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PACKING AND COVERING INDICES FOR A GENERAL
LEVY PROCESS

By WiLLiam E. PruiTT! AND S. JAMES TAYLOR
University of Minnesota and University of Virginia

There has been substantial interest in the indices 0 < " < B’ < B <
2, defined by Blumenthal and Getoor, determined by a general Lévy
process in R%. Pruitt defined an index y which determines the covering
dimension and Taylor showed that an index y’, first considered by
Hendricks, determines the packing dimension for the trajectory. In the
present paper we prove that

g < vy <min(B,d),

and give examples to show that the whole range is attainable. However,
we cannot completely determine the set of values of (y, ', 8) which can be
attained as indices of some Lévy process.

1. Introduction. Let X, be a Lévy process taking values in R% The
question of interest here is the nature of the random trajectory of the process.
Blumenthal and Getoor [1] introduced an upper index B and two lower
indices B” and B’ and obtained certain properties of the sample paths of X,
in terms of these indices. They also showed that

0<pB" =B <B=<2.

Pruitt [8] showed that the Hausdorff dimension of the trajectory is y a.s.
where

(1.1) y=sup{a20: lim sup a_“flP[|Xt|Sa] dt<oo},

a—0 0
while Taylor [15] showed that the packing dimension (defined in [12]) of the
trajectory is y’' a.s. where

(1.2) 'y’=sup{a202 liminfa‘“/lP[|Xt|Sa] dt<oo}.
a—0 0
The index vy’ was first considered by Hendricks [4].
More precise information than just these fractal indices is already known
for special processes. We will not refer here to the well-known results about
Hausdorff measure functions, but we will refer to the newer results for
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972 W. E. PRUITT AND S. J. TAYLOR

¢-packing measures given in: [15] for Brownian motion for d > 3; [6] for
planar Brownian motion; [14] for strictly stable processes; [12] for asymmet-
ric Cauchy processes and the graph of any stable process; and [2] for
arbitrary subordinators.

Our object in the present paper is to obtain more information about the
possible values of the indices y and y'. We will show that given any pair &,
and &, satisfying 0 < 6; < 8, <2, we can define a Lévy process whose
trajectory has Hausdorff dimension §; and packing dimension §,. In Section
4 we will show that v’ is related to the index B8 by

(1.3) g < v <min(8,d),

and give examples in Section 5 which show that the entire range in (1.3) is
attainable. We have not solved the more difficult problem concerning the
exact set of possible values of (y,y’, 8) in R3. Looking at the three indices
simultaneously may introduce new restrictions.

Let S(a) be the first passage time out of the ball of radius a for X, and
T'(a,1) the sojourn time in the ball of radius a up to time 1. That is,

(14)  S(a) =inf{t > 0:|X,|>a}, T(a,1) = foll{lth < a)dt.

We will show in Section 3 that if T, and T, are independent copies of T, then
liminfa *[Ty(a,1) + Ty(a,1)] =0 as.ifa<vy/,
a—0

lima *[Ty(a,1) + Ty(a,1)] =~ as.if a> v
a—0

One would expect the simpler version of these statements to be true where
we simply look at the liminf of a~*T(a,1). This will lead us below to the
statement of a conjecture and an open problem concerning the connection
between the lower growth conditions satisfied by a process and the sum of
two independent copies of that process.

We will start with some preliminaries. We follow the customary practice of
letting ¢, k£ denote finite positive constants whose value is unimportant and
may change from line to line.

2. Preliminaries. The definition and properties of Hausdorff measure
are well known; see, for example, Rogers [13]. The packing measure was
defined more recently in [15], so we recall two versions of it. The measure
functions ¢ under consideration map [0, 1] — [0, 1], are increasing, continu-
ous with ¢(0) = 0 and satisfy a regularity condition: there is a constant ¢ > 0
such that

¢(2x) < cd(x), 0<x<3.

For any collection # of bounded subsets of R?, let
¢(%) = )2 ¢(Diam E),

Ee®
IZ]l = sup{diam E: E € ¢}.
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For a fixed subset E of R?, &, denotes the family of balls B,(x) of radius
r >0 and center x € E, and I'%* the family of semidyadic cubes whose
central cubes intersect E. To make this precise, C € I';* has a projection on
the ith axis

proj;C[k,27" 1, (k; + 2)27" 1],
with %k, € Z, and there is an x € E such that the complement of C is at

distance 27"~ 2 from the (unique) dyadic cube of side 27" 2 which contains x.
We define

¢ — P(E) = limsup{¢(%): [|Z|l < ¢, disjoint Z C 3},
-0
¢ — P**(E) = limsup{¢(#): %]l < &, disjoint & < [*}.
-0

These two functions are defined on all subsets of R Their properties are
explored in [12], but we note here that they are premeasures and there are
positive finite constants c,, ¢, such that, for all E c R¢,

ci¢ —P*(E) < ¢ —P(E) <cyd — P**(E).
The final step is to generate outer measures
¢ —p(E) =inf{3,¢ — P(E,): Ec UE}},
¢ —p**(E) = inf{3,¢ — P**(E,): EC UE,;}.
We call ¢ — p the ¢-packing measure and use ¢ — p** as a computational
aid, since both measures have the same class of sets having finite positive

measure. Both measures are Borel regular and have good topological proper-
ties. The following density theorem, proved in [15], is a key tool.

THEOREM 1. Suppose u is a finite Borel measure on R¢ and ¢ is a
measure function as described above. Then there is a constant A > 0 such
that, for all E c R,

Ap(E) inf A(x) < ¢ = p(E) <l ulisup A(x),

xekE

where

o ¢(2r)
)= B B Gy

In the present paper, we are interested only in the fractal indices deter-
mined by the Hausdorff and packing measure for the functions ¢(s) = s?,
a > 0. For any set E C R¢, define

dim E = inf{a > 0: s* — m(E) = 0},

Dim E = inf{a > 0: s* — p(E) = 0},

called the Hausdorff and packing dimensions of E. Since
¢—m(E) <¢—p(E) forall E,
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we clearly have
0 <dim E <Dim E <d,
and, given «, B satisfying 0 < a < 8 < d, it is not difficult to construct a
deterministic set £ ¢ R? for which dim E = «a, Dim E = B.
A Lévy process is one with stationary independent increments, taking
values in R¢, and characteristic function

Eexp{i(u, X,)} = exp{ —t¥(u)},
where
. i(u,x
1+ x|

v(u) =i(b,u) + [

with b € R? and v a Borel measure on R? satisfying

v(dx),

It is also customary to include a Gaussian part, but since its behavior is well
known we will omit this component in order to simplify the formulas. We will
assume that X, = 0, and that we are dealing with a version which has
almost all sample functions right continuous and having left limits.

We define, for x > 0,

(21)  G(x) =v{y:lyl>x},  K(x) =22 |ylv(dy),

lyl<x

(22) M(x)=2"b+ [ Yol ) [ ()|,

2V 2
lyl<x 1 + || lyl>x 1 + [yl
(23) Q(x)=G(x)+ K(x), h(x) =Q(x) + M(x).
The function % is fairly well behaved; in particular, for C > 1,

1 h(Ca)
— < — < 2.
2C%* ~ h(a)
Furthermore, if we let M, = sup,_,_,|X,|, then there exists C > 0 such that
C
<—73.
(th(a))

(See (3.2) and the remark on page 951 of [10].) These tail estimates for M,
lead immediately to similar estimates for the first passage time S(a), and one
easily obtains (see Theorem 1 in [10])

ES(a) = {h(a)} ' = E{S(a) A 1}
~E{S(a) A {h(a)} '}, O<a<l.

(The symbol = here means that the ratio of the two sides is bounded above
and below by finite, positive constants.)

(2.4)

(2.5) P{M, > a} < Cth(a), P{M, < a}

(2.6)
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We now recall the definitions given by Blumenthal and Getoor [1] of the
indices that will be relevant here:

(2.7) B =infla > 0:r*G(r) - Oas r — 0},
L ‘ wa 1 —exp[—Rey(x)] _
(2.8) B —sup{a>0./|x| Re y() dx < .

When d =1 and the process is increasing, that is, a subordinator, it is
customary to use the Laplace transform instead of the characteristic function:

Eexp(—uX,) = exp(—tg(u)),

where

(2.9) g(u) = fo (1 — e “*)p(dx).

For a subordinator, it is clear that

(2.10) B=inf{la> 0:u " "g(u) - ©as u — »}.

For subordinators, Blumenthal and Getoor considered, in addition to B’, the
lower index

(2.11) o=sup{a>0:u"g(u) > ©asu — ©}.
We recall that for any subordinator
0<B <o=x<B=x1.

The indices v, y' defined in (1.1) and (1.2) which give the Hausdorff and
packing dimensions, respectively, of X[0, 1] satisfy the inequalities
O<pB' Ad=<y=<vy <BAd.
In case X is a subordinator y = o, while if X is a symmetric process
v=pB Ad.
Hawkes and Pruitt ([3], Theorem 3.1) obtain a uniform upper bound for the
Hausdorff dimension of X(E) in the following form.

THEOREM 2. Let X, be a Lévy process with upper index B. Then
P{dim X(E) < Bdim E forall ECR*} =1

For the purpose of constructing examples, we note the following theorem
which is a corollary of more precise results in Perkins and Taylor [7].

THEOREM 3. IfY, is any strictly stable process of index « in R?, a <d,
then, with probability 1,

dimY(E) = adim E
and
DimY(E) = a Dim E,
uniformly for all Borel E.
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The first result of this type was obtained for planar Brownian motion by
Kaufman [5].

3. Implications of the packing dimension result. In order to explore
its meaning and to state two natural problems, we will repeat the proof that
Dim X[0,1] = v’ a.s. It is relatively easy given the preliminary results that
have been mentioned. Let T'(a, 1) denote the sojourn time in the ball B,(0) up
to time ¢ = 1 [see (1.4)]. Then

ET(a,1) = folP{lth < a}dt.

As usual, we consider the occupation time measure for the trajectory given by
po(A) =l{t € (0,1): X, € A},

where |- | denotes the Lebesgue measure. Note that, for 0 < ¢ < 1,

1 t+1
o B X)) = [, (X) ds < [ 15 0x,(X,) ds

3.1 0 1
(3-1) = f_llBa(X,)(XHs) ds + /0 lBa(Xt)(Xt+s) ds

=Ty(a) + Ty(a),

say. By the stationary and independent increment properties of Lévy pro-
cesses, T1(a) and T,(a) are independent and both have the same distribution
as T(a,1). Thus

Ep,(B,(X,)) < 2ET(a,1).

By the definition of 7’ [see (1.2)], if 0 < a < v/, liminfa *ET(a,1) = 0, so
that by Fatou’s lemma

liminf o™ %, (B,(X,)) =0 aus.
To this point, ¢ has been fixed, but now Fubini gives
|{t € (0,1): liminfa %, (B,(X,)) = 0as.}| = 1.

Next, an application of Theorem 1 gives s® — p(X[0, 1]) = +x a.s. Allow-
ing « to increase to y’' through a countable set then shows that

(3.2) Dim X[0,1] > vy a.s.
In the other direction, we start with v < § < a. Then
a °ET(a,1) > +=»

as a — 0. Semidyadic cubes of side 27* cover R? 2¢ times. Using Lemma 5.1
of [11], if N, is the number of such cubes hit by X[0, 1], then

(3.3) EN, =0(2%°) ask - =.
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Even if we do not require the cubes to have a point of X[0, 1] in their central
area and if we also forget the requirement that they be disjoint, packing by
cubes of side at most 27 leads to the estimate

Es® — P**(X[0,1]) <C Y 27%*EN, < Y 27%"9 50 asm — o;
k=m k=m

we have used (3.3) at the last step. Hence s* — P**(X[0, 1)) = 0 a.s., which in
turn implies that s* — P(X[0,1]) =0 a.s. by the comparison mentioned
above. Allowing « to decrease to y’' through a countable set then gives

Dim X[0,1] <y’ a.s.

With (3.2), this completes the proof of the packing dimension result.

The definition of y’ involves the lower growth rate of ET(a,1) as a — 1.
We can deduce, from what we have done, an almost sure local growth rate for
T(a,1), as follows.

THEOREM 4. If X, is a Lévy process, T\(a, 1) and Ty(a, 1) are independent
copies of T(a, 1), the corresponding sojourn time process defined by (1.4), and
v' is the index defined in (1.2), then, with probability 1:

@ for a < vy, liminf a™*(Ty(a, ) + Ty(a, 1)) = 0;
() for a > vy, a *(Tya,1) + Ty(a,1)) - .

Proor. (i) follows from Fatou’s lemma as in the proof of the first part of
the packing dimension result above. If (ii) fails and 7' < § < «, then with
positive probability liminf a ~°(T(a, 1) + Ty(a, 1)) = 0. By using the estimate
in (3.1) and Fubini, we see that

|{t € (0,1): P{liminf a =, (B,(X,)) = 0} > 0}| > 0.

By Theorem 1, it would then follow that s° — p(X[0,1]) = +« with positive
probability, contradicting the above packing dimension result. O

COROLLARY. For any Lévy process,

y =inf{la > 0: a *(Ty(a,1) + Ty(a,1)) > ©asa — 0 a.s.}.

PrOBLEM A. It is true that

Y =infla>0:a *T(a,1) > casa - 0a.s.}?
We believe this has to be true and even state a much stronger conjecture.

CONJECTURE. If ¢ is a monotone function such that

T(a,1)
liminf —— < C a.s.

a-0  ¢(a)
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and h is a monotone function such that
[ s7'h(s)ds <,
O+

then

lim inf h(a)(Tl(a,l) * To(e, 1)) =0 a.s.

a0 é(a)

Existing results about particular processes show that the lower growth
rate of Ty(a,1) + Ty(a,1) may differ from that of T(a,1) by a factor of
llog al(logllog a)?%, but no examples are known where the ratio is as great as
log al'**.

ProBLEM B. For a monotone stochastic process Z(a), what conditions are
sufficient to ensure that 8, = §,, where

8, =infla>0:a""Z(a) > »asa - 0 a.s.},

8, =infla > 0: a *(Zy(a) + Z,(a)) > »asa - 0 a.s.}

and Z,, Z, are independent copies of Z?

We note that a solution to Problem B could provide an affirmative answer
to Problem A.

4. Inequalities relating y' and B. We start with some lemmas that
give information about the growth of the functions G, K and M defined in
(2.1) and (2.2). Similar results were obtained in [9] for @, but these were
easier since @ is continuous. The function M is more complicated, and G and
K depend only on the Lévy measure of the complements of balls centered at
the origin. Recall the definitions:

G(x) = v{y:lyl>x),  K(x)=x2[ |yfu(dy),

lyl<x

My =x s [ 22 iy - sv(dy)|,

|y|<x1+| lyl> 1+|
Q(x) = G(x) + K(x), h(x)=@Q(x) +M(x)-
LEMMA 4.1. For 0 <x <y,

lyM(y) —xM(x)| < min{y(G(x) - G(y)),x Y(y*K(y) — sz(x))}
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PrOOF. Applying the inequality ||u| — |v]| < |u — v| yields

lyM(y) — xM(x)| <

z|z]? 4 z 4
e — + [ —
’[E1+|2|2V( %) fE1+| v(dz)

z|?

=‘fE2v(d2) < fE|z|v(dZ),

where E = {z: x < |z| < y}. The first inequality is now clear, and the second
follows on replacing the integrand |z| by x~1z)% O

LEMMA 4.2. If either

K(x)

lim = G(x) _
x—0 M(x)

=0

or

then xM(x) is slowly varying at 0.

Proor. Letting y = Cx in Lemma 4.1 yields
CxM(Cx) G(x) xM(x)
xM(x) = M(x)’ ~ CxM(Cx)

K(Cx)
=Y M(Cx)

Letting x — 0 completes the proof. O

LEMMA 4.3. If 0<a<1 and G(z) <a (1 — a)M(z) for x <z <y,
then z%(G(z) + M(z)) is decreasing on [x,y]. If 1 <a<2 and K(z) <
2 - a) (a—1M(z) for x <z <y, then z*(K(z) + M(z)) is increasing on
[x, 5]

REMARK. The stronger result that if G(z) < o 1(1 — a)M(2z) on (x, y),
then z*(G(z) + M(z)) is nonincreasing on [ x, y] follows by a perturbation
argument. This is comparable to the results for @ in [9].

ProoF. First note that G, K, M are all right continuous and have left
limits. Letting x ~ y in Lemma 4.1, we have

IM(y) —M(y )l <min(G(y~) - G(y),K(y) —K(y7));
the two terms on the right are equal. Thus, at any discontinuity G + M can
only jump down while K + M can only jump up. Now, let

u =sup{v >x: 2*(G(z) + M(z)) is decreasingon [ x,v]}.

We will show u > y. First z%(G(z) + M(z)) decreases on [ x, u] if u > x since
this function can only jump down. Next, if u < j, since G and M are right
continuous, you may choose v > u such that

Gw) 1-a
£ 5% Mw) * e
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Then, for u < w < z < v, we have, by Lemma 4.1,
zM(z) +2G(z) < wM(w) + z2G(w),
so that, for 0 < a < 1,
(4.1) z*(M(z) + G(2)) <wz* " 'M(w) +2z°G(w).
The derivative with respect to z of the function on the right is
27 (a - Dwz"'M(w) + aG(w)] <0,
provided that
aG(w)
(1-a)M(w)

Thus, if we also require z < (1 — a)(aé) *u, we have

(4.2) wz™t >

wzl>ux™t > (1- a)_lag,
so that (4.2) holds. Then, by (4.1),
z(M(z) +G(2)) <w*(M(w) + G(w)),
so that z*(M(z) + G(z)) is decreasing on [x,v A (1 — a)aé) 'u] which

strictly contains [ x, «]. This is impossible so we must have u > y. The other
statement in the lemma is proved in the same way. O

Now we are ready to prove the inequalities for y'.
THEOREM 5. For any Lévy process in R%, we have
B _
YA S <Y <BA d,

where v,y are defined in (1.1) and (1.2) and B is the upper index of
Blumenthal and Getoor defined in (2.7).

ProoF. The inequality y < y' is immediate from the definitions. Since
B < 2, we only need to prove y' < d when d = 1. If not, choose a;, — 0 so that
a, 'ET(a;,1) — 0, and partition [ -1, 1] into intervals of length a,. Let T} be
the time spent in the jth interval before time 1. By starting over when we hit
this interval we see that ET; < ET(a,;, 1). Thus

ET(1,1) < (2a;* + 1)ET(q,;,1) > 0,

so ET(1,1) = 0, a contradiction. It remains to prove the inequalities involv-
ing B. We will use the definition

p = inf{a = 0: lim a“h(a) = 0}.

This is equivalent to (2.7)—see page 954 of [10]. (If there is a Brownian
component, 8 = 2.) By using the inequalities (3.2) of [10] (see Theorem 1 of
[10] for a similar argument), it is easy to see that

ES(a) = (h(a)) ' = E(S(a) A 1).
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Then the inequality E(S(a) A 1) < ET(a,1) leads to y’ < B. [If there is a
Brownian component, then E(S(a) A 1) = a?, so y' < 2 = B.] The final in-
equality B/2 < y' requires more work, and we must consider three cases. If
B = 0, there is nothing to prove.

B < 1. First note that there exists p < 1 such that

a’M(a) <a’h(a) — 0.

Thus aM(a) is not slowly varying, and so

. G(x)

P M (x)
by Lemma 4.2. Choose a € (0, 8). Then there exists a, — 0 such that

aph(a,) > 1.
Now choose 7 < a (1 — @) and 5 < lim sup G(x)/M(x) and define
b, = sup{x < a,: G(x) = nM(x)}.

Then b, > 0 and b, — 0. If M(a,) > K(a,), then since G(x) < nM(x) for
b, <x < a, we have, by Lemma 4.3,

>0

ayh(ay) 1
bif(G(by) + M(by)) = ai(G(ay) + M(ay)) > —5—— = 5.

Then, since G + M can only jump down, we can find ¢, < b, such that
cih(ey) = ¢ (G(ey) + M(cy)) = 1,

and G(c,) > nM(c;,). Letting d, = ¢, in this case or d, = a, in the case
M(a,) < K(a,) we have

(4.3) dih(d,) = 3 and Q(d,) = (n A 1)M(d,),
and d, — 0.
The rest of the proof will also be used in case 8 > 1. If
K(x)
li =0
a0 G(x)

then by Lemma 2.4 of [7] we have a®*/?2Q(a) » for a < a,. (This lemma was
proved for distribution functions instead of Lévy measures, but the proof
applies in either case.) Then, by (4.3),

dy*/? < 4dg/?h(d,) < Cdi/?Q(d,) < Cag’*Q(ay)

for large %, a contradiction. Thus we may choose ¢ so that

4.4 1 p ( ) d Py
() <c¢ < limsu an < «a

and define
e, =inf{x > d,: K(x) > cG(x)}.
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Note that e, — 0. Since K(x) < cG(x) for d; < x < e, we have x*Q(x) » on
[d,,e,] by Lemma 2.4 of [9], where A = 2¢(1 + ¢)™! < a. Thus x“Q(x) ~
also, so, by (4.3),

(4.5) efQ(e,) > dpQ(d,) > Cdyh(d,) = C,.
Since K and G are right continuous, K(e,) > c¢G(e,) so that
(4.6) (L+c HK(e,) = Q(e;).

Finally, by page 955 of [10], (4.6) and (4.5)
1 t C 2C
ET(e,,1) = [Plx)<e)) < [[————5dt = ———
(er,1) '[0 {lx,| < e} </;) {tK(ek)}1/2 {K(ek)}1/2
C,
— <
{Qe))””

Thus y' > a/2, which is sufficient since « is arbitrary in (0, 8).
B > 1. First, there exists p > 1 such

(4.7) limsupa®h(a) = «.

a—0

a/2

< C,ep

If K(x)/M(x) — 0, then
x(K(x) + M(x)) ~xM(x) and is slowly varying
by Lemma 4.2. Then, by (4.7), A(x) ~ G(x) as x — 0. Take a« € (1, 8) and
find a, — 0, so that afh(a,) > 1. Since
Q(ay) = G(ay) ~ h(a,) = M(a,),
in this case we have (4.3) with d, = a, and n A 1 replaced by ;. It remains to
consider the case when

Lo K(x)
im sup > 0.
x—0 M(x)

In this case choose
K(x)
M(x)

7 < lim sup

and 7 < (a — 1)X(2 — &)~ !, and define

b, = inf{x > a,: K(x) = nM(x)}.
Note that b, — 0. Since K(x) < nM(x) for a, <x < b, we have, using
Lemma 4.3, if G(a,) < M(a,), then

. . . arh(ay) 1
byh(by) = by (K(by) + M(b,)) > ay(K(ay) + M(ay)) > 9 9
In this case we take d, = b,, while if G(a,) > M(a,) we take d, = a,, and
we see that (4.3) holds in either case. The proof is complete in this case as in

the final paragraph of the case 8 < 1.
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B = 1. In this case, we use subordination to reduce it to the case when
B < 1. Let Y, = X;; where U, is a stable subordinator of index o < 1. Then
we have B(Y) = o B(X) = 0 < 1, so that y'(Y) > 0/2 by the above argu-
ment. But Y([0,1]) < X([0, U; ], so that, with probability 1,

S

¥(X) = Dim X[0,U,] > Dim Y[0,1] = y(¥) > 5.
Since o is arbitrary, we must have y'(X) > 1. O

5. Examples. We give a variety of examples which show that the bounds
in Theorem 5 are sharp. We start with a subordinator since these are easy to
work with. We must have y=0¢ and 7' = 8 for any subordinator. [See
Theorems 1 and 3 of [8] and page 954 of [10], along with the observation that
S(a) A 1 =T(a,1) for a subordinator.] Then B8 and o are relatively easy to
compute.

ExampLE 1. Given any v,y with 0 = y < v’ < 1, there is a corresponding
subordinator. Take B8 € [0, 1], let

x, = exp(—kY), P =xi,
and consider the Lévy measure which assigns mass p, to the point x,. [If
B =1,use p, = x;, ! exp(—k"*~V/2)] Since Y x, p, < =, this is permissible. By
(2.7), it is clear that B is the upper index, and so y' = B. Noting that, if
0 < B < 1and % is large,

© k—1 0
g(u) =Y (1 —exp(—ux;))p; < X p;+ X ux;p; <2(p,_, +ux,p,)
j=1 j=1 j=k

for all u, we see that if @ > 0 and u,, = (x,_;)"'/*, then
w 1- 1-1/a 1-
upg(uy) <2(x,_1) P+ 2(x,_,) V2P 0.
If B =1, then x, p, is different, but the argument works in the same way. If

B = 0, then the sum of the first 2 — 1 p’sis & — 1, but this still will approach
0 when multiplied by u, “. Thus we have

liminfu~*g(u) =0

u—®

for all @ > 0andsoy=0=0.

To obtain a subordinator with indices 0 < y < 7y’ < 1, it is sufficient to add
a continuous part to the Lévy measure, with density x~?~!. This will not
change the upper index vy’ but will increase the lower index to o = .

ExampPLE 2. Given 0 < y <y’ < land B/2 < 7' < B A 1, there is a corre-
sponding symmetric process in R. With x, as above, we use a Lévy measure
that has mass x;¢ at +x, and, in addition, has a density lx|"*"1 on the
entire real line. The parameters are to satisfy

0<¢é<2 and 0<a<éAL
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Then it is clear from (2.7) that 8 = &, and one may show that y = « quite
easily but computing vy’ is more difficult. To do this, we will use the form of
the characteristic function of X, given by

Eexp(iuX,) = ¢ 1™,
where

y(u) = f(l — cos ux)v(dx),

and v is the Lévy measure. In this case, we see that ¢(u) > cu® so that the
characteristic function of X, is integrable for all £. This means that X, has a
density p(#, x), and we can use the inversion theorem for it in the following
computation of the expected sojourn time:

ET(a,1) =f01P{|Xt| <a) =f01f_“ p(t, x) ddt

(277)71/‘1fa fe‘“”(”) cos ux du dx dt
0“7-a

. sinua 1
= 5w

To obtain estimates, we first consider . If (x,) ! <u < (x,,,)" ', then ¢ is
comparable to ; + i, + ;3 where

a —¢ 2—-¢
Pr(u) =lul,  da(u) = () (1 —cosuxy),  s(u) =u(x,q)" .
The last term comes from using the approximation 1 — cos ux; = (ux j)z for

J = k + 1. The terms like i,, but with j < %k, are dominated by ¢,. Then ¢ is
comparable to the maximum of these three terms. We obtain

lp(u):lpl(u)-i'lllg(u), (xk)_1<u<(xk)—§/a,
P(u) = n(w), () % <u < (x,, ) F /e

W) = Py(u), (201) 279 <u < ()

On the first of these intervals, both terms play a role due to the periodicity of
¥, We may now use these estimates to obtain good estimates of the expected
sojourn time. One replaces sin ua by ua for |ual < 1, and uses the fact that
is large when u is large. The main contribution comes from

1/a du
e

[To consider the intervals (x,)"! < u < (x,)” ¢/, one must break them up
into smaller intervals of the form (27 /x,,27(l + 1)/x,), and then subdivide
these further to reflect which of i, ¢, is larger.] For the range of ¥ when
|lual > 1, one bounds the sin term by 1 and shows that even the integral of the
absolute value is smaller than the term above. However, in some cases the

(1 —e ") du.
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two terms are the same order of magnitude so that some care is required. We
omit the details. To describe the result, let

— —a)? — —
a, = xf/°, b, = x{i—taria)/@-ar? ¢, = a2/,
Then
a’, i1 <a<a,,
ET(a,1) = {a*/?x}/?, a, <a<b,,
—@-¢)Xl-a)/@-
ax; @ EA-0/Ca), b,<a<c,.

This gives y = «, as mentioned above, while

) 2a +2¢&—2a?% — 2¢a + £a
Bl 4 —4a+ éa ’

Y
this power is achieved at a = b,. ¥’ is an increasing function of both
parameters. To obtain the first class of examples, fix a = vy, and let ¢ vary
over (a,2). Then v’ varies over the interval («,1). For the other class of
examples, we fix ¢ = B, and let « vary over the interval (0, ¢ A 1). Then v’
varies over the interval (B/2, B A 1).

By an easy modification of this example, we can achieve y' = 8/2 at the
cost of having y = 0: it is sufficient to omit the component of the Lévy
measure with density |x|”* *. We remark that y' = /2 is also achieved by
Brownian motion on R; in that case

ExamMpPLE 3. To obtain values of y or 7y’ larger than 1, we must use
examples in R% To obtain 1 < y= 9’ < 8, we use a process with stable
components, that is, we run independent stable processes of indices 1 V a, <
ay, a; > 1, on the coordinate axes. Then by Lemma 5.1 of [11],

1)
1-—].
51

Letting «, vary over (0, a,] gives the desired range of y'.

B=a;, and y=79 =1+ o

ExXAMPLE 4. To obtain 0 < v < v when 7' > 1, we use planar Brownian
motion subordinated by the subordinator of Example 1. Let B, be planar
Brownian motion and consider By with X, as in the first example with
indices y/2 and y’/2. By Theorem 3,

¥(By,) = dim(By [0,1]) = 2dim(X,[0,1]) = 2(%) .

with a similar argument for v’ using packing dimension.



986 W. E. PRUITT AND S. J. TAYLOR

REFERENCES

[1] BLUMENTHAL, R. M. and GETOOR, R. K. (1961). Sample functions of stochastic processes with
stationary independent increments. J. Math. Mech. 10 493-516.
[2] FrisTEDT, B. E. and TAYLOR, S. J. (1992). The packing measure of a subordinator. Probab.
Theory Related Fields 92 493-510.
[3] HawkEs, J. and Pruitt, W. E. (1974). Uniform dimension results for processes with inde-
pendent increments. Z. Wahrsch. Verw. Gebiete 28 277-288.
[4] HENDRICKS, W. J. (1984). A uniform lower bound for Hausdorff dimension for transient
symmetric Lévy processes. Ann. Probab. 11 589—-592.
[5] KaUFMAN, R. (1967). Une propriété metrique du mouvement brownien. C. R. Acad. Sci.
Paris Sér. I Math. 268 727-728.
[6] LE GALL, J.-F. and TAYLOR, S. J. (1987). The packing measure of planar Brownian motion.
In Seminar on Stochastic Processes 1986 130—148. Birkhauser, Boston.
[7] PERKINS, E. A. and TAYLOR, S. J. (1987). Uniform measure results for the image of subsets
under Brownian motion. Probab. Theory Related Fields 76 257—-289.
[8] Prurtt, W. E. (1969). The Hausdorff dimension of the range of a process with stationary
independent increments. J. Math. Mech. 19 371-378.
[9] Pruitt, W. E. (1981). General one-sided laws of the iterated logarithm. Ann. Probab. 9
1-48.
[10] PrurrT, W. E. (1981). The growth of random walks and Lévy processes. Ann. Probab. 9
948-956.
[11] PruirT, W. E. and TAYLOR, S. J. (1969). Sample path properties of processes with stable
components. Z. Wahrsch. Verw. Gebiete 12 267—-289.
[12] REzaKHANLOU, R. and TAYLOR, S. J. (1988). The packing measure of the graph of a stable
process. Astérisque 158 341-362.
[13] RoGERs, C. A. (1970). Hausdorff Measures. Cambridge Univ. Press.
[14] TAYLOR, S. J. (1986). The measure theory of random fractals. Math. Proc. Cambridge
Philos. Soc. 100 383-408.
[15] TAYLOR, S. J. and Tricot, C. (1985). Packing measure and its evaluation for a Brownian
path. Trans. Amer. Math. Soc. 288 679-699.

SCHOOL OF MATHEMATICS DEPARTMENT OF MATHEMATICS
UNIVERSITY OF MINNESOTA KERCHOF HALL
MINNEAPOLIS, MINNESOTA 55455 UNIVERSITY OF VIRGINIA

CHARLOTTESVILLE, VIRGINIA 22903
E-MAIL: sjt@virginia.edu



