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TRANSFORMING RANDOM ELEMENTS AND
SHIFTING RANDOM FIELDS

BY HERMANN THORISSON
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Consider a locally compact second countable topological transforma-
tion group acting measurably on an arbitrary space. We show that the
distributions of two random elements X and X 9 in this space agree on
invariant sets if and only if there is a random transformation G such that
GX has the same distribution as X 9. Applying this to random fields in d
dimensions under site shifts, we show further that these equivalent
claims are also equivalent to site-average total variation convergence.
This convergence result extends to amenable groups.

1. Introduction. Consider a locally compact second countable topologi-
cal transformation group acting measurably on an arbitrary space. The aim of
this paper is to show that the distributions of two random elements in this
space agree on invariant sets if and only if each can be randomly transformed

Ž .into a copy of the other Theorem 1 . Applying this to random fields in d
dimensions under site shifts, we show further that these equivalent claims
are also equivalent to site-average total variation convergence over quite

Ž .general averaging sets Theorem 2 . This convergence result in fact holds for
Ž .amenable groups Remark 2 .

This extends results for one-sided stochastic processes on a Polish state
w x w x w xspace proved by Berbee 2 , Greven 9 , Aldous and Thorisson 1 and Thoris-

w xson 13 , saying that the distributions of two processes agree on site-shift
invariant sets if and only if the two processes can be represented in such a
way that their paths eventually coincide modulo a random time shift, and if
and only if the processes converge in time-average total variation over
intervals. The assumption that the state space is Polish is needed in these
papers because the one-sided shifts only form a semigroup, but we do not
need this assumption here.

w xIn a forthcoming paper, Georgii 7 extends the results of these papers in a
slightly different direction. He considers a semigroup acting measurably on a
Polish space and assumes that either the semigroup is countable normal or a
compact metric group or composed of finitely many such building blocks.

There is a considerable body of classical theory involving s-algebras and
w x w xmeasures invariant under transformation groups; see 6 and 12 . The

emphasis here is rather different; see, however, Remark 6 on ergodic theory.
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w xThe results of this paper are applied to Palm theory in 14 . In fact, in the
ergodic case the distribution of a stationary point process in d dimensions
agrees on invariant sets with the distribution of its Palm version. Moreover,
in the non-ergodic case the distribution agrees on invariant sets with the
distribution of a certain modified Palm version. Thus the stationary point

Ž .process and its modified Palm version are really the same point process with
different centers.

The plan of the paper is as follows. The main result on transforming
random elements is stated in Section 2, and Section 3 contains remarks. The
consequences for random fields are stated and proved in Section 4, and
Section 5 contains remarks. After a minor preparation in Section 6, we finally
prove the main result in Section 7.

Ž .2. Transforming random elements. Let H, HH be an arbitrary mea-
Žsurable space. Let G be a topological group of measurable mappings trans-

. Ž . Ž .formations from H, HH to H, HH which is locally compact and second
countable. Let GG be the Borel subsets of G. Let the mapping from H = G to

Ž .H taking x, g to g x be HH m GGrHH measurable. Define the invariant s-alge-
Ž .bra on H, HH under G by

� 4II s A g HH : gA s A , g g G .

Ž .Let V, FF, P be a common probability space supporting all the random
elements in this paper. This means that whenever we claim the existence of a
random element, we have to show that it can coexist on the same probability

Žspace with those previously introduced this is the case if the random element
is assumed to be independent of the others or if it does not have a specified
joint distribution with the others or if its conditional distribution given the

.others is regular . Let s denote identity in distribution.D

Ž .THEOREM 1. Let X and X 9 be random elements in H, HH . The distribu-
tions of X and X 9 agree on II if and only if

GX s X 9D

Ž .for some random transformation G in G, GG .

See Section 7 for the proof.

3. Remarks on Theorem 1.

REMARK 1. A locally compact first countable topological group has an
Ž w x .invariant metric inducing the topology see 11 , page 34 and a locally

compact second countable metric space is separable and topologically com-
Ž w x w x . Ž .plete see 3 , page 25, and 4 , page 27 . Thus G, GG is Polish.

Moreover, a locally compact topological group possesses an invariant mea-
sure}the Haar measure}and a locally compact second countable topological
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Ž w xgroup is s-compact. Thus the Haar measure is s-finite see 10 , pages 254
.and 256 .

Ž .REMARK 2. Let l be the Haar measure on G, GG and suppose there are
Ž .sets B g GG, 0 - h - `, such that 0 - l B - ` and, for all g g G,h h

l B l g B rl B ª 1, h ª `.Ž . Ž .h h h

Repeating the proof of Theorem 2 below in this abstract setting and without
the function g yields the following result. The equivalent claims in Theorem
1 are also equivalent to

5 5P U B X g ? y P U B X 9 g ? ª 0, h ª `,Ž . Ž .Ž . Ž .h h

Ž . Ž .where U B is a random transformation in G, GG which is independent of Xh
Ž . Ž . Ž . 5 5and X 9 and has the distribution l ?N B s l ?l B rl B and ? denotesh h h

Ž .the total variation norm defined for bounded signal measures n on H, HH by

5 5n s sup n A y inf n A s 2 sup n A when n H s 0 .Ž . Ž . Ž . Ž .
Ag HHAg HH Ag HH

In particular, if the distribution of X 9 is invariant under G, then this limit
result can be written as

U B X ª X 9 in total variation as h ª `.Ž .h

A family like B , 0 - h - `, is called a Følner family. The existence of such ah
w xfamily is equivalent to G being amenable; see 8 .

REMARK 3. Here are some examples where Theorem 1 applies:

Ž .i G countable;
Ž .ii countable site-space random fields under finite site permutations. In

this case II is the exchangeable s-algebra and the invariance property is
exchangeability;

Ž .iii one-sided continuous time real-valued processes under space-and-time
scaling. In this case II is the self-similar s-algebra and the invariance
property is self-similarity;

Ž . Ž .iv canonically measurable random fields and random measures , with
Žsite space forming a group like G above, under the site shifts generated by

. Ž .the group shifts . In this case II is the ordinary site-shift invariant s-
algebra and the invariance property is stationarity.

Ž d .The last example covers random fields with site space Z , q , where Z
denotes the integers and d is a positive integer. This case treated in the next
section.

Ž .4. Shifting random fields. In this section let H, HH have the following
Ž .structure: with R the real line, d a positive integer and E, EE an arbitrary

measurable space, assume that H is a shift-invariant subset of E R d
, that HH

is the s-algebra on H generated by the projection mappings taking x s
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Ž . d Ž .dx in H to x in E, t g R , and canonical measurability that thes sg R t
Ž . d dmapping taking x, t in H = R to x in E is HH m BB rEE measurable, wheret

BBd denotes the Borel subsets of Rd.
Ž .Call a random element X in H, HH a canonically measurable random field

Ž d d .in d dimensions and a random element T in R , BB a random site. Call
Ž . Ž d d .H, HH the path space and R , BB the site space. Define the shift maps u ,t
t g Rd, by

u x s x , x g H .dŽ .t tqs sgR

� d4The invariant s-algebra is II s A g HH: u A s A, t g R and l is Lebesguet
Ž d d .measure on R , BB .

THEOREM 2. Let X and X 9 be canonically measurable random fields in
d dimensions. Let B g BBd, 0 - h - `, be a family of sets satisfying 0 -h
Ž . dl B - ` and, for all t g R ,h

1 l B l t q B rl B ª 1, as h ª `,Ž . Ž . Ž .Ž .h h h

Ž .and let U B be a random site which is uniform on B and independent of Xh h
and X 9. Let g g II be a strictly positive and finite function. The following
claims are equivalent:

Ž .a The distributions of X and X 9 agree on II.
Ž .b u X s X 9 for some random site T.T D
Ž . 5 Ž . Ž .5c P u X g ? y P u X 9 g ? ª 0 as h ª `.g Ž X .UŽB . g Ž X 9.UŽB .h h

Ž . Ž .PROOF. The equivalence of a and b follows from Theorem 1. In order to
Ž . Ž .show that b implies c , note that for any random site T it holds that

y1
l B 1 u X g A ds y 1 u u X g ? ds� 4 � 4Ž . H Hh g Ž X .s g Ž X .s Tž /B Bh h

F 1 y l B l Trg X q B rl BŽ . Ž .Ž .Ž .h h h

Ž . Ž . Ž .and that g u X s g X . If b holds, this yieldsT

5 5P u X g ? y P u X 9 g ?Ž . Ž .g Ž X .UŽB . g Ž X 9.UŽB .h h

F 2 y 2E l B l Trg X q B rl BŽ . Ž .Ž .Ž .h h h

Ž . Ž .and c follows by bounded convergence due to 1 . Conversely, note that

P X g ? y P X 9 g ? s P u X g ? y P u X 9 g ? on II .Ž . Ž . Ž . Ž .g Ž X .UŽB . g Ž X 9.UŽB .h h

Ž . Ž .If c holds, then the right-hand side tends to 0 as h ª ` and a follows. I

5. Remarks on Theorem 2.

REMARK 4. If X 9 is stationary, that is, if u X 9 s X 9, t g Rd, then we cant D
Ž .write c as

u X ª X 9 in total variation as h ª `.g Ž X .UŽB .h
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If we choose g ' 1, then this becomes u X ª X 9 in total variation asUŽB .h

h ª `.

Ž .REMARK 5. An example of sets satisfying 1 is

B s hB, 0 - h - `,h

d Ž . Ž .where B g BB and 0 - l B - `. In order to establish 1 , note first that

l hB l t q hB rl hB s l B l trh q B rl B , t g Rd .Ž . Ž . Ž . Ž .Ž . Ž .
Let f , n G 1, be a sequence of bounded continuous functions such thatn
5 5 5 51 y f ª 0 as n ª `, where ? denotes the L -norm w.r.t. l. Now2 2B n 2

2y1l B y l B l trh q B s 2 1 y 1 dlŽ . Ž .Ž . Ž .H B tr hqB

2y1 5 5s 2 1 y 1 ,Ž .2B tr hqB

which tends to 0 as h ª ` since, sending first h ª ` and then n ª `,

5 5 5 5 5 5 5 51 y 1 F 2 1 y f q f y f ?y trh ª 2 1 y f ª 0.Ž .2 2 2 2B tr hqB B n n n B n

REMARK 6. Theorem 2 has an immediate application in ergodic theory
Ž w x.see, e.g., 5 . Suppose X 9 is stationary and satisfies, for bounded HHrBB
measurable functions f and with B as in Theorem 2,h

y1 y1l B f u X 9 ds ª E f X 9 N X 9 II a.s., h ª `.Ž . Ž . Ž .Hh s
Bh

wThen due to the first inequality in the proof of Theorem 2 and the fact that
Ž . Ž .xa implies b the following holds: for all X agreeing with X 9 in distribution
on II it holds that

y1
l B f u X ds tends a.s. to a limit as h ª `Ž . Ž .Hh t

Bh

w Ž . y1 xand the limit has the same distribution as E f X 9 N X 9 II . This remark of
course also applies in the abstract group setting.

6. Preparing for the proof of Theorem 1. We shall need the following
result.

Ž . Ž .LEMMA 1. Let K, KK and L, LL be measurable spaces and f a measur-
Ž . Ž . Ž .able mapping from K, KK to L, LL . If a is a finite measure on K, KK and b

y1 Ž y1 .is a component of a f i.e., b is a measure satisfying b F a f setwise ,
then there exists a component n of a such that n f y1 s b.

PROOF. Define a measure r on f y1 LL by

2 r f y1B s bB , B g LL ;Ž .



H. THORISSON2062

r is well defined since if B and B are in LL and f y1B s f y1B , then1 2 1 2
y1Ž . y1 Ž . Ž .a f B ^ B s 0 and b F a f yields b B ^ B s 0 and thus b B s1 2 1 2 1

Ž .b B . Define a set function n on KK by2

3 n A s a A N f y1 LL dr , A g KK.Ž . Ž . Ž .H
Ž . y1 y1From 2 and b F a f we obtain r F a on f LL and thus n does not

Ž y1 .depend on the version of a A N f LL . Thus for a given sequence of disjoint
sets in KK we can choose a version which is s-additive for that particular
sequence. Hence n is s-additive. Since r F a on f y1 LL we obtain, by replac-

Ž . Ž y1 .ing r by a in 3 , that n F a on KK. Since a A N f LL is a a.e. the indicator
y1 y1 Ž . y1of A, for A g f LL , we have n s r on f LL and 2 yields that n f s b,

and the lemma is established. I

7. Proof of Theorem 1. Let m and mX be the distributions of X and1 1
X 9, respectively. Certainly GX s X 9 implies that m s mX on II. In order toD 1 1
prove the converse, assume that m s mX on II, let l be the Haar measure on1 1
Ž .G, GG and let p be a probability measure which has the same null sets as

w Ž .l such a p exists because l is s-additive: if l H s `, let A g HH, n G 1,n
Ž . Ž .be a countable partition of H with 0 - l A - ` and put p ?l A sn n

yn Ž . Ž .x Ž2 l ?l A rl A . Let n denote infimum of measures greatest commonn n
.component and put

f x , g s g x .Ž .
Apply Lemma 1 recursively to obtain that for each n G 1 there are subproba-

X Ž . Ž . wbility measures n and n on H, HH m G, GG such that in the lemma taken n
X Ž . y1 Ž Xa s m m p and a s m m p , respectively, and b s m m p f n m mn n n n

. y1 xp f

n F m m p , where m s m y n ?= G y ??? yn ?= G ,Ž . Ž .n n n 1 1 ny1

n X F mX m p , where mX s mX y n X
?= G y ??? yn X

?= G ,Ž . Ž .n n n 1 1 ny1

n f y1 s n X f y1 s m m p f y1 n mX m p f y1 .Ž . Ž .n n n n

Ž . y1 Ž X X . y1Thus m m p y n f and m m p y n f are mutually singular. Thatn n n n
is, for each n G 1 there is an A g HH such thatn

4 m m p f y1A s n f y1A and mX m p f y1Ac s n X f y1Ac .Ž . Ž . Ž .n n n n n n n n

Put
n s n q n q ??? , n 9 s n X q n X q ??? ,1 2 1 2

m s m y n ?= G , mX s mX y n 9 ?= GŽ . Ž .` 1 ` 1

and note that

n f y1 s n 9 f y1 , n ?= G F m and n 9 ?= G F mX .Ž . Ž .1 1

y1 y1 Ž . Ž . ŽFrom n f s n 9 f we obtain that n ?= G s n 9 ?= G on II and thus since
X .m s m on II1 1

5 m s mX on II .Ž . ` `
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X X Ž .Since m G m and m G m , we obtain from 4 that for each n G 1,n ` n `

5 5� 41 g x g A p dg m dx F n ,Ž . Ž .H H n ` nž /
c X 5 X 51 g x g A p dg m dx F n .� 4 Ž . Ž .H H n ` nž /

Put
A s lim sup A .n

nª`

� 4 � 4 � 4 � c4Since 1 g x g A F 1 g x g A q 1 g x g A q ??? and 1 g x g A Fn nq1
� c 4 � c 41 g x g A q 1 g x g A q ??? , we obtain that, for each n G 1,n nq1

5 5 X 5 X X 5g dm F n q n q ??? and 1 y g dm F n q n q ??? ,Ž .H H` n nq1 ` n nq1

where

� 4g x s 1 g x g A p dg note that 0 F g F 1 .Ž . Ž . Ž .H
Send n ª ` to obtain

g dm s 0 and 1 y g dmX s 0.Ž .H H` `

� Ž . 4 c � Ž . 4Put B s x g H: g x ) 0 and note that B is a subset of x g H: g x - 1 .
Thus
6 m B s 0 and mX B c s 0.Ž . Ž . Ž .` `

Now take c g G and note that
c � 4c x g B m 1 gc x g A s 0 for p a.e. gŽ .

� 4m 1 gc x g A s 0

for l a.e. g since p and l have the same null setsŽ .
� 4m 1 g x g A s 0 for l a.e. g since l is invariant under GŽ .

m x g B c .
Ž . Ž . X Ž . Ž c. X Ž c. Ž .Thus B g II and 5 yields m B s m B and m B s m B . This and 6` ` ` `

imply that m and mX have mass 0. That is, n and n 9 are probability` `

measures and
7 m s n ?= G , mX s n 9 ?= G .Ž . Ž . Ž .1 1

Ž . Ž .Take C and C9 such that X, C has distribution n and X 9, C9 has
Ž . Ž .distribution n 9. This is possible since 7 holds and G, GG is Polish, which

implies that there exists a regular version of the conditional probabilities

� 4 � 4n H = ? N HH m B, G and n 9 H = ? N HH m B, G .Ž . Ž .
y1 y1 Ž .Now n f s n 9 f implies that CX s C9X 9, and since G, GG is PolishD

there exists a regular version of the conditional distribution of C9 given
Ž .C9X 9. Thus there is a random transformation F in G, GG such that

F , CX s C9, C9X 9 .Ž . Ž .D



H. THORISSON2064

This implies that F y1CX s X 9, where F y1 denotes the pointwise groupD
winverse of F and not the inverse of F as a mapping from the underlying

Ž .x y1probability space to G, GG . Taking G s F C completes the proof of Theo-
rem 1. I
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