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STOCHASTIC FLOWS FOR NONLINEAR SECOND-ORDER
PARABOLIC SPDE

By Franco FLANDOLI

Scuola Normale Superiore

The existence of stochastic flows in L?-spaces is proved for a stochas-
tic reaction] diffusion equation of second order in a bounded domain.

1. Introduction.

1.1. Aim of the paper. Let D be a regular bounded open domain of R¢
and let a;;, a;, a,, b, c*, is 1,...,d, ks 1,...,n, be real-valued functions
in D, which, for the sake of simplicity, we assume to be of class C' D.. Let
Ls L x,>. be the second-order strongly elliptic operator in D:

d >2u «x. d >u x.
L x,>.ux.s a; ; x.
i,js 1

qga, x.u x..

2Xi2 X s >X;

Let M*s M* x,>. be the first-order differential operators in D, with ks
1,...,n,

M* x> .u x.s br «x.

We assume that there exists h) 0 such that

d n
1. a;; x.y b x. bk x.5iij h¥ 2

J
i,js 1 ks 1

for all jg R? and xg D.

Let V,F,F, P. be a stochastic basisandlet w ¢t.s w't.,...,w" t. .bea
standard n-dimensional Brownian motion. Consider the stochastic reac-
tion] diffusion] convection equation in D, either in the Dirichlet boundary
condition case

n

dus Luq f u..dtq M*udw* t.,
ks 1

u<)D S 07

u0.s u,
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548 F. FLANDOLI

or in the Neumann case

n

dus Luq f u..dtq M*udw* t.,

ks 1
3. >u
—1 s 0,
)nA >D
u0.s ug,
where
>u d >u
—s a;n:
JJ
My s > X

and ns n x. is the outward normal on > D. Here
2py 1
h
fu.s a,u”,
hs 0
with real coefficients a, subject to the condition
Agpy1- 0.

WMore general monotone nonlinearities can be considered here, such as the
sum of a polynomial of the previous form plus a Lipschitz continuous function
of u plus a given function g ¢, x. with suitable regularity; we do not insist on
such a level of generality. X Equations 2. and 3. may model reaction] diffu-
sion phenomena in a fluid that occupies the region D and moves with velocity

no . b* x.dw" t.rdt q a x., where b* x. denotes the vector of components
bik x. and a x. the vector of components a; x..

It is well known cf. V8X VBX and WOX. that for all u,g L* D. Wr u,g

L? V,F,, P; D. Xeach one of the previous equations has a unique solution u,
progressively measurable,

ug I V;C WO, TX,I? D...| L2 V= W,TX H! D.,
| 12 V= v0,TX= D..

Moreover, for each ¢) 0, the mapping u,< u t. is continuous from L? D. to
L? V; L? D. . The aim of this paper is to prove the following stronger result.

THEOREM 1.1. For the Dirichlet problem 2. there exists a stochastic flow
in L* D..

THEOREM 1.2. For the Neumann problem 3. assume that all the vector

fields b* x. are tangent to the boundary. Then there exists a stochastic flow in
L?> D..

As it is more carefully explained in the next subsection, the property of
stochastic flow amounts to saying that the mapping u,< u ¢, v. is continu-
ous from L? D. to L? D., for P-ae. vg V.
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The problem of existence of stochastic flows for infinite-dimensional
stochastic systems is an intriguing one cf. 13X, The flow property is usually
trivial for deterministic infinite-dimensional systems where there is
uniqueness of solutions.; for stochastic finite-dimensional equations the exis-
tence of stochastic flows has been proved in a wide generality cf. ViXand v@x
and the references therein.. But none of the methods developed in the
finite-dimensional case extends to the infinite-dimensional case, up to now. Of
course, the case of additive noise is usually easy because it can be reduced to
a deterministic equation by a change of variable. Another conceptually easy
method is the robust equation approach time change. cf. V8X, or other
similar methods that reduce the stochastic equation to a deterministic one.
All these methods work under very particular assumptions and do not cover
Theorems 1.1 and 1.2.

For linear stochastic equations with multiplicative noise there is a number
of methods cf. VX WX VBX V6X and VI2X, but also in that case the answer is
open for very simple equations. Theorem 1.1. in the linear case is covered in
WX by a Feynman] Kac representation formula, but Theorem 1.2, also in the
linear case, has not been obtained up to now by methods different from those
of this paper except for d F 5; see VBX,

Finally, a trivial class of nonlinear flows can be constructed when the
diffusion operator is skew-symmetric; see Section 1.3. The more complex
method presented in this paper to prove Theorems 1.1 and 1.2 Section 2. was
originally suggested by the simple idea of the skew symmetry.

1.2. The concept of stochastic flow. Let H be a real separable Hilbert
space and V,F, P. a complete probability space. Let u ¢, s;u,-, sF ¢, 4,0
H, denote the solution at time ¢ of a certain stochastic equation in H Wéver

V, F, P. Xwith given initial value u, at time s. The problem of existence of a

stochastic flow is the problem of the existence of a regular version of the
mapping u,“ u t,s;u,- for fixed sF ¢t or, when possible, uniformly in s
and ¢.. This means the existence of a mapping v f_, v. from V to the
space of continuous mappings in H such that

s, t

4. for V.uys u t,s,uy. v. P-as.

for all u,g H. The mapping f,, v. is called the stochastic flow in H
associated with the given equation.

As to the existence of a regular version of a given infinite-dimensional
random field, we have the following preliminary result. Let H and Y be two
real separable Hilbert spaces with norms <?% and <?<. The result holds
true also in Polish spaces, but we do not stress this generality.. Let V,F, P.
be a complete probability space, as above. Finally, let L° V;Y . be the space
of Y-valued random variables. We call a mapping F: H* L° V;Y. a Y-
valued random field with parameter space H. Moreover, we say that F has a
continuous version if there exists a mapping v* f v., from V to C H,Y .,
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the space of continuous mappings from H to Y, such that

5. f v.xs Fx. v. P-as.
for all xg H.

LEMMA 1.1. Let F: H* L° V;Y. be a given random field. Assume that
for each ball S in H there exist two random variablescg v.-G 0 and ag v-) 0
such that

6. <Fx. v.y Fy. v.$F ¢g Vv.%Yy y%sv' P-a.s.

for all x,yg S. Then F has a continuous version f Watisfying 5. X such
that, for P-a.e. vg V, f v. is Holder continuous on the balls of H, with the
Holder constants given by 6.. Finally, this regular version f V. is unique up
to modifications on sets of measure 0.

The proof is not difficult and it is given in VBX

1.3. A trivial example of nonlinear flow. The result of the present section
is analogous to that of iXon stochastic Navier] Stokes equations with multi-
plicative noise. For simplicity, we consider here a globally Lipschitz nonlin-
earity F, in contrast to IX but the skew-symmetry condition on B* imposed
below, crucial in view of the existence of the flow, is the same as in WX and
could be motivated by applications to fluid dynamic problems see Remark 2
below.. The reason to include this subsection is to fix the idea used in the
proof of Theorems 1.1 and 1.2 but we do not use the result of this section..
Indeed, the method of proof of such theorems has been devised in an attempt
to extend the trivial method of this section to the case of multiplicative
diffusion terms which are the sum of a skew-symmetric part and an easy part

a zero-order differential operator. that could be treated by time change.
Let H be a real separable Hilbert space with norm <?<and inner product
?,?:. Consider the equation

n

du t.s Au t.dtq F u t.. dtq B*u t. dw* t.,
ks 1

tg VO,TX,
u0.s u,g H.

Assume that A is the infinitesimal generator of an analytic semigroup in H,
F is a globally Lipschitz mapping in H and B* is a linear continuous
mapping from D yA .!"2. Whe domain of the fractional power yA .Y 2xto H
such that
n
3 B*udF yh Au,uiq | %2, ug D A.,
8. ks 1

B*fu,u:s 0, ug D yA .er,, ks 1,...,n,
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for some constant hg 0,1. and / G 0. One can prove Wvithout the second
assumption in 8. Xthat 7. has a unique progressively measurable mild
solution

us u u,. g L* ViC W,ITXH..| I?V=V0,TxD yA."?[

Using, in addition, the second assumption in 8., we can prove the following
result.

THEOREM 1.3. Foralltg VO,TXthe random field uy< u t,u,-, from H to
L? F,;; H., has a Lipschitz continuous modification f, v.; vg V4W.e., f, v.
is a Lipschitz continuous mapping in H for all vg VX

Proor. Let J,s m my A.Y' and u,s J,u. Then u, satisfies the

equation
n

9. du,t.s Au, t.dtq J,F u t..dtq J,B*u t. dw" t..
ks 1
Now fix u,,v,9 H and let u and v be the solutions of 9. corresponding to
the initial values u, and v,. Moreover, let u,, and v,, be defined as above.
Finally, let zs wy v and 2z,,s u, Y v,. Then, by the Ito formula,
n
t.q s Bz, t.3/dt

ks 1

ids,, t.4s Az, t.,z,

q J,Fut.y J,Fuvt.,z,t.

q3 9J,B*2t 3y 1 Btz t.éldt
ks 1 ks 1
10. q 2z, t.,J, Bz t. dw" t.
ks 1

F Is,t<q J,Fut.y J,Fuvt.,z,t.

g+ 9,B*z2t.dy L Bz t.3/dt
ks 1 ks 1
q 2z, t.,Jd Bz t. dw* t..,

ks 1

so that, using the integral formulation of this inequality, after passage to the
limit as m*“ *‘, we have

s ¢t.2F HUoY vogq H I € r.gq Fur..y Fvr..,zr.., dr
11. n °
o} H z r.,B*z r.dw" r...

ks 1 S
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By the second assumption in 8., the Ito integral in 11. vanishes; hence,
using the Lipschitz continuity of F in H and applying the Gronwall lemma to
11., we obtain

12, %ty vit.F ciyy vy< P-as.

for a suitable deterministic!- constant ¢) 0. Therefore, from Lemma 1.1, we
infer the existence of a Lipschitz continuous modification of the random field
ug< ut,ug-. |

REMARK 1. From 11. we see that a monotonicity assumption on F is
sufficient in place of the global Lipschitz condition. To keep the exposition as
elementary as possible, we do not treat the monotone case here, which
requires more care at the level of existence of solutions.

REMARK 2. Let A and B* be differential operators as in Section 1.1. If
divb*s 0 in D, then the skew-symmetry condition in 8. is satisfied. In
certain applications to fluid dynamic problems, the vector fields b” x. have
the meaning of velocity fields of the fluid; in this case the assumption
divb”*s 0 corresponds to the incompressibility of the fluid.

2. Proof of Theorems 1.1 and 1.2. Let M's M* x,>. and M"s
M" «x,>. be the first-order differential operators associated with M* «,> .,
defined as

~ d >u x.

M* x,>.u x.s b x. qck x.u x.,
is 1 > X;

- d >u x.

M" x,>.u x.s bF x. q c* x.qgc* x..u x.,
is 1 > Xy

k x. are defined by the conditions

2ck x.qc* x..s divh* «x..
The previous definition is designed to have the following essential properties:
M* uv.s y Mk * uv.,
M* uv.s uZ\ZIkvq vM*u.
Equation 13. has to be understood in the following sense.

where the functions ¢

13.

LEMMA 2.1. Let Ms M x,> . be an operator defined as

- d >u x.
M x,>.u x.s b, x.
is 1
Assume that either u,vg H' D. satisfy uvs 0 on >D or b x. is tangent to
the boundary. Then

gc¢x.ux..
>X;

Ms yMA *
Wn the sense that

H Mu.vdxs y Hqudx
D D
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for u,vg H! D. specified as aboveXis equivalent to
2¢ x.s divb x..

Proor. We have
>u

d
H Mu.vdxs Hvbi
D

is1 D

dxq Heéuvdx
D

>X;

d >
sy Hu— bv. dxq H@uvdxq H vub?nds
is1 D >X%X; D >D

s v Huvdivb dxq H2éuvdxy Hubvdx.
D D D

LEMMA 2.2. Let M, M , M be operators defined as

d >u x.
M x,>.u x.s b, x. qcx.u x.,
is 1 > X
- d >u x.
M x,>.u x.s b, x qc¢ x.u x.,
is 1 > X
. d >u x.
M x,>.u x.s b, x q cx.gcC x..u x..
is 1 > X

Then
u]\vaq vMus M uv..
Moreover, assume that either u,vg H' D. satisfy uvs 0 on > D or the vector
field b is tangent to the boundary. Then
2c¢cx.q9¢ x..s divh «x.
implies
Ms yMA *
in the sense of the previous lemma..

Proor. We have

- d >u >v
M uv.s b; vg u cqg c.uv
>x; >x;

s vMuq uMv.
The second part of the lemma is just a rewriting of the previous lemma. |

Extend all the coefficients a,;, a;, ... to R? in such a way that they still are
of class C', satisfy the coercivity condition 1. and have compact support.

Consider the stochastic parabolic equation in R¢:
n

diis Liidtq M*idw* t.,
14. ks 1
u0,x.s 1.
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The solution of this equation cf. VBX W 1Xand W4X.has P-a.s. the property i,
>tir>x;g C 0,Tx= R%., is 1,...,d, and @ t,x,v./ O for all ¢, x.g
V9, Tx= R9. The latter fact follows, for instance, from the representation
formula of WI4X Thus, given the domain D; R, there exist two positive
random variables ¢; v.- ¢, V. such that, P-a.s.,

15, 0- ¢ v.Fut,x,v.F e, v.
for all ¢,x.g VO,TX= D, and
16. #it,..,V.w pFocy V..

Let ug 1,459 L* D. be given initial conditions for 2. or 3. andlet uy, u,
be the corresponding solutions. Recall that these equations have to be under-
stood in the following variational sense:

ut.,u.s uy,UQ Ha u s.,u.ds
17. ’ n
quus..,ustq HMku s., U dw* t.
0 ks1 0
for all ug H D.1 C D. for 2. and ug H! D.1 C D. for 3.. Here ?,?:
denotes the usual inner product in L? D. and a u,v. is the bilinear form on
H} D. for 2. and on H! D. for 3., defined as

d U >0V d U
auv.s Hy a;;— —( a,—vq ayuv Jdx.
ijs1 X% s 2%
In the previous sense we have
n
d uy uy,.s Luy u,.qfu.yfu,.dtq M* uy u,. dw* t..
ks 1
Moreover,
n
df x.4 t,x.s f x.Lu t,x. dtq f x.M"a t,x. dw* t.
ks 1
for all f g C' R?. Whis can be obtained by taking us f u9in the equation of
type 17. corresponding to 14. XThus, by the Ito formula cf. WOX.

d uy u,,fi:

s duy u,.,fa.q uy u,,dfiiiq M* uyy u,.,fM"a, dt
ks 1
s Luyy u,,fii:q uyy u,,fLiddt
a fu,.y fu,,fiidtq M* u,y u,.,f M@ dt
ks 1

q ME ouy u,., fa.q uyy u,,fMa: 5dwk t..
ks 1
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Now
L uy u,.,fu.q uwuy u,,fLu:
s HrfiaL u,y u,.q wu,y u,.fLiddx
D
s Hf 4L u,y u,. a9 w,y u,.Liddx
D
s Hf L & u,y u,..q N u,y u,,ii. 4dx,
D
where

~ ~ _~ T T _
N u,y u,,u.s ay u1y uy,. 0y =u."? aq a .?= uy u,..

Here a denotes the matrix a;;.. We have used the following fact we shorten

the notation for the partial derivatives.:

d > *fg 4 >fg
L fg.s a;; q a; q aofg
ijs1 XX s 2
d d
S a;; f;;849 f;8:9 fi8,;9 fgij4q a; ;29 fg;49 a,fg
i,js 1 is 1

s gLfq fLgy a,fga =g.”? aq a’.?=f.
The previous computation yields
d uy u,,fi:
s Luuy uy,..q N wuy u,,a.,f.dt
g fou.y fuy.u,f.dt

n
q M* u,y u,. M*@i, f, dt
ks 1

q M* & uyy u,..,f. dw® t.,
ks 1

recalling the definition of M*. This means

d uy uy,us L 4 uy uy,..q N uy u,,u.

n

g fu.y fu,.iiq M* u,y uz.MkﬁSdt
ks 1
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Therefore, by the Ito formula W0X
1d<u,y uy,.i%:p.s a @i uyy uy.,ii uy uy..dt
a N uy ug, ., i ugy uy.. dt
g 4 fu.y fuy.,iuy uy. dt

q M* uy uy. M*a, i uyy u,.)dt
ks 1
n

qs3 M+ i uy u,..2dt.
ks 1
The essential fact here is that the Ito term vanishes because of the skew
symmetry of M* compare with Section 1.3.. We have

1=
~ ~ kN
U uy ug.,i Uy uUy..q 3 MG ouy u,. .2
ks 1
d n > U Uy Ug.. > U Uy u
E1Lk 1 2 1 2+
syH a;;y bibj/ ; ; dx
D js1 ks 1 X X

q Ha Uy ug. Ny U Uy ugy..dx
D

where N; is a first-order differential operator.

I

h
F yh H< U,y uy..%edxq EHé i uy uy..Redx
D D

q ClH i uy uz..zdx
D

h
Fy Elz)lé i uyy uy..%edxq Cicy V-2i‘1y uy%2 o,

for some constant C,;) 0. Moreover,
n
~ ~ . E Nk"‘ ~ .
N uy uy,u.,0 uy uy.. q M* uy uy MG, % uy u,.,
ks 1

F Czﬁ<ﬁ$V1" p. < uy uz-i2 D.ﬁly uziz D.q ﬁly uz%z D..
h
F gcl v.le uy uz.%z D.

2C,cy v.?
50 Cyey v.? Y uy$ b
he, v.

for some constant C,) 0. Finally, since f is weakly monotone, there is /
such that

fu.y fug.. uyy ug. F 1 uyy u2.2;
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thus
G fuly [ ug . 0 uy g FIE2RY uydep.
Note that

y Hé i uy u2..<§ddx
D
sy H%=uy uy,. 9 wy uy,.=iigedx
D
sy Hi*< u,y uy.%edey H uyy u,.’<iidadx
D D

y H2@ w,y uy.=ti= u,y u,. dx
D

Fye, V-ZHé uy uz-%ddxq Co V-Qi‘ly u2%2D.
D

q 202 V-2€ Uy Uy.T2p. %y UsT? D

1
Fy—c¢ v.’H< U,y uy.gedx
2 D

2c, v.?
q |:Cz V.Zq ﬁ itly uz%zD_.
1 .

Collecting all these computations, we have

1d h
—— .32 — CHe LR d.
5 % my uy.%2p.q gL v |;| Uy uy.gedx
h 2¢ V.2
F [E ¢, v.%q #/q Cicy v.* %y uy3e b,
1 .

2C,c, Vv.>
LQq Cyey v.2/q lc, v.?
hey v.

S 3 V.H,Y Uy3p.
for some positive r.v. c¢; v.. It follows that

1d

Eaﬁ u,y uy.3:p Fe, v.¥ uy uy.$2p.

for some positive r.v. ¢, v.. Therefore,

% t.ou t.y u,t..32pF o1 Y uo,z%z D €xp ¢, V.t.,

i¢1 y u2%2 D.

557
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which implies that

1
LY uy t.3:p F o 1Y uo,z%z D. €Xp Cy V.t.7
cy V.

The proof of the two theorems is complete, recalling Lemma 1.1. |
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