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MULTIPLE TRANSITION POINTS FOR THE CONTACT
PROCESS ON THE BINARY TREE1

BY THOMAS M. LIGGETT

University of California, Los Angeles

The contact process on Zd is known to have only two fundamental
types of behavior: survival and extinction. Recently Pemantle discovered
that the phase structure for the contact process on a tree can be more
complex. There are three possible types of behavior: strong survival, weak
survival and extinction. He proved that all three occur on homogeneous
trees in which each vertex has d q 1 neighbors, provided that d G 3, but
he left open the case d s 2. Since d s 1 corresponds to Z1, in which weak
survival does not occur, d s 2 is the boundary case. In this paper, we
complete this picture, by showing that weak survival does occur on the
binary tree for appropriate parameter values. In doing so, we extend and
develop techniques for obtaining upper and lower bounds for the critical
values associated with strong and weak survival of the contact process on
more general graphs.

d Ž .1. Introduction. Let T be the homogeneous connected tree in which
each vertex has d q 1 neighbors, and let A be the finite contact process ont
T d. This is the continuous-time Markov chain on the space of finite subsets of
T d which has the following transitions:

� 4A ª A _ x for x g A at rate 1,

< <� 4 � 4A ª A j x for x f A at rate la y g A: y y x s 1 .

< < dHere y y x denotes the distance between x and y in T . Several papers
have been written in the past few years which study the behavior of the
contact process on a tree. They are listed in the reference section.

We will say that A survives strongly ift

P � x4 x g A for arbitrarily large t ) 0,Ž .t

and that it survives if

P � x4 A / B ; t ) 0.Ž .t

Ž w Ž . xUsing the self-duality of the contact process see Liggett 1985 , Chapter 6 ,
it is easy to check that survival is equivalent to survival of the infinite

.process starting from all sites occupied. We will say that A dies out if itt
does not survive, and that it survives weakly if it survives, but does not
survive strongly. Then it is natural to define critical values l F l by the1 2
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requirement that A survives strongly for l ) l , survives weakly for l -t 2 1
Žl - l and dies out for l - l . Warning: our definition of l is the same as2 1 1
.Pemantle’s, but our l is his l .2 a

Pemantle proved that weak survival can occur by obtaining upper bounds
on l and lower bounds on l which are good enough to show that l - l if1 2 1 2
d G 3. Below we list his bounds for 2 F d F 5. For comparison purposes, we

Ž .also include the best bounds for d s 1 in which case l s l ; see1 2
Ž . Ž .Grillenberger and Ziezold 1988 for the lower bound, and Liggett 1995 for

the upper bound.
d s 1, l F 1.942, l G 1.539,1 2

d s 2, l F 0.667, l G 0.561,1 2

d s 3, l F 0.391, l G 0.425,1 21.1Ž .
d s 4, l F 0.279, l G 0.354,1 2

d s 5, l F 0.218, l G 0.309.1 2

In this paper, we will prove the following result, which settles the remaining
Ž .case for homogeneous trees .

THEOREM 1.2. Suppose that d s 2. Then

Ž .a l G 0.609;2
Ž .b l F 0.605.1

Therefore, l - l .1 2

REMARK ADDED IN REVISION. Following the submission of this paper, and
Ž .largely motivated by it, Stacey 1996 found a very elegant proof that l - l1 2

Ž .for the contact process on T , d G 2 and on some inhomogeneous trees ,d
which does not rely on finding bounds on the critical values.

We conclude the Introduction by making some remarks about the proof of
Theorem 1.2. It is useful to begin by proving the easy bounds l G 0.35 and2
l F 1. For the first of these, order T so that each vertex x has one ancestor1 2

Ž .and two descendants. These are the three neighbors of x. Then one can in a
Ž .natural way assign a ‘‘generation number’’ g x g Z to each x g T , so that2

Ž .the ancestor of x has generation number g x y 1, and its two descendants
Ž .have generation number g x q 1. Define a function on the finite subsets of

A by
1.3 f A s rg Ž x . ,Ž . Ž . Ý

xgA

where r is a positive parameter to be determined. Then
d

Ah A s E f AŽ . Ž .tdt ts0

g Ž y . g Ž x .s l r y rÝ Ý
xgA < <yyx s1, yfA

y1F l 2 r q r y 1 f A .Ž .Ž .
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' 'Ž . Ž . Ž .Choosing r s 1r 2 , l s 1r 2 2 gives h A F 0. This implies that f A ist
a positive supermartingale, which must converge a.s. It follows that A doest

Ž .not survive strongly, since, if it did, f A would have to change by significantt 'Ž .amounts at arbitrarily large times. We conclude that l G 1r 2 2 as de-2
sired.

This was essentially Pemantle’s starting point as well. He then improved
on this bound by modifying the definition of f to get the bound quoted in
Ž .1.1 . What is not clear from his work is how one should ‘‘mechanize’’ this
procedure to obtain improved lower bounds. We show how to do this in
Section 2. The idea is to express f as the ‘‘Fourier transform’’ of a function g
Ž .which turns out to be greater than or equal to 0 which is 0 except for sets of

Ž .small diameter. We then show how to choose the nonzero values of g B in
Ž .order to make f A be a positive supermartingale. It turns out that the rightt

Ž . Ž .choice is obtained by forcing h B to be 0 for those B ’s for which g B / 0.
This analysis is done in the context of a general graph. The computations on

Ž .T which lead to part a of Theorem 1.2 are carried out in Section 3.2
In order to prove l F 1, let f and h be defined by1

f A s n h : h x s 1 for some x g A ,� 4Ž . Ž .
d

Ah A s E f A ,Ž . Ž .tdt ts0

1.4Ž .

with n taken to be the simplest probability measure possible}the product
� Ž . 4 Žmeasure with n h x s 1 s « for each x. Now we wish to choose « depend-

. Ž .ing on l so that f is subharmonic i.e., h is nonnegative . This implies
Ž . Ž .survival, since otherwise f A ª f B s 0.t

Ž .The form of f in 1.4 is motivated by the proof that the critical value of the
1 w Ž . xcontact process on Z is at most 2. See Liggett 1985 , Chapter 6. In that

case, n is taken to be a renewal measure. On Z1, it turns out that for no l is
there an « ) 0 which makes h G 0, and it is for that reason that renewal
measures were used instead of product measures in that context. On T ,2
however, one can compute h as

< <A y1 < <h A s 1 y « « l 1 y « N A y A ,Ž . Ž . Ž . Ž .

where

< <N A s a x , y : x y y s 1, x g A , y f A.Ž . Ž .

< Ž . < < <It is easy to check that for a connected set A, N A s A q 2, and therefore
< Ž . < < < Ž .that N A G A q 2 for all A. Hence h A G 0 for all A provided that

Ž .l 1 y « G 1. It follows that the process survives for all l ) 1, and hence
l F 1. In Section 4, we will first carry out this argument with n s the1

Ž .distribution of a two-state Markov chain with T viewed as ‘‘time’’ . This2
Ž .gives l F 0.637. To prove part b of Theorem 1.2, it is then necessary to use1

the distribution of a Markov-type chain with a ‘‘memory’’ of length 2. The
proof that h is nonnegative becomes increasingly difficult with increasing
memory length.
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When applied to the tree T , the above simple arguments yieldd

1 1
l G and l F ,2 1' d y 12 d

which imply that l - l for d G 6, as was shown by Pemantle. An interest-1 2
ing consequence is that l and l are of different orders of magnitude as1 2
d ª `.

One somewhat unusual feature of the proofs in Section 4 is what we will
refer to as the ‘‘pyramid scheme’’ argument. Most readers are probably
familiar with pyramid schemes which promise every player a profit. In the
simplest version of the game, each player gets $1 from each of two friends.
After paying a dollar to his predecessor, he makes a net profit of $1. This
scheme works well provided there are an infinite number of players who are
willing and able to play. The way in which this idea arises in Section 4 is the

Ž .following. The hard part of the argument there is to show that h A G 0 for
all finite A ; T . This is not too hard to prove for connected A. For discon-2
nected A, one might try to write

1.5 h A s h AŽ . Ž . Ž .Ý B
B

Ž .over all connected components B of A, where h A is the contribution toB
Ž . Ž .h A due to B, and then try to prove h A G 0 for each B. Unfortunately,B

this last inequality is not in general true, so one must rely on some cancella-
Ž . Žtion in 1.5 . To organize this cancellation see Figure 1}here and in other

figures, vertices in A are shown as solid disks; vertices not in A are shown as
. � 4points , let z , z , . . . , z be the points not in B with a neighbor in B, and1 2 m

suppose that one could prove an inequality of the form

1.6 h A G as z y b s zŽ . Ž . Ž . Ž .ÝB i j
j/i

Ž .for any i, where s z is some measure of how much of A lies away from Bi
win the z direction, and a and b are positive constants. In particular,i

Ž . x Ž .s z s 0 if there is no part of A in that direction. The bound 1.6 would noti
appear to be useful, since there are many more negative terms than positive
ones. However, suppose we now focus on a component C of Ac, and take
� 4 Žw , w , . . . , w to be the points in C with a neighbor in A listed with1 2 n

.multiplicity . Suppose that the s ’s satisfy

1.7 bs w F a s wŽ . Ž . Ž .Ýi j
j/i

Ž .for any i and the same a and b , which again seems to be overly crude,
since we are replacing one s by the sum of many s ’s. However, if one orders
the tree as we did in the argument following the statement of Theorem 1.2,

Ž . Ž .and chooses the distinguished i in both 1.6 and 1.7 to be the site with the
Ž . Ž .smallest generation number, then one can use 1.5 ] 1.7 to show that

Ž .h A G 0. This involves a change in the order of summation, but there are
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FIG. 1.

only finitely many nonzero summands, so no technical problems arise. Such is
the magic of the tree.

2. Extinction results for general graphs. In this section, we prove
some results for the contact process A on a general graph G which will bet

Ž .used in Section 3 to prove part a of Theorem 1.8. It should be clear how the
process on G is defined}deaths occur at each site in G at rate 1, and births
occur at a rate which is l times the number of occupied neighbors. Take g to

Ž .be any function defined for finite subsets of G such that g B s 0, and
Ž . Žg B / 0 for only finitely many B ’s containing x for each x g G. The

function g need not be nonnegative at this point, but in our applications, it
.always turns out to be. Put

< <B q12.1 f A s y1 g B ,Ž . Ž . Ž . Ž .Ý
B;A

which is a type of ‘‘Fourier’’ representation for f. There is a probabilistic
interpretation of this. We will be using f as a sort of approximation to a
harmonic function for A . If f is of the formt

f A s P A x g A for some tŽ . Ž .t
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for some x, for example, which is harmonic for A away from x, then the
corresponding g can be described as follows. Recall that the contact process is
additive, so that copies Au of it can be constructed on the same probabilityt

u � 4 uspace so that A s u and A s D A is a version of the contact process0 t ug A t
starting at A. Then

f A s P ' u g A , x g Au for some tŽ . Ž .t

and the corresponding

g A s P ; u g A , x g Au for some t .Ž . Ž .t

Ž .Define the function h as in 1.4 :

d
A2.2 h A s E f A .Ž . Ž . Ž .tdt ts0

Ž .Writing f in terms of g using 2.1 , one easily computes

� 4h A s f A _ x y f AŽ . Ž .Ž .Ý
xgA

� 4q l f A j x y f AŽ .Ž .Ý
< <xfA , ygA , xyy s12.3Ž .

< < < <B B< < � 4s y1 B g B q l y1 g B j x .Ž . Ž . Ž . Ž .Ý Ý Ý
B;A < < B;Axyy s1

xfA , ygA

Ž .We wish to develop conditions under which one can conclude that h A F 0
w Ž . x Ž .for all A i.e., that f A is a supermartingale . Looking at 2.3 , we see thatt

Ž .one difficulty in determining the sign of h A is the fact that some terms are
multiplied by l, and some are not. The first proposition rectifies this situation
and introduces the key condition which makes it possible to determine the

Ž .values of g B to be used later: h should be 0 whenever g is not. Let S be a
collection of finite subsets of G.

PROPOSITION 2.4. Suppose that

B ; A , A g S « B g S,
2.5Ž .

h A s 0 ; A g S and g A s 0 ; A f S.Ž . Ž .

Then

< <Bh A s l y1 g B 1Ž . Ž . Ž .Ý � x g B , B j � y4_� x4g S4
< <B;A , xyy s1

2.6Ž . � 4ygA_B , Bj y fS

� 4qg B j x 1Ž . � x f A4

for A f S.
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Ž . Ž .PROOF. For A g S, h A s 0 by assumption, so that 2.3 becomes
< < < <B B< < � 42.7 y1 B g B q l y1 g B j x s 0.Ž . Ž . Ž . Ž . Ž .Ý Ý Ý

B;A < < B;Axyy s1
xfA , ygA

We wish to solve these equations for the g ’s without a factor of l in terms of
Ž . Ž . < A <those with this factor. To do so, fix a C g S, multiply 2.7 by y1 and sum

for A ; C, which we can do since all such A are in S. In the computation, we
will use the following orthogonality property: for any B ; A,

< <A
< <C y1 , if A s B ,Ž .2.8 y1 sŽ . Ž .Ý ½ 0, otherwise,C : B;C;A

which is a consequence of the binomial theorem:
n

kn y1 s 0, n G 1.Ž .Ý ž /k
ks0

Ž .The result of summing 2.7 with the appropriate factors is
< < < <B q A < <0 s y1 B g BŽ . Ž .Ý

B;A;C

< < < <B A� 4q l y1 g B j x y1 .Ž . Ž .Ž .Ý Ý
< < A : B;A;CB;C , xyy s1

xfA , ygA

2.9Ž .

Ž .Using 2.8 , we see that
< < < <A Ay1 s y1Ž . Ž .Ý Ý

A: B;A;C � 4 � 4Bj y ;A;C_ x
xfA , ygA

� 4Bj y � 4 � 4y1 , if B j y s C _ x ,Ž .s ½ 0, otherwise

Ž .for fixed B ; C and x, y g G. Therefore, 2.9 becomes

< < � 4 � 4 � 42.10 0 s C g C q l g C j x y g C j x _ yŽ . Ž . Ž . Ž .Ý
< <xyy s1

for C g S. To check that the factors involving l are correct, for example, note
Ž . Ž .that there is no contribution to either 2.9 or 2.10 unless y g C, and in that

� 4 � 4 � 4 � 4case, if B j y s C _ x , then either B s C _ x or B s C _ x, y , depend-
Ž � 4.ing on whether or not y g B. These two cases give rise to the terms g C j x

Ž � 4 � 4. Ž . Ž .and g C j x _ y in 2.10 , respectively. Now take A f S and use 2.10 in
Ž .2.3 to get

< <B � 4 � 4 � 4h A s yl y1 g B j x y g B j x _ yŽ . Ž . Ž . Ž .Ý Ý
B;A , BgS < <xyy s1

< <B � 4q l y1 g B j x .Ž . Ž .Ý Ý
< < B;Axyy s1

xfA , ygA
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In the first sum above, we can add the constraint y g A, since otherwise the
summand is 0. In the second sum, we can add the constraint B g S, since

Ž .otherwise the summand is 0 by 2.5 . Therefore,
< <B � 4 � 4h A s l y1 g B j x _ yŽ . Ž . Ž .Ý

B;A , BgS
2.11Ž . < <xyy s1, ygA

� 4yg B j x 1 x .Ž .Ž . A

Ž .There is a lot of cancellation which is hidden in 2.11 , and which we must
remove. First, note that by writing the sum according to whether or not B

� 4contains x and then making the change of variables C s B or C s B j x ,
respectively,

< <B � 4y1 g B j xŽ . Ž .Ý
B;A , BgS

< <xyy s1; x , ygA

< <Cs y1 g C 1 y 1Ž . Ž .Ý �C g S4 �C _� x4g S4
xgC;A

< <xyy s1, ygA

s 0,
� 4 Ž .since either C g S, in which case C _ x g S by 2.5 , or C f S, in which

Ž . Ž . Ž .case g C s 0, again by 2.5 . To handle the terms in 2.11 which involve
Ž � 4 � 4.g B j x _ y , make the changes of variables

� 4 � 4 � 4 � 4C s B , C s B j x , C s B _ y or C s B j x _ y ,
Ž .depending on which of x and y is in B or both or neither . The result is that

< <Ch A sl y1 g C y1 q1Ž . Ž . Ž .Ý �C ; A , C j � y4g S4 �C ; A , C g S4
< <xyy s1, ygA

xgC , yfC

q1 y1�C _� x4; A , C j � y4_� x4g S4 �C _� x4; A , C _� x4g S4

< <Csl y1 g C 1 y 1Ž . Ž .Ý �C ; A , C j � y4f S4 �C _� x4; A , C j � y4_� x4f S4
< <xyy s1, ygA

xgC , yfC

< <Csl y1 g C 1Ž . Ž .Ý �C ; A , C j � y4_� x4g S , C j � y4f S4
< <xyy s1, ygA

xgC , yfC

y1 .�C _� x4; A , x f A , C j � y4_� x4f S4

Ž .In checking the second two equalities, repeated use of 2.5 is made. For
� 4 Ž .example, C j y g S implies C g S by 2.5 , and hence

1 y 1 s 1 .�C ; A , C g S4 �C ; A , C j � y4g S4 �C ; A , C g S , C j � y4f S4

Ž . Ž .Since g C s 0 for C f S by 2.5 , the constraint C g S can be omitted in
going from the first line to the second. To go from the second line to the third,
write

1 s 1 q 1 .�C ; A , C j � y4f S4 �C ; A , C j � y4f S , C j � y4_� x4g S4 �C ; A , C j � y4f S , C j � y4_� x4f S4
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� 4 � 4 � 4 Ž .Since C j y _ x f S implies C j y f S by 2.5 ,

1 s 1 .�C ; A , C j � y4f S , C j � y4_� x4f S4 �C ; A , C j � y4_� x4f S4

� 4Then note that if x g A, C ; A is equivalent to C _ x ; A, while if x f A
Ž .and x g C , then C is automatically not a subset of A.

Finally, make the change of variables B s C in the positive terms of the
Ž . � 4final expression for h A above, and B s C _ x in the negative terms, to get

Ž .2.6 . I

Next we will impose some additional conditions on S and g.

Ž .COROLLARY 2.12. Suppose that 2.5 and the following conditions hold:

2.13 S contains all singletons and all nearest-neighbor pairs,Ž .
� 42.14 x , y g S ; x , y g B « B g SŽ .

and
< <B � 42.15 y1 g B j x F 0,Ž . Ž . Ž .Ý

� 4B;C , Bj y fS

< <whenever x, y, C satisfy x, y f C, x y y s 1.
Then

2.16 h A F 0 ; A.Ž . Ž .

Ž .PROOF. Since h A s 0 for A g S, we may assume A f S. Use expression
Ž . Ž . < <2.6 for h A given in Proposition 2.4. Fix x, y and A satisfying x y y s 1

Ž .and y g A. If x g A, the terms in 2.6 which must be considered correspond
to B ’s which satisfy

� 4 � 4 � 4 � 4x g B ; A _ y , B j y _ x g S, B j y f S.
Ž . � 4 � 4 Ž .By 2.14 , there is a z g B j y so that x, z f S. By 2.13 , z / y, so z g B,

� 4 Ž . Ž .and hence x, z ; B. Therefore, B f S and g B s 0 by 2.5 . Hence there is
Ž . Ž .no contribution to 2.6 if x g A. The sum of terms in 2.6 corresponding to

Ž . Ž � 4 .x f A is nonpositive by 2.15 . Let C s A _ y . I

We now put these results together in the following form.

Ž . Ž . Ž . Ž .THEOREM 2.17. Assume that 2.5 and 2.13 ] 2.15 all hold, that f A G 0
Ž . < <for all A and that g A / 0 for A s 1. Then A does not survive strongly.t

Ž .PROOF. By Corollary 2.12, f A is a nonnegative supermartingale, andt
hence converges with probability 1. Each time a transition occurs at site x,
the value of this supermartingale changes by

< <B2.18 " y1 g B .Ž . Ž . Ž .Ý
� 4xgB;A j xt

Ž .Therefore, the expression in 2.18 tends to 0 a.s. for every x g G. If At
survives strongly, then, with positive probability, there will be infinitely



T. M. LIGGETT1684

� 4many times at which x g A and A l B s x for every B g S containing x.t t
Ž� 4.Since g x / 0, we reach a contradiction. I

3. On T , there is no strong survival for l F 0.609. We will verify2
that the assumptions of Theorem 2.17 are satisfied in this case for an

Ž . Ž .appropriate choice of S. Take g B s 0 if diam B ) 2. Define the generation
Ž .number g x as we did following the statement of Theorem 1.2 in the

Introduction. We will choose g to have the following form:

� 4 g Ž x .3.1 g x s r ,Ž . Ž .
¡ g Ž x . < <C r , if x y y s 1, g x - g y ,Ž . Ž .1

g Ž x .q1~ < <C r , if x y y s 2, g x - g y ,� 43.2 g x , y s Ž . Ž .Ž . Ž . 2

g Ž x .y1¢ < <C r , if x y y s 2, g x s g y ,Ž . Ž .3

� 4g x , y , zŽ .
Ž .g x q1¡ < < < <C r , if x y y s y y z s 1, g x - g y - g z ,Ž . Ž . Ž .4
Ž .g x < < < <C r , if x y y s x y z s 1, g x - g y s g z ,Ž . Ž . Ž .3.3Ž . 5~s
Ž .g x q1 < < < <C r , if x y y s x y z6¢ < <s y y z s 2, g x - g y s g z ,Ž . Ž . Ž .

g Žw . < < < < < <� 43.4 g x , y , z , w s C r if x y w s y y w s z y w s 1.Ž . Ž . 7

Ž .Using 2.3 , it is not hard to write down explicitly the equations giving
Ž . Ž .h A s 0 for diam A F 2. They are given below, in the order in which the

Ž . Ž .sets appear in 3.1 ] 3.4 , and are labeled in a manner consistent with the
indexes on the constant C ]C .1 7

3.5.0 0 s yr q 2lr 2 q l y C l 2 r q 1 ,Ž . Ž .1

0 s r q 1 yr q l y lr q 2lr 2Ž . Ž .
23.5.1 yC l q lr q 2lr y 2 rŽ . Ž .1

q C y C lr 2 r q 1 q C y C lr ,Ž . Ž . Ž .4 2 5 3

0 s r 2 q 1 yr q 2lr 2 q l y C l 1 q 3r q 2 r 2 q 2 r 3Ž . Ž . Ž .13.5.2Ž . 2 2q2C r q 2C lr ,2 4

3.5.3 0 s yr q l q 2lr 2 y 2C l 1 q r q C q C l,Ž . Ž .1 3 5

0 s r 3 y r 2 y r q l
2q C y C y C q r r 2lr q lr q l y 2 r q C 2 r y lŽ . Ž .3.5.4 Ž .Ž . 4 2 1 1

2 2yC r q C y C lr q C y C lr 1 q r ,Ž . Ž . Ž .4 6 7 5 3
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0 s yr y 2 r 2 q l q 4lr 3 q C 4r y l y 4lr 2Ž .13.5.5Ž .
q2 C y C lr 2 r q 1 q 2C r y 3C r q C y C lr ,Ž . Ž . Ž .4 2 3 5 6 7

0 s 1 q 2 r 2 l q 2lr 2 y rŽ . Ž .
2yC l 1 q 2 r 1 q 2 r q 2 r3.5.6 Ž .Ž . Ž .1

2 2q 4C q 2C y 3C r q 3 2C q C y C lr ,Ž . Ž .2 3 6 4 5 7

0 s yr 2 y r y 2 r 3 q l q lr 2 q 4lr 4

2qC 1 q 2 r 2 r y l q lr y 2lrŽ . Ž .1

2qC r 4r y l y 4lr3.5.7 Ž .Ž . 2

2qC r 2 r y l q C r l q 4lr y 6rŽ . Ž .3 4

2 2yC r 3r y l y 3C r q 4C r .Ž .5 6 7

Ž . Ž .Before considering 3.5.0 ] 3.5.7 in full generality, let us see what happens
if we choose S to be a subcollection of the sets of diameter less than or equal
to 2. The computations below were carried out with the help of Mathematica.

ŽIn each case, we use the given equations to eliminate the C ’s which appeari
.in the equations linearly , leaving a polynomial equation in l and r:

3.6 P l, r s 0.Ž . Ž .

Ž . Ž .One then finds that there are solutions r g 0, 1 to 3.6 for small l, but not
Ž .for larger l. The largest l g 0, 1 for which there is a solution is identified by

Ž .the fact that for the largest l the corresponding r is a double root of 3.6 ;
that is, it satisfies

­
P l, r s 0 and P l, r s 0.Ž . Ž .

­r

The r can be eliminated from these two equations, leaving a polynomial
equation for l.

Ž . Ž . Ž .Here are the natural choices which satisfy 2.5 , 2.13 and 2.14 :

Ž . � Ž . 4 Ž . Ž .a S s A: diam A F 1 . This corresponds to solving 3.5.0 and 3.5.1
for r and C with C s C s C s C s C s C s 0. Eliminating C leads to1 2 3 4 5 6 7 1

0 s l l q 2 y 2 q 2l q 3l2 r q 2l l q 2 r 2 .Ž . Ž . Ž .

Ž . ŽFor l g 0, 1 , this has real roots if and only if l F 0.561722 . . . a root of
4 3 2 '.l y 20l y 16l q 8l q 4 . At this value of l, one gets r s 1r 2 and

C s 0.307007 . . . . Thus we will be able to conclude from Theorem 2.17 that1
l G 0.561722 . . . , which is Pemantle’s result.2

Ž . Ž . Ž . Ž . Ž .b Solve 3.5.0 , 3.5.1 , 3.5.3 and 3.5.5 for r, C , C and C . There is a1 3 5
solution to these equations up to l s 0.571514 . . . , a root of

l8 y 8l7 y 62l6 y 154l5 y 180l4 y 76l3 q 37l2 q 42l q 9.
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At this value of l, the solution is given by

1
r s , C s 0.315941 . . . , C s 0.125955 . . . , C s 0.095553 . . . .1 3 5'2

Ž . Ž . Ž . Ž . Ž .c Solve 3.5.0 , 3.5.1 , 3.5.2 and 3.5.4 for r, C , C and C . There is a1 2 4
solution to these equations up to l s 0.595237 . . . , a root of

16l8 q 128l7 y 288l6 y 1760l5 y 2679l4 y 1272l3 q 568l2 q 672l q 144.
At this value of l, the solution is given by

1
r s , C s 0.336366 . . . , C s 0.166312 . . . , C s 0.126624 . . . .1 2 4'2

Ž . Ž . Ž .d Finally, solve the full system 3.5.0 ] 3.5.7 for r and C ]C . There is a1 7
solution to these equations up to l s 0.609152 . . . , a root of

1296l14 q 14688l13 q 56896l12 q 12704l11 y 664087l10

y 2821858l9 y 6365933l8 y 9107526l7 y 8302491l6 y 4062131l5

q 245628l4 q 1857600l3 q 1263600l2 q 388800l q 46656.
At this value of l, the solution is given by

1
r s , C s 0.347606 . . . , C s 0.173973 . . . , C s 0.144034 . . . ,1 2 3'2

C s 0.133999 . . . , C s 0.111157 . . . ,4 5

C s 0.0511674 . . . , C s 0.42387 . . . .6 7

It now remains to check the assumptions of Theorem 2.17. Assumptions
Ž . Ž . Ž .2.5 , 2.13 and 2.14 are satisfied by construction. It remains for us to check

Ž .that f is nonnegative and that g satisfies 2.15 . For the nonnegativity of f ,
Ž .note that since all of the C ’s are nonnegative, the only negative terms in 2.1i

< <correspond to B ’s which have cardinality 2 or 4. If B ; A, B s 4, con-
tributes a term yC r n, then B has a unique subset of cardinality 3 which7
contributes a term qC r n. Since C F C , the overall contribution of these6 7 6
sets is nonnegative. In a similar way, we must associate parts of the contribu-
tions of singletons in A with the contributions of the doubletons which
contain them. Associate the following amounts of the term corresponding to

� 4 � 4B s x to the terms corresponding to B s x, y :
g Ž x .y1 < <C r if x y y s 1, g y - g x ,Ž . Ž .1

g Ž x .y1 < <C r if x y y s 2, g y - g x ,Ž . Ž .2

g Ž x .y1 < <C r r2 if x y y s 2, g y s g x .Ž . Ž .3

This is possible if
C3

3.7 C q C q F r .Ž . 1 2 2
Ž . Ž . Ž .Note that 3.7 holds in all four cases a ] d . Thus we conclude that f G 0 in

all four cases.
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Ž . < <To check that g satisfies 2.15 , take x y y s 1, and let w , w be the1 2
neighbors of x other than y, let u , u be the neighbors of w other than x1 2 1

Ž .and let u , u be the neighbors of w other than x. See Figure 2. Choose the3 4 2
Ž . Ž . Ž . Ž . Ž .labels so that g w ) g x and g u ) g w . See Figure 2. Then the1 4 2

Ž .following are the sets B which can occur in the sum in 2.15 in the first three
Ž � 4 � 4 .cases i.e., B j x g S, B j y f S :

� 4a B ; w , w ;Ž . 1 2

Ž . � 4 Ž . Ž . � 4 Ž . Ž .b B ; u , w if g x - g y ; B ; w , w if g x ) g y ;4 2 1 2

� 4B ; u , u , u , w if g x - g y ;Ž . Ž .1 2 3 1
cŽ . � 4B ; u , u , u , u if g x ) g y .Ž . Ž .1 2 3 4

Ž . Ž . Ž .In case a , all terms in 2.15 are less than or equal to 0. In case b , the only
possible positive terms are of the form C r n, and they always appear with a5

n Ž .term of the form yC r . In case c , the only possible positive terms are of1
the form C r n, and they always appear with a term of the form yC r n. Thus4 2
all contributions are nonpositive.

Ž .We now consider case d in more detail. Use the same labels as before, but
without requiring the convention involving the g ’s. Any set B which occurs in
Ž . � 42.15 must be a subset of u , u , u , u , w , w . It must contain one of the1 2 3 4 1 2
u ’s, since otherwise adding y would not make the diameter greater than 2; iti

� 4 � 4cannot contain one of u , u and also one of u , u , since otherwise its1 2 3 4
diameter would be greater than 2. Also, w g B implies u , u , w f B and1 3 4 2
w g B implies u , u , w f B for the same reason. Therefore, the following2 1 2 1

FIG. 2.
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Ž .is a complete list of the B ’s which can occur in 2.15 :

� 4 � 4 � 4 � 4 � 4 � 4u , u , u , u , u , u , u , u ,1 2 3 4 1 2 3 4

� 4 � 4 � 4 � 4 � 4 � 4u , w , u , w , u , u , w , u , w , u , w , u , u , w .1 1 2 1 1 2 1 3 2 4 2 3 4 2

Ž .We can consider separately the contributions to the sum in 2.15 from those
� 4 � 4B ’s involving u , u , w and u , u , w , since there is no B which involves1 2 1 3 4 2
Žsome of each. We omitted the convention involving the g ’s in order to be able

.to treat these two cases symmetrically.
So, we need to consider only the following B ’s:

� 4 � 4 � 4 � 4 � 4 � 4u , u , u , u , u , w , u , w , u , u , w .1 2 1 2 1 1 2 1 1 2 1

Ž . g Žw1.Each of these contributions to 2.15 has a factor of r , which we ignore
below. What remains is the following:

2

C 1 y C 1 q C 1Ý6 �u , u g C4 7 �u , u , w g C4 4 �u , w g C , g Žu ./g Ž x .41 2 1 2 1 i 1 i
is1

2 2

q C 1 y C 1Ý Ý5 �u , w g C , g Žu .sg Ž x .4 2 �u g C , g Žu ./g Ž x .4i 1 i i i
is1 is1

2

y C 1 .Ý3 �u g C , g Žu .sg Ž x .4i i
is1

� 4All that is relevant about C is its intersection with u , u , w , so we can1 2 1
� 4 < < Ž .assume that C ; u , u , w . If C F 1, all the contributions to 2.15 are of1 2 1

� 4the form yC or yC . If C s u , u , one gets C y C y C or C y 2C . If2 3 1 2 6 2 3 6 2
� 4C s u , w , one gets C y C , C y C , C y C or C y C . The only otheri 1 4 2 4 3 5 2 5 3

� 4case is C s u , u , w . Then one gets C y C q C y C q C y C or C y1 2 1 6 7 4 2 5 3 6
C q 2C y 2C . In all these cases, the contribution is nonpositive.7 4 2

Ž .Therefore, 2.15 is satisfied in all these cases, and the proof is complete.
Applying this argument in each of the four cases gives the successive bounds

l G 0.561722 . . . , l G 0.571514 . . . ,2 2

l G 0.595237 . . . and l G 0.609152 . . . .2 2

REMARK. The observant reader will have noticed that in each of the four
'cases handled above, the optimal r turns out to be 1r 2 . This is presumably

not an accident. The author is currently investigating the implications of this
Ž . wobservation for contact processes and other growth models on trees see

Ž .xLiggett 1997 .

4. On T , there is survival for l G 0.605. In this section, we will2
develop a technique for showing that contact processes on trees survive for
appropriate values of l. This technique can be viewed as an adaptation to

Ž .trees of the Holley]Liggett 1978 approach. In order to simplify matters, we
will restrict our attention to T , which, in view of Pemantle’s results, is the2
tree of greatest interest in this context. The idea is now to find nontrivial
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semiharmonic functions f for A . Unlike the f ’s used in the previous section,t
these will be homogeneous on the tree. Earlier work suggests two forms
which one might expect good choices of f to take:

Ž . Ž . Ž .a f is of the form 2.1 , where g B s 0 except for small sets B. This is
Ž . wthe form which Pemantle used. If g B s 0 for all sets except singletons i.e.,

Ž . < < x Ž .f A s A , one gets the bound l F 1. Pemantle took g B s 0 for all sets1
2except singletons and nearest-neighbor pairs to get l F .1 3

Ž .b f is of the form

4.1 f A s 1 y n h : h x s 0 ; x g A ,� 4Ž . Ž . Ž .
where n is an appropriately chosen homogeneous probability measure on
� 4T2 Ž .0, 1 . Support for this choice comes from two related directions. First, this

Ž . wis the one with n a renewal measure used by Holley and Liggett see Liggett
Ž .x 11985 to prove that l F 2 for the contact process on Z . Second, dualityc

Ž .implies that there is a nontrivial subharmonic in fact, harmonic function of
Ž . Ž .the form 4.1 with n the upper invariant measure of the infinite system if

Ž .l ) l . So, one can imagine that choosing f of the form 4.1 for an appropri-1
ately chosen substitute for the upper invariant measure might yield a sub-
harmonic f.

Ž .In the Introduction, we used f of the form 4.1 , with n taken as a product
measure of density « , and found that the corresponding h is nonnegative for
Ž . Ž .l 1 y « G 1. Note that we could divide f and hence h by « and let « ª 0 in

that computation, and conclude that survival occurs for l s 1 as well. Effec-
Ž . < < Ž .tively, this would mean that f A s A , and we would be back to case a

above. The main point of this observation is not so much to prove survival for
Ž .l s 1 as opposed to l ) 1 , but to suggest a simplification which will be

important in the sequel when we consider more complex n in order to get
better bounds on l .1

Next, we formalize these ideas a bit. In order to do so, we need some
Ž . � 4notation. For y / x, let S x be the component of T _ x which contains y.y 2

Ž .See Figure 3. We will consider only measures n which have the following
two properties:

Ž . Ž .a Renewal property: Conditional on h x s 1, the collections of random
� Ž . Ž .4 � Ž . Ž .4 � Ž . Ž .4variables h z , z g S x , h z , z g S x and h z , z g S x arey y y1 2 3

independent, where y , y , y are the three neighbors of x.1 2 3
Ž .b Dependence of range n: If A, B ; T are separated in the sense that2

< < � Ž . 4x g A, y g B implies x y y ) n, then the collections h x , x g A and
� Ž . 4 � Ž . 4h x , x g B are conditionally independent, given h x , x f A j B .

For a fixed n, the idea is to take a natural family of homogeneous
measures n which have the renewal and dependence of range n properties«

and which tend to the point mass on h ' 0 as « ª 0. Then we will let

� 41 y n h s 0 on A«
f A s lim ,Ž .

n h x s 1� 4«ª0 Ž .«
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FIG. 3.

Ž . Ž .so that h A will be the limiting value of

<l n h s 0 on A h y s 1� 4Ž .Ý
< <xgA , yfA , xyy s1

� 4y n h s 0 on A _ x h x s 1 .� 4Ž .Ý
xgA

4.2Ž .

w Ž . xSee the first line of 2.3 . In each case we consider, it will be clear how to
compute the conditional probabilities which arise, even though n itself is the

Ž .point mass on h ' 0. For small values of n, we will show that h A G 0 for
all finite A ; T for a particular value l and a particular choice of condi-2
tional probabilities. In each case, the conditional probabilities will satisfy

<n h s 0 on A h x s 1 G C ) 0, x f A ,� 4Ž .
independently of A so that

< < < <� 4C F f A j x y f A F 1 for x f A , C A F f A F A .Ž . Ž .Ž .
Ž .Once we prove that h A G 0 for all finite A ; T , it will follow that A2 t

survives, at least for a slightly larger value of l than the one for which we
will have proved these inequalities.

There are at least two ways of arriving at this conclusion. The first goes
back to first principles, while the second uses a recent result of Morrow,

Ž .Schinazi and Zhang 1994 . Here is the general fact that we will use for the
wfirst approach which is a more formal version of an argument used by

Ž .xPemantle 1992 .

FACT. Suppose X is a pure jump process on a countable set with transi-t
Ž . Ž . Ž .tion rates q x, y , x / y, and set q x s Ý q x, y . Suppose f satisfiesy: y / x

the following properties for some « ) 0, M - `:

Ž . Ž .w Ž . Ž .x Ž .i Ý q x, y f y y f x G « f x ; x;y
Ž . < Ž . Ž . < Ž .ii f y y f x F M whenever q x, y ) 0;
Ž . Ž . Ž .iii q x F Mf x ; x.
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� Ž . 4Let t be the hitting time of the set x: f x F c for some large fixed c. Then
xŽ . Ž .P t - ` - 1 provided that f x is sufficiently large.

Ž .PROOF. To prove this fact, note that, by i ,

1 1
q x , y y F 0,Ž .Ý f y f xŽ . Ž .y

provided that

f z f yŽ . Ž .
) q x , y q x , z q y 2 F 2« q x .Ž . Ž . Ž . Ž .Ý f y f zŽ . Ž .y , z/x

Ž . Ž .Rewriting the left-hand side of ) and using ii and the Schwarz inequality,
we get the following bound for it:

2
q x , y q x , z q x , yŽ . Ž . Ž .2 2f z y f y F 4MŽ . Ž .Ý Ýf y f z f yŽ . Ž . Ž .y , z/x y/x

q x , yŽ .
2F 4M q x .Ž . Ý 2f yŽ .y/x

Ž . Ž .Using iii , we see that ) is satisfied when f is sufficiently large. Therefore,
w Ž .xy1f X is a supermartingale when f is sufficiently large. Applying thet

xŽ . Ž .stopping time theorem, it follows that P t - ` - 1 provided that f x is
sufficiently large. I

To apply this to the contact process on the tree, we use the f defined above
Ž . Ž .4.2 . Once we have proved the inequalities following 4.2 for a given l, it

Ž . Ž . Ž .follows that i , ii and iii hold for any strictly larger value of l, and hence
< < Ž .A survives. The alternative argument for survival uses i only, but alsot

Ž .uses the fact proved by Morrow, Schinazi and Zhang 1994 that, at l ,1
� x4 < < Ž . � x4 < <E A is bounded in t. Since i above implies that E A grows exponen-t t

Ž .tially rapidly, it follows that any l for which i holds is an upper bound for
l .1

We now turn to the analysis of the various cases. We have already
considered the easy case n s 0 in the Introduction. The measures with
dependence of range 0 are just the product measures, so that, if n s product«

measure with density « ,
< <A1 y 1 y «Ž .

< <f A s lim s AŽ .
««ª0

and
< < < <h A s l A q 2 a components of A y A ,Ž . Ž .Ž .

which is nonnegative for all A provided that l G 1.
The case n s 1 is somewhat harder. The measures with dependence of

� Ž .4range 1 have the property that h x , for x in a subset of T which is2
isomorphic to the integers, is a stationary two-state Markov chain. One can
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Ž .then construct the h x for other x ’s by using the same Markov mechanism.
Ž .More explicitly, fix a parameter q g 0, 1 , and let n have the conditional«

probabilities

< <n h y s 0 h x s 0 s 1 y « , n h y s 0 h x s 1 s q� 4 � 4Ž . Ž . Ž . Ž .« «

< <for x y y s 1, and then let « ª 0 as explained earlier. The resulting condi-
Žtional distributions can be described in the following way if q ) 0.5 which

. Ž . � Ž . 4will be true in the case of interest : given h x s 1, the set y: h y s 1 is a
finite connected set containing x, and any such set B occurs with probability
Ž . < B <y1 < B <q21 y q q . In this case, it is not hard to check that f is of the form
Ž . Ž . Ž .my 12.1 with g B s 1 y q , B / B, where m is the cardinality of the

Ž .smallest connected set containing B. Note that g B does not have the
property that it is 0 except for small sets.

Fix a finite set A ; T , and let B be a component of A. In order to show2
Ž . Žh G 0, we need to compute the contributions to 4.2 attributable to B i.e.,

. < <the terms corresponding to x g B . For x g B, y f B, x y y s 1, let

d y s 1 y n h s 0 on A l S x h y s 1 .Ž . Ž . Ž .� 4y

Ž .This is a measure of how much A there is in S x . As explained in they
Introduction, we will not be able to show that the contributions for each B
are nonnegative, but rather will have to rely on tradeoffs between the
contributions from different components. In order to keep track of these
tradeoffs, we will use the pyramid scheme described in the Introduction: the
contributions from each B will be bounded below by a sum of constant

Ž .multiples of the d y ’s, where the constant is positive for one y and negative
for the others.

� 4First, consider a singleton component B s x , and let x , x , x be the1 2 3
Ž . Ž .three neighbors of x. See Figure 4. Abbreviate d x s d . Then the contri-i i

Ž .butions to 4.2 attributable to B are
3

< � 4l n h s 0 on A h x s 1 y n h s 0 on A _ x h x s 1� 4� 4Ž . Ž .Ý i
is1

3

s lq n h s 0 on A l S x h x s 1Ž . Ž .� 4Ý x ii
is14.3Ž .

3

y n h s 0 on A l S x h x s 1Ž . Ž .� 4Ł x i
is1

3 3

w xs lq 1 y d y 1 y 1 y q d .Ž .Ý Łi i
is1is1

Note that this is not nonnegative if the d ’s are close to 1. We want to bound
Ž .this below by an expression of the form c d y d y d . To do so, note that,1 2 3

Ž .when expanded, 4.3 is an expression in which each d occurs to at most thei
first power. Therefore, in order to show the needed inequality for 0 F d F 1i

w x3for each i, it is sufficient to check it at each corner of the unit cube 0, 1 . The
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FIG. 4.

eight inequalities which must be satisfied reduce easily to the following four:

3lq G 1, q 2l y 1 G c, l G q , q3 F c.Ž .

Combining the second and fourth gives q2 F 2l y 1. Thus the best choice is
obtained by setting

4.4 3lq s 1 and 2l s 1 q q2 ,Ž .

which we do from now on. Mathematica gives the solution as l s 0.6369 . . .
Ž . 3 Ž .and q s 0.5233 . . . . Then c s q 2l y 1 s q . It follows that 4.3 is bounded

below by

4.5 q3 d y d y d .Ž . Ž .1 2 3

ŽThis is the bound we needed. The other two which are needed to use the
.pyramid scheme follow by symmetry.

< <Next, consider the case B ) 1. We need to classify the points in B
according to the number of neighbors which are in B. Let k G 0 be the
number of points x in B such that all three neighbors of x are in B, and let
l G 0 be the number of points with exactly two neighbors in B. Since B is
connected, there are k q 2 points with exactly one neighbor in B. This is

< <easily proved by induction on B . Let y , y , . . . , y be the points f B with a1 2 l
neighbor in B whose other two neighbors are in B, and let
x , xU, x , xU, . . . , x , xU be the points not in B with a neighbor in B1 1 2 2 kq2 kq2

Ž Uwhich has only one neighbor in B. The points x and x have a commoni i
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. Ž .neighbor in B. Then the contributions to 4.2 which are attributable to B
are

l kq2
U 3lq 1 y d y q lq 2 y d x y d x y kqŽ . Ž . Ž .Ý Ýi i i

is1 is1

l
2y q 1 y 1 y q d yŽ . Ž .Ý i

is1

4.6Ž .

kq2
Uy q 1 y 1 y q d x 1 y 1 y q d x .Ž . Ž . Ž . Ž .Ý i i

is1

Ž .Algebraic manipulations give the following equivalent form for 4.6 :

l kq2 l
U3 3 32 q y q d y y q d x q d x q q l y q 1 y d yŽ . Ž . Ž . Ž . Ž .Ý Ý Ýi i i i

is1 is1 is1

kq2
U2q q 2l y 1 y q 1 y d x d xŽ . Ž .Ž .Ý i i

is1

4.7Ž .

U U2q q q 1 y l y q d x q d x y 2d x d x .Ž . Ž . Ž . Ž .Ž . i i i i

Ž . Ž .Using 4.4 , it follows that the contributions to 4.2 which are attributable to
B are greater than or equal to

l kq2
U3 3 32 q y q d y y q d x q d x .Ž . Ž . Ž .Ý Ýi i i

is1 is1

Ž .Combining this with 4.5 , we see that, for any component B of A, the
Ž .contributions to 4.2 which are attributable to B are greater than or equal to

34.8 q d z y d zŽ . Ž . Ž .Ýi j
1FjFm

j/i

� 4for any 1 F i F m, where z , . . . , z is the set of all points not in B with a1 m
neighbor in B.

So far, we have concentrated on a given component of A. Now, we will
c Ž .focus on a given component C of its complement, A . See Figure 5. Let

Ž . Ž . Ž . < <x , y , x , y , . . . , x , y be all the pairs for which x y y s 1, x g A,1 1 2 2 m m
y g C. Note that the y ’s need not be distinct, but that the x ’s are. Ouri i

Ž .earlier definition of d y depended on which component of A it was viewed as
Ž .being a neighbor of in case it was a neighbor of more than one component .

Ž .When we use d y below, the relevant component is the one to which thei
corresponding x belongs. Using the translation invariance of the conditionali

� Ž . 4probabilities and the fact that, conditional on h x s 1 , the set of sites y
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FIG. 5.

Ž .with h y s 1 is connected, we can write, for any 1 F i F m,

<d y s n h : h x s 1 for some 1 F j F m , j / i h y s 1Ž . Ž . Ž .� 4i j i

<F n h : h x s 1 h y s 1Ž . Ž .� 4Ý j i
1FjFm

j/i

<s n h : h x s 1 h y s 1 F d y .Ž . Ž . Ž .� 4Ý Ýi j j
1FjFm 1FjFm

j/i j/i

Rewrite this as

4.9 d y y d y G 0.Ž . Ž . Ž .Ý j i
1FjFm

j/i

Ž . Ž . Ž .It now remains to combine 4.8 and 4.9 to show that 4.2 is nonnegative
for any A. To do so, order T so that each point has one ancestor and two2
descendants. Let B , . . . , B be the components of A, and let z , . . . , z be1 m i, 0 i, l i

the points in Ac with a neighbor in B . There is exactly one of these which isi
Ž .the ancestor of its neighbor in B . Call it z . By 4.8 ,i i, 0

lm i
3h A G q d z y d z .Ž . Ž . Ž .Ý Ýi , 0 i , j

is1 js1

c Ž . ŽRearranging this as a sum over components of A and using 4.9 with the i
.which appears there being the one with smallest generation number , we see

Ž .that h A G 0.
Thus we have proved that l F 0.637. This is a significant improvement on1

2Pemantle’s bound of , but it is still not good enough to combine with the3

results of Section 3 to conclude that l - l . Since this is the main point of1 2
this paper, we must go on to the next step.



T. M. LIGGETT1696

From now on, we take n s 2. We will pass immediately to describing the
limiting conditional probabilities of a family of measures with the renewal
property and dependence of range 2. There are three parameters, q , q , q ,0 1 2
satisfying

4.10 0 F q F q , q F 1, 2 q F q q q .Ž . 0 1 2 1 2 0

If x g T and x , x , x are its three neighbors, let2 1 2 3

<n h : h x s 1 h x s 1 s 1 y q ,� 4Ž . Ž .1 2

<n h : h x s 0, h x s h x s 1 h x s 1 s q y 2 q q q ,� 4Ž . Ž . Ž . Ž .2 3 1 2 1 0

<n h : h x s 0, h x s 1, h x s 0 h x s 1 s q y q ,� 4Ž . Ž . Ž . Ž .2 3 1 1 0

<n h : h x s h x s h x s 0 h x s 1 s q .� 4Ž . Ž . Ž . Ž .2 3 1 0

Using the renewal and dependence of range 2 properties, all other relevant
Ž .conditional probabilities can be generated easily. Given h x s 1, as one

Ž .constructs h y successively, if one encounters two consecutive 0’s, then all
sites beyond them are assigned the value 0 automatically. Note that no longer

� Ž . 4is it the case that y: h y s 1 is connected. We wish to choose q , q , q and0 1 2
Ž .l so that 4.2 is nonnegative for all finite A.

< <Fix a finite A ; T . For a component B of A and x g B, y f B, x y y s 1,2
define

d y s 1 y n h s 0 on A l S x h y s 1 ,Ž . Ž . Ž .� 4B y

s y s 1 y n h s 0 on A l S x h x s 1 .Ž . Ž . Ž .� 4B y

We will often omit the subscript B from this notation when it is clear which
component is relevant.

Ž .Before we work on a lower bound for 4.2 , we will prove two inequalities.
The first will allow us to replace s ’s by d ’s, and the second is the analog of
Ž .4.9 . Here is the first of these inequalities: if

4.11 2 q y q2 G q y q3 G 0,Ž . Ž .1 2 0 2

then

4.12 1 y q d y F s y F d y .Ž . Ž . Ž . Ž . Ž .1

wThe right-hand inequality is an analog of the monotonicity statements used
1 Ž . xon Z to show that the last three sums of 1.2 are nonnegative. We will first

prove the right-hand inequality by coupling, and we will then use it to prove
the left-hand inequality. For the right-hand inequality, it suffices to construct
�Ž Ž . Ž .. Ž .4 � Ž . Ž .4z z , z z : z g S x in such a way that z z : z g S x is distributed1 2 y 1 y

Ž < Ž . . � Ž . Ž .4according to n ? h x s 1 , z z : z g S x is distributed according to2 y
Ž < Ž . . Ž . Ž . Ž .n ? h y s 1 and z z F z z for all z g S x with probability 1. Start1 2 y

Ž . Ž . Ž .with z x s z y s 1, and then let z y s 1 with probability 1 y q . If1 2 1 2
Ž .z y s 1, then the renewal property permits the construction of the rest of1

Ž . Ž . Ž .the variables so that z z s z z for all z g S x . Let y , y be the1 2 y 1 2
Ž . � Ž . 4neighbors of y other than x. If z y s 0, construct z y ; i, j s 1, 2 so that1 i j
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Ž .the required inequalities and conditional distributions are satisfied. This
Ž Ž . Ž ..requires that the distribution of z y , z y be stochastically larger than2 1 2 2
Ž Ž . Ž .. Ž .the conditional distribution of z y , z y given z y s 0. This means1 1 1 2 1

that the following must be satisfied:

q y 2 q q q q2 1 0 02 21 y q G and q F .Ž .2 2q q2 2

Ž . Ž .These inequalities follow from 4.11 . For each j, if z y s 1, then use the1 j
renewal property to construct the variables corresponding to points z ‘‘be-

Ž . Ž . Ž . Ž .yond’’ y so that z z s z z , while if z y s 0, it follows that z z s 0j 1 2 1 j 1
automatically for all such z.

Ž . ŽTo prove the left-hand inequality in 4.12 which is the one we will use
.later , proceed as follows. Use the renewal property to write

4.13 1 y d y s 1 y s y 1 y s yŽ . Ž . Ž . Ž .1 2

and

c1 y s y s 1 y q 1 y d y q q q q y q 1 y d y 1 yŽ . Ž . Ž . Ž . Ž . Ž .2 0 1 0 1 A 1

cq q y q 1 y d y 1 yŽ . Ž . Ž .1 0 2 A 24.14Ž .
c cq q y 2 q q q 1 y d y 1 y 1 y d y 1 y .Ž . Ž . Ž . Ž . Ž .2 1 0 1 A 1 2 A 2

Ž . Ž . Ž . Ž .In 4.13 and 4.14 , d y and s y are defined as before, but relative to thei i
X � 4 Xset A s A j y and its component B which contains y. Use the right-hand
Ž . Ž . Ž . Ž .side of 4.12 applied to y to replace d y in 4.14 by s y , and replace thei i i

indicators by 1. This gives

1 y s y F 1 y q 1 y d y q q q q y q 2 y s y y s yŽ . Ž . Ž . Ž . Ž . Ž .2 0 1 0 1 2

q q y 2 q q q 1 y s y 1 y s y .Ž . Ž . Ž .2 1 0 1 2

Ž . Ž . Ž . w Ž .xwThen replace 2 y s y y s y by 2 y d y , and replace 1 y s y 1 y1 2 1
Ž .x Ž . Ž .s y by 1 y d y , which can be done by 4.13 . The resulting inequality is2

Ž .the left-hand side of 4.12 .
Ž .Next, we will prove the analog of 4.9 . As in the discussion of that

c Ž . Ž . Ž .inequality, let C be a component of A . Let x , y , x , y , . . . , x , y be1 1 2 2 m m
Ž . < <an enumeration of all the pairs x, y for which x y y s 1, x g A, y g C.

Then let B be the component of A which contains x . It is with respectj j
Ž . Ž .to B that d y is defined. Fix a 1 F i F m. Then, since S x sj j y ii
Ž . Ž .D S y Figure 5 may be helpful here ,1F jF m , j/ i x jj

d y s n h : h x s 1 for some x g A l S y h y s 1Ž . Ž . Ž . Ž .Di x j ij½ 5
1FjFm

j/i

F n h : h x s 1 for some x g A l S y h y s 1 .Ž . Ž . Ž .Ý ½ 5x j ij
1FjFm

j/i

w Ž . xTo bound the summand, note that conditional on h y s 1 if there is a 1 ini
Ž . Ž . Ž . Ž .A l S y , then either h x s 1, or h y s 1, h x s 0, and there is a 1 atx j j j jj
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one of the neighbors of x other than y . Therefore, for j / i,j j

n h : h x s 1 for some x g A l S y h y s 1Ž . Ž . Ž .½ 5x j ij

< <F n h : h x s 1 h y s 1 q q y q n h : h y s 1 h y s 1 .Ž . Ž . Ž . Ž . Ž .� 4 � 4j i 2 0 j i

Next, use the inequalities
< <n h : h x s 1 h y s 1 G n h : h y s 1 h y s 1 1 y qŽ . Ž . Ž . Ž . Ž .� 4 � 4j i j i 2

and
< <d y G n h : h x s 1 h y s 1 s n h : h x s 1 h y s 1 .Ž . Ž . Ž . Ž . Ž .� 4 � 4j i j j i

Combining these relations, we can conclude that

4.15 1 y q d y F 1 y q d y .Ž . Ž . Ž . Ž . Ž .Ý2 i 0 j
1FjFm

j/i

Ž . Ž .This is the analog of 4.9 . Note that it reduces to it if q s q s q .0 1 2
Ž .We need to lower-bound the contributions to 4.2 attributable to a compo-

Ž . Ž .nent B of A. We will assume that 4.11 holds, so that we may use 4.12 .
Ž . � 4This will be checked later. Suppose B s u , and u , u , u are the three1 2 3

Ž .neighbors of u. Using the renewal property and 4.12 , the contributions to
Ž .4.2 attributable to this B are

3

< � 4l n h s 0 on A h u s 1 y n h s 0 on A _ u h u s 1� 4� 4Ž . Ž .Ý i
is1

3

s l 1 y d u q q q y q 1 y d uŽ . Ž . Ž .Ý Ýi 0 1 0 j
is1 j/i

q q y 2 q q q 1 y d uŽ . Ž .Ł2 1 0 j
j/i

3

y 1 y s uŽ .Ł i
is1

4.16Ž .

G 3lq y l 3q y 2 q d u q d u q d uŽ . Ž . Ž . Ž .2 2 1 1 2 3

q l q y 4q q 3q d u d uŽ . Ž . Ž .0 1 2 1 2

qd u d u q d u d uŽ . Ž . Ž . Ž .1 3 2 3

y 3l q y 2 q q q d u d u d uŽ . Ž . Ž . Ž .2 1 0 1 2 3

3

y 1 y 1 y q d u .Ž . Ž .Ł 1 i
is1

We wish to bound this expression below by
4.17 c 1 y q d u y c 1 y q d u q d u ,Ž . Ž . Ž . Ž . Ž . Ž .0 1 2 2 3

where c is a nonnegative constant to be determined later. The factors which
Ž .appear in 4.17 and in similar expressions below are used because of the way

Ž .they appear in 4.15 , since we will take advantage of cancellation in the
Ž .same way we did for n s 1 using the pyramid scheme argument . In each

case, all the neighbors of B except one make a negative contribution with a
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Ž .factor c 1 y q , while the distinguished neighbor makes a positive contribu-2
Ž . Ž .tion with a factor c 1 y q . By the symmetry of 4.16 in the u ’s, it does not0 i

matter which neighbor is taken to play the distinguished role.
Ž . wTo check bound 4.17 , note that both sides i.e., the right-hand sides of

Ž . Ž .x Ž . 24.16 and 4.17 are linear in each of the d ’s and that 0 F d u F 1 y q fori 0
Ž Ž . Ž . Ž ..each i. So, it is enough that the inequality holds when d u , d u , d u is1 2 3

w 2 x3any corner of the cube 0, 1 y q . This verification will be discussed after we0
choose particular values of the parameters l, q , q , q , c.0 1 2

� 4 < <Suppose next that B s u, v with u y v s 1, and suppose that u , u1 2
Žand v , v are the neighbors of u and v, respectively, which are not in B. See1 2

. Ž .Figure 6. The contributions from this B to 4.2 are

2 2

< <l n h s 0 on A h u s 1 q l n h s 0 on A h v s 1� 4 � 4Ž . Ž .Ý Ýi i
is1 is1

� 4yn h s 0 on A _ u h u s 1� 4Ž .
� 4yn h s 0 on A _ v h v s 1� 4Ž .

s l 1 y d u q q q y q 1 y d uŽ . Ž . Ž .1 0 1 0 2

ql 1 y d u q q q y q 1 y d uŽ . Ž . Ž .2 0 1 0 1

ql 1 y d v q q q y q 1 y d vŽ . Ž . Ž .1 0 1 0 2

ql 1 y d v q q q y q 1 y d vŽ . Ž . Ž .2 0 1 0 1

y q q q y q 1 y d v q q y q 1 y d vŽ . Ž . Ž . Ž .0 1 0 1 1 0 2

q q y 2 q q q 1 y d v 1 y d vŽ . Ž . Ž .2 1 0 1 2

= 1 y s u 1 y s uŽ . Ž .1 2

4.18Ž . y q q q y q 1 y d u q q y q 1 y d uŽ . Ž . Ž . Ž .0 1 0 1 1 0 2

q q y 2 q q q 1 y d u 1 y d uŽ . Ž . Ž .2 1 0 1 2

= 1 y s v 1 y s vŽ . Ž .1 2

G 4lq y l 2 q y q d u q d u q d v q d vŽ . Ž . Ž . Ž . Ž .1 1 0 1 2 1 2

q2l q y q d u d u q d v d vŽ . Ž . Ž . Ž . Ž .1 0 1 2 1 2

y q y q y q d v q d vŽ . Ž . Ž .2 2 1 1 2

2

q q y 2 q q q d v d v 1 y 1 y q d uŽ . Ž . Ž . Ž . Ž .Ł2 1 0 1 2 1 i
is1

y q y q y q d u q d uŽ . Ž . Ž .2 2 1 1 2

2

q q y 2 q q q d u d u 1 y 1 y q d v .Ž . Ž . Ž . Ž . Ž .Ł2 1 0 1 2 1 i
is1

Ž .The renewal property is used in the first equality, and 4.12 is used in the
inequality. Arguing as before, we want to bound the right-hand side of this
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FIG. 6.

expression below by

4.19 c 1 y q d u y c 1 y q d u q d v q d vŽ . Ž . Ž . Ž . Ž . Ž . Ž .0 1 2 2 1 2

Ž Ž . Ž . Ž . Ž .. w 2 x4for any d u , d u , d v , d v in 0, 1 y q .1 2 1 2 0
To decide how to choose the parameters

q , q , q , l, c0 1 2

Ž . Ž . Ž . Ž .so that the lower bounds 4.17 and 4.19 hold, note that 4.16 and 4.18
Ž . Ž .involve the d ’s in a reasonably symmetric way, while 4.17 and 4.19 are

Ž .generally larger if d u is large than if the other d ’s are. This suggests that1
Ž . Ž .we require that the lower bounds 4.17 and 4.19 hold with equality for all

Ž . Ž . Ž . Ž .choices of d u whenever d u s d u s 0 in the case of 4.17 and when-1 2 3
Ž . Ž . Ž . Ž .ever d u s d v s d v s 0 in the case of 4.19 . This requirement leads2 1 2

Ž .after some simplification to the following equations, which we assume to
hold from now on:

Ž . Ž .4.20 3lq s 1, 2lq s q , lq s q q , c 1 y q s q y q .2 1 2 0 1 2 0 2 1

Ž . Ž .Later we will discuss the verification that bounds 4.17 and 4.19 hold in the
full relevant cube of d values.

� 4 < < < <Next, take B s u , u , v , where u y v s u y v s 1, u / u . Let1 2 1 2 1 2
uX , uY be the neighbors of u other than v, and let vX be the neighbor of vi i i

Ž .other than u , u . Its contributions to 4.2 are1 2

< Xln h s 0 on A h v s 1� 4Ž .
2

X Y< <ql n h s 0 on A h u s 1 q n h s 0 on A h u s 1� 4 � 4Ž . Ž .Ý i i
is1

2

� 4 � 4yn h s 0 on A _ v h v s 1 y n h s 0 on A _ u h u s 1� 4 � 4Ž . Ž .Ý i i
is1

2
X X Ys lq 1 y d v q l 1 y d u q q q y q 1 y d uŽ . Ž . Ž . Ž .Ý0 i 0 1 0 i

is1

Y X4.21 q 1 y d u q q q y q 1 y d uŽ . Ž . Ž . Ž .i 0 1 0 i
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2
X Xy 1 y s v q q q y q 1 y d uŽ . Ž . Ž .Ł 0 1 0 i

is1
Yq q y q 1 y d uŽ . Ž .1 0 i

X Yq q y 2 q q q 1 y d u 1 y d uŽ . Ž . Ž .2 1 0 i i

2
X X Yy q q q y q 1 y d v 1 y d u 1 y d uŽ . Ž . Ž . Ž .Ý 0 1 0 i i

is1

2
X X YG lq 1 y d v q l 2 q y 2 q y q d u q d uŽ . Ž . Ž . Ž .Ý0 1 1 0 i i

is1

X Yq2 q y q d u d uŽ . Ž . Ž .1 0 i i

2
X X Yy 1 y 1 y q d v q y q y q d u q d uŽ . Ž . Ž . Ž . Ž .Ł1 2 2 1 i i

is1

X Yq q y 2 q q q d u d uŽ . Ž . Ž .2 1 0 i i

2
X Xy q y q y q d v 1 y 1 y q d uŽ . Ž . Ž . Ž .Ý1 1 0 1 i

is1
Y= 1 y 1 y q d u .Ž . Ž .1 i

Ž .To get the inequality, use the left-hand side of 4.12 to replace the s ’s by d ’s,
and then expand the parts that originally had only d ’s. We need to bound the

Ž .right-hand side of 4.21 below by

Ž . Ž . Ž X . Ž .w Ž Y . Ž X . Ž Y . Ž X.x4.22 c 1 y q d u y c 1 y q d u q d u q d u q d v0 1 2 1 2 2

and by

Ž . Ž . Ž X. Ž .w Ž X . Ž Y . Ž X . Ž Y .x4.23 c 1 y q d v y c 1 y q d u q d u q d u q d u ,0 2 1 1 2 2

depending on which type of boundary point plays the distinguished role.
w 2 x5Again, this is verified by checking each corner of the cube 0, 1 y q after0

choosing values for the parameters at the end of this section.
� 4 < <Our final special case is B s u , u , u , v , where u y v s 1 for each i1 2 3 i

Ž . X Y Ž .u distinct . Let u , u be the neighbors of u other than v. See Figure 7.i i i i
Ž .Then the contributions to 4.2 corresponding to this B are greater than or

equal to
3

X Yl 2 q y 2 q y q d u q d uŽ . Ž . Ž .Ý 1 1 0 i i
is1

X Yq2 q y q d u d uŽ . Ž . Ž .1 0 i i

3
X Yy q y q y q d u q d uŽ . Ž . Ž .Ł 2 2 1 i i

is1
4.24Ž .

X Yq q y 2 q q q d u d uŽ . Ž . Ž .2 1 0 i i

3
X Yyq 1 y 1 y q d u 1 y 1 y q d u .Ž . Ž . Ž . Ž .Ý0 1 i 1 i

is1
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FIG. 7.

Arguing as in the previous cases, we need to have this bounded below by

c 1 y q d uXŽ . Ž .0 1

Y X Y X Yy c 1 y q d u q d u q d u q d u q d u .Ž . Ž . Ž . Ž . Ž . Ž .2 1 2 2 3 3

4.25Ž .

Now, suppose the component B of A is not one of the four cases we have
< < < <considered so far; that is, B G 5 or B s 4 and B has diameter 3. For

< <x g B, x y y s 1, say that y is of type 3 if y f B, y is of type 2 if y g B but
Ž X Y .neither of the two neighbors call them y , y of y other than x is in B, y is

Ž X.of type 1 if y g B and exactly one of the two neighbors call it y of y other
than x is not in B and y is of type 0 if y g B and both of the two neighbors

Ž .of y other than x is in B. See Figure 8. Let B be the set of x g B withi, j, k , l
i neighbors of type 0, j neighbors of type 1, k neighbors of type 2 and l

FIG. 8.
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neighbors of type 3. The subscripts must satisfy i q j q k q l s 3. Also, note
that B s B for k q l s 3, since0, 0, k , l

< <B / B « B s 1,0, 0, 0, 3

< <B / B « B s 2,0, 0, 1, 2

< <B / B « B s 3,0, 0, 2, 1

< <B / B « B s 4 and B has diameter 2.0, 0, 3, 0

In the expressions below, the neighbors y , y , y of x are numbered in such1 2 3
a way that the type number of y is nondecreasing in i. The contributions toi
Ž .4.2 attributable to B are then

3

h A ' lq 1 y d y y g yŽ . Ž . Ž .Ý Ý ŁB 0 3 i
is1xgD B xgBiqjqks2 i , j , k , 1

q l 2 q y 2 q y q d y q d yŽ . Ž . Ž .Ý 1 1 0 2 3
xgD Biq jqks1 i , j , k , 2

4.26Ž .

q2 q y q d y d y ,Ž . Ž . Ž .1 0 2 3

where

g y s 1 y s y if y is of type 3,Ž . Ž .
X Y X Yg y s q y q y q d y q d y q q y 2 q q q d y d yŽ . Ž . Ž . Ž . Ž . Ž . Ž .2 2 1 2 1 0

if y is of type 2,

g y s q y q y q d yX if y is of type 1,Ž . Ž . Ž .1 1 0

g y s q if y is of type 0.Ž . 0

Ž .In finding a lower bound for 4.26 , the most awkward term to deal with is
Ž .the product of the g ’s. Note that the other parts of 4.26 are at most

quadratic in the d ’s, while the product of the g ’s can have products of more
than two d ’s. To rectify this situation, we will obtain and use quadratic upper
bounds for the products of g ’s. The particular bound depends on which of the
B contains the x in question. In each case, the s ’s are first replaced byi, j, k , l

Ž .d ’s using 4.12 . Then the following inequality is used: suppose that 0 F t Fi
a F 1. Theni

m m iy1

1 y t F 1 y 1 y a t .Ž . Ž .Ł Ý Łi i i
is1 js1is1

The proof of this inequality is not hard, and is left to the reader. In any case,
we will use it only for m F 3, in which cases it is a simple verification. In
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applying this inequality below, we will take

q y q ,1 0¡ if y is of type 1,
q1

q y q~ 2 0a si , if y is of type 2,
q2¢1 y q , if y is of type 3.1

We also arrange the factors in order of increasing type number. In cases
involving y ’s of type 2, one needs to note that

w x0 F q y q d q d y q y 2 q q q d d F q y q ,Ž . Ž .2 1 1 2 2 1 0 1 2 2 0

whenever 0 F d , d F 1, in order to check 0 F t F a F 1. The upper bound1 2 i i
3 Ž .for Ł g y which one obtains isis1 i

x g B : q3 ,3, 0, 0, 0 0

X2x g B : q q y q y q d y ,Ž . Ž .2, 1, 0, 0 0 1 1 0 3

X Y2x g B : q q y q y q d y q d yŽ . Ž . Ž .2, 0, 1, 0 0 2 2 1 3 3

X Yq q y 2 q q q d y d y ,Ž . Ž . Ž .2 1 0 3 3

2x g B : q 1 y 1 y q d y ,Ž . Ž .2, 0, 0, 1 0 1 3

x g B : q q2 y q q q y q d yX y q2 q y q d yX ,Ž . Ž . Ž . Ž .1, 2, 0, 0 0 1 0 1 1 0 2 0 1 0 3

x g B : q q q y q q q y q d yXŽ . Ž .1, 1, 1, 0 0 1 2 0 2 1 0 2

X Y2yq q y q d y q d yŽ . Ž . Ž .0 2 1 3 3

qq2 q y 2 q q q d yX d yY ,Ž . Ž . Ž .0 2 1 0 3 3

X Y2x g B : q q y q q q y q d y q d yŽ . Ž . Ž .1, 0, 2, 0 0 2 0 2 2 1 2 2

X Y2yq q y q d y q d yŽ . Ž . Ž .0 2 1 3 3

qq q q y 2 q q q d yX d yYŽ . Ž . Ž .0 2 2 1 0 2 2

qq2 q y 2 q q q d yX d yY ,Ž . Ž . Ž .0 2 1 0 3 3

x g B : q q y q q y q d yX y q2 1 y q d y ,Ž . Ž . Ž . Ž .1, 1, 0, 1 0 1 0 1 0 2 0 1 3

X Yx g B : q q y q q y q d y q d yŽ . Ž . Ž .1, 0, 1, 1 0 2 0 2 1 2 2

yq2 1 y q d yŽ . Ž .0 1 3

qq q y 2 q q q d yX d yY ,Ž . Ž . Ž .0 2 1 0 2 24.27Ž .
x g B : q y q 1 y q d y q d yŽ . Ž . Ž .1, 0, 0, 2 0 0 1 2 3

2qq 1 y q d y d y ,Ž . Ž . Ž .0 1 2 3
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x g B : q3 y q2 q y q d yX y q q q y q d yXŽ . Ž . Ž . Ž .0, 3, 0, 0 1 1 1 0 1 1 0 1 0 2

yq2 q y q d yX ,Ž . Ž .0 1 0 3

x g B : q2q y q q q y q d yX y q q q y q d yXŽ . Ž . Ž . Ž .0, 2, 1, 0 1 2 1 2 1 0 1 0 2 1 0 2

X Y2yq q y q d y q d yŽ . Ž . Ž .0 2 1 3 3

qq2 q y 2 q q q d yX d yY ,Ž . Ž . Ž .0 2 1 0 3 3

x g B : q2 y q q y q d yX y q q y q d yXŽ . Ž . Ž . Ž .0, 2, 0, 1 1 1 1 0 1 0 1 0 2

yq2 1 y q d y ,Ž . Ž .0 1 3

x g B : q q2 y q2 q y q d yXŽ . Ž .0, 1, 2, 0 1 2 2 1 0 1

X Yyq q q y q d y q d yŽ . Ž . Ž .0 2 2 1 2 2

X Y2yq q y q d y q d yŽ . Ž . Ž .0 2 1 3 3

qq q q y 2 q q q d yX d yYŽ . Ž . Ž .0 2 2 1 0 2 2

qq2 q y 2 q q q d yX d yY ,Ž . Ž . Ž .0 2 1 0 3 3

x g B : q q y q q y q d yX y q2 1 y q d yŽ . Ž . Ž . Ž .0, 1, 1, 1 1 2 2 1 0 1 0 1 3

X Yyq q y q d y q d yŽ . Ž . Ž .0 2 1 2 2

qq q y 2 q q q d yX d yY ,Ž . Ž . Ž .0 2 1 0 2 2

Xx g B : q y q y q d y y q 1 y q d y q d yŽ . Ž . Ž . Ž . Ž .0, 1, 0, 2 1 1 0 1 0 1 2 3

2qq 1 y q d y d y .Ž . Ž . Ž .0 1 2 3

Ž . Ž .Now we replace the products of g ’s in 4.26 by the expressions in 4.27 .
Then the sums are rearranged, so that each summand containing a d is

Ž .included in the sum corresponding to the unique x which is a nearest
Žneighbor of the argument of the d . Note that the x to which the summand is

attached before this rearrangement can be a second nearest neighbor of the
.argument of the d . For example, suppose we consider x g B , and let2, 0, 0, 1

y , y , y be its neighbors, with y f B. Since x g B , we know that, for1 2 3 3 2, 0, 0, 1
each m s 1, 2, y g B , where j G 1. Looking at all the possible cases inm i, j, k , 0
Ž . Ž .4.27 , we see that the multiple of d y which each y contributes is one of3 m
the following:

q2 q y q , q2 q y q , q2 q y q , q q q y q ,Ž . Ž . Ž . Ž .0 1 0 1 1 0 2 1 0 0 1 1 0

q q q y q , q q q y q .Ž . Ž .0 2 1 0 1 2 1 0

Taking the worst case, we see that the contributions from y and y are1 2
2Ž .bounded below by 2 q q y q . The other contribution comes from x itself,0 1 0

2Ž . Ž .and is q 1 y q . This argument is used in each of the sums in 4.28 below.0 1
Ž .Since we are aiming at a lower bound of the form 4.25 , we will add

� 4appropriate multiples of the d ’s corresponding to the points z , 1 F i F m ini
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B c which have a neighbor in B. The result is
m

h A q c 1 y q d zŽ . Ž . Ž .ÝB 2 i
is1

< < i j kG y B q q qÝ i , j , k , 0 0 1 2
iqjqks3

i j kq 2lq y q q q q b d y q d yŽ . Ž .Ý Ý 1 0 1 2 i , j , k , 2 2 3
iqjqks1 xgBi , j , k , 2

4.28Ž .

yc d y d yŽ . Ž .i , j , k , 2 2 3

i j kq lq y q q q y b d y ,Ž .Ý Ý 0 0 1 2 i , j , k , 1 3
iqjqks2 xgBi , j , k , 1

where
b s lq y c 1 y q y q2 1 q q y 2 q ,Ž . Ž .2, 0, 0, 1 0 2 0 1 0

b s lq y c 1 y q y q q y q2 ,Ž . Ž .1, 1, 0, 1 0 2 0 1 0

b s lq y c 1 y q y 2 q q q q2 q q2q ,Ž .0, 2, 0, 1 0 2 0 1 0 0 1

b s lq y c 1 y q q q q q3 y q2 y q ,Ž .1, 0, 1, 1 0 2 0 0 0 1

b s lq y c 1 y q q q q q2q y q y q qŽ .0, 1, 1, 1 0 2 0 0 1 1 0 1

and

b s yl 2 q y q q c 1 y q q q 1 y q q q2 q y q ,Ž . Ž . Ž . Ž .1, 0, 0, 2 1 0 2 0 1 0 2 1

2 2c s y2l q y q q q 1 y q q q q y 2 q q q ,Ž . Ž . Ž .1, 0, 0, 2 1 0 0 1 0 2 1 0

b s yl 2 q y q q c 1 y q q q 1 q q y 2 q ,Ž . Ž . Ž .0, 1, 0, 2 1 0 2 0 2 1

2c s y2l q y q q q 1 y q q q q y 2 q q q .Ž . Ž . Ž .0, 1, 0, 2 1 0 0 1 0 2 1 0

Ž .We need to find a good lower bound for the right-hand side of 4.28 . When
we choose particular values for the parameters, we will find that b G 0i, j, k , l
and c G 0 for all choices of the subscripts which appear above, andi, j, k , l

22 22 1 y q b y 1 y q c F 0Ž . Ž .0 i , j , k , 2 0 i , j , k , 2

for i s 1 or j s 1. Thus we may replace all the d ’s on the right-hand side of
Ž . 24.28 by 1 y q . The result is0

m

h A q c 1 y q d zŽ . Ž . Ž .ÝB 2 i
is1

< < i j kG y B q q qÝ i , j , k , 0 0 1 2
iqjqks3

i j k 2< <q B 2lq y q q q q 2b 1 y qŽ .Ý i , j , k , 2 1 0 1 2 i , j , k , 2 0
iqjqks1

4.29Ž .

22yc 1 y qŽ .i , j , k , 2 0

i j k 2< <q B lq y q q q y b 1 y q .Ž .Ý i , j , k , 1 0 0 1 2 i , j , k , 1 0
iqjqks2
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Ž .In order to continue bounding 4.29 from below, we need to find some
relations among the cardinalities which appear in it. First, note that every
x g B has a unique neighbor in D B , and each point in1, 0, 0, 2 iqjqks3 i, j, k , 0
B occurs as the neighbor of k points in B . Hencei, j, k , 0 1, 0, 0, 2

< < < <4.30 B s k B .Ž . Ý1, 0, 0, 2 i , j , k , 0
iqjqks3

A similar counting argument gives

< < < < < <4.31 B s B q B .Ž . 0, 1, 0, 2 1, 0, 1, 1 0, 1, 1, 1

For the next identity, let

< <W s u , v : u y v s 1, u g B , v g B .Ž . D Di , j , k , 1 i , j , k , 0½ 5
iqjqks2 iqjqks3

< < ŽThen one can compute W in two different ways summing first on u and
.then on v, and vice versa , yielding

< < < <4.32 i B s j B .Ž . Ý Ýi , j , k , 1 i , j , k , 0
iqjqks2 iqjqks3

It is easy to check that because B is connected, the number of points in B
with exactly one neighbor in B is two more than the number of points in B
with all three neighbors in B. This gives

< < < < < <4.33 B q B s B q 2.Ž . Ý1, 0, 0, 2 0, 1, 0, 2 i , j , k , 0
iqjqks3

Ž . Ž . Ž .Finally, using 4.30 and 4.31 in 4.33 yields

< < < < < < < <B q B q B q B1, 0, 2, 0 0, 1, 2, 0 1, 0, 1, 1 0, 1, 1, 1

< < < < < < < <s B q B q B q B q 2.3, 0, 0, 0 2, 1, 0, 0 1, 2, 0, 0 0, 3, 0, 0

4.34Ž .

Ž .Add 0 to the right-hand side of 4.29 in the form

q a r.h.s. of 4.32 y l.h.s. of 4.32Ž . Ž .
q b r.h.s. of 4.34 y l.h.s. of 4.34Ž . Ž .
q d r.h.s. of 4.30 y l.h.s. of 4.30Ž . Ž .

4.35Ž .

q e r.h.s. of 4.31 y l.h.s. of 4.31 ,Ž . Ž .
where a, b, d, e are constants to be determined. We wish to choose the

< <unknown parameters so that the coefficients of all of the cardinalities Bi, j, k , l
in the resulting expression are nonnegative. Once done, we will have

m

4.36 h A q c 1 y q d z G 2b.Ž . Ž . Ž . Ž .ÝB 2 i
is1

w Ž . xThe 2b on the right-hand side comes from the 2 on the right-hand of 4.34 .
This will imply the desired bound

4.37 h A G c 1 y q d z y c 1 y q d z ,Ž . Ž . Ž . Ž . Ž . Ž .ÝB 0 i 2 j
j/i
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provided that

4.38 2b G c 1 y q2 2 y q y q .Ž . Ž .Ž .0 0 2

w Ž . 2 x Ž .Recall that 0 F d z F 1 y q . Once this has been done, the bounds 4.15 ,i 0
Ž . Ž . Ž . Ž . Ž . Ž .4.17 , 4.19 , 4.22 , 4.23 , 4.25 and 4.37 combine as in the case n s 1 by

Ž .using the pyramid scheme argument to imply that h A G 0.
Some trial and error using Mathematica suggests that we choose

< < < < < <l, q , q , q , a, b, c, d, e so that the coefficients of B , B , B ,0 1 2 3, 0, 0, 0 2, 0, 0, 1 1, 0, 0, 2
< < < <B and B are 0. This gives the following equations:0, 1, 1, 1 0, 1, 0, 2

0 s b y q3 ,0

0 s lq y q2 y b 1 y q2 y 2 a,Ž .0 0 2, 0, 0, 1 0

22 20 s 2lq y q q 2b 1 y q y c 1 y q y d ,Ž . Ž .1 0 1, 0, 0, 2 0 1, 0, 0, 2 0

0 s lq y q q y b 1 y q2 y b q e,Ž .0 1 2 0, 1, 1, 1 0

22 20 s 2lq y q q 2b 1 y q y c 1 y q y e.Ž . Ž .1 1 0, 1, 0, 2 0 0, 1, 0, 2 0

Ž .Solving these equations simultaneously with 4.20 gives

l s 0.60485 . . . , q s 0.41507 . . . , q s 0.45556 . . . ,0 1

4.39Ž . q s 0.55109 . . . , a s 0.01042 . . . , b s 0.07151 . . . ,2

c s 0.16332 . . . , d s 0.10481 . . . , e s 0.09356 . . . .

With these values of the parameters, it is straightforward, though some-
< <what tedious, to check that the coefficients of the other B are nonnega-i, j, k , l

tive, and that all the inequalities we have assumed in this argument actually
hold. We give a few examples:

Ž . Ž 2 . 31. Equation 4.11 is satisfied since 2 q y q s 0.3037 . . . , q y q s1 2 0 2
0.2477 . . . .

Ž . Ž . Ž .2. Bound 4.17 holds, since the right-hand side of 4.16 minus 4.17 can be
written as

0.1688 . . . d u q d uŽ . Ž .2 3

y 0.1475 . . . d u d u q d u d u q d u d uŽ . Ž . Ž . Ž . Ž . Ž .1 2 1 3 2 3

q 0.0614 . . . d u d u d u .Ž . Ž . Ž .1 2 3

It is obvious that this is nonnegative when any one of the d ’s is 0. The
Ž . Ž . Ž .value of this expression is 0.0111 . . . when d u s d u s d u s1 2 3

1 y q2 s 0.8277 . . . , and therefore it is nonnegative in the entire cube0
w 2 x30, 1 y q .0
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Ž . Ž . Ž .3. Bound 4.19 holds, since the right-hand side of 4.18 minus 4.19 can be
written as

0.1688 . . . d u q d v q d vŽ . Ž . Ž .2 1 2

y 0.1694 . . . d u d u q d v d vŽ . Ž . Ž . Ž .1 2 1 2

y 0.1040 . . . d u q d u d v q d vŽ . Ž . Ž . Ž .1 2 1 2

q 0.0582 . . . d u d u d v q d u d u d vŽ . Ž . Ž . Ž . Ž . Ž .1 2 1 1 2 2

qd u d v d v q d u d v d vŽ . Ž . Ž . Ž . Ž . Ž .1 1 2 2 1 2

y 0.0326 . . . d u d u d v d v .Ž . Ž . Ž . Ž .1 2 1 2

Again, it is easy to check that this is nonnegative whenever two or more of
the d ’s are 0. Up to symmetries, that leaves three corners of the cube
w 2 x40, 1 y q to check explicitly, and the above expression is nonnegative at0

Ž . Ž . Ž .those three corners. Bounds 4.22 , 4.23 and 4.25 are similar, except
that there are more corners to check. Using Mathematica, this is not
difficult.

4. Here are the values of the b and c which are needed in passingi, j, k , l i, j, k , l
Ž . Ž .from 4.28 to 4.29 , rounded to four decimals:

b s 0.0700, b s 0.0602, b s 0.0503,2, 0, 0, 1 1, 1, 0, 1 0, 2, 0, 1

b s 0.0365, b s 0.0266, b s 0.0157,1, 0, 1, 1 0, 1, 1, 1 1, 0, 0, 2

c s 0.0835, b s 0.0389, c s 0.0969.1, 0, 0, 2 0, 1, 0, 2 0, 1, 0, 2

Also, with these values, one finds that
22 22 1 y q b y 1 y q c s y0.0312 . . . ,Ž . Ž .0 1, 0, 0, 2 0 1, 0, 0, 2

22 22 1 y q b y 1 y q c s y0.0019 . . . .Ž . Ž .0 0, 1, 0, 2 0 0, 1, 0, 2

< < Ž . Ž .5. Here are the coefficients of B on the right-hand side of 4.29 q 4.35 ,i, j, k , l
rounded to four decimal places:

3, 0, 0, 0 0.0000, 2, 1, 0, 0 0.0034,Ž . Ž .
2, 0, 1, 0 0.0099, 2, 0, 0, 1 0.0000,Ž . Ž .
1, 2, 0, 0 0.0062, 1, 1, 1, 0 0.0110,Ž . Ž .
1, 0, 2, 0 0.0121, 1, 1, 0, 1 0.0018,Ž . Ž .
1, 0, 1, 1 0.0038, 1, 0, 0, 2 0.0000,Ž . Ž .
0, 3, 0, 0 0.0082, 0, 2, 1, 0 0.0113,Ž . Ž .
0, 2, 0, 1 0.0019, 0, 1, 2, 0 0.0102,Ž . Ž .
0, 1, 1, 1 0.0000, 0, 1, 0, 2 0.0000.Ž . Ž .

Ž .Inequality 4.38 is also easy to check. Thus we have proved that l F 0.6051
as required.

We conclude this section with a remark. Using part of the above argument
Ž .it corresponds to the case in which all d ’s are 0 , it is not hard to show that
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Ž .q , q , q , l can be chosen so that h A G 0 for all connected sets A if l lies0 1 2
above the one obtained by solving

3lq s 1, 2lq s q ,2 1 2

2 22 q y q s q q q q ,Ž . Ž .4.40Ž . 2 1 0 0 2

2 22 lq q q s q q q q q 2 q q q q .Ž . Ž .Ž .0 2 0 0 1 1 0 2

This condition is also necessary, as can be seen by considering the four
� 4 � 4 < < � < < 4connected sets: A s x , A s x, y with x y y s 1, A s y: x y y F N1 2 3

for a fixed x and large N, and A , which is obtained from A by adding one4 3
Ž .neighbor to each boundary point of A . The solution of 4.40 is given by3

q s 0.4485 . . . , q s 0.4795 . . . , q s 0.5654 . . . , l s 0.5895 . . . .0 1 2

Ž .Thus we lose about 0.015 in our bound by having to prove h A G 0 for
disconnected sets also. It is certainly possible that one could improve our
proof to get l F 0.5895 . . . , but there is little reason to do so.1

REFERENCES

Ž .DURRETT, R. and SCHINAZI, R. 1995 . Intermediate phase for the contact process on a tree. Ann.
Probab. 23 668]673.

Ž .GRILLENBERGER, C. and ZIEZOLD, H. 1988 . On the critical infection rate of the one dimensional
basic contact process: numerical results. J. Appl. Probab. 25 1]8.

Ž .HOLLEY, R. and LIGGETT, T. M. 1978 . The survival of contact processes. Ann. Probab. 6
198]206.

Ž .LIGGETT, T. M. 1985 . Interacting Particle Systems. Springer, New York.
Ž .LIGGETT, T. M. 1995 . Improved upper bounds for the contact process critical value. Ann.

Probab. 23 697]723.
Ž .LIGGETT, T. M. 1997 . Branching random walks and contact processes on homogeneous trees.

Probab. Theory Related Fields. To appear.
Ž .MADRAS, N. and SCHINAZI, R. 1992 . Branching random walks on trees. Stochastic Process. Appl.

42 255]267.
Ž .MORROW, G., SCHINAZI, R. and ZHANG, Y. 1994 . The critical contact process on a homogeneous

tree. J. Appl. Probab. 31 250]255.
Ž .PEMANTLE, R. 1992 . The contact process on trees. Ann. Probab. 20 2089]2116.
Ž .STACEY, A. M. 1996 . The existence of an intermediate phase for the contact process on trees.

Ann. Probab. 24 1491]1506.
Ž .WU, C. C. 1995 . The contact process on a tree: behavior near the first phase transition.

Stochastic Process. Appl. 57 99]112.
Ž .ZHANG, Y. 1996 . The complete convergence theorem of the contact process on trees. Unpub-
lished manuscript.

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF CALIFORNIA

LOS ANGELES , CALIFORNIA 90024
E-MAIL: tml@math.ucla.edu


