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STOCHASTIC FLOWS FOR NONLINEAR SECOND-ORDER

PARABOLIC SPDE

BY FRANCO FLANDOLI

Scuola Normale Superiore

The existence of stochastic flows in L2-spaces is proved for a stochas-

tic reaction]diffusion equation of second order in a bounded domain.

1. Introduction.

1.1. Aim of the paper. Let D be a regular bounded open domain of R d

and let a , a , a , bk, ck, i s 1, . . . , d, k s 1, . . . , n, be real-valued functionsi j i 0 i
‘� .in D, which, for the sake of simplicity, we assume to be of class C D . Let

� .L s L x, › be the second-order strongly elliptic operator in D:

d 2 d› u x ›u x� . � .
L x , › u x s a x q a x q a x u x .� . � . � . � . � . � .� �i , j i 0›x ›x ›xi j ii , js 1 is 1

k k � .Let M s M x, › be the first-order differential operators in D, with k s
1, . . . , n,

d ›u x� .
k k kM x , › u x s b x q c x u x .� . � . � . � . � .� i ›x iis 1

We assume that there exists h ) 0 such that

d n
2k k <<1 a x y b x b x j j G h j� . � . � . � .� �i j i j i j� 5

i , js 1 ks 1

for all jg R d and x g D.
� . � . � 1� . n� ..Let V , FF, FF , P be a stochastic basis and let w t s w t , . . . , w t be at

standard n-dimensional Brownian motion. Consider the stochastic reac-

tion]diffusion]convection equation in D, either in the Dirichlet boundary

condition case

n
k kdu s Lu q f u dt q M u dw t ,� . � .� . �

ks 1

<u s 0,›D

2� .

u 0 s u� . 0
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or in the Neumann case
n

k kdu s Lu q f u dt q M u dw t ,� . � .� . �
ks 1

›u
s 0,

›nA ›D

3� .

u 0 s u ,� . 0

where
d›u ›u

s a n� i j j›n ›xA ii , js 1

� .and ns n x is the outward normal on ›D. Here

2 py 1

hf u s a u ,� . � h

hs 0

with real coefficients a subject to the conditionh

a - 0.2 py 1

wMore general monotone nonlinearities can be considered here, such as the

sum of a polynomial of the previous form plus a Lipschitz continuous function
� .of u plus a given function g t, x with suitable regularity; we do not insist on

x � . � .such a level of generality. Equations 2 and 3 may model reaction]diffu-

sion phenomena in a fluid that occupies the region D and moves with velocity
n k � . k � . � . k � .� b x dw t rdt q a x , where b x denotes the vector of componentsks 1
k � . � . � .b x and a x the vector of components a x .i i

� w x w x w x. 2 � . wIt is well known cf. 3 , 8 and 10 that for all u g L D or u g0 0
2 � .xL V , FF , P; D each one of the previous equations has a unique solution u,0

progressively measurable,

2 w x 2 2 w x 1u g L V ; C 0, T ; L D l L V = 0, T ; H D� . � .� . � .� .
2 p w xl L V = 0, T = D .� .

� . 2 � .Moreover, for each t ) 0, the mapping u ‹ u t is continuous from L D to0
2 � 2 � ..L V ; L D . The aim of this paper is to prove the following stronger result.

� .THEOREM 1.1. For the Dirichlet problem 2 there exists a stochastic flow
2 � .in L D .

� .THEOREM 1.2. For the Neumann problem 3 assume that all the vector
k � .fields b x are tangent to the boundary. Then there exists a stochastic flow in

2 � .L D .

As it is more carefully explained in the next subsection, the property of
� .stochastic flow amounts to saying that the mapping u ‹ u t, v is continu-0

2 � . 2 � .ous from L D to L D , for P-a.e. v g V .
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The problem of existence of stochastic flows for infinite-dimensional
� w x.stochastic systems is an intriguing one cf. 13 . The flow property is usually

�trivial for deterministic infinite-dimensional systems where there is
.uniqueness of solutions ; for stochastic finite-dimensional equations the exis-

� w x w xtence of stochastic flows has been proved in a wide generality cf. 7 and 9
.and the references therein . But none of the methods developed in the

finite-dimensional case extends to the infinite-dimensional case, up to now. Of

course, the case of additive noise is usually easy because it can be reduced to

a deterministic equation by a change of variable. Another conceptually easy
� . � w x.method is the robust equation approach time change cf. 3 , or other

similar methods that reduce the stochastic equation to a deterministic one.
All these methods work under very particular assumptions and do not cover

Theorems 1.1 and 1.2.
For linear stochastic equations with multiplicative noise there is a number

� w x w x w x w x w x.of methods cf. 2 , 4 , 5 , 6 and 12 , but also in that case the answer is

open for very simple equations. Theorem 1.1. in the linear case is covered in
w x6 by a Feynman]Kac representation formula, but Theorem 1.2, also in the

linear case, has not been obtained up to now by methods different from those
� w x.of this paper except for d F 5; see 5 .

Finally, a trivial class of nonlinear flows can be constructed when the

diffusion operator is skew-symmetric; see Section 1.3. The more complex
� .method presented in this paper to prove Theorems 1.1 and 1.2 Section 2 was

originally suggested by the simple idea of the skew symmetry.

1.2. The concept of stochastic flow. Let H be a real separable Hilbert
� . � .space and V , FF, P a complete probability space. Let u t, s; u , s F t, u g0 0

wH, denote the solution at time t of a certain stochastic equation in H over
� .xV , FF, P , with given initial value u at time s. The problem of existence of a0

stochastic flow is the problem of the existence of a regular version of the
� . �mapping u “ u t, s; u for fixed s F t or, when possible, uniformly in s0 0

. � .and t . This means the existence of a mapping v “ f v from V to thes, t

space of continuous mappings in H such that

4 f v u s u t , s, u v P-a.s.� . � . � .� .s , t 0 0

� .for all u g H. The mapping f v is called the stochastic flow in H0 s, t

associated with the given equation.
As to the existence of a regular version of a given infinite-dimensional

random field, we have the following preliminary result. Let H and Y be two
< < < < �real separable Hilbert spaces with norms ? and ? . The result holdsH Y

. � .true also in Polish spaces, but we do not stress this generality. Let V , FF, P
0 � .be a complete probability space, as above. Finally, let L V ; Y be the space

0 � .of Y-valued random variables. We call a mapping F : H “ L V ; Y a Y-

valued random field with parameter space H. Moreover, we say that F has a
� . � .continuous version if there exists a mapping v “ f v , from V to C H, Y ,
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the space of continuous mappings from H to Y, such that

5 f v x s F x v P-a.s.� . � . � .� .
for all x g H.

0 � .LEMMA 1.1. Let F : H “ L V ; Y be a given random field. Assume that
� . � .for each ball S in H there exist two random variables c v G 0 and a v ) 0S S

such that

< < < <
aS � v .

6 F x v y F y v F c v x y y P-a.s.� . � .� . � .� . � .Y HS

w � .xfor all x, y g S. Then F has a continuous version f satisfying 5 , such
� .that, for P-a.e. v g V , f v is Holder continuous on the balls of H, with the¨
� . � .Holder constants given by 6 . Finally, this regular version f v is unique up¨

to modifications on sets of measure 0.

w xThe proof is not difficult and it is given in 5 .

1.3. A trivial example of nonlinear flow. The result of the present section
w xis analogous to that of 1 on stochastic Navier]Stokes equations with multi-

plicative noise. For simplicity, we consider here a globally Lipschitz nonlin-
w x kearity F, in contrast to 1 , but the skew-symmetry condition on B imposed

w xbelow, crucial in view of the existence of the flow, is the same as in 1 , and
�could be motivated by applications to fluid dynamic problems see Remark 2

.below . The reason to include this subsection is to fix the idea used in the
� .proof of Theorems 1.1 and 1.2 but we do not use the result of this section .

Indeed, the method of proof of such theorems has been devised in an attempt

to extend the trivial method of this section to the case of multiplicative

diffusion terms which are the sum of a skew-symmetric part and an easy part
� .a zero-order differential operator that could be treated by time change.

< <Let H be a real separable Hilbert space with norm ? and inner product
� :?, ? . Consider the equation

n
k kdu t s Au t dt q F u t dt q B u t dw t ,� . � . � . � . � .� . �

ks 1

w xt g 0, T ,
7� .

u 0 s u g H .� . 0

Assume that A is the infinitesimal generator of an analytic semigroup in H,

F is a globally Lipschitz mapping in H and B k is a linear continuous
�� .1r 2.w � .1r 2xmapping from D yA the domain of the fractional power yA to H

such that

n
2 21 k< < � : < <B u F yh Au, u q l u , u g D A ,� .�2

ks 1
8� .

1r 2k� :B u , u s 0, u g D yA , k s 1, . . . , n ,� .� .
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� . wfor some constant h g 0, 1 and lG 0. One can prove without the second
� .x � .assumption in 8 that 7 has a unique progressively measurable mild

solution
1r 22 2w x w xu s u ?, u g L V ; C 0, T ; H l L V = 0, T ; D yA .� . � .� .� . � .� /0

� .Using, in addition, the second assumption in 8 , we can prove the following

result.

w x � .THEOREM 1.3. For all t g 0, T the random field u ‹ u t, u , from H to0 0
2 � . � � . 4w � .L FF ; H , has a Lipschitz continuous modification f v ; v g V i.e., f vt t t

xis a Lipschitz continuous mapping in H for all v g V .

� .y1PROOF. Let J s m m y A and u s J u. Then u satisfies them m m m

equation
n

k k9 du t s Au t dt q J F u t dt q J B u t dw t .� . � . � . � . � . � .� . �m m m m

ks 1

� .Now fix u , v g H and let u and v be the solutions of 9 corresponding to0 0

the initial values u and v . Moreover, let u and v be defined as above.0 0 m m

Finally, let z s u y v and z s u y v . Then, by the Ito formula,ˆm m m

n
2 21 1 k< < < <� :d z t s Az t , z t q B z t dt� . � . � . � .�m m m m2 2� /

ks 1

� :q J F u t y J F v t , z t� . � . � .� . � .m m m�
n n

2 21 1k k< < < <q J B z t y B z t dt� . � .� �m m2 2 /
ks 1 ks 1

n
k k10 q z t , J B z t dw t� :� . � . � . � .� m m

ks 1

< <2 � :F l z t q J F u t y J F v t , z t� . � . � . � .� . � .m m m m�
n n

2 21 1k k< < < <q J B z t y B z t dt� . � .� �m m2 2 /
ks 1 ks 1

n
k kq z t , J B z t dw t ,� :� . � . � .� m m

ks 1

so that, using the integral formulation of this inequality, after passage to the

limit as m “ ‘, we have

t2 2 2< < < < < < � :z t F u y v q l z r q F u r y F v r , z r dr� . � . � . � . � .� . � .� .H0 0
s

n
t

k k� :q z r , B z r dw r .� . � . � .� H
sks 1

11� .
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� . � .By the second assumption in 8 , the Ito integral in 11 vanishes; hence,ˆ
using the Lipschitz continuity of F in H and applying the Gronwall lemma to
� .11 , we obtain

< < < <12 u t y v t F c u y v P-a.s.� . � . � . 0 0

� .for a suitable deterministic! constant c ) 0. Therefore, from Lemma 1.1, we

infer the existence of a Lipschitz continuous modification of the random field
� .u ‹ u t, u . I0 0

� .REMARK 1. From 11 we see that a monotonicity assumption on F is

sufficient in place of the global Lipschitz condition. To keep the exposition as

elementary as possible, we do not treat the monotone case here, which

requires more care at the level of existence of solutions.

REMARK 2. Let A and B k be differential operators as in Section 1.1. If
k � .div b s 0 in D, then the skew-symmetry condition in 8 is satisfied. In

k � .certain applications to fluid dynamic problems, the vector fields b x have

the meaning of velocity fields of the fluid; in this case the assumption

div b
k s 0 corresponds to the incompressibility of the fluid.

˜ k ˜ k ˆ k� .2. Proof of Theorems 1.1 and 1.2. Let M s M x, › and M s
ˆ k k� . � .M x, › be the first-order differential operators associated with M x, › ,

defined as
d ›u x� .

k k kM̃ x , › u x s b x q c x u x ,� . � . � . � . � .˜� i ›x iis 1

d ›u x� .
k k k kM̂ x , › u x s b x q c x q c x u x ,� . � . � . � . � . � .˜� .� i ›x iis 1

k � .where the functions c x are defined by the conditions˜
2 ck x q ck x s div b

k x .� . � . � .˜� .
The previous definition is designed to have the following essential properties:

ˆ k ˆ kM uv s y M * uv ,� . � .� .
13� .

ˆ k ˜ k kM uv s uM v q vM u.� .
� .Equation 13 has to be understood in the following sense.

ˆ ˆ � .LEMMA 2.1. Let M s M x, › be an operator defined as
d ›u x� .

M̂ x , › u x s b x q c x u x .� . � . � . � . � .ˆ� i ›x iis 1

1� . � .Assume that either u, v g H D satisfy uv s 0 on ›D or b x is tangent to

the boundary. Then

ˆ ˆM s yM *
win the sense that

ˆ ˆMu v dx s y uMv dx� .H H
D D
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1� . xfor u, v g H D specified as above is equivalent to

2c x s div b x .� . � .ˆ

PROOF. We have

d ›u
M̂u v dx s vb dx q cuv dx� . ˆ�H H Hi ›xD D Diis 1

d ›
s y u b v dx q cuv dx q vub ?n ds� . ˆ� H H Hi›xD D ›Diis 1

ˆs y uv div b dx q 2cuv dx y uMv dx . IˆH H H
D D D

˜ ˆLEMMA 2.2. Let M, M, M be operators defined as

d ›u x� .
M x , › u x s b x q c x u x ,� . � . � . � . � .� i ›x iis 1

d ›u x� .
M̃ x , › u x s b x q c x u x ,� . � . � . � . � .˜� i ›x iis 1

d ›u x� .
M̂ x , › u x s b x q c x q c x u x .� . � . � . � . � . � .� .˜� i ›x iis 1

Then

˜ ˆuMv q vMu s M uv .� .
1� .Moreover, assume that either u, v g H D satisfy uv s 0 on ›D or the vector

field b is tangent to the boundary. Then

2 c x q c x s div b x� . � . � .� .˜
implies

ˆ ˆM s yM *
� .in the sense of the previous lemma .

PROOF. We have

d ›u ›v
M̂ uv s b v q u q c q c uv� . � .˜� i � 5›x ›xi iis 1

˜s vMu q uMv.
The second part of the lemma is just a rewriting of the previous lemma. I

Extend all the coefficients a , a , . . . to R d in such a way that they still arei j i
‘ � .of class C , satisfy the coercivity condition 1 and have compact support.

Consider the stochastic parabolic equation in R d:
n

k k˜du s Lu dt q M u dw t ,� .˜ ˜ ˜�
14� . ks 1

u 0, x s 1.� .˜
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� w x w x w x.The solution of this equation cf. 5 , 11 and 14 has P-a.s. the property u,˜
� w x d. � . � .›ur› x g C 0, T = R , i s 1, . . . , d, and u t, x, v / 0 for all t, x g˜ ˜i

w x d0, T = R . The latter fact follows, for instance, from the representation
w x dformula of 14 . Thus, given the domain D ; R , there exist two positive

� . � .random variables c v - c v such that, P-a.s.,1 2

15 0 - c v F u t , x , v F c v� . � . � . � .˜1 2

� . w xfor all t, x g 0, T = D, and

< < 1, ‘16 u t , . . . , v F c v .� . � . � .˜ W � D. 2

2 � . � . � .Let u , u g L D be given initial conditions for 2 or 3 and let u , u0, 1 0, 2 1 2

be the corresponding solutions. Recall that these equations have to be under-

stood in the following variational sense:

t
� :� :u t , u s u , u q a u s , u ds� . � .� .H0

0

n
t t

k k� : � :q f u s , u ds q M u s , u dw t� . � . � .� . �H H
0 0ks 1

17� .

1 1� . � . � . � . � . � . � :for all ug H D l C D for 2 and ug H D l C D for 3 . Here ?, ?0
2 � . � .denotes the usual inner product in L D and a u, v is the bilinear form on

1� . � . 1� . � .H D for 2 and on H D for 3 , defined as0

d d›u ›v ›u
a u , v s y a q a v q a uv dx .� . � �H i j i 0� 5›x ›x ›xD i j ii , js 1 is 1

In the previous sense we have
n

k kd u y u s L u y u q f u y f u dt q M u y u dw t .� . � . � . � . � . � .� . �1 2 1 2 1 2 1 2

ks 1

Moreover,
n

k k˜df x u t , x s f x Lu t , x dt q f x M u t , x dw t� . � . � . � . � . � . � .˜ ˜ ˜�
ks 1

‘� d.wfor all f g C R this can be obtained by taking us fu9in the equation of
� . � .x � w x.type 17 corresponding to 14 . Thus, by the Ito formula cf. 10ˆ

� :d u y u , f ũ1 2

n
k k˜� :� :s d u y u , f u q u y u , df u q M u y u , fM u dt� . � .� ;˜ ˜ ˜�1 2 1 2 1 2

ks 1

� :� :s L u y u , f u q u y u , fLu dt� .� 4˜ ˜1 2 1 2

n
k k˜� :q f u y f u , f u dt q M u y u , fM u dt� . � . � .� ;˜ ˜�1 2 1 2

ks 1

n
k k k˜� :q M u y u , f u q u y u , fM u dw t .� :� . � .˜ ˜� 5� 1 2 1 2

ks 1
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Now

� :� :L u y u , f u q u y u , fLu� . ˜ ˜1 2 1 2

s f uL u y u q u y u fLu dx� 4� . � .˜ ˜H 1 2 1 2
D

s f uL u y u q u y u Lu dx� 4� . � .˜ ˜H 1 2 1 2
D

s f L u u y u q N u y u , u dx ,� 4� . � .� .˜ ˜H 1 2 1 2
D

where

T TN u y u , u s a u y u u y =u ? a q a ?= u y u .� . � . � . � .� .˜ ˜ ˜1 2 0 1 2 1 2

� . �Here a denotes the matrix a . We have used the following fact we shorteni j

.the notation for the partial derivatives :

d 2 d› fg ›fg
L fg s a q a q a fg� . � �i j i 0›x ›x ›xi j ii , js 1 is 1

d d

� 4s a f g q f g q f g q fg q a f g q fg q a fg� 4� �i j i j j i i j i j i i i 0

i , js 1 is 1

T Ts gLf q fLg y a fg q =g ? a q a ?= f .� . � .0

The previous computation yields

� :d u y u , f ũ1 2

� :s L u u y u q N u y u , u , f dt� . � .� .˜ ˜1 2 1 2

� :q f u y f u u , f dt� . � .� .˜1 2

n
k k˜q M u y u M u , f dt� .� ;˜� 1 2

ks 1

n
k kˆq M u u y u , f dw t ,� :� . � .� .˜� 1 2

ks 1

ˆ krecalling the definition of M . This means

d u y u u s L u u y u q N u y u , u� . � . � .� .˜ ˜ ˜1 2 1 2 1 2�
n

k k˜q f u y f u u q M u y u M u dt� . � . � .� .˜ ˜�1 2 1 2 5
ks 1

n
k kˆq M u u y u dw t .� . � .� .˜� 1 2

ks 1
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w xTherefore, by the Ito formula 10 ,ˆ
1 2

2< <d u y u u s a u u y u , u u y u dt� . � . � .� .˜ ˜ ˜L � D.1 2 1 2 1 22

� :q N u y u , u , u u y u dt� .� .˜ ˜1 2 1 2

� :q u f u y f u , u u y u dt� . � . � .� .˜ ˜1 2 1 2

n
k k˜q M u y u M u , u u y u dt� . � .˜ ˜� ;� 1 2 1 2

ks 1

n
21 kˆ< <q M u u y u dt .� .� .˜� 1 22

ks 1

The essential fact here is that the Ito term vanishes because of the skewˆ
ˆ k � .symmetry of M compare with Section 1.3 . We have

n1
2kˆ< <a u u y u , u u y u q M u u y u� . � . � .� . � .˜ ˜ ˜�1 2 1 2 1 2

2 ks 1

d n › u u y u › u u y u� . � .� . � .˜ ˜1 2 1 2k ks y a y b b dx� �H i j i j� / ›x ›xD i ji , js 1 ks 1

q u u y u N u u y u dx� . � .� .˜ ˜H 1 2 1 1 2
D

� .where N is a first-order differential operator1

h
2 2

d d< < < <F yh = u u y u dx q = u u y u dx� . � .� . � .˜ ˜H R H R1 2 1 2
2D D

2
q C u u y u dx� .� .˜H1 1 2

D

h
22 2

d 2< < < <F y = u u y u dx q C c v u y u� . � .� .˜H R L � D.1 2 1 2 1 2
2 D

for some constant C ) 0. Moreover,1

n
k k˜� :N u y u , u , u u y u q M u y u M u , u u y u� . � . � .� .˜ ˜ ˜ ˜� ;�1 2 1 2 1 2 1 2

ks 1

< << < 1, ‘ < <2 < <2 < <2 2F C u u = u y u u y u q u y u� .˜ ˜ � .‘ W � D. L � D. L � D. L � D.2 1 2 1 2 1 2

h
2 2

2< <F c v = u y u� . � .L � D.1 1 2
8

2
2C c v� .2 2 2 2

2< <q q C c v u y u� . L � D.2 2 1 22
hc v� .1

for some constant C ) 0. Finally, since f is weakly monotone, there is l2

such that

2
f u y f u u y u F l u y u ;� . � . � . � .� .1 2 1 2 1 2
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thus

< <2< <2 2� :u f u y f u , u u y u F l u u y u .� . � . � .� .˜ ˜ ˜ ‘ L � D.1 2 1 2 1 2

Note that

< <2 dy = u u y u dx� .� .˜H R1 2
D

< <2 ds y u= u y u q u y u =u dx� . � .˜ ˜H R1 2 1 2
D

22 22
d d< < < <s y u = u y u dx y u y u =u dx� . � .˜ ˜H R H R1 2 1 2

D D

y 2u u y u =u= u y u dx� . � .˜ ˆH 1 2 1 2
D

2 22 2
d 2< < < <F yc v = u y u dx q c v u y u� . � . � .H R L � D.1 1 2 2 1 2

D

2
2 2< < < <q 2c v = u y u u y u� . � .L � D. L � D.2 1 2 1 2

1
2 2

d< <F y c v = u y u dx� . � .H R1 1 2
2 D

2
2c v� .22 2

2< <q c v q u y u .� . L � D.2 1 22
c v� .1

Collecting all these computations, we have

1 d h
22 2

2 d< < < <u u y u q c v = u y u dx� . � . � .˜ L � D. H R1 2 1 1 2
2 dt 8 D

2
h 2c v� .22 2 2

2< <F c v q q C c v u y u� . � . L � D.2 1 2 1 22� /2 c v� .1

2
2C c v� .2 2 2 2 2

2< <q q C c v q lc v u y u� . � . L � D.2 2 2 1 22� /hc v� .1

< <2 2s c v u y u� . L � D.3 1 2

� .for some positive r.v. c v . It follows that3

1 d
2 2

2 2< < < <u u y u F c v u u y u� . � . � .˜ ˜L � D. L � D.1 2 4 1 2
2 dt

� .for some positive r.v. c v . Therefore,4

< <2 2 < <2 2u t u t y u t F u y u exp c v t ,� . � . � . � .� . � .˜ L � D. L � D.1 2 0, 1 0, 2 4
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which implies that

1
2 2

2 2< < < <u t y u t F u y u exp c v t .� . � . � .� .L � D. L � D.1 2 0, 1 0, 2 4 2
c v� .1

The proof of the two theorems is complete, recalling Lemma 1.1. I
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