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LARGE DEVIATIONS FOR A CLASS OF STOCHASTIC
PARTIAL DIFFERENTIAL EQUATIONS!

BY GOPINATH KALLIANPUR AND JIE XIONG

University of North Carolina and University of Tennessee

We consider the random fields X*(¢,q), ¢t > 0, ¢ € @, governed by
stochastic partial differential equations driven by a Gaussian white noise
in space—time, where & is a bounded domain in R¢ with regular bound-
ary. To study the continuity of the random fields X* in space and time
variables, we prove an analogue of Garsia’s theorem. We then derive the
large deviation results based on the methods used by the second author in
another paper. This article provides an alternative proof of Sowers’ result
for the case of d = 1.

1. Introduction. The large deviation principle (LDP) has been studied
extensively by many authors. Most of the earlier work dealt with random
variables or stochastic processes in finite-dimensional spaces. The LDP was
derived based on some estimates for probabilities of different random events.
The dimension of the underlying state spaces of the random variables or
stochastic processes plays a key role in these inequalities. This becomes a
major obstacle for the generalization to infinite-dimensional setups.

Making use of the properties of subadditive functions, large deviations for
the empirical measure of independent identically distributed random vari-
ables taking values in infinite-dimensional spaces were obtained. These
results were then applied to Gaussian measures on general Banach spaces’
with various applications [see the book by Stroock (1984) for details].

One of the major applications is to the investigation of the LDP for
reaction-diffusion stochastic differential equations, which has been studied by
various authors [e.g., see Faris and Jona-Lasinio (1982), Freidlin (1988) and
Zabczyk (1988)]. Most of these works dealt essentially with linear equations,
where the solution can be obtained by a continuous transformation of a
Gaussian process.

Now let us mention some work for which nonlinear techniques are needed.
Dawson and Géartner (1987) considered the convergence rate for the empirical
processes of interacting particle systems when the sizes of the system tend to
infinity. They derived a large deviation result by approximating the interact-
ing system by a system of independent components by freezing the interac-
tion term. Sowers (1992) studied the LDP for a nonlinear reaction-diffusion
stochastic differential equation with the space variable in a one-dimensional
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bounded interval. Xiong (1994) derived the large deviations for a class of
random transformations in abstract Wiener space and then applied them to
diffusion processes taking values in the duals of countably Hilbertian nuclear
spaces.

The existence and uniqueness of solution for a large class of stochastic
partial differential equations (SPDE’s) with the space variable in a d-dimen-
sional bounded or unbounded domain has been established by Kotelenez
(1993). In this paper, we study the large deviations for such equations when
the domain of the space variable is bounded, by applying to the present setup
the results obtained in Xiong (1994).

This paper is organized as follows: in Section 2, we introduce the results
obtained by Xiong (1994) on large deviations in a general setting for later use.
In Section 3, we state some conditions imposed by Kotelenez (1993) to
establish the existence and uniqueness of solutions for SPDE’s. Section 4 is
the main body of this article, and we proceed to derive the LDP for SPDE’s by
verifying the assumptions of Section 2. Throughout this paper, we use two
systems to denote constants: those appearing in the assumptions will be
denoted by K(T'), K(v) and so forth (if they depend on a parameter) or simply
by K; those arising from the proofs will be denoted by K with an integer
subscript in a consecutive way.

The papers of Peszat (1994) and Chow (1992) were brought to our atten-
tion by an anonymous referee. In these papers, the authors study the LDP for
stochastic evolution equations. The present paper differs from theirs in the
following aspects:

1. Their methods are similar to the finite-dimensional case; that is, they
resort to a sequence of approximate solutions for which the LDP are
satisfied and then show that the LDP is preserved in the limit. Our
method is to approximate the probability that the solution lies in a small
neighborhood by the probability that a Gaussian process, obtained by
freezing the right-hand side of the SPDE, lies in the same neighborhood.

2. The stochastic integral on the right-hand side of the equation in our paper
is different from the one in their papers. They consider it to be the integral
of a Hilbert—Schmidt-valued process with respect to a Wiener process. We
regard it as the integral of a real-valued random field (with both the time
and space variables as parameters) with respect to a Brownian sheet in
space—time. The advantage of this point of view is that the Hilbert—Schmidt
property is not required and hence, the condition (C.2) in Peszat’s paper
and conditions (A.2) and (A.3) in Chow’s paper can be relaxed. For a
further comparison, see the end of this paper.

2. Large deviations for a class of Banach space-valued random
variables. In this section we briefly introduce the large deviation results of
Xiong (1994) for a class of random transformations in abstract Wiener space.

" Let (i,2#,Q) be an abstract Wiener space and let P be the standard
Wiener measure on (Q, Z(Q)). Let 2 C % be two separable Banach spaces.
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Suppose that A is a map from 2 to Z such that the following assumption
holds:

AssUMPTION Al. There exists a constant K such that for any x,, x, €2,
(2.1) lA(x;) — A(x)lly < Kllxy — x5lle.

Let &, be a class of measurable maps from (Q, Z(Q)) to (Z, B(2)).

AssUMPTION A2. (i) & is a linear space; that is, for any a,b € R, X, X,
€ &, we have aX; + bX, €,

(ii) & C,; that is, for any x € 2 fixed, the constant map X(w) = x,
VoweQ,isin .

(iii) For any h €%, X € %, let (T, XX ) = X(» — h). Then T}, X €.9,.

DEFINITION 2.1. Let ! € L(#, %). We say that the lifting of / exists if for
any sequence {/,} € L(Q, %) such that [, > in L(#, %), we have that
{{,(®)} converges in probability to a Z-valued random variable /(w). We call [
the lifting of .

Let &% be a class of measurable maps from (Q, 2(Q)) to (%, Z(%))
satisfying (i) and (ii) of Assumption A2 with 2 replaced by %Z. Let B be a map
from &, to &/, satisfying the following:

AssUMPTION A3. There exists a continuous map B: 2 X% — Z such that:

() For each x €2, B(x, - ): #— % is linear and the lifting B(x, -« ):
) — 7 exists and is an element of &, .

(i1) There exists a constant K such that, for any x,, x, €2, h €%, we
have

IB(xy, k) — B2y, B)lly < KR ll#llc, — x|

For each x €2, as the constant map X(w) = x is in %, we have that
B(x) = B(X) is an element of %, and hence, B(x) is a %-valued random
variable. On the other hand, by Definition 2.1, the lifting B(x, - ) of the linear
map B(x,-) is also a %Z-valued random variable. We make the following
additional assumptions: _

(iii) For any x € &, we have B(x) = B(x, - ).
_ (iv) For any h €%, X €., the map B,(X): Q - % given by B,(X)w =
B(X(w), h) is in &%, and

B(X) — By(X) = TW(B(T_»X)).
(v) B is exponentially continuous, that is, for any L > 0, there exists
8 > 0 such that for any {X (&)}, {X,(¢)} C,, we have
A lim sup £ log P(VelB(X,(¢)) — B(Xy(&))ly > V5,
(2.2) -0
1X,(e) — X,(e)lle < 8) < —L.
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We consider a family of 22valued random variables {X*} in the probability
space (2, #(Q), P) under the following:

AsSUMPTION A4. (i) {X*} is exponentially tight; that is, for any L >0,
there exists a compact subset C; of 2 such that
(2.3) limsupslog P(X°¢ C,) < —L.

e—0
(i) For any ¢ > 0, X° €., and satisfies the equation
(2.4) X°=A(X®) + Ve B(X?)

as Z-valued random variables.

Let h €7 We say that A € 9(y) if there exists x € 2 such that
x =A(x) + B(x,h).

In this case, we denote x by y(k). We shall need the following assumption:

ASSUMPTION A5. Let x €2 be given by y(h) for an h €9 (y). If Z° €.,
such that
(2.5) Z°=A(Z° +x) — A(x) + By(Z° + x) — B,(x) + Ve B(Z° + x),
then, for any 6 > 0,
P(w:1Z°||lp < 8) »1 ase— 0.

THEOREM 2.1. Under Assumptions A1-A5, {X°*} satisfies the large devia-
tion principle on 2 with rate function I given by

I(x) = inf{%llhﬂfy: h €2(vy) such that x = y(h)}
In other words:

() I(x) is a lower-semicontinuous function from Z to [0,%] and, for any
¢ > 0, the level set L, = {x € Z: I(x) < c} is compact.
(ii) For any open set G of Z, we have
liminfe log P(X° € G) > —inf{I(x): x € G}.

-0
(iii) For any closed subset C of &, we have
limsupelog P(X° e C) < —inf{I(x): x € C}.

-0

3. Stochastic partial differential equations. In this section we state
the result of Kotelenez (1993) on the existence and uniqueness of solutions for
» a class of stochastic partial differential equations for the convenience of the
reader. Throughout the rest of this paper, @ denotes a bounded open domain
in RY,
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DEFINITION 3.1. Let y € R. An operator L on C3(#), the collection of
smooth functions with compact support in @, is called a pseudodifferential
operator of order vy if

Lu(x) = (2m) " [[e"* " a(x, y,v)u(y) dydv, u e C5(&),

where a is a symbol of order y in the following sense: a is a complex-valued
smooth function on @ X @ X R% with compact support and, for any compact
set C C@ X # and multiindices B4, By, B3, there exists a constant
K(C, B4, By, B3) > 0 such that
19£19f2Ba(x, y,v)| < K(C, By, By, Bs) (1 + [v])” P!,
(x,y) € C,v €RY,

and ¢ denotes the derivative.

For details about pseudodifferential operators and the corresponding heat
equations, we refer the reader to the book of Treves (1982).

REMARK 3.1. We give here an example of a pseudodifferential operator.
Let v be a positive integer and
a(x,y,v) = Y, ag(x)vh, (x,y,v) €0 X xR,
|Bl<y
where a; is a smooth function on & with compact support, ¥V | 8| < y. Then a
is a symbol of order y and L is a differential operator of order y given by
L= Y ag(x)(-1)*"%af.
|Bl<y

In fact, for any u € C3(@) we have

Lu(x) = (2m) ¢ ffei(x_y)” Y. ag(x)vPu(y)dydv

IBl<y
= (277)*‘1/2jem| ¥ ag(x)(—1)"*2F(9Pu)(v) dv
Bl<vy
= X ag(x)(=1)"*ofu(x),

IBl<y

-1 . . .
where #  ~ denotes the inverse Fourier transformation.

Let {L(¢): t > 0} be a family of pseudodifferential operators on & and let F
and R be two functions on [0,T'] X & X R. Let (Q,%, P,%,) be a stochastic
basis satisfying the usual condition. Let W(drdt) be the standard Gaussian
random measure on @ X [0, T] adapted to 7; that is, {W(&, X [0,¢]): r € &,
t.€[0,T] is a centered Gaussian system such that (i) for any ¢ € [0,T'] and
re @, W@, xI[0,t) is #-measurable; (ii) for any ¢, s € [0,T] and ry, r, € &,
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we have
EW (o, x[0,t])W(a,, x [0,s]) =16, NG, I(¢t As),

where

g ={ges:q;<r;,j=1,2,...,d)

and |C| denotes the Lebesgue measure of the set C.
To study the stochastic partial differential equation

dXe(t,r) = (L(t)X*(t,r) + R(¢,r, X*(¢,r))) drdt

(3.1) +VeF(t,r,X*(t,r))W(drdt)

with initial condition
Xe(0,r) = &(r),
we make the following assumptions:
(RD1) For t > 0, L(¢) is a pseudodifferential operator of order y > d.
(RD2) {L(t)} generates a two-parameter evolution semigroup {U(¢, s): 0 <

s < t} on C(@), the space of all real-valued continuous functions in &, which
has a kernel function G(¢,s,r,q),0 <s <t, r,q € @. That is,

(U(t,9)1)(r) = [ G(t,s,7,0)f(q) da.

For simplicity, we extend G(¢, s, r,q) to ¢,s € [0,T], r,q € @, by defining
it to be zero when ¢ < s. Under the above assumptions, (3.1) is understood as
the equation

Xe(t,r) = [ G(t,0,7,9)¢(q) da
(3.2) +'I:fﬁG(t,s,r,q)R(s,q,X‘g(s,q)) dqds

+‘/EfotfﬁG(t’ s,7,q)F(s,q,X°(s,q))W(dgds).

The solution of (3.2) is called the “mild solution” of the SPDE (3.1).
To solve (3.2) and derive large deviation results, we need some additional
conditions: ‘

,(RD3) For any T > 0, there-exists a constant K(7T') < « such that

(33)  [IG(t,s,r,q)ldg <K(T), VO<s<t<T,r,qee.
ag
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(RD4) There is a symbol g(t,s,q,3),0 <s <t, ¢ €, g € R? such that

G(t,s,r,q) = fRdeXp(i(r—q)'E)g(t,s,q,é) dg,

(2m)*

and
f |x|”|g(t,s,q,(t - s)_l/yx)ldx <K(T),
Rd
foral0<a<y-d,0<s<t<T,r,qeo.
(RD5) There is a constant K(y) < « such that
"[Rdexp(i(r -q)-q)g(t+u,t —uv,q,q) —g(t,t —uv,q,q)] dg

<K(y)u /707,
forallu >0,0<wv <t<T,r,q 0.

(RD6) For each T > 0 there is an integrable positive function p(T', ) in
R? such that

(3:4) p(T,x) <K(T), V xeR
and
(t - S)d/7|G(t,s,r,q)| Sp(T,(q —r)(t - s)*l/‘y)’

(3.5)
VO<s<t<T,r,qeo.

(RD7) There exists a constant K(R,F,T) such that, for all x,y € R,
refand0<t<T,

|R(t,r,x) — R(t,r,y)|+|F(¢t,r,x) — F(t,r,y)l

(3.6) <K(R,F,T)lx -yl

and
(3.7 |R(t,r,x)I<K(R,F,T)(1+|xl), I|F(¢,r,x)I<K(R,F,T).

For a > 0, let
B, = {y € C(o): Iylla <}
be the Banach space with norm

10l = suply(r)) + sup VDT

a
red@ r,qe@ Ir — q

We shall need the following assumption:
(RD8) For @ > 0 and ¢ € B, we have

.’ fﬁG(. ,0, - ,q)§(q) dq = C([O’w)’Ba)'
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The following theorem has been proved by Kotelenez (1993).

THEOREM 3.1. (i) Under the assumptions (RD1)-(RDS8), the SPDE (3.1)
has a unique mild solution adapted to Z,; that is, for any t > 0 and r € &,
X*(t,r) is F-measurable.

() Let 0 <pu<(y—d)/2y. If é€B,, then, regarded as a stochastic
process taking values in function space, X*® € C([0,%),B,) almost surely.

REMARK 3.2. The assumptions (RD1)-(RD8) with the exception of (3.7)
are made by Kotelenez (1993) for the existence and uniqueness of solution.
He assumes that the function F can be of linear growth in x,

|[F(t,r,x)l < K(1+ |x]), VxeR,recand0<t<T,

where K is a constant. We are not able to derive large deviation results
under this weaker condition on F.

4. Large deviations of stochastic partial differential equations. In
this section, we fix T' > 0 and consider random fields X°(¢,r),0 <t < T and
red. Let 0 <u<(y—d)/2y be fixed We regard X° as a B, -valued
stochastic process and denote P° by its probability measure in C([0,T],B,).
We now study the LDP for {P¢} by applying the results of Section 2 to the
present setup. The most important step in verifying conditions (A1)-(A5) of
Section 2 is Lemma 4.3 below, which is an analogue of a theorem of Garsia
about the sample Hélder continuity of random fields.

Now we proceed to verify assumptions (A1)—(A5) of Section 2. As the
solution X* is a function of the Brownian sheet {(W(¢, r) = W(&, X [0, ¢])}, we
may assume that Q) = C(# X [0, T]), ¥ =%(C(# x [0,T)), P is the probabil-
ity measure induced by the Brownian sheet W and &, is the sub-o-field of #
generated by {w;: s < t}, where w,(w) = w(+, s). Let # C Q be the space of all
h € Q with the following property: there exists A~ € L*(@ X [0, T]) such that

h(r,t)=f ftl;,(q,s)dqu, Vree,te[0,T].
a0
For hy,h, €7, let
T, .
Chyyhode= [ [Thi(r,)hy(r, t) drat.
a’o

Then ( * , * )» is an inner product on /# under which # becomes a separable
Hilbert space.

PROPOSITION 4.1. The triple (i,%#,Q) is an abstract Wiener space and P is

the standard Wiener measure on (), where i is the canonical injection from #
to Q.

Proor. We identify #’ with /# by the Riesz representation theorem and
let )’ be the dual of Q such that

(l,h>=<l,h>z’, VlEQ’,hE%,
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where ( -, - ) is the pairing between ' and (. Let
O ={lexleci(ex[0,T])

Then (', contained in (Y, is a dense subset of % For [ € (V, we have that
@wy = [ ["i(r,t)W(drdt)
/0

is a Gaussian random variable with mean zero and variance IIZIIf-y. Hence
(i,#, Q) is an abstract Wiener space and P is the standard Wiener measure
on . O

The following lemma (although not the proof given here) appears in
Kotelenez (1993) in connection with his proof of the existence of a unique
solution to the SPDE.

LEMMA 4.1. (i) There exists a constant K, such that, for all t € [0, T] and
reao,

(4.1) [;[ﬁlG(t,s,r,q)l2 dgds < K.

(ii) For any a < (y — d)/2vy, there exists a constant K, such that, for all
0<ti<ty,<Tandr,ry, €@, we have

(4.2) fonﬁlG(tl,s,rl,q) - G(ty,5,73,9) dgds
<K p((t1,71), (2, rz))za’
where p is the Euclidean distance in [0,T] X @ c R4+1,
ProoF. Statement (i) follows from (4.7) below by letting ¢, = ¢, ¢, = 0 and
" (:ii)rZB; Z‘I'{Dtl), we have that for ¢,s € [0,T] and r,,r,,q € &,
G(t,5,71,9) = G(t, 5,75, 9) < 2(2m) * fRdIrl - rol**lgi**Ig (¢, 5,9,7)1 dg

< 2K(T)(27T)_d|r1 — rzlza(t _ S)*(d+2a)/y.
Hence, by (RD3),

ft/|G(tys’r1’Q) - G(t7s7r2?q)|2 dqu
077

t
< .[().[;G(t,S,rpQ) - G(t,S,"z,Q)|

(4.3)
Ca X2K(T)(27) %[ry — ryl?%(t — ) "9 2%7 dq ds

- T
< 4K(T)*(2m) %ry — rzlzaf §7@r20/vds = Kylr, — rol?®.
0
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Taking u =t, — ¢, and v = (¢, — s)/(¢, — ¢,) in (RD5), it is easy to see that
for s <t,,

[G(tl’ s,7y, CI) - G(tZys’rl’ Q)l
< (2m) "K(y)(t — )" (t, —5) "
Hence, for any A € (0, 1),

¢
/lf |G(ty,5,71,9) —G(tz,s,rl,q)l2 dgds
0 ‘@

(4.4)

< {@m) K@)t - 1))

(4.5) .
Xf /lG(tlys’rl’q) _G(tz’s’rl’qﬂdq
(Ve

X sup (IG(ty, s, ry, @)l +1G(ty, s, rl,q)l)lﬂ\(t1 — s)f)‘ ds.
qel

By (4.5), (RD3) and (RD6), taking A € (0, 1) such that (1 — d/y)A > 2a, it is
clear that there exists a constant K such that

(4.6) /(;tlfﬁlG(tl,s,rl,q) — G(ty,5,71,q) 1 dgds < Ki(t, — £,)2".
Further, by (RD3) and (RD6) again, we have

t
[ (1641, 5,71,9) = G(ty, 5,71, q)I* dg ds
t, ‘o

= [tzflG(tz,s,rl,q)l2 dqds
t, ‘o

(1-;) <ft2f| (t )I(t )—d/'y
< G(ty,s,ry, -8
t 2 1,9 2

XP(T’(Q —r) (¢ — S)_l/y) dqds
<K(T) (1 —-d/y) (1 V T)(t, — £,)" = Ky (t, — t,)*".

The inequality (4.2) then follows from (4.3), (4.6), (4.7) and the triangle
inequality. O

Next, we prove an analogue of Garsia’s theorem [Garsia, (1970)] for a
general bounded open domain & satisfying the cone condition. The latter
condition which we assume throughout this paper means that there exist two
positive constants a and a, such that, for any r € &, there exists a cone C,
with vertex at r with height a and base radius a,.
) For any hypercube @ in R¢; we denote by @' the hypercube in R?¢ such

that @ and @' have the same center with edges parallel to the coordinate
axes and e(Q) = 2e(Q'), where e(Q) is the common length of the edge of Q.
For any set C c R¢, let |C| be its Lebesgue measure.
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LEMMA 4.2. (i) There exists a constant K4 such that
(4.8) Q@ Nl = K,4|Ql,
for any hypercube @ such that

(4.9) e(Q) <aVd and Q N&+ ¢.

(ii) Let Q be a hypercube satisfying (4.9). Foranyr € @ N & and 0 < 8§ <
e(Q), there exists a hypercube Q, C Q such that r € @, and e(Q,) = 4.

Proor. (i) Let r€e @ N&. As e(Q) <a/Vd, C, is not contained in Q.
Otherwise

a > diameter(Q) > diameter(C,) > a.

Let C; be the maximal cone contained in C, N @ such that its base is parallel
to the base of C,. Then the base of C. intersects with the boundary of Q. Let
q be a point in this intersection. Let b (resp. /) be the slant edge of C.. (resp.
C,). Then

= |rq| > distance(Q', Q°) = (Q)

where @° denotes the complement of Q.
It is easy to see that the height and base radius of C, are ab/l and a,b/I,

respectively. Hence
Cil _ d™ 'V y(agb/1)" " (ab /1) (b ) e(Q)
= = | - >
IC, | d 'V, ,a¢ la 1) —\ 41 |~

where V,_, is the volume of the unit sphere in R?~!. Therefore,

@)\ Ic
|Qm«|2|c,|z{ - }|cr =K

(i) Extend d segments through r with the following properties: (a) they
are orthogonal to each other and lie in @; (b) each has length & and is
parallel to an edge of @; (c) r divides each segment into two parts, the length
of each being not less than §/4.

Construct a hypercube @, with edges parallel to those of @ and all the
endpoints of the d segments mentioned above are in the surface of @;. It can
be easily checked that r € @ and e(Q) = 8. O

LEmMMA 4.3. Let ¢ be a continuous function on &. Let V¥ and p be
increasing functions in x > 0 such that ¥(0) = p(0) = 0 and ¥V is convex. Let

B ly(r) = ¥(q) o
n_f@’/ﬂq, p(lr —ql) )drdq_ '
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Then, for any r,q € @ with |r — q| < a/2, we have

(4.10) [ (r) — ()l < s/j”‘“«y-l(m’;zd )p(du),

where K, is a constant and V™! denotes the inverse function.

ProoF. If n = o, then (4.10) is obviously satisfied. Let n be finite. For
r,q €@, if |[r — ql < a/2, we have a hypercube Q| such that r,q € @ and
e(Q,) < a/2Vd . Define @, to be a hypercube having the same center as @,
and e(Q,) = 2e(Q)). As r € @, N @, it follows from Lemma 4.2 that |Q, N &|
> K,|Q, | From here on we proceed similarly as in Garsia (1970). By Lemma
4.2 again, there exists a decreasing sequence {Q,}, . , of hypercubes such that
re @, and p(x,_;) =2p(x,), for all n > 1, where x, = Vd e(Q,). Let

Q@=QNe and g = lzlé—lféw(r) dr.

Then by (4.8) and Jensen’s inequality, we have

'l//Q — Yy 1|) ( 1 ly(r) — ¢(q) )
Y| ——| < V| ———  drd
( () |- 18, 16,%. Ja. Pz X
IQn_lllin Q~n—1 Q~n p(xn—l)
1 ly(r) — ¢(q)l
= K32|Qn—1||Qn|fQ“‘[Q,.qr( p(Ir — ql) )drd"
< L
B K4x121d

since

d 2d
n ) Xn

1@n-111Qu1 = [e(@n-1)e(Q,)]" = (x—ﬁ—l—)d(% > g7

Here we have that K, = d ?K?. Hence, noting that p(x,_,) = 2p(x,) =
4p(x,. ) we have

n
g, — Y, | < ‘I’_I(W)P(xn—l)

4%n

= 4§lr—1( )(p(xn) = p(%,41))

2d
K4xn

o M
S4f v l(m)p(du)

Xn+1
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Summing up over n from 0 to «, we have

%o mn
lg(r) — 4| < 4[0 ‘I"I(K4u2d)p(du).

It is clear that the above procedure applies with r replaced by q, and hence

ly(r) — ¢(q)l < sfox"xp‘l(mzzd )P(du).

Making @, as small as possible, we have x, arbitrarily close to 2|r — g|. This
finishes the proof of (4.10). O

It is easy to check that [0,T'] X @ also satisfies the cone condition. There-
fore, Lemma 4.3 is applicable to continuous function ¢ defined on [0,7'] X &.
Since only Corollary 4.1 below will be used in the rest of this paper, we shall
use the notation a for the height of the new cone although its value has been
changed.

COROLLARY 4.1. Let ¢ be a continuous function on [0,T] X @. Let ¥ and
p be increasing functions in x > 0 such that ¥(0) = p(0) = 0 and V¥ is convex.
Let

p(p((t,7),(s,9)))

Then, for any t,s €[0,T] and r,q € @ with p = p((¢,r),(s,q)) < a/2, we
have

n= ‘/(;T'[()Tféfﬁ‘lf( Wt r) — ¢(s,9)] )drdthds.

n
(2,7) = d(s,9)] < 8/()2”w—1(m)p(_du),

where K5 is a constant.

Next we define some seminorms in C([0,7T'],B,). Let

- su |l//(t,r)—4//(3,Q)|_ r s < g
[11[/]«1_ p{ p((t,r),(s,q))(x p((t’ )’( ’q))— 2}
and
1ol = sup {suplv,b(s,r)l 4 sup l(s,r) — dfa(s,(I)l}
selo,¢] \ree r,qeo@ Ir — ql

with.,the convention that ||yl o is the usual supremum norm.

LEMMA 4.4. There exists a constant Kg such that ||llr, . < Kg[¢]1,, for
any ¢ € C([0,T] X @) satisfying y(0,r) =0,V r € 4.
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Proor. We only need to note that

lgllz, o < sup{ly(t,r)l:¢t €[0,T], r € &}
+ sup{ v, rr):q‘,pft’q)' :te[0,T],r,qe@,|Ir—ql> g}

2
+mm«““::$f””ﬁe[mTane@v—ms3}

2

<

1+ 2(;) )sup{ltp(t,r) - ¢(0,r):t€[0,T],ree} +[¢].

. 1
1//(t/\ ia,r) —z,h(t/\ J 5 a,r)

2\“ i
1+2(5) ) sup )Y, sup

= 0<t<T j=1re@ 2
+[v]a
< 1+2(§)Q)(-2a—T+1)(§)a+1)[¢/]a. |

The néxt lemma is useful for the verification of (2.2) and (2.3).

LEMMA 4.5. Let f(s,q) and f(s, q) be two adapted random fields (may’
depend on &) such that there exist constants K, and Kg such that

(4.11) [Tf f(s, q)2 dqds <K, a.s.
0@
and
sup{lf(s,q)l: s€[0,T] andq ﬁ} <Ky a.s.
(i) Let
t
M, = [ [ f(s,a)W(dgds).
Then there exist constants Kg, K,, > 0 such that
(4.12) E(exp( K, M) Kyp).
(i) Let
t ~
y(t,r) =f[ G(t,s,r,q)f(s,q)W(dqds)
0“@

and a <(y—d)/2y. Then [¢], < » a.s. and, for any L > 0, there exists
6 > 0 such that

limsupe log P([¢], > 1/\/5‘;) < —L.

e—-0

- Proor. (i) It is easy to see that M, is a continuous square integrable
mattingale with quadratic variation process

(M,) = fot[ﬁf(s,q)2 dqds < K.
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There exists a one-dimensional Brownian motion W such that M, = W< M)
and hence

M| < sup{Wt: 0<t< K7}.

Now (4.12) follows from Fernique’s theorem [see Kuo (1975), page 159].
Gi) ForO0<t,<t, <T,r,r, €0,let

G(ty,s,7r1,9) — G(t,,s, rs,q)
p((tl’r1)7(t2’r2))a
It is easy to see that

f(s,q) = f(s,q), Vse[0,T],qeo.

_ W(ty,ry) — ¥(ty,1s)
! p((tlirl)’(t2’r2))a

It follows from (4.2) that (4.11) holds with K, = KgK,. Let
lw(t,r) — (s, q)?
n= fT[Tf]exp(K9 AGLY ] qz)a drdqdtds.
0’0 ‘ole p((t,r),(s,q))
By (i), we have

En< [OTfO /(;fEexp(KgMT) drdqdtds < T?|01°K,, < =.

Let ¥(x) = exp(Kyx?) — 1 and p(x) =«x°, for x > 0. Then ¥ and p are
strictly increasing, ¥(0) = p(0) = 0 and

ol w2 (T (T ly(¢,r) = ¥(s,4ql
n — T2 _fofofﬁfﬁw(p(p((t’r)’(s’q))))drdthds.

It follows from Corollary 4.1 that, for any ¢,s € [0,T] and r,q € & with
p((¢, 1), (s,q)) < a/2, we have

n — T2

K, 2 2d+D p(du)

ly(t,r) — ¢(s,q)l < 8[02”\If—1

8 n - T2
= \/K—gf \[ 1+ K g2d+h du®
8 o
< m'/;) log(—m vi1 10g2 du
8 ..o
, < 7z Jy, Wio((n/Ke) v 1)

+v/12(d + 1)log ul + ylog2 ) du
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Also, for any o' < «, we have

lim p'“'fzp\/llog uldu® =0
p—0 0
and hence, there exists a constant K;; > 0 such that
,l//(t’r) - (p(S,(I)'
= Ku(l + \/Eg((’?/Ks) V1) )p((t,r),(s,q))‘f :

As o is an arbitrary constant which is smaller than (y — d)/2y, we may
assume that (4.13) holds for a. Hence

limsupe log P([¢], > 1/Vse)

-0

(4.13)

< lim sup ¢ exp P(Kn(l + \/log((n/K5) \% 1)) > 1/\/%)

e—-0

lim sup ¢ log P(”’I > K exp[(l/(\/gKu) - 1)2])

e—0

< limsupalog{K;1 epr—(l/(\/gKu) - 1)2]En} = —1/8K%.

e—0

Taking 6 = 1/LK?, the lemma is proved. O

Let 0 < u < (y — d)/2y. Using the notation of Section 2, Let =% =
C([O,T],IB#) and let
(A)(8r) = [ G(£,0,7,9)¢(q) dg

(4.14) +/:/ﬁG(t,s,r,q)R(s,q,x(s,q)) dqds,

V xez.

Let &, be the class of all B,-valued adapted continuous processes. It is easy
to see that Assumption A2 holds. For X €.9,, let

B(X)(t,r) = /:fﬁG(t,s,r,q)F(s,q,X(s,q))W(dqu).

The next four propositions verify the conditions of Section 2 for the present
setup.

PROPOSITION 4.2. The condition (2.1) holds for A.

Proor. (i) For x € 2, we denote the two terms on the right-hand side of
. (4.14) by A, and A,(x), respectively. It follows from (RD8) that A; € 2. On
the other hand, from (3.7) and (4.2) we can easily show that

(4.15) [Ay(x)], < VK;TI@|K(R,F,T)(1+ llxlir,0)
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and hence by Lemma 4.4, A,(x) € # whenever x € 2. Therefore, A is a map
from & to Z.
(ii) For x, y € 2, it follows from (3.3) and (3.6) that

I(A(x) —A(¥))(t,r)I<TK(T)K(R,F,T)llx - yllz.
By (3.6) and (4.3), we have
I(A(%) = A(9))(¢,7) — (A(x) — A(9))(E, 9)l
< j(‘)ngG(t,s,r,u) - G(t,s,q,u)l
X |R(s,q,x(s,u)) —R(s,q,y(s,u))lduds
< VK, TIGIK(R, F,T)llx — yllolr — ql*.

Hence
IA(x) — A(»)lle < (TK(T) + VE3TIGT)K(R, F,T)llx —yllz. O
PROPOSITION 4.3. Assumption A3 holds for B.

ProoF. For X €4, let f(s, q) = F(s, q, X(s, @)). Then, by (RD7), | (s, ¢)|
< K(R,F,T), for all w. Hence, it follows from Lemma 4.5 that [ B(X)], <
a.s. Therefore B(X) € 2 a.s. By definition of the stochastic integral, B(X) is
adapted. Hence, B is a map from %, to &,. Let

B(x,h)(t,r) = j:fﬁG(t,s,r,q)F(s,q,x(s,q))ﬁ(s,q)dqu

Vxez, heX

It is easy to see that for each x € 2, B(x, + ): # > Z is linear and the lifting
B(x, ). Q - 2 is given by

(4.16) B(x,)(t,r) = fotfﬁG(t,s,r,q)F(s,q,x(S,Q))W(dqu),

which is an element of &,. This verifies (i) of Assumption A3.
Note that, by (3.6), (4.1) and Hélder’s inequality,

|(B(x1, k) = B(xy, h))(t,7)]
< fofﬁlG(t,s,r,q)l

X|F(s,q,x(s,9)) — F(s,q, x,(s, q))llfz(s, q)ldqds
<K(R,F,T)

’ X ftflG(t,S,r}(I)lzlxl(s,q) — x,(s,q)* dgds|hll»
. 0°@

< VK, K(R,F,T)|Alzlx, — x5llz,
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and by (4.2),
((B(x1,h) = B(xy,1))(t,7) = (B(x1, k) = B(x3,0))(t, )]
t
< IG(t,s,r,u) — G(t,s,q,u)l
It ) = G(t,5,9,u)
X|F(s,q,x(s,u)) — F(s,q, x3(s,u))l
x|A(s,u)l duds
< \/fthG(t,s,r,u) - G(t,s,q,u)l2 duds
0@
XK(R,F,T)llx; — x,llllkll»
< VK, K(R,F,T)llx; — x,llzllbllzAr — ql*.

Hence, there exists a constant K such that

(4.17) IB(x1, k) — B(xg, R)llz < KllAllx; — x5z
That is, (ii) of Assumption A3 holds, Similarly, we have
(4.18) IB(x, k) — B(x,hy)lle < Kllh, — hyllz

It follows from (4.17) and (4.18) that B is continuous in both variables.
Condition (iii) of Assumption A3 follows immediately from (4.16). Condition
(iv) is obvious by the linearity of the stochastic integral. Finally we verify the
exponential continuity of B. Let X,Y €., (which may depend on &) and let
Y be given by Lemma 4.5 with

f(s,1) = 67 (F(s,9,X(s,9)) = F(5,4,Y(8,0))) Lixe, ) ves, < o-
Then
1f(s,q)l < 8 'K(R,F,T)IX(s,9) — Y($, @) ixs.q)-vis. <5 < K(R, F,T).
Note that
P(Vel B(X, ) — B(Y, 0)lle> V5, IX — Yz < )
<P(l¢lley> 1/V8e) < P(Ks[¢]. > 1/V32),

and hence our result follows from Lemma 4.5. O

It is clear that for any ¢ > 0, X° €., satisfies (2.4). That is, the second
condition of Assumption A4 holds. The next proposition verifies the first one.

PROPOSITION 4.4. {X*: & > 0} is exponentially tight on Z.
"PROOF. Let p<a<(y—d)/2y and C, = {x €2 [x], <M, x(0,-) =

£} Tt is well known that Cj, is a compact subset of &. Let § be defined by
Lemma 4.5 with f(s, q) given by F(s, q, X°(s, q)). It follows from (8.7) that f
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satisfies the condition in Lemma 4.5 with Kg = K(R, F,T). As
(4.19) X7 =(A)), +Ay(X7), + ‘/E‘//t’
by (3.7) and (4.1), we have

1 Xfllo = sup{|X°(t,r)l: r € &}
¢

< I Ayllo + Vellpll,o + sup [
rec”0

<lA,llr.0 + Velllr,o + K(R,F,T){E\/Ltlﬂl(l +1X¢llo) ds .

fﬁlG(t,s,r,q)R(s,q,XE(s,q))ldqu

It follows from Gronwall’s inequality that, for some constant K,,
(4.20) 1+ XN, 0 < Kip(1 + 1 Asllz,0 + Vellglir,o).
Further, by (4.15), (4.19) and (4.20), we have

[X°]la<[A], +Ve[v]a
+ K, TIOIK(R, F,T)Ky,(1 + | Alir,0 + Vellliz,o).

As A, is fixed, by Lemma 4.4, we have
[X°]. <Ky + Ky e[d]a,
where K,; and K, are two constants. Taking M such that
(M - Ky3) /Ky, = 1/\/—5,
it follows from Lemma 4.5 that

limsup e log P(X° ¢ C,) < limsupelog P([¢]. > 1\/5) <-L. O

e—0 e—0

PROPOSITION 4.5. Let Z* be given by (2.5). Then Z* tends to 0 in probabil-
ity as € — 0.

Proor. Let ¢ be given as in the proof of Proposition 4.4. Then
& ¢ &
Ze(t,r) =[[G(t,s,r,q)(R(s,q,Z (s,q) +x(s,9q))
0-@ '
—R(s,q,x(s,q))) dgds
. ¢ ' .
‘ +f [G(t,s,r,q)(F(s,q,Z (s,9) +x(s,q))
0“9

—F(s,q, x(s,q)))ﬁ(s,q) dgds + \/;d/(t,r).
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By (3.6) and Hélder’s inequality, we have
1Z71lo = sup{lZ*(¢, r)l: r € &}
< Velly,llo

+ K(R,F,T)sup{ftflG(t,s,r,q)llZ‘s(s,q)I dgds:r é’}
0’@
+K(R,F,T)lhl»
, 1/2
Xsup{(f flG(t,s,r,q)Izlzs(s,q)l2 dqu) ir € @’}
0’@

= Vellyllo + K(R,F,T)I, + K(R,F,T)lAlzI, .
Note that, by Holder’s inequality and (4.1),

1/2
I, < ‘/Kllé’IK(R,F,T)(j:llZs‘II% ds) .
On the other hand, it follows from (3.3)—(8.5) that

I, < sup{fthG(t, s, OIK(T)(t —s) "2°(s,q)* dgds: r € é’}
0’0
<K(T)* [‘(t — ) /71213 ds.
0
Hence, there exists a constant K5 such that
t -
(4.21) 1Z15 < 3ellwll?, o + K15f0(t —5)" /71221 ds.

Applying (4.21) to [|Z¢]|} on the right-hand side of (4.21), it is easy to show
that

1ZZ1S < Ballyll7, o1 + (Kis/(1 —d/y))T /)

—s 1-2d/y
) ds/(1—-4d/v).

2

If 1 — 2d/y = 0, we stop here; otherwise, as 1 — 2d/y > —d /v, continuing
the above estimate we will find two constants K,; and K,; such that

¢ t
+2K% [ IIZ:II%(
0

12618 < Kigll il o + Kyg [[12¢1F ds.
It follows from the Gronwall inequality that
(4.22) 1Z#17,0 = sup{lZ71I3: ¢ € [0,T1} < eKyglyli7o,
where K4 is a constant. By (3.6), (4.2) and Holder’s inequality, we have
(423) [z°-Vey], < VK, (VTG + |hllz)K(R, F,T)lIZ*|r 0.
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From (4.22), (4.23) and Lemma 4.4, we have
1Z°\l7,« < VeKo[¥], (Ko aconstant)

and our result then follows from Lemma 4.5. O
We summarize our results as the main result of this paper.

THEOREM 4.1. Suppose that @ satisfies the cone condition. Then, under
the assumptions (RD1)—(RD8), {X ¢} satisfies the large deviation principle on
C(0,T],B,) with rate function I given by

(4.24) I(x) = inf{%folfz(s,r)lz dsdr: h €#such that x = y(h)},
0@
where 7y is a map from Z into C((0,T],B,) given by

x(t,r) = fﬁG(t,O,r,q)«f(q)dq

(4.25) +thsr R(s x(s
[ LGt s a)(R(s,q,%(s,)
+F(s,q,%(s,q))h(s,q))dqds.
PrOOF. We only need to prove that y is well defined with 2(y) =% First
we consider A €% such that ||&llr,o < . For (¢t,r,x) € [0,T] X & X R, let
R(t,r,x) =R(t,r,x) + F(t,r,x)h(¢t,r) and F(t,r,x)=0.
Then
IR(t,r, x) — ﬁ(t,r,y)l <|R(t,r,x) — R(t,r,y)l
+|F(¢t,r,x) —F(t,r,y)lk(t,r)l
<K(R,F,T)(1+ ”il”T,O)lx -l
and
|R(¢,r, x)| <|R(t,r, x)| +|F(t,r, x)||A(t, )l
<K(R,F,T)(1 + llAlr,o)(1 + lx).
It follows from Theorem 3.1 that (4.25) has a unique solution in 2-
For general A, let A" €% such that ||A"|lr0 < %,V n > 1, and |[|A" — Al»
— 0as n - o Let x” = y(A"). Then
x"(¢,r) = [ G(¢,0,r,9)£(q) dg
@

(4.26) +j:fﬁG(t,3,r:,q)(R(s,q,xn(S,‘I))

+F(s,q,x"(s, q))ﬁ"(s, q)) dqds.
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Similar to the proof of Proposition 4.5, there exists a constant K,, such that
||xn”2¢S K20 V n = ].. AS
(2" —xm)(t,r)

= ]:/ﬁG(f,S,T»Q)(R(S’q,x"(s,q)) — R(s,q,x"(s,q))) dgds

+f0tfﬁG(t,s,r,q)(F(s,q,x”(s,q))
—F(s,q,x"(s,q)))h"(s,q) dgds
+fotfﬁG(t’s’r’q)F(s’q’xm(s’q))(fl"(s’q) - h™(s,q)) dqds,

similar to the proof of Proposition 4.5 again, there exists a constant K,; such
that

(4.27) lx" — x™llg < Kpyllk" — By ¥ n,m > 1.

Hence x" converges, say to x, in Z. By (4.26), x is a solution of (4.25). The
uniqueness of the solution of (4.25) follows from (4.27) directly. O

5. Reaction-diffusion SPDE’s. Now we apply our results to a class of
reaction-diffusion SPDE’s. In this case, {L(¢)} is a family of second order (i.e.,
y = 2) differential operators. Let d =1 and @ = (0,1). Let {X°} be the
solution of (3.1).

THEOREM 5.1. Suppose that {L(t)} generates a two-parameter evolution
semi-group {U(t,s): 0 <s <t} on C(0,l]) which has kernel function
G(t,s,r,q),0<s <t 0<r,q <l, satisfying the following conditions:

() Forall a < 1,3 a constant K s.t. for all 0 <t,,t, <Tand 0 <ry,r,
< I, we have
fOTfOZIG(tl,s, rq) — Glty, 5,75, q) > dgds < K(lt, — t,l* + Iry — ry)%)".
(ii) Forall 0 <s <t < T, we have
fOZIG(t,s,r,q)Iqu <K(t-s)V2

(iii) (RD8) kolds.

We also assume that R and F satisfy the condition (RD7). Then for any p < 3
{X ¢} satisfies LDP with rate function

I(%) = inf{gfoTjolm(t,r)]z dedr: h e I2([0,T] % (0,1))

s.t. (4.25) holds with @ = (0, l)}
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REMARK 5.1. The existence and uniqueness for the solution of the SPDE
(3.1) under the conditions of Theorem 5.1 follow from the same arguments as
those in Kotelenez’s proof of Theorem 3.1. The LDP of {X*} can be obtained by
noticing that our arguments in the previous section are still true under the
conditions of Theorem 5.1.

REMARK 5.2. The conditions (i)—(iii) hold for most parabolic operators
3/t — L(t) [cf. Friedman (1964)].

Recently, Sowers (1992) derived the LDP for a class of reaction-diffusion
equations. We shall now obtain his result as a special case of Theorem 5.1.
Sowers (1992) considered the following stochastic reaction-diffusion equation:

d 92 . .
T “(t, x) —( 152 —Dz)v (¢, x) +f(x,v°(t, x))
(5.1)

2

+Veo(x,ve(t, x))

’

Jdt dx
for t €[0,T] and x € (0,27) with a periodic boundary condition. Here D,
and D, are two constants. The following conditions were imposed: there exist
constants F, f, m, M and & such that, for any x € [0,27] and ¥,z € R, we
have

(5.2) F(x, ) <F+1y), f(x,y) —f(x,2) <flVy -2

and

(63) O0O<m<o(x,y)<M, lo(x,y) —o(x,2)l<Tly — 2|

Sowers proved that {v®} satisfies the large deviation principle in C([0, T'], B, )
(for any p < ) with rate function S, given by

Se(¢)

_Lfo21r
=2
0 ‘70

if ¢ € W5-% and #(0, - ) = £; otherwise, S,(¢) = .

Now we discuss the conditions of Theorem 5.1 for this special case. The
condition (RD7) follows from (5.2) and (5.3) directly. It is clear that the kernel
“function G is given by

G - 1 (r—q- 271'k)2
(tora) = b D —e) | Ay —9)

Condition (i) of Theorem 5.1 has been verified by Sowers [(1992), Appendix].
Note that

 dtdx

o(x, d(¢, )

(5.4)

J 9?2
5¢(t,x) - (Dlsx-g' - Dz)d’(t:x) —f(x, ¢(¢, x))

— Dy(t - s))

2
'/0 |G(t,s,r,q)ldg = exp(—Dy(t —s)) < exp(|D,|T)
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and
exp(|D,|T) d (27 (k - 1))°
t—sG(t,s,r, < ———1+ —-_—— =C.
vt —sG(t,s,r,q) < Ve k};lexp DT

Hence
[7G(t, 5,7, ) dg < C(t — 5) /% exp(ID,IT).
0

That is, condition (ii) holds. Finally, if we extend ¢ to R to be periodic, then

[76(t,0 dg= [ —— o= Vex + r) dx
o (, ;r,q)g(Q) q_f~m‘/ﬁl)—1exp 4D, §( xTr ’

and hence condition (RD8) follows.

Based on the discussion above, we see that {v¢} satisfies the LDP. It
remains to show that the rate function I given by Theorem 5.1 coincides with
the function S, defined by (5.4).

ProposITION 5.1.  For any ¢ € C(0,T], B,), we have S,(¢) = I(¢), which
is given by Theorem 4.1.

Proor. If S,(¢) < », then ¢ € W2, ¢(0, ) = ¢ and
h(t, x)
(5.5) _ {(a/80)$(t, x) = (Dy(9%/92%) = D;)d(t, x) — f(x, $(t, x)))
o(x, ¢(¢, x))
is in L?([0,T'] X &). Note that (5.5) implies that

o(t,r) = fﬁG(t,O,r,q)f(q)dq
(5.6) t s r
, ffetw o

x{f(q, ¢(s,9)) + o(q, ¢(s,q))h(s,q)} dgds.

Hence I(¢) < . N
On the other hand, if I(¢$) < «, then, for any & > 0, there exists A €
L2([0, T'] X @) such that (5.6) holds and

3 [Jh(s, )P dsdr € [1(9),1(9) + 5].

It is easy to see that A is uniquely determined énd coincides with the
right-hand side of (5.5) [refer to Walsh (1984) for details] and hence,

%/;)Tféjﬁ(s, ) dsdr = I1(4).
Therefore, S,(¢) < « and S,(¢) = I(¢). O
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6. Concluding remarks. Now we compare our conditions with those
imposed by Peszat (1994). In that paper, Peszat considers the large deviation
problem under a more abstract setup. Namely, he considers the stochastic
evolution equation

dX°® = (-LX*+F(X°,t)) dt + eR(X*)dW, X°(0) =x €E,

where —L is the generator of a C,-semigroup {S(¢)} on a Hilbert space H, F":
E x[0,0) > H,G: E - L(H, H) and E is a Banach space densely embedded
in H [he used G(X?) in the diffusion term instead of R(X¢); we change his
notation to avoid confusion with our kernel function GJ].

Specialized to our case, H = L?(#), E = B, and

(S(¢)h)(r) = fﬁG(t,O,r,q)h(q)dq.
Among other conditions, he assumed the following:
(E.8) There exist a, € (0,3) and p, > 1 such that

th(ao— DPo||S(t) 28w, 5y dE < .
0

(C.2) [0 supIS(2) R(R)II dt < e,
0 heE
where || - |2 denotes the Hilbert—Schmidt norm from H to H.

Note that, in our setup, R(k) is a multiplicative operator given by

(R(R)F)(r) = R(K(r)f(r),
1S()2x, 5y

6.1
(6.1) = sup |r, —rzl_z“flG(t,O,rl,q) - G(t,O,"2,CI)|2 dq
ry, ro€C@ g
and
- (6.2) IS()R(WIE = [ [ G(¢,0,7,9)*R(h(q))* dgdr-.
a’e

When L(%) is the closure of an elliptic operator of order v = 2m, G(¢, s, r, q)
~ (t —s)"%/2m ag t — s [cf. EideI’man (1969)]. Hence, the right-hand sides of
both (6.2) and (6.1) are equivalent to t~¢/2™, as ¢ — 0. Therefore, the condi-
tions (E.3) and (C.2) together are “equivalent” to

d d
(ag—1)py— =—po> -1 and —-2q,— — > —1.
2y Y

That is,
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Hence y has to be greater than 2d, which is stronger than our assumption
that y > d. This explains why Sowers’ case is not covered by Peszat’s result
since, in this case, y=2 and d = 1.

Peszat’s condition (C.2) requires the Hilbert—Schmidt property for R [com-
posed with S(¢)]. Chow assumes that R (3 in his notation) composed with
the covariance operator of the noise W, is Hilbert—Schmidt. Sowers’ case is
thus not covered by Chow’s results since, in this case, the covariance operator
is the identity and R is a multiplicative operator which is not
Hilbert—Schmidt.

Chow considers the Hilbert space case [ H = L?(#)] and works with a
strong solution of (3.1), while we obtain large deviation results with respect to
the Holder continuity topology for the mild solution of (3.1). Moreover, the
generator A [corresponding to L(¢) of our paper] is assumed to be self-adjoint.
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