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WIENER FUNCTIONALS ASSOCIATED WITH JOINT
DISTRIBUTIONS OF EXIT TIME AND POSITION

FROM SMALL GEODESIC BALLS1

By Keisuke Hara

University of Tokyo

Consider the first exit time and position from small geodesic balls
for Brownian motion on Riemannian manifolds. We establish a smooth
Besselization technique and calculate the asymptotic expansion for the
joint distributions by a purely probabilistic approach.

1. Introduction. Pinsky (1988) and Liao (1988) computed the asymptotic
expansions for the joint distribution of the first exit time and position:

Hε�λ;f� = E
[
exp

(
−λTε

ε2

)
f

(
X�Tε�
ε

)]
; ε↘ 0;(1.1)

where Tε is the first exit time from a geodesic ball of radius ε for Brownian
motion on a Riemannian manifold and X�t� is its pullback on the tangent
space. Their method to get the expansion is the perturbation theory of the
partial differential equations. Kôzaki and Ogura (1988) also studied the inde-
pendence of exit time and position by a similar method.

In this paper, we give an expansion ofHε�λ;f� in the path space level and it
turns out very simple. Furthermore we calculate explicitly Wiener functionals
associated with the coefficients of this expansion and give a more detailed
expansion than the Pinsky–Liao expansion with a purely probabilistic proof.

Our first strategy is the Besselization of the radial part �X�t�� by trans-
formation of drift,

E

[
e−λTf

(
X�T�
ε

)]
= E

[
e−λT̃f

(
Y�T̃�
ε

)
e8
]
;(1.2)

where Y�t� is the transformed process so that �Y� is a Bessel process, T̃ is the
exit time for Y�t� and exp8 is the Girsanov–Maruyama density. This tech-
nique is used by Takahashi and Watanabe (1980) to study Onsagar–Machlup
functions of diffusion processes. Our Besselization drift is different from theirs
and is smooth. The smoothness is essential to our computation.

In the next section, we state our results precisely. In Section 3, we es-
tablish the smooth Besselization technique and apply the Cameron–Martin–
Girsanov–Maruyama formula for transformation of drift. In Section 4, we ap-
ply Brownian scaling to get ε-expansions by formal calculation. In Sections 5
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and 6, we compute Wiener functionals in the expansion explicitly. Our main
tools for these explicit calculations are the time-reversed integral and the ro-
tational invariance of Brownian motion.

2. Main results. Let �M;g� be an n-dimensional connected C∞-
Riemannian manifold with n ≥ 2 and let Bm�ε� be the geodesic ball centered
at m ∈ M with small radius ε > 0. Let also X = �Xt;Pm� be a Brownian
motion starting at m on �M;g�. We denote by Tε the first exit time of Xt

from the geodesic ball Bm�ε�, that is,

Tε = inf�t > 0:Xt 6∈ Bm�ε��:(2.1)

The symbol Em stands for the expectation with respect to the probability
measure Pm. We fix a normal coordinate system �x1; x2; : : : ; xn� around m
and identify the tangent space Mm with Rn by the exponential map expm.
Note �x� = �∑n

i=1�xi�2�1/2 = dist�m; expm x�. Then Tε = inf�t > 0: �Xt� > ε�.
We denote by S the unit sphere �x: �x� = 1�.

Let gij, gij and 0ijk be the metric tensor, the inverse and Christoffel symbol,
respectively. Let Rijkl, ρij, s and ∂hRijkl, ∂hρij, ∂hs be the curvature tensor, the
Ricci curvature, the scalar curvature and their derivatives, respectively, all
evaluated at m. We will adopt the convention of omitting the summation sign
over repeated indices.

Our first goal is to give the following expansion on the path space level.

Theorem 2.1. For any smooth function f on the unit sphere S, we have the
asymptotic expansion

Hε�λ;f� = E
[
exp

(
−λTε

ε2

)
f

(
X�Tε�
ε

)]

= c0�λ�I�f� + ε2I�uf� + ε3I�vf� +O�ε4�;
(2.2)

where I is the mean of f with respect to the uniform distribution on S, c0�λ� =
E�exp�−λτ��, u and v are functions on S defined for θ ∈ S by

u�θ� = E
[
−1

6
exp�−λτ�

∫ τ
0
ρijB

i
t dB

j
t

∣∣∣ Bτ = θ
]
;(2.3)

v�θ� = E
[
− 1

24
exp�−λτ�

∫ τ
0
∂iρjkB

j
tB

k
t dB

i
t

∣∣∣ Bτ = θ
]

(2.4)

and Bt = �B1
t ;B

2
t ; : : : ;B

n
t � is the standard Brownian motion starting at 0 in

Rn and τ is the first hitting time to the unit sphere by Bt.

Next we compute the Wiener functionals in the theorem above and we get
the following theorem, which is more detailed than the Pinsky–Liao expansion.
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Theorem 2.2. We have the following asymptotic expansion:

Hε�λ;f� = c0�λ�I�f� + ε2I�uf� + ε3I�vf� +O�ε4�;(2.5)

where

u�θ� = c1�λ�ρijθiθj + c2�λ�s;(2.6)

v�θ� = c3�λ� ∂iρjk θiθjθk + c4�λ� ∂is θi;(2.7)

where ci�λ� are the following constants: for λ ≥ 0,

c1�λ� = −
1
12
ϕ�λ�; c2�λ� = −

1
12
ϕ′�λ�;

c3�λ� = −
1

24
ϕ�λ�; c4�λ� =





1
24

φ′′�λ�
φ�λ�φ′�λ� ; λ > 0;

1
24�n+ 2� ; λ = 0;

(2.8)

and

ϕ�λ� = E�e−λτ�; φ�λ� = 1/ϕ�λ�:(2.9)

3. Stochastic differential equation and smooth Besselization. We
start with the stochastic differential equation (S.D.E.) for Brownian motion
on Riemannian manifold. In the normal coordinate system �x1; x2; : : : ; xn�,
Brownian motion is the solution of the S.D.E. [see, e.g., Ikeda and Watanabe
(1981)]

dXi
t = σik�Xt�dBkt + ai�Xt�dt; X0 = 0;(3.1)

where σij�x� is the square root of gij�x�. That is, σij�x� is symmetric and such
that

n∑
k=1

σik�x�σkj�x� = gij�x�(3.2)

and ai�x� is Coriolis drift

ai�x� = − 1
2g

jk�x�0ijk�x�:(3.3)

Our first idea to compute Hε�λ;f� is the smooth Besselization of �Xt� by
the Cameron–Martin–Girsanov–Maruyama formula. The following two lem-
mas are the essential part in our proof. Lemma 3.1 is proved by Takahashi
and Watanabe (1980).
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Lemma 3.1 (Takahashi–Watanabe). There exists a local vector field b�x�
such that the radial part �X̃t� of the solution X̃t of the S.D.E.

dX̃i
t = σik�X̃t�dBkt + bi�X̃t�dt; X̃0 = 0;(3.4)

is a Bessel process with the dimension n.

Proof. Though the proof of Lemma 3.1 is in Takahashi and Watanabe
(1980), we give the proof here for completeness.

By the Itô formula,

d
(
�X̃t�2

)
= 2

n∑
j=1

X̃
j
t dB

j
t +

{
2

n∑
j=1

X̃
j
t b
j�X̃t� +

n∑
j=1

gjj�X̃t�
}
dt:(3.5)

We can choose bj�x� such that the following condition is satisfied:

n∑
j=1

bj�x�xj = 1
2

n∑
j=1

�1− gjj�x��:(3.6)

For example,

b̃i�x� = − xi

2�x�2
n∑
j=1

�gjj�x� − 1�(3.7)

trivially satisfies (3.6). Then (3.5) implies

d��X̃t�2� = 2
n∑
j=1

X̃
j
t dB

j
t + ndt:(3.8)

Therefore,

d��X̃t�2� = 2�X̃t�dMt + ndt;(3.9)

where

Mt =
n∑
j=1

∫ t
0

X̃
j
t

�X̃t�
dB

j
t(3.10)

is a one-dimensional standard Brownian motion. Hence, �X̃t� is a Bessel pro-
cess with index n. We obtain Lemma 3.1. 2

Lemma 3.2. We can choose the following smooth drift as the b�x� in
Lemma 3.1:

bi�x� = 1
2
∂

∂xk
gik�x�:(3.11)
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Proof. We check that bi�x� in Lemma 3.2 satisfies the condition (3.6). As
we chose the normal coordinate system, we have the basic relation

xi =
n∑
j=1

xjgij�x�:(3.12)

Differentiating both sides, we obtain

1 = gii +
n∑
j=1

xj
∂

∂xi
gij:(3.13)

Then
n∑
i=1

�1− gii� = 2
n∑
j=1

bjxjy(3.14)

hence the lemma follows. 2

Remark. Takahashi and Watanabe (1980) used (3.7) as the Besselization
drift b�x�, which is singular at the origin. Recently, Takahashi pointed out
that our smooth drift can make their proof very simple.

Now we apply the Cameron–Martin–Girsanov–Maruyama formula to
Hε�λ;f�. That is, the probability measure induced by Xt is absolutely
continuous with respect to the measure induced by X̃t and

Hε�λ;f� = E
[
exp

(
−λTε

ε2

)
f

(
X�Tε�
ε

)]

= E
[
exp

(
−λT̃ε

ε2

)
f

(
X�Tε�
ε

)
exp�8�T̃ε��

]
;

(3.15)

where T̃ε is the first exit time of X̃t:

T̃ε = inf�t > 0: �X̃t� > ε�(3.16)

and

8�T̃ε� =
∫ T̃ε

0

n∑
i;j=1

σij�X̃t�ci�X̃t�dBjt

− 1
2

∫ T̃ε
0

n∑
i;j=1

gij�X̃t�ci�X̃t�cj�X̃t�dt;
(3.17)

ci�x� = ai�x� − bi�x�:(3.18)

We will calculate the right-hand side of (3.15) in the next section.
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4. Brownian scaling and «-expansion. In this section, we give the
stochastic expansion with respect to a small parameter ε by Brownian scaling
and the Itô fomula. Since the radial part of our new process X̃t is a Bessel
process with index n, we can apply Brownian scaling to the exit time of X̃t

from the ε-ball:

T̃ε = ε2T̃1; in law,(4.1)

where T̃1 is the exit time of the standard Brownian motion from the unit ball
in the Euclidean space Rn. For simplicity, let us write τ for T̃1. Hence setting

X̃ε
t = X̃�ε2t�;(4.2)

we get

exp
(
−λT̃ε

ε2

)
f

(
X̃�T̃ε�
ε

)

= exp�−λτ�f
(
X̃�ε2τ�
ε

)
= exp�−λτ�f

(
X̃ε�τ�
ε

)
;

(4.3)

8 = 8�T̃ε�

=
∫ ε2τ

0

n∑
i;j=1

σij�X̃t�ci�X̃t�dBjt

− 1
2

∫ ε2τ

0

n∑
i;j=1

gij�X̃t�ci�X̃t�cj�X̃t�dt

= ε
∫ τ

0

n∑
i;j=1

σij�X̃ε
t �ci�X̃ε

t �dB
j
t

− 1
2
ε2
∫ τ

0

n∑
i;j=1

gij�X̃ε
t �ci�X̃ε

t �cj�X̃ε
t �dt:

(4.4)

Now we need the Taylor expansions of the geometric tensors with respect to
the normal coordinate. The following lemma for the metric tensor is proved
by E. Cartan [see, e.g., Gray (1990)].

Lemma 4.1. For small x,

gij�x� = δij − 1
3Raibjx

axb − 1
6∂aRbicjx

axbxc +O��x�4�:(4.5)

We can get the following lemma by easy calculation from Lemma 3.1.

Lemma 4.2. For small x,

ai�x� = − 1
3ρiax

a +
( 1

24∂iρab − 1
4∂aρbi

)
xaxb +O��x�3�;(4.6)
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bi�x� = − 1
6ρiax

a +
( 1

12∂iρab − 1
4∂aρbi

)
xaxb +O��x�3�;(4.7)

ci�x� = − 1
6ρiax

a − 1
24∂iρabx

axb +O��x�3�:(4.8)

Next let us get the formal asymptotic expansion of X̃ε
t .

Lemma 4.3.

X̃
ε;i
t

ε
= Bit +

ε2

6
N
�2�;i
t + ε

3

12
N
�3�;i
t +O�ε4�;(4.9)

where

N
�2�;i
t = Raibj

∫ t
0
BasB

b
s dB

j
s − ρia

∫ t
0
Bas ds;(4.10)

N
�3�;i
t = ∂aRbicj

∫ t
0
BasB

b
sB

c
s dB

j
s + �∂iρab − 3 ∂aρib�

∫ t
0
BatB

b
t ds:(4.11)

In particular,

X̃ε
t = εBt +O�ε3�:(4.12)

Proof. The stochastic differential equation of X̃ε
t is

X̃
ε;i
t = ε

∫ t
0
σij�X̃ε

s�dBjs + ε2
∫ t

0
bi�X̃ε

s�ds:(4.13)

By Lemma 4.1 and 4.2, we know

σij�X̃ε
t � = δij + 1

6RaibjX̃
ε; a
t X̃

ε; b
t

+ 1
12∂aRbicjX̃

ε; a
t X̃

ε; b
t X̃

ε; c
t +O��X̃ε

t�4�
(4.14)

and the expansion of bi�X̃t�. Then we get the lemma by iterated substitutions
in (4.13). 2

The next proposition is a direct consequence of Lemma 4.3 and the Itô
formula.

Proposition 4.4. We have

f

(
X̃ε
t

ε

)
= f�Bt� + ε2N

�2�; i
t

∂

∂xi
f�Bt� + ε3N

�3�; i
t

∂

∂xi
f�Bt� +O�ε4�;(4.15)

8 = −1
6
ε2
∫ τ

0
ρijB

i
t dB

j
t −

1
24
ε3
∫ τ

0
∂iρjkB

j
tB

k
t dB

i
t +O�ε4�:(4.16)
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Now using Proposition 4.4, we can get the following expansion of (3.15) by
a standard argument:

Hε�λ;f� = E
[
exp�−λτ�f

(
X̃ε�τ�
ε

)
exp�8�

]

= E�exp�−λτ�f�Bτ��

− 1
6
ε2E

[
exp�−λτ�f�Bτ�

∫ τ
0
ρijB

i
t dB

j
t

]

− 1
24
ε3E

[
exp�−λτ�f�Bτ�

∫ τ
0
∂iρjkB

j
tB

k
t dB

i
t

]

+ ε2E

[
exp�−λτ�N�2�; iτ

∂

∂xi
f�Bτ�

]

+ ε3E

[
exp�−λτ�N�3�; iτ

∂

∂xi
f�Bτ�

]
+O�ε4�:

(4.17)

5. Calculation of Wiener functionals I: proof of Theorem 2.1. In Sec-
tions 5 and 6, we calculate the Wiener functionals in the expansion (4.17). In
this section, we prove thatN�1�t andN�2�t contribute nothing to the expectation,
and so we get Theorem 2.1.

Proposition 5.1. We have

E�e−λτg�Bτ�N�K�; iτ � = 0(5.1)

for any smooth function g on S, where K = 1;2 and i = 1; : : : ; n.

Proof. First, we decompose the Brownian motion in polar form:

Bit = �Bt�
Bit
�Bt�

= RtU
i
t;(5.2)

where Rt is the radial part and Ut is the spherical part. Note that Ui
t are

martingales which are orthogonal to the martingale part of Rt.
Then,

N
�1�; i
t = Raibj

∫ t
0
R2
sU

a
sU

b
sd�RsU

j
s � − ρia

∫ t
0
RsU

a
s ds

= Raibj

∫ t
0
R2UaUb�RdUj +Uj dR+ dRdUj� − ρia

∫ t
0
RUa ds

= Raibj

∫ t
0
R3UaUb dUj − ρia

∫ t
0
RUa ds:

(5.3)

The last equality is by the skew symmetric property of Raibj: Raibj = −Raijb.
In the same manner, we get

N
�2�; i
t = ∂aRbicj

∫ t
0
R4UaUbUc dUj + �∂iρab − 3 ∂aρib�

∫ t
0
R2UaUb ds:(5.4)
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Let us calculate the following by the Itô formula:

d�RaibjR
3UaUb�dUj = RaibjR

3Ub dUa dUj

= RaibjR
3Ub

δaj −UaUj

R2
dt = RaibjRU

bδaj dt

= −RaijbRU
bδaj dt = −ρibRUb dt:

(5.5)

Similarly,

d�∂aRbicjR
4UaUbUc�dUj

= R4 ∂aRbicj�UaUb dUc dUj +UbUc dUa dUj +UcUa dUb dUj�
= R2 ∂aRbicj �UaUb�δcj −UcUj� +UbUc�δaj −UaUj�

+UcUa�δbj −UaUj��dt
= R2�∂aRbijjU

aUb + ∂jRbicjU
bUc + ∂aRjicjU

cUa�dt
(by the Ricci identity)

= R2�−∂aρbiUaUb + ∂iρbcUbUc − ∂bρciUcUi − ∂aρciUcUa�dt
= �∂iρbc − 3 ∂bρci�R2UbUc dt:

(5.6)

Then we get the representation for N�K�t :

N
�K�
T =

∫ T
0
Z
�K�
j dUj +

∫ T
0
dZ
�K�
j dUj =

∫ T
0
Z
�K�
j d+Uj;(5.7)

where K = 1, 2 and

Z
�1�
j = RaibjR

3UaUb; Z
�2�
j = ∂aRbicjR

4UaUbUc:(5.8)

That is, we can represent the N�K� as anticipating (time-reversed) stochastic
integrals [cf. Elworthy (1982)]. Therefore, they are martingales in terms of the
reversed-time variable. That is, for the transformation φ̌ = φ�T− t�,

∫ T
0
φd+U =

∫ T
0
φ̌ dǓ:(5.9)

If we take the conditional expectation for the filtration FR with respect to the
radial part, Ut is a P�·�FR�-martingale and

E�e−λτg�Bτ�N�K�τ � = E
[
e−λτE

[
g�B̌�0��

∫ τ
0
Ž�K�dǓ

∣∣∣ FR

]]
= 0: 2(5.10)

Then, we get Proposition 5.1 and so Theorem 2.1.



834 K. HARA

6. Calculation of Wiener functionals II: proof of Theorem 2.2. Fi-
nally, we prove Theorem 2.2. Our task is now to compute the following Wiener
functionals:

I�uf� = E
[
−1

6
e−λτf�Bτ�

∫ τ
0
ρijB

i
t dB

j
t

]
;(6.1)

I�vf� = E
[
− 1

24
e−λτf�Bτ�

∫ τ
0
∂iρjkB

j
tB

k
t dB

i
t

]
:(6.2)

By the Itô formula,

ρijB
i
τB

j
τ =

∫ τ
0

2ρijB
i
t dB

j
t +

∫ τ
0
ρijd�Bi;Bj�t

= 2
∫ τ

0
ρijB

i
t dB

j
t +

∫ τ
0
sdt:

(6.3)

Therefore,

E

[
e−λτf�Bτ�

∫ τ
0
ρijB

i
t dB

j
t

]

= E
[
e−λτf�Bτ�

(
1
2
ρijB

i
τB

j
τ −

1
2
τs

)]

(because of the rotational invariance of Brownian motion)

= 1
2

(
E�e−λτ�

∫
S
f�θ�ρijθiθj dθ−E�τe−λτ�

∫
S
f�θ�sdθ

)
:

(6.4)

Then we get (2.6) in Theorem 2.
The calculation of (6.2) is similar, but a little more interesting. First,

∂iρjkB
i
τB

j
τ B

k
τ = ∂iρjk

∫ τ
0
B
j
tB

k
t dB

i
t + 2 ∂is

∫ τ
0
Bit dt(6.5)

by the Itô formula and tensor calculation.
Therefore,

E

[
e−λτf�Bτ�

∫ τ
0
∂iρjkB

j
t B

k
t dB

i
t

]

= E�e−λτf�Bτ� ∂iρjkBiτBjτBkτ � − 2 ∂isE
[
e−λτf�Bτ�

∫ τ
0
Bit dt

]

= E�e−λτ�I�f�θ�θiθjθk ∂iρjk� − 2 ∂isE
[
e−λτf�Bτ�

∫ τ
0
Bit dt

]
:

(6.6)

Now what remains to be proved is the following proposition.

Proposition 6.1. We have

E

[
e−λτf�B�τ��

∫ τ
0
Bit dt

]
= c�λ�I�f�θ�θi�;(6.7)
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c�λ� =





1
2

φ′′�λ�
φ�λ�φ′�λ� ; λ > 0;

1
2�n+ 2� ; λ = 0;

(6.8)

where φ�λ� = 1/ϕ�λ� and ϕ�λ� = E�e−λτ�.

Proof. Let us calculate the following conditional expectation such that
the exit position is fixed at θ ∈ S.

Using the decomposition Bt = RtUt,

E

[
e−λτf�Bτ�

∫ τ
0
Bit dt

∣∣∣ Bτ = θ
]

= f�θ�E
[
etau

∫ τ
0
RtU

i
t dt

∣∣∣ Uτ = θ
]

(by the rotational invariance of Brownian motion around the axis θ)

= f�θ�E
[
e−λτ

∫ τ
0
Rt�Ut; θ�θi dt

∣∣∣ Uτ = θ
]

= f�θ�θiE
[
e−λτ

∫ τ
0
Rt�Ut; θ�dt

∣∣∣ Uτ = θ
]
;

= f�θ�θiE
[
e−λτ

∫ τ
0
B1
t dt

∣∣∣ Bτ = �1;0; : : : ;0�
]
;

(6.9)

where �·; ·� is the inner product in Rn.
Then we get the identity

E

[
e−λτf�Bτ�

∫ τ
0
Bit dt

]
= E

[
E

[
e−λτf�Bτ�

∫ τ
0
Bit dt

∣∣∣ Uτ = θ
]]

= c�λ�I�f�θ�θi�;
(6.10)

where

c�λ� = E
[
e−λτ

∫ τ
0
B1
t dt

∣∣∣ Bτ = �1;0; : : : ;0�
]

(6.11)

is a constant that depends on λ and the dimension n only. Let us determine
this constant by the computation of a special case.

First, we assume λ > 0. We take exp�
√

2λBiτ� especially as f�Bτ�. Note that
exp�−λt+

√
2λBit� is a martingale.

By the Itô formula,

3 = E
[
exp

(
−λτ +

√
2λBiτ

) ∫ τ
0
Bit dt

]

= E�exp�−λτ�h�Biτ�� = E�exp�−λτ��I�h�θi��;
(6.12)
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where

h�x� = 1
2

exp
(√

2λx
)( x2

√
2λ
− x

2λ

)
:(6.13)

On the other hand, by (6.10),

3 = c�λ�I�exp�
√

2λθi�θi�:(6.14)

Then, we have

c�λ� = E�exp�−λτ��I�h�θi��
I�exp�

√
2λθi�θi�

:(6.15)

Now, note the following two elementary relations:

∂2

∂λ2
exp

(√
2λx

)
= 1√

2λ
h�x�(6.16)

and

1 ≡ E�exp�−λτ +
√

2λBτ�� = E�exp�−λτ��I�exp�
√

2λθi��
= ϕ�λ�I�exp �

√
2λθi��y

(6.17)

that is,

I�exp�
√

2λθi�� = φ�λ�:(6.18)

By (6.15) and the relations above, we have

c�λ� = φ′′

2φφ′
:(6.19)

Finally, if λ = 0, we take Biτ as f�Bτ�. By the Itô formula,

E

[
Biτ

∫ τ
0
Bit dt

]
= 1

6
E��Biτ�4� =

1
6

∫
S
�θi�4 dθ = 1

2n�n+ 2� :(6.20)

On the other hand,

E

[
Biτ

∫ τ
0
Bit dt

]
= c�0�I��θi�2� = c�0�

n
:(6.21)

Therefore,

c�0� = 1
2�n+ 2� :(6.22)

Thus, we have proved Proposition 6.1 and, consequently, we get Theo-
rem 2.2. 2
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