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INCREASE OF LÉVY PROCESSES

By R. A. Doney

University of Manchester

A rather complicated condition is shown to be necessary and sufficient
for a Lévy process to have points of increase. A much simpler condition is
then shown to be sufficient in the general case, and necessary under certain
regularity conditions. The approach used here also gives a unified proof of
results for certain special classes of Lévy processes, which have previously
been obtained by Bertoin.

1. Introduction and results. If X is a real-valued Lévy process we say
that t > 0 is an increase time, and write t ∈ I, if there exist t′ ∈ [0, t) and
t′′ ∈ (t,∞) with

(1) Xs ≤Xt for s ∈ [t′, t], Xs ≥Xt for s ∈ [t, t′′].

Then it is clear thatP{I 6= \} is either 1 or 0, and we say thatX has increase
points (has no increase points) in the corresponding cases. This idea was in-
troduced by Dvoretzky, Erdös and Kakutani [12], who showed that Brownian
motion has no increase points. Originally, this was considered a remarkable
result, but simpler proofs have been given by a number of authors, includ-
ing Knight [17], Adelman [1] and Aldous [2], and the proof in Burdzy [11]
shows that it really follows from the solution to the two-sided exit problem
for Brownian motion. From this point of view it is not surprising that the
first investigation of this question for Lévy processes, which is Bertoin [3],
focussed on the special case of spectrally negative processes. For in this case
it is known that there is a function W (the scale function) such that the prob-
ability that X exits the interval [−a, b] (where a > 0, b > 0) at b is given
by W(a)/W(a + b). Indeed, although a different approach involving covering
with random intervals was used in [3], it is not difficult to see that Burdzy’s
proof for Brownian motion can be adapted to give Bertoin’s result, which is
that such a process has increase times if and only if

(2)
∫

0+

dx

W(x)
<∞.

Again, using different methods, Bertoin has shown in [5] that a strictly
stable process X has points of increase if and only if P{X1 > 0} > 1

2 , and
in [6] that a Lévy process which can “creep” downwards (see Millar [18] and
Rogers [19]) has no increase points. These results for special cases are all
compatible with the following conjecture, which is also due to Jean Bertoin
(private communication). Let X and X denote the supremum and infimum
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962 R. A. DONEY

processes, let T be a random variable which is independent of X and has an
exp(η) distribution (η > 0 fixed) and let F and F∗ denote the distribution
functions of X(T) and −X(T), respectively. The conjecture is that X has
points of increase if and only if

(3)
∫

0+

F(dx)

F∗(x)
<∞.

The purpose of this paper is to show that the method used by Burdzy [11]
(the original idea seems to stem from Adelman [1]) can be further adapted
to throw considerable light on this conjecture and at the same time give a
unified method of proof of most of Bertoin’s results. Specifically, if the first
passage processes σ and σ∗ are defined by σ(x) = inf{t: Xt > x} and σ∗(x) =
inf{t: −Xt > x}, x ≥ 0, we introduce a quantity R« defined for « > 0 by

R« =
{
X(σ∗«)−X(σ∗«), if σ∗« ≤ T,
∞, if σ∗« > T.

The case when 0 is not regular for (−∞, 0) being easily dealt with, our main
result is the following theorem.

Theorem. Any Lévy process X such that 0 is regular for (−∞, 0) for X
has points of increase if and only if

(4) lim
«↓0

{
F(«)+

∫ ∞

«
P{y < R« <∞}F(dy)

}/
F∗(«) <∞.

From this, we deduce the sufficiency of (3).

Corollary 1. If X is as in the theorem and (3) holds, then X has points
of increase.

In the opposite direction, an easy consequence of the theorem is one of
Bertoin’s results. [If X has a Brownian component, then it creeps downwards
[18], and Bertoin [6] shows that it has no points of increase. Unfortunately,
this does not seem to follow easily from (4).]

Corollary 2. IfX has no Brownian component and can creep downwards,
then X has no increase points and (3) does not hold.

Another of Bertoin’s results is the following corollary.

Corollary 3. If X is spectrally negative, then it has points of increase if
and only if (3) holds or, equivalently, if and only if (2) holds.

However, to state our main result in the opposite direction, we need some
notation. We write X̂ for the process we get by killing X at time T, so that
X̂t =Xt for t ≤ T, X̂t = cemetery point for t > T. The subordinators τ and H
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are the inverse local time at the supremum of X̂ and X̂(τ), respectively, and
µ and ν stand for the drift and Lévy measure of H. The potential measure U
of H is defined by

U(dx) =
∫ ∞

t=0
P{Ht ∈ dx}dt,

and we write U(x) = U{(0,x]}. Note that, since U(∞) < ∞ and X(T) is
the final value of H, we have F(x) = U(x)/U(∞). Furthermore, if V(x) =
ν{(x,∞]}, then in the case µ = 0 the link between U (and hence F) and V is
given by the relation

(5)
∫ x

0
V(x− y)U(dy) = 1, x > 0,

which was first proved by Kesten [16]. (See in particular Proposition 8 of [16]
for the case of a killed subordinator, which is what we need here.) Finally,
write τ∗, H∗, µ∗, ν∗, U∗ and V∗ for the corresponding quantities evaluated for
−X̂, and recall that X (and hence X̂) creeps downwards if and only if µ∗ > 0.

Corollary 4. Assume that X is as in the theorem, that µ∗ = 0 and

(6)
∫

0+
V∗(x)F(dx) = ∞.

Then X has no points of increase.

It follows easily from (5) that, if either V∗ or U∗ is regularly varying at 0,
then (see Section 3.5) limx↓0U∗(x)V∗(x) > 0; clearly whenever

(7) lim
x↓0

inf U∗(x)V∗(x) > 0,

then (3) is again necessary for X to have points of increase. However, it is not
difficult to show that (7) is not valid for all subordinators; whether the fact
that H∗ is a “ladder-height” subordinator can be exploited to establish (7) in
our situation is an open question. Finally, we mention that if H0 denotes the
analogue of H for the unkilled process X and U0 is the potential measure
of H0, then it is not difficult to show that the ratio F(x)/U0(x) is bounded
away from 0 and ∞ for all small enough x. This and the corresponding result
for U∗0 suggest that (3) is equivalent to what is in some ways a more natural
condition, namely,

(8)
∫

0+

U0(dx)

U∗0(x)
<∞,

and this is indeed true as will be shown.

Proposition. Conditions (3) and (8) are equivalent.
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2. Proofs. The cases when X or −X is a subordinator or X is a com-
pound Poisson process (i.e., a Lévy process which has zero drift, no Brownian
component and whose Lévy measure is finite) are of no interest and will be
implicitly excluded in what follows. Also if 0 is not regular for (−∞, 0) for X,
it is easy to see that X has points of increase, so we will also assume that 0
is regular for (−∞, 0).

We will say that t is a global increase point for X̂ if (1) holds with t′ = 0,
t′′ = T, and write Ĩ for the set of all global increase points. A simple, but
important, observation is that P{I 6= \} = 1 ⇔ P{Ĩ 6= \} > 0. We will
also write σ̂ and σ̂∗ for the first passage processes of X̂, so that, for example,
σ̂(x) = inf{t ≤ T: Xt > x}, with the usual convention that inf (\) = ∞.

Proof of the theorem. For each fixed « > 0 we define sequences of ran-
dom variables {Wn, n ≥ 0} and {Zn, n ≥ 1} as follows. We set W0 ≡ 0, Z1 =
σ̂∗(«) andW1 = inf{t > Z1: X̂(t) > X(Z1)} ifZ1 <∞, W1 = ∞ otherwise. If,
for n ≥ 1, Wn <∞ we write X(n)(·) =X(Wn+·)−X(Wn), Zn+1 =Wn+Z(n)

1

and Wn+1 = Wn +W(n)
1 , where Z(n)

1 and W
(n)
1 are Z1 and W1 evaluated for

X(n), and if Wn = ∞, then we write Wn+1 = Zn+1 = ∞. Next, for n ≥ 1 we
write A(«)

n = {Wn−1 <∞, Zn = ∞} and put A(«) = ⋃∞
n=1A

(«)
n so that

A(«) = {∃ 0 < t ≤ T: Xs ≤Xt for s ∈ [0, t] and Xs ≥Xt − « for s ∈ [t,T]}.

Clearly, as « ↓ 0, A(«) decreases to some limit, A say. Since we are as-
suming that 0 is regular for (−∞, 0), it holds that, with probability 1, X
does not jump upwards at any time t with Xt = Xt (see Corollary 1 of
Rogers [19]), that X(T) 6= 0 and, by time reversal, that X(T) 6= X(T);
it then follows that P(A) = P{Ĩ 6= \}. Now clearly the lack of memory
property of the exponential distribution and the strong Markov property give
P(A(«)

n ) = P{Wn−1 < ∞}P{Z1 = ∞} = [P{W1 < ∞}]n−1P{Z1 = ∞}, so that
P(A(«)) = P{Z1 = ∞}/P{W1 = ∞}. Of course, P{Z1 = ∞} = P{−X(T) ≤
«} = F∗(«). Therefore, it remains only to evaluate P{W1 = ∞}. But another
appeal to the strong Markov property at time Z1 gives

P{W1 = ∞} = P{Z1 = ∞}+P{Z1 <∞, W1 = ∞}

= F∗(«)+P
{
Z1 ≤ T, sup

0≤s≤T−Z1

(X(Z1 + s)−X(Z1)) ≤ R«

}

= F∗(«)+E{F(R«); R« <∞}

= F∗(«)+F(«){1−F∗(«)}+
∫ ∞

«
P{y < R« <∞}F(dy),

which establishes (4). 2

Proof of Corollary 1. If X has a Brownian component, then (see
Millar [18]) the drifts µ and µ∗ of H and H∗ are both positive. If κ(λ) =
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− log{E(e−λH1)} is the Laplace exponent of H, we have

(9) κ(λ) = µλ+
∫

(0,∞]
(1− e−λx)ν(dx),

where
∫
(0,∞](1− e−x)ν(dx) <∞, and also

(10)
∫ ∞

0
e−λxU(dx) = 1

κ(λ)
, λ > 0.

From (9) we have κ(λ) ∼ µλ as λ→∞, and using this in (10) gives U(x) ∼
cx as x ↓ 0, and hence F(x) ∼ cx as x ↓ 0. (Here and later c denotes a generic
positive constant whose value may change from line to line.) Similarly we get
F∗(x) ∼ cx, and it is easily seen that (3) cannot hold. If X has no Brownian
component but µ∗ > 0, then X creeps downwards and the next proof will
show that (3) cannot hold. So, assume µ∗ = 0, and also that V∗(0+) = ∞;
for if V∗(0+) < ∞, then we would have κ∗(∞) < ∞, which by (10) entails
U∗(0+) > 0 and hence F∗(0+) > 0. But then (3) is automatic; but it is also
clear that (4) holds. It then follows (see, e.g., Theorem 3.1 of Horowitz [15])
that, for all « > 0, x > 0,

U∗(«)V∗(«+ x) ≤ P{H∗ does not hit [«,«+ x]}

=
∫ «

0
V∗(«+ x− s)dU∗(s) ≤ U∗(«)V∗(x).

(11)

Moreover, U∗ is a renewal function (for a simple proof of this, see Bertoin
and Doney [8]) and hence for any c > 1 we have the bounds

(12) U∗(x) ≤ U∗(cx) ≤ cU∗(x).
Thus, when (3) holds, we also have

∫
0+{F

∗( 1
2x)}

−1F(dx) < ∞. Let Γ∗« denote
the overshoot of X̂ below −«, viz.

(13) Γ∗« =
{−«−X(σ̂∗«), if σ̂∗« <∞,
∞, otherwise,

so that

P{«+ x < R« <∞} = P{x < Γ∗« +X(σ̂∗«) <∞}

≤ P
{ 1

2x < Γ∗« <∞
}
+P

{ 1
2x < X(σ̂∗«) <∞

}
.

(14)

Clearly, P{ 1
2x < Γ∗« < ∞} ≤ P{H∗ does not hit [«,« + 1

2x]}, so we can
use (11), together with the inequality V∗( 1

2x)U
∗( 1

2x) ≤ 1, which follows
from the starred version of (5), to get P{ 1

2x < Γ∗« < ∞} ≤ U∗(«)/U∗( 1
2x) =

F∗(«)/F∗( 1
2x). To deal with the other term, note that P{σ̂∗« < ∞, X(σ̂∗«) >

1
2x}. F∗(« + 1

2x) ≤ P{σ̂( 1
2x) < ∞, X(σ̂( 1

2x)) > −«}. F∗(« + 1
2x) ≤ F∗(«),

so that P{ 1
2x < X(σ̂∗«) < ∞} ≤ F∗(«)/F∗( 1

2x). It then follows that
{F∗(«)}−1 ∫∞

« P{y < R« < ∞}F(dy) ≤ 2
∫∞
« {F∗( 1

2(y − «))}−1F(dy) →
2
∫∞

0 {F∗( 1
2y)}

−1F(dy) < ∞, and, since F(«)/F∗(«) ≤ ∫ «
0 {F

∗(y)}−1F(dy), the
result follows. 2
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Proof of Corollary 2. Let Ψ(s) = logE(esX1) denote the Lévy exponent
of X; then X̂ has exponent Ψ(s) − η and the Wiener–Hopf factorization can
be written as

(15) η · (η−Ψ(s))−1 = ψ(s)ψ∗(−s), Re(s) = 0,

where ψ(s) = ∫∞
0 esx dF(x) and ψ∗(s) = ∫∞

0 esx dF∗(x). Since X creeps down-
wards, µ∗ > 0 and, as we have already remarked, this entails F∗(x) ∼ cx

as x ↓ 0. Since F is subadditive (being proportional to the potential U), it
follows that f0 = limx↓0 x−1F(x) exists. If it were the case that f0 <∞, then
it would follow from (15) that limθ→∞ |θ2(1 −Ψ(iθ))−1| < ∞, and hence that
X has a Brownian component. Since this is not the case, f0 = ∞, so that
F(x)/F∗(x)→∞ as x ↓ 0 and the result follows from (4). 2

Proof of Corollary 3. This depends on the result that, if Ŵ is the scale
function for X̂, then (see, e.g., Theorem 7 of Bingham [9])

(16) P{X̂ exits [−a, b] at b} = Ŵ(a)/Ŵ(a+ b), a > 0, b > 0,

together with the observation that

(17) Ŵ(x) ∼W(x) ∼ F∗(x) as x ↓ 0.

The first part of (17) follows easily from the well-known formula which gives
the Laplace transform of W and Ŵ (see, e.g., Proposition 8 of Bingham [9]),
the calculation being spelt out in Bertoin [4]; see, in particular, (13) therein,
and note that our Ŵ coincides with Bertoin’s Wa∗ when a = η−1. The second
part of (17) can be derived in a similar manner, since the Laplace transform
of F∗ can be derived from (15), and the fact that X(T) has an exponential dis-
tribution. Using this same fact and (17) shows that (2) and (3) are equivalent,
and Corollary 1 shows that, when either holds, X has points of increase. In
the contrary case, using (16) gives the bound

P{«+ x < R« <∞} ≥ P{x < X(σ̂∗«) <∞}

= P{X̂ exits [−«,x] at x}P{σ∗(«+ x) <∞}

= Ŵ(«){1−F∗(«+ x)}{Ŵ(«+ x)}−1.

As previously observed we may, without loss of generality, assume that
F∗(0+) = 0; in this case the fact that X has no points of increase when (3)
fails is immediate from (17), the above bound and the theorem. 2

Proof of Corollary 4. Here we use the other obvious lower bound,
namely that P{«+x<R«<∞}≥P{x<Γ∗«<∞}. Indeed, since F∗(«)=
P{σ̂∗« = ∞} = P{Γ∗« = ∞}, we need only remark that F∗(«) + P{x < R∗« <
∞} = P{H∗ does not hit [«,«+x]} and use the left-hand bound in (11) to see
that P{y < R« <∞} ≥ F∗(«){1+V∗(y)}, and the result follows. 2
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Proof of the proposition. If φ0 denotes the exponent of the bivariate
subordinator (τ0,H0), it follows from Lemma 2.3 of Greenwood and Pitman
[14] that

∫ ∞

0
e−λyF(y)dy = λ−1E(e−λX(T)) = φ0(η, 0)

{λφ0(η,λ)}
.

On the other hand, if V0(dx,dy) denotes the potential measure of (τ0,H0),
then

{λφ0(λ,η)}−1 = λ−1
∫ ∞

t=0

∫ ∞

x=0

∫ ∞

y=0
e−(ηx+λy)P{τ0(t) ∈ dx, H0(t) ∈ dy}dt

=
∫ ∞

0
e−λy

∫ ∞

t=0

∫ ∞

x=0
e−ηxP{τ0(t) ∈ dx, H0(t) ≤ y}dt.

Hence, with θ = φ0(η),

F(y) = θE

{∫ ∞
0
I{H0(t)≤y}e

−ητ0(t) dt

}

= θE

{∫ ∞
0
I{X(s)≤y}e

−ηs dL0(s)

}
,

where L0 is the local time at 0 of X−X. Since

U0(y) =
∫ ∞

0
P{H0(t) ≤ y}dt = E

{∫ ∞
0
I{X(s)≤y} dL0(s)

}
,

we see immediately that F(y) ≤ θU0(y) and that

F(y) ≥ e−1θE

{∫ 1

0
I{X(s)≤y} dL0(s)

}
.

On the other hand, using the Markov property, we see that

U0(y) = E
{∫ 1

0
I{X(s)≤y}dL0(s)

}
+E

{∫ ∞
1
I{X(s)≤y}dL0(s)

}

≤ eθ−1F(y)+P{X(1) ≤ y}U0(y),

which shows that, for all small enough y and some positive c,

(18) cU0(y) ≤ F(y) ≤ c−1V0(y).

Using the result corresponding to (18) for F∗, it is clear that (3)
is equivalent to

∫
0+{U

∗
0(y)}

−1 dF(y) < ∞. By Fubini this is equiva-
lent to

∫
0+F(y)d{−1/U∗0(y)} < ∞, and by (18) this is equivalent to∫

0+U0(y)d{−1/U∗0(y)} < ∞; a final use of Fubini shows that this is equiva-
lent to (8). 2
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3. Special cases.

3.1. Spectrally positive processes. If X is spectrally positive, is not a sub-
ordinator and has no Brownian component, then it must creep downwards;
thus, by Corollary 3, X has no increase points.

3.2. Spectrally negative processes. Although it is possible for (2) to fail,
“most” spectrally negative processes have increase points; see Bertoin [3], Sec-
tion 3. Notice that in this case the nontrivial problem of expressing (2) directly
in terms of the Lévy measure of X has recently been solved by Bertoin. In
[7], Proposition 10, Chapter VIII, Bertoin shows that (2) holds if and only if
X has no Brownian component and

(19)
∫

(−1,0)
x2 log

∣∣∣∣
1
x

∣∣∣∣π(dx) <∞.

Also it should be remarked that Bertoin [4] has shown that when (2) holds
and X has unbounded variation it is possible to define a local time on the set
Î of global increase points.

3.3. Stable processes. Suppose X is a strictly stable process with index
α ∈ (0, 2) and positivity parameter ρ ∈ (0, 1); that is, X is a Lévy process with
the scaling property

(20) X =d {c−1/αXcs; s ≥ 0},

ρ = P{X1 > 0} and neither X nor −X is a subordinator. Then it is known
that X has no Brownian component, that max{αρ,α(1−ρ)} ≤ 1 and that the
potential functions of H0 and H∗0 are given by

(21) U0(x) = kxαρ, U∗0(x) = k∗xα(1−ρ)

for some constants k and k∗. [Perhaps the easiest way to verify (21) is to use
Theorem 9.1 of Fristedt [13] to write the exponent of H0 as

log κ0(λ) =
∫ ∞

0
t−1E{e−λXt − e−t; Xt > 0}dt

=
∫ ∞

0
s−1E{e−Xs − e−sλ−α ; Xs > 0}ds

=
∫ ∞

0
s−1E{e−Xs − e−s; Xs > 0}ds+ ρ

∫ ∞

0
s−1{e−s − e−sλ−α}ds

= log κ0(1)+ ρα log λ,

where we have used (21) and Frullani’s integral.] Thus (8) holds if and only if
ρ > 1

2 , and since it is easy to see that (7) holds, it follows that X has points
of increase if and only if ρ > 1

2 . [It should be noted that αρ = 1 only occurs
when α ∈ (1, 2) and X is spectrally negative and then X has increase points,
whereas α(1− ρ) = 1 only occurs when α ∈ (1, 2) and X is spectrally positive
and then X has no increase points.]
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3.4. Processes which creep. Although we have seen that all processes
which creep downwards have no points of increase, the reverse implication is
certainly false, as stable processes only creep downwards if they are spectrally
positive. The same remark shows that the information that a process does or
does not creep upwards gives no information about whether it has increase
points or not. Finally, we remark that the problem of categorizing all Lévy
processes which have downwards creep has still not been completely solved;
see Millar [18] (where the term “continuous downwards passage” is used) and
Rogers [19].

3.5. Processes for which (7) holds. If W∗(x) = ∫ x
0 V

∗(y)dy and u∗ and
w∗ are the Laplace–Stieltjes transforms of U∗ and W∗, then (5) says that
λw∗(λ)u∗(λ) = 1. By a Tauberian theorem W∗ (respectively U∗) is regularly
varying (r.v.) at 0 if and only if w∗ (respectively u∗) is r.v. at ∞, and, by the
monotone density argument, W∗ is r.v. if and only if V∗ is. We therefore see
that (7) holds whenever either U∗ or V∗ is r.v. at 0. In fact, since a similar
Tauberian result holds for O-regularly varying functions (Theorem 2.10.2 of
Bingham, Goldie and Teugels [10]) and the monotone density argument can
also be extended under weak regularity conditions (Proposition 2.10.3 of [10]),
(7) actually holds under weaker, but more complicated conditions on U∗ or V∗.
We omit the details of such calculations, since it seems that a more pressing
question is that of finding reasonable conditions on the Lévy measure of X
for the validity of (7).

Acknowledgments. I am extremely grateful to Jean Bertoin, who not
only brought this problem to my attention and suggested condition (3), but
also helped me in various ways as I struggled to make progress with it. I
would also like to thank Chris Rogers for showing me a condition he has
found which is equivalent to (4), though apparently less easy to apply.

Note added in proof. S. Fourati has recently established the validity of
the conjecture that X has points of increase if and only if (3) holds, in an as
yet unpublished paper, “Points de croissance des processus de Lévy et théorie
générale des processus.”
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[8] Bertoin, J. and Doney, R. A. (1994). Cramér’s estimate for Lévy processes. Statist. Probab.
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