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The celebrated theorem of Halmos and Savage implies that if M is a
Ž .set of P-absolutely continuous probability measures Q on V, FF, P such

Ž . Ž .that each A g FF, P A ) 0 is charged by some Q g M, that is, Q A ) 0
Ž .where the choice of Q depends on the set A , then}provided M is closed

under countable convex combinations}we can find Q g M with full0

Ž . Ž .support; that is, P A ) 0 implies Q A ) 0. We show a quantitative0

Ž .version: if we assume that, for « ) 0 and d ) 0 fixed, P A ) « implies
Ž .that there is Q g M and Q A ) d , then there is Q g M such that0

Ž . Ž . 2
P A ) 4« implies Q A ) « dr2. This version of the Halmos]Savage0

theorem also allows a ‘‘dualization’’ which we also prove in a quantitative

and a qualitative version. We give applications to asymptotic problems

arising in mathematical finance and pertaining to the relation of the

concept of ‘‘no arbitrage’’ and the existence of equivalent martingale

measures for a sequence of stochastic processes.

Žw xIntroduction. The Halmos]Savage theorem 2 , Lemma 7; see also
.Theorem 1.1 below is a very useful tool in many applications, notably in

w xmathematical statistics 11 .

ŽLet us briefly recall this theorem which we will slightly reformulate to fit
. Ž .into our context . Given a stochastic base V, FF, P , let M be a set of

probability measures Q on FF such that each Q is absolutely continuous with

respect to P, and M is closed under countable convex combinations; that is,
Ž .` ` `for Q in M and c G 0, Ý c s 1, we have that Ý c Q g M.n ns1 n ns1 n ns1 n n

Suppose, in addition, that M charges each set A g FF which is not a P-null-
Ž . Ž .set; that is, suppose P A ) 0 implies that there is Q g M depending on A

Ž .such that Q A ) 0. Then the Halmos]Savage theorem implies an inter-

change of quantifiers: under the above assumption, one can find an element
Ž .Q in M with full support, that is, such that, for each A g FF with P A ) 0,0

Ž .we have that Q A ) 0.0

In the present paper we prove a ‘‘quantitative’’ version of the
Ž .Halmos]Savage theorem Proposition 1.3 below . We replace the ‘‘qualitative’’

Ž . Ž .assumption ‘‘for each A g FF, P A ) 0, there is Q g M with Q A ) 0’’ by

the following ‘‘quantitative’’ assumption: assume that, for fixed « ) 0 and
Ž . Žd ) 0, we have that, given A g FF, P A ) « , there is Q g M depending on
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. Ž .A such that Q A ) d . Under this assumption, we show that there is
Ž . Ž . 2Q g M such that, for A g FF, P A ) 4« , we have that Q A ) « dr2. In0 0

other words, we again have the crucial interchange of quantifiers, but we not
Ž .only can dispose of the ‘‘qualitative’’ control of the form that Q A is strictly0

positive, but also we can assert the ‘‘quantitative’’ conclusion that it is larger
2 Ž Ž . .than the constant « dr2 under the ‘‘quantitative’’ assumption P A ) 4« .

The proof of the ‘‘quantitative version’’ does not only rely on the usual
Žw x .exhaustion argument 2 , Lemma 7 but uses a somewhat more delicate

duality argument. It is easy to deduce the original Halmos]Savage theorem
Ž .from this ‘‘quantitative’’ version see the remark after Proposition 1.3 .

The quantitative version of the Halmos]Savage theorem also opens the

view for a dual version of the situation by interchanging the roles of P and

Q g M: in the above setting we start with the assumption that, again for
Ž .fixed « ) 0 and d ) 0, we have that P B - d implies that there is some

Ž . Ž . ŽQ g M depending on B with Q B - « . Then we may conclude see Proposi-
. Ž .tion 1.5 below that there is Q g M such that P B - 2«d implies that0

Ž .Q B - 8« ; that is, again we obtain an interchange of quantifiers.0

Let us try to give interpretations of the above results in a loose language.

Ž .The original Halmos]Savage theorem states that if P is absolutely continu-

ous with respect to the set M, then there is Q g M such that P is absolutely0

continuous with respect to the single measure Q . The quantitative version0

Ž .Proposition 1.3 below states that if P is «]d-absolutely continuous with

respect to the set M, then there is Q g M such that P is 4«]« 2dr2-absolutely0

Žcontinuous with respect to Q with a hopefully obvious interpretation of the0

.loose expression ‘‘«]d-absolutely continuous’’ .

Ž .The dual quantitative version Proposition 1.5 can be interpreted in the
Žfollowing way: if the set M is «]d-absolutely continuous with respect to P to

.be understood in the above sense , then there is some Q g M which is0

8«]2«d-absolutely continuous with respect to P. It now becomes apparent

that the natural framework for the ‘‘dual’’ version of the Halmos]Savage

theorem is to drop the assumption that M consists of P-absolutely continuous

measures. To do this step in a convenient and clean way, we adopt a

‘‘topological setting.’’ We assume that P is a Radon probability measure on a

compact metrizable space K and that M is a convex set of Radon probability
Ž .measures on K not necessarily absolutely continuous with respect to P . If

w Ž Ž . Ž ..xwe assume, in addition, that M is weak-star i.e., s MM K , CC K closed, we

may extend the above ‘‘dual quantitative version’’ of the Halmos]Savage
Ž . Žtheorem to this setting see Proposition 1.6 below . An easy example Exam-

.ple 1.7 below shows that the weak-star closedness assumption is indeed

crucial.

Once we have established these results, the natural question arises whether

we can formulate a ‘‘qualitative dual’’ version. Suppose that M is a weak-star

closed convex set of Radon probability measures on a compact space K such

that the set M is absolutely continuous with respect to the Radon probability

measure P in the following sense: for each « ) 0 there is d ) 0 such that, for
Ž . Ž .each Borel set B in K with P B - d , there is some Q g M depending on B
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Ž .with Q B - « . Can we assert that this assumption implies an interchange of

quantifiers, that is, that there is some Q g M which is absolutely continu-0

ous with respect to P? The answer turns out to be: not quite but almost. Not
Ž .quite, because we can construct a counterexample see Example 1.9 below

where there is no P-absolutely continuous measure Q g M. Almost, on the0

other hand, because we can prove that}under the above assumption}we

can find, for each h ) 0, an element Q g M such that its P-absolutelyh

Žcontinuous part has mass at least 1 y h and therefore its P-singular part
. Ž .has mass less than h Theorem 1.8 below .

The motivation for this work comes from a problem in mathematical

finance involving the notions of ‘‘large financial markets’’ and ‘‘asymptotic
w x w xarbitrage’’ introduced by Kabanov and Kramkov 5 . In 7 , we were able to

give a characterization of the absence of asymptotic arbitrage in a general

setting, thus solving a problem posed by Kabanov and Kramkov. A joyful

discussion with D. Kramkov, which is gratefully acknowledged, drew our
w xattention to the fact that the crucial steps of our arguments in 7 lead quite

naturally to the two ‘‘quantitative’’ versions of the Halmos]Savage theorem

above. In the third section we show how to deduce the two theorems on ‘‘no

asymptotic arbitrage’’ from the quantitative versions of the Halmos]Savage

theorem, thus pointing out the intimate link between the two topics.

Let us point out that the link between the Halmos]Savage theorem and

questions concerning the existence of equivalent martingale measures is not

too big a surprise. Indeed, in mathematical finance similar exhaustion arg-
Ž .ments as in the original Halmos]Savage theorem Theorem 1.1 have been

w x w x Ž . w x w xrepeatedly used; compare 8 , 10 Theorem 1.1 , 12 and 13 . One could

even say the theorem was ‘‘reproved’’ several times.

The paper is organized as follows: in Section 1 we present the main results

and some examples showing the limitations of the theorems. Section 2

contains the proofs of the results of Section 1. In the final section we apply

our results to the above-mentioned topic of mathematical finance.

Ž .1. Results. Let V, FF, P be a probability space and M a set consisting of

probability measures that are absolutely continuous with respect to P. We

shall always identify P-absolutely continuous measures Q with their

Radon]Nikodym derivatives dQrdP, so that we may view M as a subset of
1Ž .L V, FF, P . We say that M is closed under countable convex combinations if,

Ž .` `whenever Q is a sequence of measures in M, we have that Ý c Q gn ns1 ns1 n n

M, where c G 0 and Ý` c s 1. We recall a version of the well-knownn ns1 n

Ž w x .theorem of Halmos and Savage compare 2 , Lemma 7 .

Ž .THEOREM 1.1 Halmos]Savage theorem . Let M be a set of P-absolutely

continuous probability measures on FF that is closed under countable convex
Ž .combinations. Suppose that, for each set A g FF with P A ) 0, there exists

Ž .Q g M with Q A ) 0. Then there exists Q g M such that, for all sets A g FF0

Ž . Ž .with P A ) 0, we have that Q A ) 0; that is, Q and P are equivalent0 0

probability measures.
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In order to be able to compare it to the quantitative version which we
Ž .present below see Proposition 1.3 , we give a formulation of Theorem 1.1

Ž .involving « and d see Theorem 1.2 . For the sake of completeness, we

reproduce in Section 2 the well-known proofs of Theorems 1.1 and 1.2.

Ž .THEOREM 1.2 Halmos]Savage theorem, reformulated . Let M be a set of

P-absolutely continuous probability measures on FF that is closed under
Ž .countable convex combinations. Suppose that there is a function « ¬ d « ) 0

Ž . Ž .such that, for all sets A g FF with P A ) « , there exists Q g M with Q A )
Ž . XŽ .d « . Then there is Q g M and a function « ¬ d « ) 0 such that, for all0

Ž . Ž . XŽ .sets A g FF with P A ) « , we have that Q A ) d « .0

The theorem is ‘‘qualitative’’ in the sense that it asserts the existence of a
XŽ .strictly positive function « ¬ d « but it does not allow us to draw ‘‘quantita-

XŽ .tive’’ conclusions which give estimates on the decay of d « in terms of the
Ž .decay of the function d « . Such a quantitative control is given by the next

Ž .result, which}together with its dual counterpart Proposition 1.5 }is the

central result of this paper.

Ž .PROPOSITION 1.3 Quantitative version of the Halmos]Savage theorem .

For fixed « ) 0 and d ) 0, the following statement is true: let M be a convex

set of P-absolutely continuous probability measures such that, for all sets
Ž . Ž .A g FF with P A ) « , there is Q g M with Q A ) d . Then there is Q g M0

Ž . Ž . 2such that, for all A g FF with P A ) 4« , we have that Q A ) « dr2.0

We remark that the ‘‘quantitative’’ version is more precise than the
Ž .original ‘‘qualitative’’ one, since the proposition immediately implies the

Halmos]Savage theorem. We sketch the easy argument. Under the assump-

tions of Theorem 1.2, choose for all n g N some d such that, for each setn

Ž . yn Ž .A g FF with P A ) 2 , there exists Q g M with Q A ) d . Since Proposi-n

tion 1.3 holds for all fixed « , d , we can apply it to get, for all n, a measure
Ž . ynq2Q g M such that, for all sets A g FF with P A ) 2 , we have thatn

Ž . y2 ny1 ` ynQ A ) 2 d . Define Q s Ý 2 Q . Then Q is in M and for eachn n 0 ns1 n 0

Ž . Ž .set A with P A ) 0 we have that Q A ) 0.0

Note that in Proposition 1.3 we need only the convexity of the set M but

we do not need that M is closed under countable convex combinations. But, of

course, we cannot do without the convexity assumption on M as the following

simple example shows.

Ž . Žw x .EXAMPLE 1.4. Fix « ) 0. Let V, FF, P s 0, 1 , BB, l , where BB is the
w xfamily of Borel sets of 0, 1 and l is the Lebesgue measure. Define

xA
M s Q s l, where 0 - l A - 1 y 4« .Ž .½ 5l AŽ .
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Ž .Then M satisfies the assumptions of Proposition 1.3 except convexity for «
Ž .as above and an arbitrary 1 G d ) 0, since for A g BB with l A ) « we can

Ž . w Ž .xfind a subset B : A with 0 - l B - 1 y 4« . If we take Q s x rl B l weB

Ž . Ž .have that Q A s Q B s 1 G d . On the other hand, there does not exist Q0

satisfying the assertion of Proposition 1.3; for Q g M we can always find0

Ž .A g BB with l A - 1 y 4« and

xA
Q s l,0

l AŽ .

Ž . Ž . 2whence we have, for B s V _ A, l B ) 4« but Q B s 0 - « dr2.0

Now we formulate a dual version of the quantitative Halmos]Savage
Ž .theorem. We do this under the same assumptions as above Proposition 1.3

by interchanging the roles of the measure P and the measure Q g M. We will

see that Proposition 1.5 below again is essentially an interchange of quanti-

fiers.

ŽPROPOSITION 1.5 Dual quantitative version of the Halmos]Savage theo-
.rem . For fixed « ) 0 and d ) 0, the following statement is true: let M be a

convex set of P-absolutely continuous probability measures such that, for all
Ž . Ž .sets A g FF with P A - d , there is Q g M with Q A - « . Then there is

Ž . Ž .Q g M such that, for all A g FF with P A - 2«d , we have that Q A - 8« .0 0

As mentioned in the Introduction the natural framework for the ‘‘dual

version’’ of the Halmos]Savage theorem is to drop the P-absolute continuity

assumption on the set M. We will use a ‘‘topological setting’’ to realize the
Ž .above idea in a precise and convenient way. Assume that V, FF, P s

Ž .K, BB, P , where K is a metrizable compact space, BB the s-algebra of the
Ž .Borel sets in K and P a Radon probability measure. We denote by CC K the

Ž .Banach space of continuous functions on K and by MM K its dual space,

which may be identified with the space of Radon measures on K. We equip
Ž . 5 5MM K with the usual variation norm, which we denote by ? . We also1

1Ž . Ž .identify L P with the subspace of MM K formed by the P-absolutely continu-

ous measures.

ŽSuppose that M is a convex set of Radon probability measures not
.necessarily absolutely continuous with respect to P . Under the additional

Ž Ž . Ž ..assumption that M is closed for the topology s MM K , CC K , we can extend

Proposition 1.5 to this setting.

PROPOSITION 1.6. For fixed « ) 0 and d ) 0, the following statement is
Ž Ž . Ž .. Ž .true: let M be a s MM K , CC K -closed convex subset of MM K consisting ofq

Žprobability measures Q not necessarily absolutely continuous with respect to
. Ž .P such that, for each Borel set B with P B - d , there is Q g M with
Ž . Ž .Q B - « . Then there is Q g M such that, for each Borel set B with P B -0

Ž .2«d , we have that Q B - 8« .0
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We cannot drop the assumption in Proposition 1.6 that M is weak-star

closed, as is shown by the simple example below.

Ž . Žw x .EXAMPLE 1.7. Let again V, FF, P s 0, 1 , BB, l and define M to be the
w xcountably convex hull of the Dirac measures d for x g 0, 1 , that is,� x4

` `

w xM s c d , x g 0, 1 , c G 0, c s 1 .Ý Ýi � x 4 i i ii½ 5
is1 is1

w xClearly, M is convex and norm closed in MM 0, 1 , but not closed with respect
Ž w x w x.to s MM 0, 1 , CC 0, 1 . Moreover, M satisfies the «]d-assumption of Proposi-

tion 1.6 for each 0 - « - 1r8 and 0 - d - 1. Indeed, let B be a Borel set such
Ž . w xthat l B - d . Of course, there exists a point x g 0, 1 _ B such that0

d g M trivially satisfies� x 40

d B s 0 - « .Ž .� x 40

Suppose now that there exists a measure m g M satisfying the assertion of0

the proposition. Then m can be written as0

`

m s c d .Ý0 i � x 4i
is1

Ž� 4̀ . Ž� 4̀ . `We clearly have that l x s 0 - 2«d but m x s Ý c s 1 G 8« ,i is1 0 i is1 is1 i

a contradiction.

Now we can present a ‘‘qualitative dual’’ version of the Halmos]Savage

theorem in the framework of Proposition 1.6.

Ž Ž . Ž .. Ž .THEOREM 1.8. Let M be a s MM K , CC K -closed convex subset of MM K q

consisting of probability measures Q. Suppose that for each « ) 0 there exists
Ž .d ) 0 such that, for each Borel set B with P B - d , there is Q g M with

Ž .Q B - « . Then we have that

dist M , L1
P s 0.Ž .Ž .5?51

So we ‘‘nearly’’ get a P-absolutely continuous measure in the sense that for

each h ) 0 we can find a measure Q g M such that its P-singular part hash

mass less than h. But the following example shows that, in general, we

cannot find a measure Q g M that has full support, that is, that is really0

P-absolutely continuous.

w x w xEXAMPLE 1.9. Let K s 0, 1 , BB the Borel sets on 0, 1 and l the Lebesgue
w xmeasure on 0, 1 . There is a set M satisfying the assumptions of Theorem 1.8

such that
1 w xdist M , L 0, 1 , BB, l s 0Ž .Ž .5?51

but
1 w xM l L 0, 1 , BB, l s B.Ž .
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The example shows that, although we can find elements in M that are
1Ž .arbitrarily close to L K, BB, P , we cannot find a P-absolutely continuous

element of M.

2. Proofs. We start this section by giving explicit proofs of Theorems 1.1

and 1.2, thus recalling the original exhaustion argument of Halmos and

Savage.

Ž .PROOF OF THEOREM 1.1. Let SS be the family of equivalence classes of

subsets of V formed by the supports of the measures Q g M. Note that SS is

closed under countable unions, since M is closed under countable convex
� 4combinations. Hence there is Q g M such that for S s dQ rdP ) 0 we0 0 0

have

P S s sup P S : S g SS .� 4Ž . Ž .0

Ž .We now claim that P S s 1, which shows that Q has full support; that is,0 0

Ž .Q and P are equivalent probability measures. Indeed, if P S - 1, then, by0 0

Ž .assumption, we can find Q g M such that Q V _ S ) 0. Hence, if we take1 1 0

Ž .a convex combination of Q and Q , Q [ Q q Q r2 g M, we have that the0 1 0 1

Ž .support of Q has P-measure strictly larger than P S , a contradiction. I0

PROOF OF THEOREM 1.2. We shall deduce Theorem 1.2 from Theorem 1.1.

Let M be as in Theorem 1.2; clearly, M satisfies the assumptions of Theorem

1.1. Therefore, there exists Q g M such that, for all sets A g FF with0

Ž . Ž . n � Ž . yn4P A ) 0, we have that Q A ) 0. Define AA s A g FF: Q A F 2 and0 0

Ž .nlet « s sup P A . We claim that lim « s 0. Indeed, for each n g N,n Ag AA nª` n
n n Ž n. ynwe can find A g AA such that P A q 2 ) « . Therefore, we have thatn

lim « F lim sup P An F P A ,Ž . Ž .n
nª`

where A s F
`

D An. But for all m g N we have thatms 1 nG m 0

`
n yn ym0Q A F Q A - 2 s 2 ;Ž . D Ý0 0 ž /

nGm q1 nsm q10 0

Ž . Ž .hence Q A s 0 and therefore P A s 0 which implies the claim.0

Ž . Ž . ynFor any set A g FF with P A ) « , we have that Q A ) 2 . Fix « ) 0;n 0

then we can find n g N such that « - « and if we let d s 2yn we aren

finished. I

We now turn to the central topic of the paper, the proof of the quantitative

version of the Halmos]Savage theorem.

˜PROOF OF PROPOSITION 1.3. Fix « ) 0 and d ) 0. Let M be the set of
1Ž .elements f of L P dominated by some element of M, that is,

˜ 1 1 1M s M y L P s f g L P : ' f g M , f g L P , f s f y f .Ž . Ž . Ž .� 4q 1 2 q 1 2
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Define the set

«d
1 w xD s g g L , E g s 1, g G P-a.s. .q½ 52

Suppose that the assertion of the proposition is false; that is, for all f g M
Ž . w x 2there is A g FF with P A ) 4« but E f x F « dr2, and let us work toward aA

contradiction. We claim that

˜ 2dist M , D G « d .Ž .5?5 1L

1 Ž .Let f s f y f , where f g M and f g L V, FF, P , and let g g D. For f1 2 1 2 q 1

Ž . w x 2there exists a set A g FF such that P A ) 4« but E f x F « dr2. This1 A

implies that

15 5 w x w x w xf y g G E g x y E f x q E f xL A 1 A 2 A

«d « 2d
2G 4« y ) « d .

2 2
`Ž . 5 5 `By the Hahn]Banach theorem there exists h g L V, FF, P , h F 1 suchL

that

w x w x 2
) sup E hf F inf E hg y « d .Ž .

ggD˜fgM

1 ˜Ž . w xWe have that h G 0 since yL V, FF, P ; M; in particular, sup E hf s˜q f g M

w xsup E hf . The elements of M are nonnegative and therefore we havef g M

that

w x w x 2sup E hf G 0, whence inf E hg G « d .
ggDfgM

Ž . wWithout loss of generality, we can assume that ess inf h v s 0 otherwisev

Ž . Ž .we replace h by h y ess inf h v , which will not change inequality ) sincev

w x w x xE f s E g s 1 for f g M and g g D . We claim that this implies that

«d
w x w x)) inf E hg s E h .Ž .

2ggD

Indeed, define for each n g N a function g g D byn

«d
g s x q c x ,n �h)1r n4 n �hF1r n4

2

w xwhere c G 1 is chosen such that E g s 1. Then we have thatn n

1 «d
w x w xE hg F q E h ,n

n 2

w x Ž . w xwhence inf E hg F «dr2 E h . The reverse inequality holds trivially sog g D

Ž .we proved )) .

Ž . w x 2 w x 5 5 `So we see that «dr2 E h G « d , whence E h G 2« . But since h F 1L

Ž .we have that P h ) « ) « . This implies that there is f g M with
w xE f x ) d and therefore�h) « 4

w xE hf G «E f x ) «d .�h) « 4
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Ž . Ž .On the other hand, we get from ) and )) :

«d
2w x w xE hf F E h y « d - «d ,

2

a contradiction. I

ŽWe omit the proof of Proposition 1.5 since it is similar to and slightly
.easier than the proof of Proposition 1.6 which we will present now.

1 ˆPROOF OF PROPOSITION 1.6. Fix ) « ) 0, d ) 0. Let M be the cone8

Ž w xgenerated by M. Then we claim that by Krein and Smulian see 4 , Theorem
ˆ. Ž Ž . Ž ..2, page 246 M is again s MM K , CC K -closed. Indeed, we have to show

ˆ Ž .that, for c g R , the intersection of M with the closed ball of MM K around 0q

Ž Ž . Ž .. Ž .and with radius c is s MM K , CC K -compact. Take a sequence c Q gn n nG1

M̂, where c G 0 and bounded by a constant c and Q g M. Then we can findn n

a subsequence such that c ª c for some c F c. Moreover, since M isn 0 0
U Ž . w Us -compact in MM K M is a s -closed subset of the closed unit ball of
Ž .x Ž .MM K , we can choose a subsequence of Q that converges to Q g Mn nG1 0

Ž Ž . Ž ..with respect to s MM K , CC K . Putting things together, the claim is proved.

Define the set

1
1

1 `5 5 5 5D [ g g L K , BB, P , g s 1, g F ; MM K .Ž . Ž .L Lq½ 5d

Ž 1Ž . Ž .. Ž Ž . Ž .. < 1We claim that the set D is s L K, BB, P , CC K s s MM K , CC K -L

Ž `Ž . 1Ž ..compact. Indeed, D is a s L K, BB, P , L K, BB, P -compact subset of
`Ž . Ž 1Ž . `Ž ..L K, BB, P and therefore D is s L K, BB, P , L K, BB, P -compact in
1Ž . Ž 1Ž . Ž ..L K, BB, P , whence it is s L K, BB, P , CC K -compact.

Suppose that for all Q g M there exists a set B g BB with

P B - 2«d but Q B G 8« .Ž . Ž .

We claim that

ˆ) dist M , D G 3« .Ž . Ž .5?51

We have to show that, for all c g R ,q

dist cM , D G 3« .Ž .5?51

x w x wThis is obvious for c f 1 y 3« , 1 q 3« . So suppose c g 1 y 3« , 1 q 3« . Let
Ž . Ž .Q be a measure in M and B such that P B - 2«d but Q B G 8« and let g

be a function in D. Then we have

dist cQ, g G cQ B y E g xŽ . Ž . Ž .5?5 B1

1
) 1 y 3« 8« y 2«d ) 3« ,Ž .

d

Ž .whence ) is proved.
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Applying the Hahn]Banach theorem to separate the s U-compact set D q
U ˆŽ Ž .. Ž .2« ball MM K from the s -closed set M, we find h g CC K such that

5 5h s 1 and`

w x)) sup E h F inf E hg y 2« .Ž . Ž .Q P
ggDˆQgM

ˆAs M is a cone we may conclude that the left-hand side equals 0. On the

other hand, we claim that

� 4))) P h - 2« - d .Ž . Ž .

Ž� 4. Ž .Indeed, suppose P h - 2« s p G d . Let g [ 1rp x , which is in D.�h- 2 « 4

w x Ž . w xWe have that 2« F E hg s 1rp E hx - 2« , a contradiction.
P P �h- 2 « 4

Ž .The inequality ))) implies that there is Q g M such that

� 4 � 4Q h - 2« - « , whence Q h G 2« G 1 y « .Ž . Ž .

5 5Because of the last result and since h s 1, we have that`

2w xE h s E hx q E hx G 2« 1 y « y « s « y « ) 0,Ž .Q Q �hG 2 « 4 Q �h- 2 « 4

Ž .a contradiction to )) . I

PROOF OF THEOREM 1.8. We have to show that for all numbers h ) 0 there
a s 5 s 5 Ž a sis Q g M, Q s Q q Q with Q - h. Q , Q denote the P-absolutely1h h h h h h h

.continuous, P-singular part of Q , respectively.h

Fix h ) 0 and choose « ) 0 such that 8« - h. By assumption, there exists
Ž .d ) 0 such that, for all Borel sets B with P B - d , there exists Q g M with

Ž .Q B - « . Proposition 1.6 implies the existence of a measure Q g M such0

Ž . Ž .that, for all Borel sets B with P B - 2«d , we have that Q B - 8« - h.0

Since Q s and P are mutually singular, we can find a Borel set B such0 0

Ž . Ž . 5 s 5 Ž .that P B s 0 and Q B s Q . Because P B s 0 - 2«d we have that10 0 0 0 0

5 s 5Q s Q B - 8« - h . IŽ .10 0 0

w xCONSTRUCTION OF EXAMPLE 1.9. Let K s 0, 1 , let BB be the Borel sets on
w x w x0, 1 and let l be the Lebesgue measure on 0, 1 . Define for each n g N a

Radon measure

1
m s d q hx l,n �04 w0, 1rŽnq1.x

n q 1

Ž .`and let m s d . Clearly, m converges to m in the weak-star topology0 �04 n ns0 0

w x Ž w x w x.of MM 0, 1 , that is, in s MM 0, 1 , CC 0, 1 . It easily follows from Choquet’s
w x Ž .`theorem 9 that the weak-star closed convex hull of m is given by then ns0

Ž .`barycenters of the probability measures on m ; that is,n ns0

U `
M s conv mŽ .Ž .n ns0

` `

s c m , c G 0, c s 1 .Ý Ýn n n n½ 5
ns0 ns0
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We claim that for each « ) 0 there exists d ) 0 such that, for all sets B g BB

Ž . Ž .with l B - d , there exists m g M such that m B - « .

Indeed, fix « ) 0 and choose N g N such that N ) 2r« y 1. Define d s
Ž .«r2 N. Take any set B with l B - d . If 0 f B it is trivial that m s d�04

Ž .satisfies m B s 0 - « . So suppose 0 g B. Then

1
m s d q Nx l g MN �04 w0, 1rŽNq1.x

N q 1

satisfies

1
m B F q Nd - « ,Ž .N

N q 1

which proves our claim. Clearly, we have that

1 w xdist M , L 0, 1 , BB, l s 0Ž .Ž .5?51

Ž .which, of course, we know already from Theorem 1.8 . But it is just as

obvious that we cannot find a l-absolutely continuous element of M; that is,

1 w xM l L 0, 1 , BB, l s B.Ž .

3. Application to mathematical finance. We recall the model of a
w xlarge financial market introduced by Kabanov and Kramkov 5 . In contrast

to the usual setting in mathematical finance, we do not consider one single

stochastic stock price process S based on a filtered probability space
Ž Ž . . Ž n.V, FF, FF , P but rather a sequence S of such processes based on at t g I nG1

Ž n n Ž n. n.nsequence V , FF , FF , P of filtered probability spaces. The inter-t t g I nG1

pretation is that an investor can invest not only in one stock exchange but in
Ž .several countably many stock exchanges.

The usual notion of arbitrage then has to be replaced by ‘‘asymptotic’’

arbitrage concepts, where one has to distinguish between two different kinds
w x Žwhich where introduced by Kabanov and Kramkov 5 see Definitions 3.1

.and 3.2 below . If for each n g N the market is complete, that is, if there is

exactly one local martingale measure Qn for the process Sn on FF
n which is

equivalent to P
n, then Kabanov and Kramkov showed that the contiguity of

Ž n. Ž n. Ž .P with respect to Q respectively, vice versa is equivalent to thenG1 nG1

Ž .absence of asymptotic arbitrage of the first respectively, second kind.

w xIn 7 , we extended this result to the noncomplete case, that is, where for

each n g N the set of equivalent local martingale measures for the process
n ŽS is nonempty but not necessarily a singleton under the assumption that

n .each S is a locally bounded semimartingale . In the case of asymptotic

arbitrage of the first kind, the theorem of Kabanov and Kramkov extends

without any modification of the statement to the noncomplete setting. On the

other hand, for the theorem concerning asymptotic arbitrage of the second

kind, we have to replace the contiguity condition by a rather technical

condition that essentially states that the chosen sequence of measures ‘‘de-
Ž w x.pends on « ’’ see 6 . But let us start being precise. Recall the definitions of
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Ž w xasymptotic arbitrage of the first and second kind, respectively compare 5
w x.and 7 .

Ž n.` ŽDEFINITION 3.1. A sequence H of admissible trading strategies forns1

w x w x.the notion of admissibility, compare 1 or 3 realizes asymptotic arbitrage of

the first kind iff there are sequences c ) 0 and C ) 0 with lim c s 0n n nª` n

and lim sup C s ` such that:nª` n

Ž . Ž n n. na H ? S G yc for all t g R ; that is, H is c -admissible.t n q n

Ž . nŽŽ n n. .b lim sup P H ? S G C ) 0.nª` ` n

Asymptotic arbitrage of the first kind describes the possibility of getting

arbitrarily rich with positive probability by taking an arbitrarily small
Ž .vanishing risk.

DEFINITION 3.2. A sequence of admissible trading strategies realizes

asymptotic arbitrage of the second kind iff:

Ž . Ž n n. na H ? S G y1, for all t g R ; that is, H is 1-admissible.t q

Ž . nŽŽ n n. .b ' c ) 0, such that lim sup P H ? S G c s 1.nª` `

Asymptotic arbitrage of the second kind can be interpreted as an opportu-
Ž .nity of gaining at least something the amount c with probability arbitrarily

Ž .close to 1 by taking a uniformly bounded risk bounded by 1 .

A large financial market satisfies no asymptotic arbitrage of the first,

respectively, second kind iff it does not allow the respective arbitrage oppor-

tunities.

w xBefore we repeat Theorems 2.1 and 2.2 of 8 we have to define the set of all

equivalent local-martingale probability measures Qn on FF
n for the locally

bounded process Sn:
e n � n n n n 4MM P s Q ; P , S local Q -martingale .Ž .

We recall the definition of contiguity of sequences of measures: we say that
Ž n. Ž n. Ž n. Ž n.P is contiguous with respect to Q , that is, P 1 Q , iffnG1 nG1 nG1 nG1

n n nŽ n.for all sequences A g FF with lim Q A s 0 we have thatnª`
nŽ n.lim P A s 0.nª`

THEOREM 3.3. There is no asymptotic arbitrage of the first kind if and only
Ž n. n eŽ n. Ž n.if there exists a sequence Q , Q g MM P for all n, such that PnG1 nG1

Ž n.1 Q .nG1

THEOREM 3.4. There is no asymptotic arbitrage of the second kind if and
n eŽ n.only if for each « ) 0 there exists d ) 0 and measures Q g MM P such that,

n n nŽ n. nŽ n.for any set A g FF with P A - d , we have that Q A - « .

We now show that these results may quickly be deduced from Propositions
w x Ž .1.3 and 1.5 above. From the general duality theorem in 1 Theorem 5.7 , we

can deduce the following characterizations of the absence of asymptotic
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arbitrage of the first and second kind, respectively. Thanks go to D. Kramkov

for pointing out to us this connection.

Ž .LEMMA 3.5. i There is no asymptotic arbitrage of the first kind iff for
n n nŽ n.each « ) 0 there is d ) 0 such that, for any set A g FF , P A G « , there is

n Ž n. nŽ n.Q depending on A with Q A G d .

Ž .ii There is no asymptotic arbitrage of the second kind iff for each « ) 0
n n nŽ n. nthere is d ) 0 such that, for any set A g FF , P A - d , there is Q

Ž n. nŽ n.depending on A with Q A - « .

Ž . Ž .PROOF. i « Assume there is « ) 0 such that, for all d ) 0, there exists
n n nŽ n. nŽ n.n e na set A g FF with P A G « but sup Q A - d . ConsideringQ g MM ŽP .

w xnx as a contingent claim, we know from 1 , Theorem 5.7, thatA

w n x n n
n nsup E A s inf x g R: x q H ? S G x ,� 4Ž .`Q A

en nŽ .Q gMM P

where H n ranges through the admissible integrands for Sn. Therefore, there

exists an admissible integrand H n such that

d q H n ? Sn G x n ,Ž .` A

which immediately gives asymptotic arbitrage of the first kind, since

P
n H n ? Sn G 1 y d G « and H n ? Sn G yd ;Ž . Ž .Ž .`

that is, H n is d-admissible.

Ž .¥ Now suppose that for each « ) 0 there is d ) 0 such that, for any set
n n nŽ n. n eŽ n. nŽ n.A g FF , P A G « , there exists Q g MM P with Q A G d . Assuming

that there is asymptotic arbitrage of the first kind, we shall work toward a

contradiction. By assumption, there is « ) 0 and a sequence of c -admissiblen

integrands H n such that, for all n,

P
n H n ? Sn G C G «Ž .Ž .` n

for some sequences c ª 0 and C ª `. Again, by hypothesis, there is d ) 0n n
n eŽ n. nŽŽ n n. . Ž n n.and Q g MM P such that Q H ? S G C G d . Since H ? S G yc` n ` n

we have, for all n,

n n n n n
nE H ? S G C Q H ? S G C y c ) d y c .Ž . Ž .Ž .` `Q n n n n

Ž . wŽ n n. xnSo for n large enough i.e., c - d , we have that E H ? S ) 0, an Q `

Ž n n. ncontradiction, since H ? S is a Q -supermartingale.

Ž . Ž .ii « Assume there is « ) 0 such that, for all d ) 0, there exists a set
n n nŽ n. nŽ n. n n

n e nA g FF with P A - d but inf Q A G « . If we let B s V _Q g MM ŽP .
n nŽ n. nŽ n.n e nA , we have that P B ) 1 y d and sup Q B - 1 y « . As aboveQ g MM ŽP .

Žw x .we can apply the duality theorem 1 , Theorem 5.7 to see that

w n x n n
n nsup E A s inf x g R: x q H ? S G x ,� 4Ž .`Q A

en nŽ .Q gMM P
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where H n ranges through the admissible integrands for Sn. Therefore, there

exists an admissible integrand H n such that

1 y « q H n ? Sn G x n ,Ž .` B

nŽŽ n n. .which immediately gives an asymptotic arbitrage since P H ? S G « s`
nŽ n. Ž n n. n

P B ) 1 y d and H ? S G y1 q « ; that is, H is 1-admissible.

Ž .¥ Suppose that for each « ) 0 there is d ) 0 such that, for any set
n n nŽ n. n eŽ . nŽ n.A g FF , P A - d , there exists Q g MM P with Q A - « . Assuming

that there is asymptotic arbitrage of the second kind, similarly as above, we

shall work toward a contradiction. By assumption, there is c ) 0 and a

sequence of 1-admissible integrands H n such that

P
n H n ? Sn G c ª 1 for n ª `.Ž .Ž .`

Ž .Let « ) 0 be small enough such that y« q c 1 y « ) 0; for d ) 0 associated
nŽŽ nwith « ) 0 by our hypothesis, choose n large enough such that P H ?

n. . n eŽ n. nŽŽ nS - c - d . This implies that there is Q g MM P such that Q H ?`
n. .S - c - « and therefore`

n n n n n n n n
nE H ? S G y1 Q H ? S - c q cQ H ? S G cŽ . Ž . Ž . Ž .Ž . Ž .` ` `Q

G y« q c 1 y « ) 0,Ž .

Ž n n. na contradiction, since H ? S is a Q -supermartingale. I

Lemma 3.5 translates the concepts of no asymptotic arbitrage of the first

and second kind, respectively, to properties pertaining to the relation of
n eŽ n. nQ g MM P to P . If we combine it with the quantitative versions of the

Ž .Halmos]Savage theorem Propositions 1.3 and 1.5 above , we obtain proofs

for Theorems 3.3 and 3.4, respectively. Indeed, we immediately obtain Theo-
Ž .rem 3.4 from Lemma 3.5 ii , using Proposition 1.3. To deduce Theorem 3.3

Ž .from Lemma 3.5 i , we use Proposition 1.5 to get, for each « ) 0, d ) 0, a
n, « Ž . n nsequence Q depending on « such that, for all n and A g FF with

n, « Ž n. nŽ n.Q A - d , we have that P A - « . To eliminate the dependence of the
w xsequence on « , we use a similar argument as in 7 . We have to take a

countable convex combination of the «-dependent Qn, «. Take « s 1rm,m
n, « m eŽ n.m s 1, 2, . . . , and choose, for each n, the corresponding Q g MM P .

Define
`

n ym n , « mQ s 2 Q .Ý
ms1

n eŽ n. w x Ž n.Then Q g MM P and similar arguments as in 7 show that P 1nG1

Ž n.Q .nG1

Note added in manuscript. After finishing this paper we were kindly
w xinformed by Y. Kabanov and D. Kramkov about their recent paper 6 in

which these authors also provide}among other results}simplified proofs of
w xthe main results of 7 . Their arguments are based on an elegant application

Žof the minmax theorem which in turn may be viewed as one of the ramifica-



HALMOS]SAVAGE THEOREM 881

.tions of the Hahn]Banach theorem instead of applying directly the
w x w xHahn]Banach theorem as in 7 and the present paper. The arguments of 6

also can be adapted to furnish somewhat shorter proofs of Propositions 1.3

and 1.5 and these arguments, in fact, provide slightly better constants.
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