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WIENER FUNCTIONALS ASSOCIATED WITH JOINT
DISTRIBUTIONS OF EXIT TIME AND POSITION
FROM SMALL GEODESIC BALLS!

By KEISUKE HARA
University of Tokyo

Consider the first exit time and position from small geodesic balls
for Brownian motion on Riemannian manifolds. We establish a smooth
Besselization technique and calculate the asymptotic expansion for the
joint distributions by a purely probabilistic approach.

1. Introduction. Pinsky (1988) and Liao (1988) computed the asymptotic
expansions for the joint distribution of the first exit time and position:

av  aon=ges(5)(XE)] o

where T, is the first exit time from a geodesic ball of radius ¢ for Brownian
motion on a Riemannian manifold and X(¢) is its pullback on the tangent
space. Their method to get the expansion is the perturbation theory of the
partial differential equations. Koézaki and Ogura (1988) also studied the inde-
pendence of exit time and position by a similar method.

In this paper, we give an expansion of H (A, ) in the path space level and it
turns out very simple. Furthermore we calculate explicitly Wiener functionals
associated with the coefficients of this expansion and give a more detailed
expansion than the Pinsky—Liao expansion with a purely probabilistic proof.

Our first strategy is the Besselization of the radial part || X(¢)|| by trans-
formation of drift,

D]

where Y (¢) is the transformed process so that ||Y|| is a Bessel process, T is the
exit time for Y (¢) and exp ® is the Girsanov—-Maruyama density. This tech-
nique is used by Takahashi and Watanabe (1980) to study Onsagar—Machlup
functions of diffusion processes. Our Besselization drift is different from theirs
and is smooth. The smoothness is essential to our computation.

In the next section, we state our results precisely. In Section 3, we es-
tablish the smooth Besselization technique and apply the Cameron—Martin—
Girsanov—Maruyama formula for transformation of drift. In Section 4, we ap-
ply Brownian scaling to get s-expansions by formal calculation. In Sections 5
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and 6, we compute Wiener functionals in the expansion explicitly. Our main
tools for these explicit calculations are the time-reversed integral and the ro-
tational invariance of Brownian motion.

2. Main results. Let (M, g) be an n-dimensional connected C*-
Riemannian manifold with » > 2 and let B,,(¢) be the geodesic ball centered
at m € M with small radius ¢ > 0. Let also X = (X,, P,,) be a Brownian
motion starting at m on (M, g). We denote by T, the first exit time of X,
from the geodesic ball B,,(¢), that is,

(2.1) T, =inf{t > 0: X, ¢ B, (¢)}.

The symbol E,, stands for the expectation with respect to the probability
measure P,,. We fix a normal coordinate system (x;, x9,...,x,) around m
and identify the tangent space M,, with R" by the exponential map exp,,.
Note [|x|| = {1 1(x")?}1/2 = dist(m, exp,, x). Then T, = inf{¢ > 0: || X,|| > &}.
We denote by S the unit sphere {x: ||x| = 1}.

Let g;;, g¥ and Fik be the metric tensor, the inverse and Christoffel symbol,
respectively. Let R, p;;, s and d;, R;j,;, d5p;5, 58 be the curvature tensor, the
Ricci curvature, the scalar curvature and their derivatives, respectively, all
evaluated at m. We will adopt the convention of omitting the summation sign
over repeated indices.

Our first goal is to give the following expansion on the path space level.

THEOREM 2.1. For any smooth function f on the unit sphere S, we have the
asymptotic expansion

1.0 ) = Bew (225 ) r(XU2)]

&

(2.2)
= coMI(f) + 2 1(uf) + 2 I(vf ) + O(&*),

where I is the mean of f with respect to the uniform distribution on S, cy(A) =
Elexp(—AT1)], u and v are functions on S defined for 6 € S by

1 T R .
(2.3) u(9) = E[—B exp(—)w)/o pi;BidB] | B, = o},
1 T jpk gpi
(2.4) 0(0) = B| -5 exp(—)w)/o d;p s B/BdB:| B, =0
and B, = (B}, B, ..., B}) is the standard Brownian motion starting at 0 in

R™ and 7 is the first hitting time to the unit sphere by B,.

Next we compute the Wiener functionals in the theorem above and we get
the following theorem, which is more detailed than the Pinsky—Liao expansion.
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THEOREM 2.2. We have the following asymptotic expansion:

(2.5) H (A, f) = co(MI(f) + 2 I(uf) + 2 I(vf) + O(&*),
where

(2.6) u(0) = c1(A)p;0°67 + cy(A)s,

2.7) v(0) = c3(A) d;p jp 0°67 0% + cy(A) d;5 6",

where c¢;(A) are the following constants: for A > 0,

G = 1560, @)= 1280V,
1 ¢"(\)
2.8) ! ey 70
c3(A) = —ﬂqD()\), cy(A) = 1
U(n+2) A =0,
and
2.9) e(N) = E[e™],  $(A) = 1/¢(A).

3. Stochastic differential equation and smooth Besselization. We
start with the stochastic differential equation (S.D.E.) for Brownian motion
on Riemannian manifold. In the normal coordinate system (x!, x2,..., x"),
Brownian motion is the solution of the S.D.E. [see, e.g., Ikeda and Watanabe
(1981)]

(3.1) dX! = o0,(X,)dB" +d(X,)dt, X,=0,

where o;;(x) is the square root of g¥(x). That is, 0;;(x) is symmetric and such
that

n

(3.2) > op(x)oy(x) = g (x)

k=1
and a’(x) is Coriolis drift
(3.3) a'(x) = —3 8 (x) ().

Our first idea to compute H (A, f) is the smooth Besselization of | X,| by
the Cameron—Martin—Girsanov—Maruyama formula. The following two lem-
mas are the essential part in our proof. Lemma 3.1 is proved by Takahashi
and Watanabe (1980).
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LEMMA 3.1 (Takahashi-Watanabe). There exists a local vector field b(x)
such that the radial part || X,| of the solution X, of the S.D.E.

(3.4) dX! = o,,(X,)dBF +b1(X,)dt, X,=0,

is a Bessel process with the dimension n.

PROOF. Though the proof of Lemma 3.1 is in Takahashi and Watanabe
(1980), we give the proof here for completeness.
By the It6 formula,

(35 d(|X,P) =2 X/dB {Z J(Xt>+2gﬂ<xt>}dt
j=1

=1 Jj=1

We can choose b/(x) such that the following condition is satisfied:

(3.6) Z b/ (x)x! = % i(l — g7 (x)).
j=1

=1

For example,
(3.7 b'(x) = - 2”x||2 Z(g”( )-1)

trivially satisfies (3.6). Then (3.5) implies

(3.8) d(| X, =2 X/ dB] +ndt.
j=1

Therefore,

(3.9) d(|X,12) = 2| X,| dM, + n dt,

where

t X/ .
(3.10) M, = /O"Xt”dB{

is a one-dimensional standard Brownian motion. Hence, | X,|| is a Bessel pro-
cess with index n. We obtain Lemma 3.1. O

LEMMA 3.2. We can choose the following smooth drift as the b(x) in
Lemma 3.1:

(3.11) bi(x) = Qﬁ g™*(x).
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PROOF. We check that b(x) in Lemma 3.2 satisfies the condition (3.6). As
we chose the normal coordinate system, we have the basic relation

(3.12) xt =Y xd g¥(x).
j=1

Differentiating both sides, we obtain

. n .9 ..
— gl J___ gl
(3.13) 1=g"+ Z:x 8
Jj=1
Then
(3.14) Y(1-g) =2 b/al;
i=1 j=1

hence the lemma follows. O

REMARK. Takahashi and Watanabe (1980) used (3.7) as the Besselization
drift b(x), which is singular at the origin. Recently, Takahashi pointed out
that our smooth drift can make their proof very simple.

Now we apply the Cameron—Martin—Girsanov—Maruyama formula to
H_(A, f). That is, the probability measure induced by X, is absolutely
continuous with respect to the measure induced by X, and

1.0 ) = Bless( 25 ) (X0 ]

&
(3.15) 7 (T
= Bexp( 233 )(F5 ) expia,)) |
& &
where T, is the first exit time of X,:
(3.16) T,=inf{t > 0:| X,| > &}
and

. T, » Y .
®(T,)= [ X oy(X)e'(X,)dBf

(3.17) n
1 7. 2 L~ . L.
—5 ] X X)X )Xt
i,j=1
(3.18) c'(x) = a'(x) — b'(x).

We will calculate the right-hand side of (3.15) in the next section.
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4. Brownian scaling and e-expansion. In this section, we give the
stochastic expansion with respect to a small parameter £ by Brownian scaling
and the It6 fomula. Since the radial part of our new process X . is a Bessel
process with index n, we can apply Brownian scaling to the exit time of X,
from the &-ball:

(4.1) T,.=¢*T,, inlaw,

where T'; is the exit time of the standard Brownian motion from the unit ball
in the Euclidean space R”". For simplicity, let us write 7 for T';. Hence setting

“ X; = X(),
we get
Ts X(Ts)
2V
Y X (&) Xe(7)
:exp(—)\T)f< 8 )zexp(—x\r)f( . )
® = &(T,)
=/0827 i o,(X,)c'(X,)dB]
i,j=1
1 e 1 e i
(4.4) _ifo i’élg (X)) (X)e!(X,)dt

=e[ ¥ oy (X))el(X;)dB]
0 =1

1 TR
—58 [ 2 gUXDE(Xpe (XD .
0 ;=1

Now we need the Taylor expansions of the geometric tensors with respect to
the normal coordinate. The following lemma for the metric tensor is proved
by E. Cartan [see, e.g., Gray (1990)].

LEMMA 4.1. For small x,
(4.5) gij(x) = 3ij - %Raibjxaxb - %%Rbicjxaxbxc + O(||x||4).
We can get the following lemma by easy calculation from Lemma 3.1.

LEMMA 4.2. For small x,

(4.6) ai(x) = _%piaxa + (i(?ipab - %(?apbi)xaxb + O(”x”3)>
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(47) bl(x) = _%piaxa + (leaipab - %ﬁapbi)xaxb + O(||x||3)a
(48) (%) = —Lpiax® — Hipaxx + O(x]?).

Next let us get the formal asymptotic expansion of X?.

LEMMA 4.3.
Xa,i ] 2 ; 3 ;
(4.9) =B+ %N?)’ + %Nf* +O0(e),
where
. t . t
(4.10) N = Ry [ BIBLABI —py, [ Bids,

(4.11) N(S)’i—&R-»/tB“BbBCdBjJr(& _30.pw) [ BiBbd
. t — Gallpic 0 s Pss s iPab apzb) 0 ¢ Dy as.

In particular,
(4.12) X? =B, + O(&®).
PROOF. The stochastic differential equation of X¢ is

. t - . to.

(4.13) Xoi = a/ 0(X)dB] +82[ bi(X?)ds.
0 0

By Lemma 4.1 and 4.2, we know

e 1 >&,a xre, b
(414) o,i(X7)=8; + gRaiij:t a)ft . )

+ 199 Ry X0 X7V X0+ O(I1 X714

and the expansion of b'(X,). Then we get the lemma by iterated substitutions
in (4.13). O

The next proposition is a direct consequence of Lemma 4.3 and the It6
formula.

PROPOSITION 4.4. We have

Xy @.i 3a7(3)i 9
B N :
o f(By)+ &’ N, Ixl

) = f(B)+ NP f(B,)+ O(&*),

(4.15) f(

1 T . : 1 T . .
(4.16) d = _682/0 pi;BidB] - ﬂgsfo 9;p x BBt dB + O(s%),
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Now using Proposition 4.4, we can get the following expansion of (3.15) by
a standard argument:
Xa
1,00 1) = B exp(-anf (17 ) exn(@)|

&

— Elexp(-A1)f(B,)]

1 T . .
- §2°F [ exp(-An)f (B,) [ Bl aB |
4.17)

]_ T . ;
~ 545 Eless(-anf(B,) [[ s, BB B

+ 82E|:exp(—)\T)N(Tz)’ i&% f(BT)}
+ 83E|:exp(—/\T)N§3)’ i% f(BT)} + O(&%).

5. Calculation of Wiener functionals I: proof of Theorem 2.1. In Sec-
tions 5 and 6, we calculate the Wiener functionals in the expansion (4.17). In

this section, we prove that N §1> and N 52) contribute nothing to the expectation,
and so we get Theorem 2.1.
PROPOSITION 5.1.  We have
(5.1) Ele ™ g(B,)NE)»i]1=0
for any smooth function g on S, where K =1,2andi=1,...,n.
PrOOF. First, we decompose the Brownian motion in polar form:
B;
Bl

(5.2) Bi =|B,| = R,U,,

where R, is the radial part and U, is the spherical part. Note that U are
martingales which are orthogonal to the martingale part of R,.
Then,
. ¢ . ¢
N{"' = Ry [ REUSULA(RU)) — pig [ RUSds
0 0
¢ . . . t
(5.3) = Rou / R2U“UY(RAU’ + U/dR + dRdU’) — p,, / RU“ds
0 0
t t
_ . 3rrarrh J_ 4. a
= RW/O R}U°U® dU pm/O RU“ ds.

The last equality is by the skew symmetric property of R,;s;: Ryipj = — R
In the same manner, we get

. ¢ ) t
(5.4) NP' =9, Rp; / RUUPUC AU/ + (9,pq — 3,p;3) / R2U°U ds.
0 0
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Let us calculate the following by the It6 formula:

d(RaibjRgUan) de = RaibjRSUb au® de
8, — U U/
(5.5) = RaibszUb]T dt = RaibjRUb(Saj dt
= —R,;, RUS,; dt = —p;, RU® dt.
Similarly,

d(d,Ry;; R*UUPU®) dU/
= R* 9, Ry, {U°U* dU* dU’ + U°U°dU" dU’ + U°U* dU® dU"}
= R%9, Ry, {UU(s,;, — U°U’) + U U“(s,; — U"U’)
+UU (8 — UU)} dt
= R%(9,Ry;;; U°U® + 9 jRy;,; UPU° + 9, R j;,; UU*) dt
(by the Ricci identity)
= R*(=0appi U U’ + 9;ppU°U° = Gppo; UU" = 3p; UU®) dt
= (9;ppe — 3 9ppe; ) REUPUC dit.

(5.6)

Jicj

Then we get the representation for N EK):

(5.7) NE [T 7B quig [T az® qui = [ 7B gty
where K =1, 2 and

(1) 3rrarrh (2) drrarrbyTC
(5.8) Z] = RaibjR U U 5 Z] z&aRbich U U U .

That is, we can represent the N(X) as anticipating (time-reversed) stochastic
integrals [cf. Elworthy (1982)]. Therefore, they are martingales in terms of the
reversed-time variable. That is, for the transformation ¢ = ¢(T — ¢),

(5.9) /OT¢d+U:/OTJ>dU

If we take the conditional expectation for the filtration & with respect to the
radial part, U, is a P(-|%g)-martingale and

(5.10) E[e " g(B,)N®)] = E|:e‘)‘TE|:g(l§(0)) [O " 2®qr ‘ 9‘RH =0. m

Then, we get Proposition 5.1 and so Theorem 2.1.
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6. Calculation of Wiener functionals II: proof of Theorem 2.2. Fi-
nally, we prove Theorem 2.2. Our task is now to compute the following Wiener
functionals:

]_ T X .
6.1 If) = B~ ge " F(B.) [ Bl dB]
1 T . .
6.2) I6f) = B[~ 50e (B, [ upuB! B B

By the It6 formula,

p;; BB} :/0 2p,;B; dB] +[o p;d{B', BY),

(63) T . T
:2/0 pijB;dB;Jr/O sdt.
Therefore,
E[ekff(BT)/O pijBidBi}
1 o1
= E|eMf(B, ( i»B’TB{—Ts)}
o e r B (GouBiEl -

(because of the rotational invariance of Brownian motion)

= (B [ 07 a0 Bl [ porsan).

Then we get (2.6) in Theorem 2.
The calculation of (6.2) is similar, but a little more interesting. First,

(6.5) gipjkBngszaipjk/O B{de3§+2ais/0 Bidt

by the It6 formula and tensor calculation.
Therefore,

E|:e)‘7f(BT) /OT 9iP jk B! B! dBi}
(6.6) = E[e " f(B,)d;pj, B.B{B*] - 24;s E[e‘“f(BT) /0 Bi dt:|
= E[e " I[£(0)07076" 0;p 1] — 24;5 E[e“f(BT) /O B dt]
Now what remains to be proved is the following proposition.

PROPOSITION 6.1. We have

(6.7) E [e"" £(B(r)) /0 "B dt} = c(MI[F(0)67],
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1 4"\

O 1N AN >Oa
(6.8) c(A) = 2‘1’(1)‘)‘1’ )

W +2)’ A=0,

where ¢(A) = 1/¢()) and ¢(A) = E[e™*7].

PROOF. Let us calculate the following conditional expectation such that
the exit position is fixed at 0 € S.
Using the decomposition B, = R, U,,

E[eﬂf(BT)/OT B dt i B, = 0}
- f(o)E[etau [0 R,U! dt | U, = 0}

(by the rotational invariance of Brownian motion around the axis 6)

(6.9) . .
— f(o)E[eM/O R,(U,, 0)0 dt ‘ U, = o}

= f(g)giEl:e—)m-/OT R, (U,, 6)dt l U,= 0:|,

_ f(O)OiEI:e’\T/:B} dt l B, = (1,0,...,0)],

where (-, -) is the inner product in R".
Then we get the identity

E[em,c(BT)/OT B! dt] = E[E[enf(BT)/OT Bidt | U, = eﬂ

6.10)
= c(MI[f(0)6'],

where

6.11) c(A) = E[e—M /0 Bldt| B, =(1,0, ...,0)}

is a constant that depends on A and the dimension n only. Let us determine
this constant by the computation of a special case.

First, we assume A > 0. We take exp(\/ﬂBi) especially as f(B,). Note that
exp(—At + +/2AB!) is a martingale.

By the It6 formula,

A=E _ar+v2rBi) [ B
6.12) [exp( T+ v2) T)/0 tdt}

= Elexp(~A7)h(B})] = E[exp(—A7)]I[A(6")],
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where

(6.13) h(x) = exp(Jﬂx)<x2 - x)
2 J2A 2A

On the other hand, by (6.10),

(6.14) A = c(A)I[exp(vV/216%)67).

Then, we have

Elexp(=An)]I[A(6")]

(6.15) c(d) = Toxp(VZA0))6']
Now, note the following two elementary relations:
(6.16) ‘?—22 exp(v2Ax) = ih(x)
ar V2
and
6.17) 1= E[exp(—A7 + v2AB,)] = E[exp(—A7)]I[exp(v/216")]
= @(M)I[exp (V2A6')];
that is,
(6.18) I[exp(v/216°)] = ¢(A).
By (6.15) and the relations above, we have
(6.19) c(A) = Ziqb"
Finally, if A = 0, we take B as f(B,). By the Ito formula,
(6.20) E[Bg /0 Bidt:| - %E[(Bi)‘*] - %fs(ei)“de = T
On the other hand,
(6.21) E[Bi /0 Bﬁdt} = ¢(0)I[(6")%] = @.
Therefore,
(6.22) c(0) = ;
2(n +2)

Thus, we have proved Proposition 6.1 and, consequently, we get Theo-
rem 2.2. O
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