L2. Therefore, we can identify the space H(�) as L2,2 and ‖u‖2,2 =
‖g‖2.

Theorems 2.2 and 1.5 lead to the following criterion.
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THEOREM 3.1. For the Whittle field � and a set S ⊆ R
2, F (�,S) = F (�,S)

iff u ∈ L2,2 and u|S = 0 implies ∇u|S = 0 except on a set of logarithmic
capacity 0.

We study separately the cases of general closed sets, general open sets and
graphs of curves in R

2.

3.1. The sharp and germ fields for closed sets. A corollary of Theorem 3.1 is
that Clog(S) = 0 implies F (�,S) = F (�,S); that is, if the set S is small enough,
the sharp and the germ σ -fields are equal. However, F (�,S) = F (�,S) can also
occur for large sets.

THEOREM 3.2. Let S be a closed set and let T (S) be the set of all x ∈ S for
which S has a tangent line. Then Clog(T (S)) = 0 implies F (�,S) = F (�,S).

That this result is not exact is shown in Theorem 3.7.
Theorem 3.2 appeared in Pitt and Robeva (1994), but the proof is short and we

include it here for completeness. We begin with a lemma.

LEMMA 3.3. Let S ⊆ R
2 be closed and x0 ∈ S \ T (S). Let u be differentiable

at x0 and vanishing on S. Then ∇u(x0) = 0.

PROOF. Since u is differentiable at x0,

u(y) − u(x0) = (y − x0) · ∇u(x0) + o(|y − x0|), as |y − x0| → 0.

Thus, for each unit vector v which is a cluster point of the vectors (y −
x0)/|y − x0|, y ∈ S, y → x0, will imply v · ∇u(x0) = 0. For x0 /∈ T (S), there
are two linearly independent vectors of this type, and hence ∇u(x0) = 0. �

PROOF OF THEOREM 3.2. According to Theorem 1.3, for each function u ∈
L2,2(R2), there exists a set E with Clog(E) = 0 and such that u is differentiable at
all x ∈ Ec. By Lemma 3.3, we have that ∇u(x) = 0 for each x ∈ S \ (E ∪ T (S)).
Since Clog(E ∪ T (S)) = 0, Theorem 3.1 implies the result. �

Theorem 3.2 implies F (�,�) = F (�,�) for all nowhere differentiable curves
� ⊂ R

2, for example, the von Koch snowflake curve. Other examples of closed
sets S ∈ R

2 with F (�,S) = F (�,S) are two-dimensional Cantor sets and the
Sierpinski gasket and carpet.
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3.2. The sharp and germ fields for open sets. We consider open sets D ⊆ R
2

and seek conditions that imply F (�,D) = F (�,D). Our positive result is as
follows.

THEOREM 3.4. FD(�,D) = F D(�,D) holds for any bounded connected
open set D.

PROOF. By Theorem 3.1, it suffices to show that each u in L2,2(R2), with
u|D = 0, satisfies ∇u(x) = 0 on D except for a set of points x of logarithmic
capacity 0. But D is open, so ∇u(x) = 0 on D, and, off a set of logarithmic
capacity 0, ∇u(x) is (2,2)-finely continuous (see Theorem 1.4). Thus, it suffices
to show that D is thick at each point in ∂D. The Beurling criterion for regular
points of the Dirichlet problem [see, e.g., Tsuji (1975), page 105] implies that D

is thick at each point x in the boundary of D and the proof is complete. �

The next example gives an open set D for which FD(�,D) �= F D(�,D). This
is related to Example 3.5 in Dalang and Walsh (1992) for the Brownian sheet B

and is given, in a different context, by Hedberg (1980).

EXAMPLE 3.5. There exists a bounded open set D ⊂ R
2 for which F (�,

D) �= F (�,D).

OUTLINE OF PROOF. Added details may be found in Hedberg (1980). Using
Theorem 1.5, it suffices to construct an open set D and a function u ∈ L2,2(R2)

such that u vanishes identically on D but ∇u �= 0 on a subset of ∂D of positive
logarithmic capacity. To construct the set D, let {B̄(an,Rn)}∞n=1 be a sequence
of closed disjoint disks in R

2 with centers an in [−1/2,1/2] × {0}, such that⋃∞
n=1 B̄(an,Rn) is dense in [−1/2,1/2]×{0}. Choose Rn so that

∑∞
n=1 Rn < 1/2.

Further, let 0 < rn < Rn, n ≥ 1, be such that
∞∑

n=1

(
log

Rn

rn

)−1

< ∞.

Set D = ⋃∞
n=1 B(an, rn). Notice that every x ∈ [−1/2,1/2] × {0} \ (

⋃∞
n=1 B̄(an,

Rn)) belongs to ∂D and since
∑∞

n=1 Rn < 1/2, the set of such points has positive
one-dimensional Lebesgue measure and thus positive logarithmic capacity.

The desired function u ∈ L2,2 is constructed by starting with a sequence of
decreasing functions {vn(r)}∞n=1, with vn ∈ C∞

0 [0,∞), and vn(r) = 1 for r ≤ rn
and vn(r) = 0 for r ≥ Rn, and satisfying

|v′
n(r)| ≤

c

r

(
log

Rn

rn

)−1

, |v′′
n(r)| ≤ c

r2

(
log

Rn

rn

)−1

,

where c is a constant.
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Let g(x) ∈ C∞
0 (R1) be such that g(x) = g(x1, x2) = x2 in a neighborhood of

[−1/2,1/2] × {0} and set u(x) = g(x)(1 − ∑∞
n=1 vn(|x − an|)). One can show

that u ∈ L2,2, and it is immediate that u|D = 0. On the other hand, if (x1,0) ∈
[−1/2,1/2] × {0} \ (

⋃∞
n=1 B̄(an,Rn)) is a point on ∂D, then for x = (x1, x2),

u(x) = g(x) = x2 for small x2. Thus, ∂2u = 1 on a set of positive logarithmic
capacity. �

3.3. The sharp and germ fields for smooth curves. In this section, we prove
the following result.

THEOREM 3.6. If � = {γ (s) : s ∈ [0,1]} is a smooth curve for which
γ ′(s) �= 0 is Hölder continuous with exponent α > 1/2, then F (�,�) �= F (�,�).

That Theorem 3.6 is best possible is shown by the next theorem.

THEOREM 3.7. For each α < 1/2, there exists a smooth curve � = {γ (s) :
s ∈ [0,1]} with γ ′(s) being Hölder continuous with exponent α, and F (�,�) =
F (�,�).

PROOF OF THEOREM 3.6. We need to build a function u ∈ L2,2 such that
u|� = 0 but ∇u|� �= 0 on a set of positive logarithmic capacity.

If � = {(s, t) : s = c} is a vertical line, the result is obvious. In all other cases,
it is possible to find a smooth function t = γ̃ (s), s ∈ R, with ‖γ̃ ‖∞ + ‖γ̃ ′‖∞ < ∞
and such that γ̃ ′(s) is Hölder continuous of order α and � intersects the graph
�̃ of γ̃ (s) on a simple arc L of positive length. We will construct a function v

that is locally in L2,2 so that v|
�̃

= 0 but ∇v|
�̃

�= 0. Then, for sufficiently small
r > 0, choosing a ball B(a,2r) ⊂ L centered at a ∈ L and a smooth φ ∈ C∞

0
with φ(s, t) = 1 on B(a, r) and φ(s, t) = 0 on R

n \ B(a,2r), setting u = vφ will
complete the proof. To construct the function v, define

w(s, t) =
{

Pt ∗ γ̃ (s), when t ≥ 0,
3P−t ∗ γ̃ (s) − 2P−2t ∗ γ̃ (s), when t < 0,

where Pt is the Poisson kernel.
The function w(s, t) is a C1-function with bounded derivatives and w(s,0) =

γ̃ (s). The rate of increase of the higher order derivatives of w is given by

‖Dκw‖∞ ≤ c
1

tm−1−α
for |κ| = m as |t| → 0(3.5)

[see Stein (1970), page 62]. Consider now the change of variables k : R
2 → R

2,
(s, t) �→ (x, y), given by

x = s, y = ct + w(s, t),(3.6)

where c > 0 is chosen so that ∂y/∂t > 0 for all s and t . Thus, k takes the upper
half plane R

2+ onto the domain above the graph of the curve t = γ̃ (s).
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Further, since the Jacobian of k is given by

J =
(

1 0
∂1w c + ∂2w

)
,(3.7)

|J | = c + ∂2w > 0.
Set h(x, y) = (s, t) to be the inverse of k and define a function v as the

t-coordinate of h, t (x, y). It is now clear that v|�̃ = 0 and since ∂t/∂y = 1/(c +
∂2w) > 0, ∇v|�̃ �= 0. Thus, we only have to check whether the second-order
derivatives of v are locally in L2. But since the Jacobian of k is bounded from
above and below away from 0, a direct calculation shows that Dκv, |κ| = 2, are
locally square integrable if and only if Dκw, |κ| = 2, are locally in L2. Thus, the
estimates (3.5), and the requirement α > 1/2, imply that∫

B
|Dκw(s, t)|2 ds dt ≤ c

∫
B

∣∣∣∣ 1

t1−α

∣∣∣∣2 ds dt < ∞ for |κ| = 2.

Thus, v is locally in L2,2 and the proof of Theorem 3.6 is complete. �

PROOF OF THEOREM 3.7. For a given α < 1/2, we will construct a curve � =
{γ (s) : s ∈ [0,1]} with γ ′(s) of Hölder class Cα such that, for each u ∈ L2,2(R2),
u|� = 0 implies ∇u|� = 0. The curve � will be the graph of the function g(x)

given by the lacunary series

g(x) =
∞∑

k=0

ak

(
1 − cos(2πnkx)

)
, x ∈ [0,1],(3.8)

with nk = 2k! and ak = (nk)
−(1+α). That γ ′ ∈ C0,α follows from the Weierstrass–

Hardy theorem [Zygmund (1959), page 48].
Since ∇u is (1,2)-quasicontinuous, to prove that ∇u|� = 0, it is enough to

show that ∂1u = 0 and ∂2u = 0 a.e. on �. But since u|� = 0, the function
F(x) = u(x, g(x)) vanishes on [0,1] and ∂1u + g′∂2u = 0 almost everywhere.
Thus, it suffices to show that∫

�
f (x) ∂2u(x, ỹ) dx = 0(3.9)

holds for each simple function f on [0,1]; here ỹ = g(x).
We make three approximations.

1. The integral in (3.9) is approximated by line integrals
∫
�N

f (x) ∂2u(x, y) dx,
where �N are the graphs of the partial sums y = gN(x) of the lacunary
series (3.8).

2. The integral
∫
�N

f (x) ∂2u(x, y) dx is approximated by integrals of the form
h−1 ∫

�N
f (x)[u(x, y + h) − u(x, y)]dx.
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3. A numerical approximation of the integrals

h−1
∫
�N

f (x)u(x, y) dx and h−1
∫
�N

f (x)u(x, y + h)dx

is invoked to show that, for special values of h, these integrals are o(h).

Together these steps imply (3.9). The steps are listed as a sequence of lemmas.

LEMMA 3.8. Let gN(x) be the N th partial sum of (3.8)

gN(x) =
N∑

k=0

ak

(
1 − cos(2π2k!x)

)
.

Then, for each integer N ≥ 0, we have

(i) gN(x) + 2aN+1 = gN+1(x) at the points x = (j − 1
2 )/nN+1, j = 1,

2, . . . , nN+1;
(ii) gN(x) = gN+1(x) at the points x = j/nN+1, j = 0,1, . . . , nN+1;

(iii) the points {(j/nN+1, gN(j/nN+1)), j = 0,1, . . . , nN+1} lie on the graph �

of the limit function g(x) = limN→∞ gN(x).

PROOF. Verification is routine. �

LEMMA 3.9. Let �N be the graph of y = gN(x). Given ε > 0 and a constant
c > 0, there exists an N0 such that, for any simple function f and for any
u ∈ L2,2(R2) with ‖u‖2,2 ≤ 1,∣∣∣∣ ∫

�N

f (x) ∂2u(x, y) dx − 1

2aN+1

∫
�N

f (x)[u(x, y + 2aN+1) − u(x, y)]dx

∣∣∣∣
< ε‖f ‖2

for all N > N0.

PROOF. The proof splits into two steps.

Step 1. For a simple function f , define the linear functionals τh(u) on L2,2(R2)

by

τh(u) =
∫ 1

0
f (x) ∂2u(x,0) dx − 1

h

∫ 1

0
f (x)[u(x,h) − u(x,0)]dx(3.10)

on L2,2. Then the functional norm of τh satisfies ‖τh‖−2,2 = O(
√

h) for h → 0.
To see this, write u(x, y) = ∫

R2 ei(λx+µy)g(λ,µ)Ĝ2(λ,µ)dλdµ, where g ∈
L2(R2). Then

τh(u) =
∫ ∫

g(λ,µ)

[
iµ − eiµh − 1

h

]
Ĝ2(λ,µ)f̂ (λ) dλdµ
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and, by Schwartz’s inequality,

‖τh‖2−2,2 ≤
∫ ∫

|f̂ (λ)|2
[
iµ − eiµh − 1

h

]2

�(λ,µ)dλdµ,

where �(λ,µ) = |Ĝ2(λ,µ)|2 = 1/(1 + λ2 + µ2)2 is the spectral density of �.
Writing this integral as a sum I1 + I2 with

I1 =
∫ ∫

|µ|h<1
|f̂ (λ)|2

[
iµ − eiµh − 1

h

]2

�(λ,µ)dλdµ,

we have

I1 = O

(∫ ∫
|µ|h<1

|f̂ (λ)|2h2µ4 �(λ,µ)dλdµ

)
= O(h).

Similarly, with

I2 =
∫ ∫

|µ|h>1
|f̂ (λ)|2

[
iµ − eiµh − 1

h

]2

�(λ,µ)dλdµ,

we have

I2 = O

(∫ ∫
|µ|h>1

|f̂ (λ)|2µ2 �(λ,µ)dλdµ

)
= O(h),

and thus

‖τh‖−2,2 = O
(√

h
)

for h → 0,(3.11)

as advertised.

Step 2. We define a second functional on L2,2(R2) by the formula

TN(u) =
∫
�N

f (x) ∂2u(x, y) dx

− 1

2aN+1

∫
�N

f (x)[u(x, y + 2aN+1) − u(x, y)]dx,
(3.12)

and show that ‖TN‖−2,2 → 0 when N → ∞.
The expression (3.12) can be rewritten in the form of (3.10) if we change

variables with ω : R
2 → R

2, given by (s, t) �→ (x, y), with x = s, y = t − gN(s).
Next, define the composition operator W(f ) = f ◦ ω. Then TN = τh ◦ ω with
h = 2aN+1. Thus, ‖TN‖−2,2 ≤ ‖τh‖−2,2‖W‖−2,2. We can estimate the norm
‖W‖−2,2 of the functional W by estimating the L2,2-norm of u(x, y + gN(x)).
But

∥∥u(
x, y + gN(x)

)∥∥
2,2 =

( ∑
|κ|≤2

2∑
m=0

∥∥∇mu
(
x, y + gN(x)

)∥∥2
2

)1/2

,
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and direct calculations give∫ ∫ ∣∣u(
x, y + gN(x)

)∣∣2 dx dy = ‖gN‖2∞‖u‖2
2,2,∫ ∫ ∣∣∇u

(
x, y + gN(x)

)∣∣2 dx dy ≤ c
(
1 + ‖g′

N‖2
∞

)‖u‖2
2,2,∫ ∫ ∣∣∇2u

(
x, y + gN(x)

)∣∣2 dx dy ≤ c
(
1 + ‖g′

N‖2
∞ + ‖g′′

N‖2
∞

)‖u‖2
2,2.

Thus, ‖W‖−2,2 ≤ c‖g′′
N‖∞ ≤ c4π2N(nN)1/2+δ , and since ‖τh‖−2,2 =

O(
√

aN+1) for h = 2aN+1, we can estimate the norm of TN as

‖TN‖−2,2 ≤ cN(nN)1/2+δ√aN+1 ≤ c
N(nN)1/2+δ

(nN+1)
3/4−δ/2 → 0 as N → ∞. �

The next lemma [Theorem 2.3 in Pitt, Robeva and Wang (1995)] bounds the
error in the midpoint approximation for integrals of the form

∫ 1
0 f (x)u(x,0) dx,

where f is a smooth function on [0,1] and u ∈ L2,2(R2).

LEMMA 3.10. For every smooth function f on [0,1],

sup
‖u‖2,2≤1

∣∣∣∣∣
∫ 1

0
f (x)u(x,0) dx − 1

M

M∑
j=0

f

(
j + 1

2

M

)
u

(
j + 1

2

M
,0

)∣∣∣∣∣ = O(M−3/2).

The proof of Theorem 3.7 is completed by estimating (3.9).
Let f be a simple function on (0,1). It is elementary to show that, for each

u ∈ L2,2,

lim
N→∞

∫
�N

f (x) ∂2u(x, y) dx =
∫
�

f (x) ∂2u(x, ỹ) dx

[where, as before, ỹ = g(x)] and hence it suffices to show that

lim
N→∞

∫
�N

f (x) ∂2u(x, y) dx = 0(3.13)

for each u ∈ L2,2 with u|� = 0. Fixing ε > 0, by Lemma 3.9 there exists an
N0 = N0(ε) such that, for all N > N0,∣∣∣∣ ∫

�N

f (x) ∂2u(x, y) dx

− 1

2aN+1

∫
�N

f (x)[u(x, y + 2aN+1) − u(x, y)]dx

∣∣∣∣ < ε.

(3.14)

Making the change of variables x = x, y = gN(x), we get∫
�N

f (x)u(x, y) dx =
∫ 1

0
f (x)u

(
x,gN(x)

)
dx.
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This change of variables brings a change in the L2,2-norm of the function u by a
factor no greater than ‖g′′

N‖∞. Applying Lemma 3.10 with M = nN+1 gives∫
�N

f (x)u(x, y) dx =
∫ 1

0
f (x)u

(
x,gN(x)

)
dx

= 1

nN+1

nN+1−1∑
k=1

f

(
k

nN+1

)
u

(
k

nN+1
, gN

(
k

nN+1

))

+ O
(
n

−3/2
N+1

)‖g′′
N‖∞.

(3.15)

Since u|� = 0, Lemma 3.8(iii) implies that u(k/nN+1, gN(k/nN+1)) = 0 for
the values of k under consideration. From (3.15), we therefore have∫

�N

f (x)u(x, y) dx = O
(
n

−3/2
N+1

)‖g′′
N‖∞.(3.16)

For the second integral in (3.14), we have∫
�N

f (x)u(x, y + 2aN+1) dx

=
∫ 1

0
f (x)u(x, gN(x) + 2aN+1) dx

= 1

nN+1

nN+1∑
k=1

f

(
k − 1

2

nN+1

)
u

(
k − 1

2

nN+1
, gN+1

(
k − 1

2

nN+1

))

+ O
(
n

−3/2
N+1

)‖g′′
N‖∞.

(3.17)

Now apply Lemma 3.8 to the effect that gN+1(x) = gN(x) + 2aN+1 at the points
x = (k − 1

2 )/nN+1, k = 1,2, . . . , nN+1, and notice that, for these values, the points
(x, gN+1(x)) belong to the graph of �. Thus, u vanishes at these points and (3.17)
gives ∫

�N

f (x)u(x, y + 2aN+1) dx = O
(
n

−3/2
N+1

)‖g′′
N‖∞.(3.18)

Combining (3.14), (3.16) and (3.18) gives∣∣∣∣ ∫
�N

f (x) ∂2u(x, y) dx

∣∣∣∣ ≤ ε + ‖g′′
N‖∞

2aN+1
O

(
n

−3/2
N+1

)
= ε + 1

2

(
n−δ

N+1

)‖g′′
N‖∞,

(3.19)

since aN+1 = (nN+1)
−3/2+δ . Now substituting ‖g′′

N‖∞ ≤ 4π2N(nN)1/2+δ

into (3.19) gives ∣∣∣∣ ∫
�N

f (x) ∂2u(x, y) dx

∣∣∣∣ ≤ ε + c
Nn

1/2+δ
N

nδ
N+1

< 2ε
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for sufficiently large N . Therefore, (3.13) follows and we have thus
∫
� f (x) ×

∂2u(x, ỹ) dx = 0. The proof is complete. �

REMARKS. (1) It is known that if ∂� = � is sufficiently smooth, then the
ground-state eigenfunction ν for the Laplace equation on � is smooth [see, e.g.,
Agmon (1965), Theorem 14.6] and, in particular, ν ∈ L2,2(�) and ν|� = 0 but
∂ν/∂n|� < 0. Therefore, for smooth domains, the eigenfunction ν(x, y) provides
an example of a function in L2,2 that vanishes on ∂� but ∇ν(x, y)|∂� �= 0.
A theorem of Kondrat’ev and Eidel’man (1979) gives the following condition on
∂� for this to be the case.

Let C1,ω be the class of all continuously differentiable functions for which
the modulus of continuity of the derivatives does not exceed ω(t) and let Jω =∫

0(ω(t)t−1)2 dt .

(i) If ∂� ∈ C1,ω and Jω < ∞, then ν ∈ L2,2(�).
(ii) If ω is such that Jω = ∞, then there exists a domain � with ∂� ∈ C1,ω

such that ν /∈ L2,2(�).

(2) Comparing Theorems 3.6 and 3.7, it is clear that the question of whether
F (�,�) = F (�,�) or not when � = {γ (t) : t ∈ [0,1]} with γ ′(t) being Hölder
continuous with exponent 1/2 remains open. Both proofs appear not to generalize
for α = 1/2.

3.4. A closer look at the generators of F (�,�). We present a description of
F (�,�) as generated by the random field φ and its “normal derivatives” ∂nφ on �.
Since the Whittle field is not classically differentiable, these derivatives require a
weak interpretation. Following McKean (1963), Pitt (1971) and Piterbarg (1983),
define the generalized normal derivatives ∂nφ as∫

�
f (x) ∂nφ(x) dσ (x) = lim

h→0

1

h

∫
�

f (x)
[
φ

(
x + hn(x)

) − φ(x)
]
dσ (x),(3.20)

provided that the limit exists as a weak limit in L2(P ). Denote the subspace
generated by the normal derivatives:

Hn(�,�) = sp
{∫

�
f (x) ∂nφ(x) dσ (x) : f ∈ C(�)

}
L2

.

The next result decomposes H(�,�) into the sharp piece H(�,�) and the
normal piece Hn(�,�) and bounds the degree of dependence between these parts
based on the smoothness of �.

THEOREM 3.11. Let � = {γ (s) : s ∈ [0,1]} be a smooth C1-curve with
γ ′(s) �= 0.

(i) For any f ∈ C(�), the quantity
∫
� f (x) ∂nφ(x) dσ (x) defined by (3.20)

exists. Moreover, H(�,�) + Hn(�,�) is dense in H(�,�);
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(ii) If � = {γ (s) : s ∈ [0,1]} is a smooth simple curve and γ ′(s) �= 0 is Hölder
continuous with exponent α > 1/2, then there is a positive angle between the two
spaces H(�,�) and Hn(�,�). Thus, the sum H(�,�) + Hn(�,�) is closed in
L2(P ) and

H(�,�) = H(�,�) + Hn(�,�).(3.21)

(iii) If � is straight (i.e., a line segment), then H(�,�) and Hn(�,�) are
orthogonal.

PROOF. (i) Using the isometry φ(x) �→ ρ(x, ·) between H(�) and H(�) =
L2,2(R2), the existence of the weak limit (3.20) is seen to be equivalent to the
existence of the limit

lim
h→0

1

h

∫
�

f (x)
[
u
(
x + hn(x)

) − u(x)
]
dσ (x)(3.22)

for each u ∈ L2,2(R2). But C∞
0 (R2) is dense in L2,2(R2), and the limit (3.22)

exists for u ∈ C∞
0 (R2), so it suffices to show that the linear functionals Th(u)

defined by

Th(u) = 1

h

∫
�

f (x)
[
u
(
x + hn(x)

) − u(x)
]
dσ (x)

are uniformly bounded on L2,2.
Write Th(u) = ∫

� ∇u · dµ̄h(x), where µ̄h(A) is the vector measure µ̄h(A) =
(1/h)

∫
�

∫ h
0 n(x)1A(x + tn(x)) dt dσ (x). We will show that

‖Th‖−2,2 ≤ c

∫ ∫
G2(x − y) d|µh|(x) d|µh|(y)(3.23)

and prove that the integrals
∫∫

G2(x − y) d|µh|(x) d|µh|(y) are uniformly
bounded. Since the functions ∂ui are in L1,2, with ‖∂ui‖1,2 ≤ ‖u‖2,2, it will be
enough to prove that, for each linear functional defined on C∞

0 by an integral of the
form l(f ) = ∫

f dµ, where µ is a positive finite measure with compact support,

‖l‖2−1,2 =
∫ ∫

G2(x − y) dµ(x) dµ(y).(3.24)

This result is well known, but we sketch the proof for completeness. By standard
approximation arguments, it suffices to treat the case when µ(dx) = m(x)dx,
where m ∈ C∞

0 . Then

l(f ) =
∫

f m(x) dx =
∫

(I − �)f (x)(I − �)−1m(x)dx

or

l(f ) =
∫

(I − �)1/2f (x)(I − �)1/2(I − �)−1m(x)dx.
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Written in this form, we recognize the norm ‖l‖−1,2 as the L1,2-norm of the
function g(x) = (I − �)−1m(x). But ‖g(x)‖1,2 = ‖(I − �)1/2g‖2 = ‖(I −
�)−1/2m‖2. Since (I − �)−1/2 is the convolution operator with kernel G1 and
since G1 ∗ G1 = G2, we see that

‖l‖−1,2 = ‖g‖1,2 =
∫

(I − �)−1m2(x) dx =
∫ ∫

G2(x − y)m(x)m(y) dx dy.

Replacing m(x)dx with dµ(x) completes the proof of (3.24).
Now since the hypothesis that γ ′(s) �= 0 is continuous implies that the family

{µh} satisfies the uniform Lipschitz condition |µh|(B(x, r)) ≤ cr for all h < 1, all
r > 0 and all x ∈ R

2, and since G2(x), x ∈ R
2, has a logarithmic singularity at the

origin, we may combine (3.23) and this Lipschitz condition with the elementary
identity∫

|x−y|<δ
log

1

|x − y| dµ(y) =
∫ δ

0
µ

(
B(x, r)

)dr

r
+ µ

(
B(x, δ)

)
log

1

δ

to complete the proof. Namely, if Eh = {x̃ : x̃ = x + tn(x), x ∈ �, t ∈ [0, h]} then,
for sufficiently small δ,

sup
x∈Eh

∫
|y−x|<δ

dµh(y) ≤ sup
x∈Eh

(∫ δ

0
µh

(
B(x, r)

)dr

r
+ µh

(
B(x, δ)

)
log

1

δ

)

≤ cδ + cδ log
1

δ
≤ c,

where c is independent of h.
We show that H(�,�) and Hn(�,�) span H(�,�) by checking that each

X ∈ H(�), which is perpendicular to both H(�,�) and Hn(�,�), is also
perpendicular to H(�,�). Setting u(x) = EXφ(x) ∈ L2,2, we note that X ∈
H(�,�)⊥ implies u = 0 on �. Also, for X ∈ Hn(�,�)⊥,

0 = E

(∫
�

f (x) ∂nφ(x) dσ (x)X

)
=

∫
�

f (x)n(x) · ∇u(x) dσ (x)(3.25)

for each f ∈ C(�).
By the Sobolev trace theorem, ∇u(x) is square integrable on � with respect to σ

and (3.25) implies that ∇u(x) = 0, σ -a.e. on �. Since ∇u(x) is quasicontinuous,
∇u(x) = 0 q.e. on �, and, by Theorem 1.5, u ∈ L2,2

00 (R2 \ �). Thus, X is
perpendicular to H(�,�) and the proof of (i) is complete.

(ii) The proof is based on a change-of-variables argument similar to that used
in the proof of Theorem 3.6 but requiring more precision. We begin with the
observation that the cosine of the angle θ between the spaces H(�,�) and
Hn(�,�) is given by

cos (θ) = sup
{
EXY :X ∈ H(�,�),Y ∈ Hn(�,�),

and ‖X‖2 = ‖Y‖2 = 1
}
,

(3.26)
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and that the assertion θ > 0 is equivalent to:
There exists an ε > 0 so that ‖Y − X‖2 ≥ ε holds for all X ∈ H(�,�) and

Y ∈ Hn(�,�), provided only that ‖Y‖2 ≥ 1.(3.27)

Since X = ∫
� f (x)φ(x) dσ and Y = ∫

� g(x) ∂nφ(x) dσ are dense in H(�,�) and
Hn(�,�), respectively, (3.26) will follow if (3.27) holds for X and Y of this form.

We rephrase this in terms of the reproducing kernel Hilbert space H(�) and
the linear isometry between H(�) and H(�) determined by the correspondence
φ �→ ρ(x, ·). We interpret the norms of the random variables ‖Y‖2 and ‖Y − X‖2
as norms of linear functionals

‖Y‖2 = sup
{∫

�
g(x) ∂nu(x) dσ : u ∈ H(�),‖u‖2,2 ≤ 1

}
,

‖Y − X‖2 = sup
{∫

�

(
g(x) ∂nu(x) − f (x)u(x)

)
dσ : u ∈ H(�),‖u‖2,2 ≤ 1

}
.

Next, since by using a partition-of-unity argument the general case of a smooth
simple curve � may be reduced to the case when � is the graph of a function
t = γ (s), s ∈ [0,1], of class C1,α , (3.27) will follow if we prove the following
proposition.

PROPOSITION 3.12. Let � = {γ (s) : s ∈ [0,1]} be the graph of a smooth
C1-function and let γ ′(s) �= 0 be Hölder continuous with exponent α > 1/2. Let
f and g denote functions in C[0,1] and, for notational convenience, introduce the
linear functionals on L2,2(R2):

Tf (u)
def=

∫
f (x)u(x) dσ (x),

Ng(u)
def=

∫
g(x) ∂nu(x) dσ (x).

There exists a constant c > 0 such that ‖Ng − Tf ‖−2,2 ≥ c‖Ng‖−2,2.

PROOF. We again use the change of variables k : (s, t) �→ (x, y) from the
proof of Theorem 3.6:

x = s, y = ct + w(s, t),(3.28)

let h : (x, y) �→ (s, t) be its inverse and set v = u ◦ k. The proof involves three
steps. We will show that there are constants c1, c2, c3, . . . , independent of g, so
that:

1. Using the change of variables (3.28), we can write Ng(u) = Ñg(v), where
Ñg(v) is a linear functional supported on [0,1] × {0} ⊆ R

2 and

‖Ñg‖−2,2 ≥ c1‖Ng‖−2,2.(3.29)
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2. We will decompose Ñg into its normal and tangential parts Ñg = N1 − T 1 and
show that

‖T 1‖−2,2 ≤ c2‖N1‖−2,2.(3.30)

Thus, ‖Ñg‖−2,2 ≤ (c2 + 1)‖N1‖−2,2 and ‖N1‖−2,2 ≥ c3‖Ng‖−2,2, where c3 =
c1/(c2 + 1).

3. The proof will be completed by showing that, for all f ,

‖Ng − Tf ‖−2,2 ≥ c4‖N1‖−2,2.(3.31)

The proof of (3.29) is immediate, for when we write u = v ◦ h, we have
c−1‖u‖2,2 ≤ ‖v‖2,2 ≤ c‖v‖2,2 and h(�) = [0,1].

For (3.31), a direct calculation shows that, for any f , we can write

Ñg(u) = N1(v) − T 1(v) − T̃f (v),

where

N1(v) =
∫ 1

0
n(s) ∂tv(s,0) ds,

T 1(v) =
∫ 1

0
n(s)m(s) ∂sv(s,0) ds,

T̃f (v) =
∫ 1

0

√
1 + (γ ′(s))2 v(s,0) ds

(3.32)

and

n(s) = g(s)/∂ty(s,0), m(s) = (
1 + ∂ty(s,0)

)(
1 + γ ′(s)

)
.(3.33)

Introducing the subspaces L2,2
e and L2,2

o of L2,2 of functions v(s, t) that are
even (respectively odd) in the variable t , we observe that L2,2 = L2,2

e ⊕ L2,2
o and

L2,2
e ⊆ Ker(N1), L2,2

o ⊆ Ker(T 1 + T̃f ). It follows that ‖N1 − (T 1 + T̃f )‖−2,2 ≥
‖N1‖−2,2, thus implying (3.31).

The proof of (3.30) depends on a lemma.

LEMMA 3.13. The function m(s) = (1+∂ty(s,0))(1+γ ′(s)) is in the Hölder
class Cα and multiplication by m defines a bounded operator on the Bessel
space L1/2,2(R1).

PROOF. For t > 0, y(s, t) = ct + Pt ∗ γ (s), where Pt is the Poisson kernel on
the upper half plane. Thus,

∂ty(s,0) = c + 1

π
P.V.

∫ ∞
−∞

γ (s − s1) − γ (s)

s2
1

ds1 = c + 1

π
P.V.

∫ ∞
−∞

γ ′(s1)

s1 − s
ds1,

where P.V. denotes the principal-value integral. But this is the Hilbert transform
of γ ′ and the Hilbert transform is a bounded operator on the space Cα [see,
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e.g., Torchinski (1986), page 214, for the periodic case]. So s �→ ∂ty(s,0) is in
C0,α , and since C0,α is an algebra, m(s) ∈ C0,α . Multiplication by m ∈ C0,α with
α > 1/2 is easily seen to be a bounded operator on L1/2,2(R1) and the proof of
the lemma is complete. �

To complete the proof of the proposition, we compute the norms of N1 and T 1

in terms of the Fourier transforms of n(s) and n(s)m(s). Using (3.32) and writing
v(s, t) = ∫

R2 ei(sλ1+tλ2)V (λ)�(λ)dλ, with �(λ) = (2π(1+|λ|2))−2 and ‖v‖2
2,2 =∫

R2 |V (λ)|2 �(λ)dλ, we have N1(v) = i
∫
R2 n̂(λ1)λ2V (λ)�(λ)dλ. By Schwartz’s

inequality,

‖N1‖2
−2,2 =

∫
R2

|n̂(λ1)|2λ2
2 �(λ)dλ

= c2
4

∫ ∞
−∞

|n̂(λ1)|2 dλ1√
1 + λ2

1

= c2
4‖n‖2−1/2,2,

where c4 = 2
∫ ∞

0 p2/(1 + p2)2 dp < ∞. Similarly, one can show that

‖T 1‖2
−2,2 = c2

5

∫ ∞
−∞

|n̂m(λ1)|2 λ2
1

(1 + λ2
1)

3/2
dλ1, with c2

5 = 2
∫ ∞

0

dp

(1 + p2)2
.

Thus, ‖T 1‖2
−2,2 ≤ c2

5‖nm‖2−1/2,2. But multiplication by m defines a bounded linear

transformation on L1/2,2(R1) and, by duality, on its dual space L−1/2,2(R1).
Therefore,

‖T 1‖−2,2 ≤ c5‖nm‖−1/2,2 ≤ c6‖n‖−1/2,2 ≤ c7‖N1‖−2,2,

and the proof of (ii) is complete.
(iii) Let � be a straight line. Without loss of generality, we may assume that

� = (−∞,∞) × {0} ⊂ R
2. Then the two spaces H(�,�) and H̄ (�,�) are

easily identified in the Fourier picture [Pitt (1973)]. Precisely, the map φ(x) →
ei x·λ determines an isometry from H(�,R

2) onto L2(R2,�), and the images
of the subspaces H(�,�) and Hn(�,�) are given by {u(λ1,0) : u ∈ L2(R2,�)

and
∫
R2 |u(λ1,0)|2 �(λ1, λ2) dλ1 dλ2 < ∞} and {λ2v(λ1,0) : v ∈ L2(R2,�) and∫

R2 |λ2v(λ1,0)|2 �(λ1, λ2) dλ1 dλ2 < ∞}, respectively. Thus, since � is even,
〈u(λ1,0), λ2v(λ1,0)〉 = 0 and H(�,�) and Hn(�,�) are orthogonal. �

4. The Bessel fields on R
2. In this section, we extend the discussion of the

Whittle field given in Section 3 to include the general Bessel fields on R
2, that is,

the continuous, stationary, mean-zero Gaussian fields �β satisfying the pseudo-
differential equation

(I − �)β/2φ(x) = Ẇ (x), x ∈ R
2,(4.1)

for β > 1.
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The general framework remains essentially unchanged, but details and tech-
niques vary depending on the particular range of β . In particular, the results for
open sets D on when F (�β,D) = F (�β,D) are found to depend on β , and we
show that this equality always holds for k < β ≤ k + 1/2. Also, as β increases, the
fields become smoother, and higher order normal derivatives occur in the descrip-
tion of the boundary spaces H(�,�).

The field �β may be represented in the form

φ(x) =
∫

R2
Gβ(x − y)Ẇ (y) dy,

which implies the formula ρ(x, y) = Eφ(x)φ(y) = Gβ ∗Gβ(x −y) = G2β(x −y)

for the covariance function ρ(x, y) as well as the Fourier representation

ρ(x, y) =
∫

R2
ei(x−y)·λ �β(λ) dλ,

with �β(λ) = (2π)−2(1 + |λ|2)−β . It follows that the reproducing kernel Hilbert
space H(�β) is the Bessel potential space Lβ,2(R2). As described in Section 1,
this implies that each u ∈ Lβ,2(R2) is k-times differentiable off of an exceptional
set A with Cβ−k,2(A) = 0. Combining this with Theorems 1.5 and 2.2 gives the
following result.

THEOREM 4.1. Let �β with k < β ≤ k + 1, for some integer k ≥ 1, be the
solution of (4.1). Let S ⊆ R

2. Then F (�β,S) = F (�β,S) iff, for any u ∈ Lβ,2,
u|S = 0 implies ∇mu|S = 0 for all integers m with 0 < m ≤ k.

In the range 1 < β ≤ 2, therefore, Cβ−1,2(S) = 0 implies that F (�β,S) =
F (�β,S). For β > 2, however, Cβ−1,2(S) > 0 for S �= ∅ (see Remark 1 following
Theorem 1.5), and the condition Cβ−1,2(S) = 0 is never applicable. Observe also
that if Cβ−m,2(S) = 0 for some integer m, 0 < m < k, the conditions ∇mu|S =
0, . . . ,∇ku|S = 0 in Theorem 4.1 are vacuous. In addition, when β moves from
one of the ranges k < β ≤ k + 1, k-positive integer, to the next, the order of the
derivatives involved in Theorem 4.1 increases by 1.

4.1. The sharp and germ fields for closed sets. The exact analogue of
Theorem 3.2 is the following theorem.

THEOREM 4.2. Let S be a closed set and let T (S) be the set of all x ∈ S for
which S has a tangent line. Let k < β ≤ k + 1, where k ≥ 1 is an integer. Then
Cβ−k,2(T (S)) = 0 implies F (�β,S) = F (�β,S).

PROOF. Notice that, for the range k < β ≤ k + 1, the functions ∇mu are
continuous for all integers 0 ≤ m ≤ k − 1 and thus vanish on S. It follows from
Theorem 1.3 that ∇ku is classically differentiable (β −k,2)-q.e., and we can show
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(as in Lemma 2.3) that if x0 is a point of differentiability for ∇ku and S does not
have a tangent at x0, then ∇ku(x0) = 0. Therefore,

Cβ−k,2
(
S \ {x ∈ S : ∇ku(x) �= 0}) ≤ Cβ−k,2(T (S)) = 0,

and the proof is complete. �

4.2. The sharp and germ fields for open sets. Results on the equality of the
two σ -fields F (�,D) and F (�,D) for open sets D are of interest for arbitrary
fields �, and it is remarkable how few results are available in the literature. To
our knowledge, the only positive result concerning stationary Gaussian processes
occurs as an exercise on page 245 in the book of Dym and McKean (1976): If there
is a constant k < ∞ such that the spectral density �(λ) satisfies, for all a ≥ 1,
�(aλ) ≤ c�(λ), then � satisfies F (�, I ) = F (�, I ) for each time interval I .
In Pitt (1973), this elementary result and argument are extended for stationary
Gaussian fields on R

d (see the comment on page 350) in a form valid for bounded
open star-shaped sets D. Examples are also given in Dym and McKean (1976)
of spectral densities for which the corresponding process � satisfies F (�, I ) �=
F (�, I ) for specific time intervals I .

THEOREM 4.3. For each k ≥ 1, if k < β ≤ k + 1/2 and if D ⊆ R
2 is open,

then FD(�β,D) = F D(�β,D).

PROOF. We study the case k = 1 first. Let 1 < β ≤ 3/2 and let u|D = 0. Then,
since u is continuous, u|D = 0. Now let E ⊆ R

2 be the set of x at which u fails to
be classically differentiable. Then, by Theorem 1.3, Cβ−1,2(E) = 0. The set T (D)

is contained in a countable union of rectifiable curves [Saks (1937), page 264] and
hence has σ -finite linear Hausdorff measure. This implies (see Remark 2 following
Theorem 1.5) that Cβ−1,2(T (D)) = 0. Finally, for each point x ∈ D \{E ∪T (D)},
u(x) is classically differentiable, and just as in the proof of Lemma 3.3, ∇u(x) = 0.

Turning to the general case k ≥ 1, when k < β ≤ k + 1/2 and u|D = 0,
∇k−1u(x) is continuous and vanishes identically on D. Pick any (k − 1)-st-order
partial derivative of u and call it v. We must show that Cβ−k,2({x ∈ D : ∇v(x) �=
0}) = 0. We let E be the set where v is nondifferentiable. Then, as before,
Cβ−k,2(E) = Cβ−k,2(T (D)) = 0 and ∇v(x) = 0 for each x ∈ D \ {E ∪ T (D)}.

�

A generalization of Theorem 3.4 gives the following result.

THEOREM 4.4. For each k ≥ 1, if k + 1/2 < β ≤ k + 1, FD(�β,D) =
F D(�β,D) holds for any bounded connected open set D.

PROOF. The proof is based on an elementary capacity inequality for radially
decreasing kernels k(x) [Landkof (1972), page 158].
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LEMMA 4.5. Let k(x) be a radially decreasing kernel on R
n and let

g : R
n → R

n satisfy |g(x) − g(y)| ≤ |x − y| for all x, y ∈ R
n. If µ is a finite

measure on R
n, for a set S ⊆ R

n, define the image measure ν(S) = µg(S) =
µ(g−1(S)). Then, for each compact set A ⊆ R

n, k − C(A) ≥ k − C(g(A)).

We first prove Theorem 4.4 for the range 3/2 < β < 2. The idea is the same
as in Theorem 3.4. More precisely, since ∇u(x) = 0 on D and since ∇u is
(β − 1,2)-finely continuous (β − 1,2)-q.e., it is enough to show that for an
open connected set D ⊆ R

2, the set D is (β − 1,2)-thick at each x on the
boundary of D. But, as stated in Remark 1 following Theorem 1.5, the capacity
Cβ−1,2 is equivalent to the k-capacity with k(x) = |x|−(2−2(β−1)). It follows from
Lemma 4.5 and from the fact that line segments have positive capacities for
3/2 < β ≤ 2 that D is (β − 1,2)-thick in its boundary, (β − 1,2)-q.e.

For general k + 1/2 < β < k + 1, notice that, if u ∈ Lβ,2(R2), then ∇mu are
continuous for all integers 0 ≤ m ≤ k − 1 and thus vanish on ∂D. Since ∇ku is in
the Bessel space Lβ−k,2(R2) and thus finely continuous (β − k,2)-q.e., the claim
that D is (β − k,2)-thick in its boundary, (β − k,2)-q.e., completes the proof in
this case.

Finally, when β = k + 1, the result follows as in Theorem 3.4. �

The construction of Adams and Hedberg (1996), page 321, leads to a
generalization of Example 3.5.

THEOREM 4.6. For each integer k ≥ 1 and k + 1/2 < β ≤ k + 1, there exists
a disconnected open set D for which FD(�β,D) �= F D(�β,D).

PROOF. It will be enough to construct a set D and a function u ∈ Lβ,2 such
that u|D̄ = 0 and ∂ku(x) �= 0 on a subset of ∂D with positive Cβ−k,2-capacity. We
outline the proof where it differs from that of Example 3.5.

The balls B(an,Rn), B(an, rn) and the set D are constructed in the same
way. The decreasing C∞

0 [0,∞)-functions vn are chosen to satisfy vn(r) = 1 for

r ≤ rn, vn(r) = 0 for r ≥ Rn and |v(j)
n (r)| ≤ cr−j (logRn/rn)

−1 for 1 ≤ j ≤ k

[see Adams and Hedberg (1996), page 321]. As in Example 3.5, all points x ∈
[−1/2,1/2] × {0} \ (

⋃∞
n=1 B̄(an,Rn)) belong to ∂D and since

∑∞
n=1 Rn < 1/2,

the set of such points has positive one-dimensional Lebesgue measure.
Now set g(x) = g(x1, x2) = xk

2 in a neighborhood of [−1/2,1/2] × {0}
and define u as in Example 3.5. It is routine to verify that u ∈ Lk+1,2

[
∑

|σ |=k+1
∫ |Dσ(g(x)vn(|x − an|))|2 dx < c log (Rn/rn)

−1, when Rn is small
enough] and therefore u ∈ Lβ,2. Moreover, u|D̄ = 0 and ∂ku(x) = k! for any
x ∈ [−1/2,1/2] × {0} ∩ ∂D. Since line segments have positive Cβ−k,2-capacity
for k + 1/2 < β ≤ k + 1, this implies that ∇ku|∂D �= 0. �
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4.3. The sharp and germ fields for smooth curves. Our next result shows that,
for β in the range k < β ≤ k + 1/2 and for a smooth curve � of Hölder class Ck,α

with α > β − (k + 1/2), no kth-order derivatives arise in the spectral synthesis
problem.

LEMMA 4.7. Let � = {γ (s) : s ∈ [0,1]} be a Ck,α-curve and let β satisfy
k < β ≤ k + 1/2 for some integer k ≥ 1. Define t = (2 − 2(β − k))−1 and
let α ≥ 1/t = 2(k + 1 − β). Then, for t-dimensional Hausdorff measure �t ,
�t(�) < ∞ and Cβ−k,2(�) = 0.

PROOF. If �t(S) < ∞, it follows that the capacity of S, corresponding to
the power kernel 1/|x|t , is 0 [Falconer (1985), Theorem 6.4]. By Remark 1
following Theorem 1.5 for t = 2(k + 1 − β), it follows that C(2−t)/2,2(S) = 0,
that is, Cβ−k,2(S) = 0. Since a Hölder-continuous curve � of order α has finite
1/α-dimensional Hausdorff measure, the proof is complete. �

For a smooth curve �, the germ space H(�β,�) can be decomposed into a sum
of the tangential (sharp) space H(�β,�) and the spaces H∂m

n
(�β,�) generated by

the normal derivatives ∂m
n φ, 1 ≤ m < β . The normal derivatives ∂m

n φ are defined
as generalized functions given by the values of the derivatives F (m)(0) where

F(h) =
∫
�

f (x)φ
(
x + hn(x)

)
dσ (x),(4.2)

provided the derivatives exist in a weak sense in L2(P ).
For 1 < m < β , the subspace of normal derivatives of order m is denoted by

H∂m
n
(�β,�) = sp

{∫
�

f (x) ∂m
n φ(x) dσ (x) : f ∈ C(�)

}
L2

,(4.3)

with this notation extended to include the sharp field H(�β,�) for m = 0.

THEOREM 4.8. Let k ≥ 1 be an integer, k + 1/2 < β ≤ k + 3/2, and let
� = {γ (t), t ∈ [0,1]} be a smooth curve with continuous derivative γ ′(t) �= 0.

(i) Then, for each f ∈ C1(�) and each integer value m, 0 < m ≤ k, the
derivatives F (m)(0) exist and the space

∑k
m=0 H∂m

n
(�β,�) is dense in H(�β,�).

(ii) If, furthermore, 0 < β − (k + 1/2) < α ≤ 1 and � is a smooth Ck,α-curve,
there is a positive angle between the subspace H∂i

n
(�β,�) and the linear span of

the H
∂

j
n
(�β,�) for j �= i, 0 ≤ i, j ≤ k.

PROOF. (i) The β = 2 case of the theorem is covered in Theorem 3.11. We
next consider the case 2 < β < 5/2. In this case, �β is continuously differentiable
and it is clear that H(�β,�) = sp{φ(x) : x ∈ �} while H∂n(�β,�) = sp{∂nφ(x) :
x ∈ �}. We only need to show that H(�β,�)+H∂n(�β,�) is dense in H(�β,�)
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and we do this by identifying their orthogonal complements. Thus, we let X ∈
H(�β) be perpendicular to both H(�β,�) and H∂n(�β,�). The function u(x) =
EXφ(x) is then in Lβ,2 and both u(x) and ∇u(x) vanish identically on �. In
addition, ∇2u|� = 0 (β − 2,2)-q.e. since Cβ−2,2(�) = 0. By Netrusov’s theorem

(Theorem 1.5), u ∈ L
β,2
00 so X ∈ H(�β,�)⊥, and the proof is complete.

The general case with k < β < k + 1/2 is proved similarly and the general case
with k = β is proved by modifying the β = 2 proof.

Next, we treat the case with 3/2 < β < 2. The proof of the existence of the
boundary integral follows exactly the proof given in Theorem 3.11. The functionals
{Th} and the vector measures {µh} are defined exactly as before, and the estimate

‖Th‖2−β,2 ≤ 2
∫ ∫

G2β−2(x − y) d|µh|(x) d|µh|(y),

together with the uniform Lipschitz condition |µh(B(x, r))| ≤ cr , holds as before.
But G2β−2(x) has a power singularity with index 4 − 2β at x = 0, and integration
by parts shows that

∫
G2β−2(x − y) d|µh(y)| is uniformly bounded in x and h,

which proves the existence of the boundary integrals.
To show that H(�β,�) and H∂n(�β,�) span H(�β,�), we proceed as in

Theorem 3.11. It suffices to show that each X in H(�β,�)⊥ ∩ H∂n(�β,�)⊥ is
in H(�β,�)⊥, or, what is the same, that the function u(x) = EXφ(x) which is in
Lβ,2(R2) is also in L

β,2
00 (�). But u|� = 0, so by Netrusov’s theorem it suffices to

show that ∇u|� = 0 (β − 1,2)-q.e. By quasicontinuity, we only need to show that∫
� f (x) ∂nu(x) dσ (x) = 0 for each simple function f on �. For a fixed f , both∫
� f (x) ∂nu(x) dσ (x) and limh→0(1/h)

∫
� f (x)[u(x + hn(x) − u(x)]dσ (x) =

EX
∫
� f (x) ∂nφ(x) dσ (x) define continuous linear functionals on Lβ,2. The

functionals agree on the dense subspace C2
0 of Lβ,2 and thus they are equal.

But X ∈ H(�β,�)⊥, so 0 = EX
∫
� f (x) ∂nφ(x) dσ (x) for each f , and the result

follows.
For general β satisfying k + 1/2 < β < k + 1, the result may be proved

analogously.
(ii) This part of the proof is also adapted from the corresponding argument

in Theorem 3.11. The goal is to reduce the general case to the case when � ⊆
R

1 ⊂ R
2. The reduction is done in two parts. First, as in Theorem 3.11, we reduce

the general case to the case when � is the graph of a real-valued function y = g(x)

of Hölder class Ck,α with compact support. Second, the case when � is a graph of
a function is reduced, via a change of variables, to the case � ⊆ R

1.
To treat the case � = R

1 = {(x,0) : −∞ < x < ∞}, it will suffice to show
that, for each integer m with 0 ≤ m ≤ k, there is a positive angle between the

spaces Km = ∑m−1
j=0 H

∂
j
y
(�β,R

1) and Lm = H∂m
y
(�β,R

1). Dense sets of variables

in these two spaces are given by X and Y of the form

X =
m−1∑
j=0

∫ ∞
−∞

aj (x) ∂j
y φ(x,0) dx and Y =

∫ ∞
−∞

b(x) ∂m
y φ(x,0) dx.
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Passing to the spectral representation, we have

EXY = 1

4π2

∫
R2

m−1∑
j=0

âj (s)(it)
j b̂(s)(it)m

ds dt

(1 + s2 + t2)β
.

Setting c(s) = √
1 + s2 and making the change of variables t = c(s)τ gives

EXY = 1

4π2

∫ ∞
−∞

c(s)1−2β

{
m−1∑
j=0

(
aj (s)c

j (s)(iτ )j
)

× b̂(s)cm(s)(iτ )m
dτ

(1 + τ 2)β

}
ds

(1 + s2)β
.

From this, is is clear that the cosine of the angle θm between Km and Lm is given
by

cos(θm) = sup
{
EXY :X ∈ Km,Y ∈ Lm, and ‖X‖2 = ‖Y‖2 = 1

} = ‖Pm‖,
where ‖Pm‖ is the norm of the orthogonal projection in L2(R1, dτ/(1 + τ 2)β) of
the one-dimensional space sp{τm} onto the space Pm = sp{τ j : 0 ≤ j < m}. Since
Pm is finite dimensional and τm /∈ Pm, ‖Pm‖ < 1 and the proof is complete in this
case.

We now consider the case when � = {(s, t) : t = g(s) : s ∈ R
1} and g ∈ C

k,α
0

and γ and its kth-order derivatives are bounded. Here, as before, we consider a
change of variables (s, t) → (x, y) given by a diffeomorphism (x, y) = k(s, t),
where x = s and y = ct + w(s, t) with w(s, t) = Pt ∗ γ (s) for t > 0. Here Pt is
the Poisson kernel for the upper half plane and c > 0 is chosen so that, at t = 0,
∂y/∂t is positive and bounded away from 0 and both k and k−1 are Lipschitz. We
extended w(s, t) into the lower half plane t < 0 by, for example, setting w(s,−t) =∑m+1

j=1 ajPjt ∗ γ (s) with
∑m+1

j=1 j laj = (−1)l , 0 ≤ l ≤ m. With this definition, the

reader may check that w(s, t) ∈ Ck,α and ∂k+1
t w(s, t) = O(1/|t|k+1−α) [Stein

(1970), page 62].

The next step is to show that the operator W(u)
def= u ◦ k is bounded and

invertible on Lβ,2(R2). Since the case β = 2 has been covered in Theorem 3.11,
we begin with the range 3/2 < β < 5/2 with β �= 2.

To show that, for any u ∈ Lβ,2(R2), W(u) ∈ Lβ,2(R2), it will be enough
to show [Stein (1970), page 139] that ∇(u ◦ k) ∈ Lβ−1,2. Since ∇(u ◦ k) =
∇u(k) · ∇k, it will be enough to check that:

1. u �→ u ◦ k is a bounded operator from Lβ,2(R2) to L2;
2. u �→ (∇u) ◦ k is a bounded operator from Lβ,2(R2) to Lβ−1,2;
3. ∇k is a (bounded) multiplier on Lβ−1,2; that is, for any v ∈ Lβ−1,2, v · ∇k ∈

Lβ−1,2.
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Since k and k−1 are both Lipschitz, (1) is immediate. To prove (2), notice that,
if 1/2 < β − 1 < 1, a C1 change of variables preserves L2 and L1,2. The result
for the range 3/2 < β < 2 follows by interpolation. For the range 2 < β < 5/2,
we can again use interpolation. If k is C1,α with α > 1/2, the change of variables
k preserves L1,2, and we already proved, in Theorem 3.11, that k also preserves
L2,2. Thus, (2) follows for 2 < β ≤ 5/2, even with the minimal smoothness of
C1,α , α > 1/2, on k.

To prove (3), we study the cases 3/2 < β < 2 and 2 < β ≤ 5/2 separately.
Denote z = (s, t) and m(z) = ∇k(z).

Case 1 (3/2 < β < 2). Because of Theorem 1.6(i), it is enough to show
that

∫
R2

∫
R2 |v(z + h)m(z + h) − v(z)m(z)|2/|h|2β dz dh < ∞. Rewriting m(z +

h)v(z+h)−m(z)v(z) = m(z+h)[v(z+h)− v(z)]+ v(z)[m(z+h)−m(z)], the
integral above will be finite if we show that

∫
R2

∫
R2 |m(z + h)[v(z + h) − v(z)]|2/

(|h|2β) dz dh < ∞ and
∫
R2

∫
R2 |v(z)[m(z + h) − m(z)]|2/(|h|2β)dz dh < ∞. The

first integral is easily seen to be finite, since m(z) is continuous and bounded, and
v ∈ Lβ−1,2(R2).

For the second integral, it is straightforward to verify that it converges over the
regions {|z| > 1, h ∈ R

2} and {|z| < 1, |h| > 1}. For the region {|z| < 1, |h| < 1},
we write z = (s, t) and h = (h1, h2) and break the integral into two pieces over
the regions {|h| < 1, |s| < 1, |t| < |h|} and {|h| < 1, |s| < 1, |h| ≤ |t| < 1}. We
use that v ∈ Lβ−1,2 with 3/2 < β < 2 implies, by the trace theorem, that there is
a constant c with

∫
|s|<1 |v(s, t)|2 ds ≤ c‖v‖2

β−1,2, t-a.e. For the first integral, we
thus have

I1 =
∫
|h|<1

∫
|s|<1

∫
|t|<|h|

|v(s, t)|2|m(s + h1, t + h2) − m(s, t)|2
|h|2β

ds dt dh

≤ c

∫
|h|<1

∫
|s|<1

∫
|t|<|h|

|v(s, t)|2|h|2α

|h|2β
ds dt dh

≤ c‖v‖2
β−1,2

∫
|h|<1

∫
|t|<|h|

|h|2α

|h|2β
dt dh ≤ c‖v‖2

β−1,2

∫
|h|<1

|h|2α−2β+1 dh,

which is bounded by c‖v‖2
β−1,2 for α > β − 3/2. To estimate the second integral,

we use |∇m(s, t)| ≤ ctα−1 near t = 0 [Stein (1970), page 62] to get

I2 =
∫
|h|<1

∫
|s|<1

∫
1>|t|≥|h|

|v(s, t)|2|m(s + h1, t + h2) − m(s, t)|2
|h|2β

ds dt dh

≤ c

∫
|h|<1

∫
|s|<1

∫
1>|t|≥|h|

|v(s, t)|2|h|2|∇m(t, s)|2
|h|2β

ds dt dh

≤ c

∫
|h|<1

|h|2−2β
∫
|s|<1

∫
1>|t|≥|h|

|v(s, t)|2t2α−2 dt ds dh

≤ c‖v‖2
β−1,2

∫
|h|<1

|h|2−2β
∫

1>|t|≥|h|
t2α−2 dt dh,
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which is also bounded by c‖v‖2
β−1,2 for α > β − 3/2, thus completing the proof

for the range 3/2 < β < 2.
Case 2 (2 < β < 5/2). We invoke Strichartz’s theorem [Strichartz (1967)] that

each space Lβ,2(R2) with β > 1 is an algebra under pointwise multiplication.
Therefore, since v = ∇u(k) ∈ Lβ−1,2, (3) will follow if we know that m = ∇k ∈
Lβ−1,2, which, by Theorem 1.6(ii), is the same as

∫
R2

∫
R2 |m(z + h) + m(z −

h) − 2m(z)|2/|h|2β dz dh < ∞. As for the range 3/2 < β < 2, it is immediate to
verify that this integral converges over the regions {|z| > 1, h ∈ R

2} and {|z| < 1,

|h| > 1}. For the region {|z| < 1, |h| < 1}, using z = (s, t) and h = (h1, h2), we
again break the integral into two pieces over the regions {|h| < 1, |s| < 1, |t| < |h|}
and {|h| < 1, |s| < 1, |h| ≤ |t| < 1}, respectively:

I1 =
∫
|h|<1

∫
|s|<1

∫
|t|<|h|

|m(z + h) + m(z − h) − 2m(z)|2
|h|2β

ds dt dh

≤ c

∫
|h|<1

∫
|s|<1

∫
|t|<|h|

|m(z + h) − m(z)|2
|h|2β

ds dt dh

≤ c

∫
|h|<1

∫
|t|<|h|

|h|2α

|h|2β
dt dh

≤ c

∫
|h|<1

|h|2α−2β+1 dh,

which is finite for α > β − 3/2.
For the second integral, we use f (x + h) + f (x − h) − 2f (x) = ∫ h

−h(h −
|s|)f ′′(x + s) ds and |∇3w(s, t)| = |∇2m(s, t) ≤ ctα−2 near t = 0 [Stein (1970),
page 62] to get

I2 =
∫
|h|<1

∫
|s|<1

∫
1>|t|≥|h|

|m(z + h) + m(z − h) − 2m(z)|2
|h|2β

ds dt dh

≤ c

∫
|h|<1

∫
|s|<1

∫
1>t≥|h|

|h|4|∇2m(t, s)|2
|h|2β

ds dt dh

≤ c

∫
|h|<1

|h|4−2β
∫

1>t≥|h|
t2(α−2) dt dh,

which is also finite for α > β − 3/2, thus completing the proof of Theorem 4.8(ii)
for k = 1.

For spaces of higher order Lβ,2 with β ≥ 5/2, the proof may be reduced to the
case just discussed by consideting the higher order gradient ∇k−1 and invoking the
result that u ∈ Lβ,2 iff u ∈ Lk−1,2 and ∇k−1u is in the space Lβ−k+1,2.

Finally, we comment that, for � = {(x, y) : y = g(s), s ∈ [0,1]} with g ∈ C
1,α
0 ,

the adjoint W ∗ of the change-of-variables operator W maps the normal derivative
operators ∂m

n along � onto operators bm(s)∂m
t + terms of lower order in ∂t that



1372 L. D. PITT AND R. S. ROBEVA

satisfy inf{bm(s)} > 0. Using this observation and the case when � = R
1, it is

routine to establish that the angles are positive in the general case. The proof of
Theorem 4.8 is complete. �

We now determine the critical smoothness condition on the curve � that
guarantees that the sharp and the germ σ -fields of �β , k +1/2 < β ≤ k +3/2, will
be different. Because of Theorem 4.8, it is clear that we have to consider curves that
are no smoother than Hölder of class Ck,α with 0 < α ≤ β − (k + 1/2). We show
that there exist curves � of class Ck,α for which u|� = 0 implies ∇u|� = 0 for
all functions u ∈ Lβ,2(R2). As the smoothness of � decreases, u|� = 0 may also
imply that higher order gradients vanish on �. The critical smoothness on � that
allows u|� = 0 to imply ∇mu|� = 0 for all m = 1,2, . . . , k − 1 and thus guarantee
F (�β,�) = F (�β,�) is C1,α . Our next theorem gives the precise criteria.

THEOREM 4.9. Let k ≥ 2 be an integer and let k + 1/2 < β ≤ k + 3/2.

(i) If α is such that 0 < β − (k + 1/2) < α ≤ 1 and 0 ≤ m < k is an
integer, then, for any Ck−m,α-curve � in R

2, there exists a function u ∈ Lβ,2 such
that u|� = 0,∇u|� = 0, . . . ,∇k−mu|� = 0, but ∇k−m+1u|� �= 0. In particular,
F (�β,�) �= F (�β,�).

(ii) If 0 < α < β − (k + 1/2) ≤ 1, there exists a curve � of Hölder class Ck,α

such that, for all u ∈ Lβ,2, u|� = 0 implies ∇u|� = 0.
(iii) If α is such that 0 < α < β − (k + 1/2) ≤ 1, then there exists a curve �

of Hölder class C1,α such that u|� = 0 implies ∇mu|� = 0 for all m = 1,2, . . . , k,
and thus F (�β,�) = F (�β,�) holds.

PROOF. (i) The proof is a modification of that of Theorems 3.6 and 4.8. Using
the change of variables k(s, t) as in Theorem 4.8(ii), we choose u(x, y) of compact
support to be u(x, y) = tk−m+1 near t = 0, where t = t (x, y) is the t-coordinate
of k−1. With this choice of u, it is clear that ∇k−m+1u|� �= 0. For β = k + 1, thus,
all that remains to show is that ∇k+1u ∈ L2. A direct calculation gives

‖∇k+1u‖∞ ≤ c

k−m∑
l=0

tk−m−l‖∇k+1−lw‖∞

≤ ctk−m−l tm+α−(k+1−l) = ctα−1

and thus, since α > 1/2, the claim follows in this case.
To prove u ∈ Lβ,2 in the case when k + 1/2 < β ≤ k + 3/2, β �= k + 1 and

k > 2, we will show that∫
R2

∫
R2

∣∣∇ku(z + h) + ∇ku(z − h) − 2∇ku(z)
∣∣2/|h|2+2(β−k) dz dh < ∞.
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As in the proof of Theorem 4.8, only the integral over the region {|z| < 1, |h| < 1}
is of interest. Writing z = (s, t) and spliting the integral into two parts, as in
Theorem 4.8, we have

I1 ≤ c

∫
|h|<1

∫
|s|<1

∫
|t|<|h|

|∇ku(z + h) − ∇ku(z)|2
|h|2+2(β−k)

ds dt dh

≤ c

∫
|h|<1

∫
|s|<1

∫
|t|<|h|

|h|2|∇k+1u|2
|h|2+2(β−k)

ds dt dh

≤
∫
|h|<1

|h|2(k−β)
∫
|t|<|h|

t2(α−1) dt dh < ∞

for α > β − (k + 1/2). For I2, we have

I2 ≤ c

∫
|h|<1

∫
|s|<1

∫
1>t≥|h|

|h|4|∇k+2u|2
|h|2+2(β−k)

ds dt dh

≤
∫
|h|<1

|h|2−2(k−β)
∫

1>t≥|h|
t2(α−2) dt dh < ∞

for α > β − 3/2. This completes the proof of part (i).
(ii) We study the case k = 1 first and outline the proof where it differs from that

of Theorem 3.7. The curve � is again the graph of the function

g(x) =
∞∑

j=0

aj

(
1 − cos(2πnjx)

)
, x ∈ [0,1],

with the choice of nj = 2j ! and aj = n−1−α
j . With this choice of aj and nj , � has

the desired smoothness by the Weierstrass–Hardy theorem [see, e.g., Zygmund
(1959), page 48]. From Theorems 2.2 and 1.5 and Lemma 4.2, we observe that we
must show that ∇u|� = 0 for each u ∈ Lβ,2(R2) with u|� = 0.

Lemma 3.8 remains the same. A version of Lemma 3.9 holds with the following
changes:

1. ‖τh‖−β,2 = O(h(2β−3)/2).
2. The effect of the change of variables on the norms (1), as in Theorem 3.7,

requires a bound on the Lβ,2-norm of u(x, y + gN(x)) when compared with
‖u‖β,2. We do this by using interpolation between the integer order spaces,
applying Theorem 1.1. It is clear from the proof of Theorem 3.7 that, when
β is an integer, ∥∥u(

x, y + gN(x)
)∥∥

β,2 ≤ c‖g(β)‖∞‖u‖β,2,
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and interpolating between L1,2 and L2,2 first and then between L2,2 and L3,2

(Theorem 1.1) gives

∥∥u(
x, y + gN(x)

)∥∥
β,2 ≤

‖g′′‖β−1
∞ ‖u‖β,2, when 1 < β < 2,

‖g′′‖3−β
∞ ‖g′′′‖β−2

∞ ‖u‖β,2, when 2 < β < 3.

3. Bounds for the norms of the linear functionals TN ∈ L−β,2 are given by

‖TN‖−β,2 ≤
‖g′′‖β−1

∞ (aN+1)
(2β−3)/2, when 3/2 < β < 2,

‖g′′‖3−β
∞ ‖g′′′‖β−2

∞ (aN+1)
(2β−3)/2, when 2 < β < 5/2,

and ‖TN‖−β,2 → 0 since the uniform norms of the derivatives of g are bounded
by a power of nN and are small when multiplied by a power of aN+1.

4. The numerical approximations of
∫
�N

f (x)u(x, y) dx and
∫
�N

f (x)u(x, y +
h)dx are treated using the more general form of Lemma 3.10 [Theorem 8.1
in Pitt, Robeva and Wang (1995)] to the effect that, for any f ∈ C1[0,1] and
1 < β < 5/2,

sup
‖u‖β,2≤1

∣∣∣∣∣
∫ 1

0
f (x)u(x,0) dx − 1

M

M∑
j=0

f

(
j + 1

2

M

)
u

(
j + 1

2

M
,0

)∣∣∣∣∣
= O

(
1

M(2β−1)/2

)
.

(4.4)

The rest of the proof of Theorem 3.7 carries over with the obvious change that
∇u is (β − 1,2)-quasicontinuous.

For general β in the range k + 1/2 < β ≤ k + 3/2, where k ≥ 1 is an integer,
the construction from Theorem 3.7 carries over with the following changes:

1. ‖τh‖−β,2 = O(hmin{2,(2β−3)/2}) and one can show as before that ‖TN‖−β,2 → 0.
2. To prove that

∫
�N

f (x) ∂2u(x, y) dx is small for large N , a more efficient
estimate of the integrals

∫
�N

f (x)u(x, y) dx and
∫
�N

f (x)u(x, y + h)dx is
required than that given by (4.4). Such estimates, based on an Euler–MacLaurin
formula, appear in Benhenni (1998).

(iii) Build the curve � as in (ii). Then, for any u ∈ Lγ,2, 3/2 < γ ≤ 5/2, u|� = 0
implies ∇u|� = 0. Now let u ∈ Lβ,2, with k + 1/2 < β ≤ k + 3/2, k ≥ 2, vanish
on �. Write β = γ + (k − 1). Since γ < β implies Lβ,2 ⊂ Lγ,2, applying (ii)
repeatedly for the function u and its derivatives of order up to k − 1 shows that
∇mu|� = 0 for m = 1,2, . . . , k. Thus, by Theorem 1.5, u ∈ L

β,2
00 (R2 \ �), which

is equivalent to F (�β,�) = F (�β,�). �

REMARKS. It is possible to extend these results to other Gaussian fields
beyond the Bessel fields. Since all the results depend only on the space H(�)

and its norm, they do not distinguish between {�β} and any Gaussian field � for
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which the space H(�) contains exactly the same functions as Lβ,2 and for which
the norm is equivalent to the norm on Lβ,2. This remark covers any stationary field
whose spectral density �(λ) is bounded above and below by constant multiples of
�β(λ) and certain nonstationary fields.

Similarly, when two fields � and �β have equivalent localized spaces (and
norms) H(�,D) and H(�β,D), the spectral synthesis in the two spaces H(�)

and H(�β) will coincide for closed sets � ∈ D. This method can be used, for
example, to prove local results for periodic versions of the Bessel fields or for
nonstationary fractional Brownian motions. Sufficient spectral conditions under
which this is possible are given in Pitt (1975).

The obvious barrier to extending our results by such methods comes from the
fact that the Bessel fields are isotropic as are the spaces Lβ,2. To treat fields that are
intrinsically anisotropic, such as solutions of stochastic wave and heat equations,
by these methods will require development of a satisfactory potential theory for
the corresponding anisotropic function spaces, and, to date, this work has not been
done.
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