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DOOB, IGNATOV AND OPTIONAL SKIPPING

BY GORDON SIMONS, YI-CHING YAO AND LIJIAN YANG

University of North Carolina, Academia Sinica and Michigan State University

A general set of distribution-free conditions is described under which
an i.i.d. sequence of random variables is preserved under optional skipping.
This work is motivated by theorems of J. L. Doob [Ann. of Math. 37 (1936)
363–367] and Z. Ignatov [Annuaire Univ. Sofia Fac. Math. Méch. 71 (1977)
79–94], unifying and extending aspects of both.

1. Introduction and motivation. This paper discusses a general set of
conditions under which an i.i.d. sequence of random variables ξ1, ξ2, . . . , taking
values in a measurable space (X,B), with common distribution F , is preserved
under “optional skipping,” that is, a general set of conditions on a sequence of
stopping times τ1, τ2, . . . , not depending on F , which guarantee that ξτ1, ξτ2, . . .

are i.i.d. with common distribution F . This task is motivated by fairly well-known
theorems of Doob (1936) and Ignatov (1977):

I. Doob’s condition simply requires the stopping times to be (a) “predictable”
and (b) strictly increasing. (A stopping time τ is said to be predictable if the
event [τ ≤ n] is σ(ξ1, . . . , ξn−1)-measurable for n = 1,2, . . . , so that the issue
of stopping at time n is independent of the value of ξn.)

II. Ignatov’s theorem concerns real random variables and leads to the conclu-
sion that ξτ1, ξτ2, . . . are i.i.d. with common distribution F when τk is the occur-
rence time of the first k-record for k = 1,2, . . . . [The observation ξτ is a k-record
if it has rank k among the random variables ξ1, . . . , ξτ , that is, if the indicators
1{ξi≥ξτ }, 1 ≤ i ≤ τ , sum to k. Ignatov’s remarkable theorem asserts that the ran-
dom vectors in the set {(ξtk,1, ξtk,2 , . . .), k ≥ 1} are i.i.d., where tk,i denotes the
occurrence time of the ith k-record. Various proofs and extensions of Ignatov’s the-
orem can be found in Deheuvels (1983), Goldie and Rogers (1984), Stam (1985),
Resnick (1987), Engelen, Tommassen and Vervaat (1988), Rogers (1989), Samuels
(1992) and Yao (1997). Here, we are concerned with just the first components of
the random vectors, that is, with the stopping times τk = tk,1 for k = 1,2, . . . , and
we need only observe that the first stopping time τ1 = t1,1 is identically equal to 1,
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so that ξτ1, ξτ2, . . . are i.i.d. and necessarily distributed as ξ1, which has distribu-
tion F .]

Thus, I and II provide two rich classes of examples under which ξτ1, ξτ2, . . . are
i.i.d. with common distribution F . Apart from τ1, none of the stopping times τk,
k ≥ 2, is predictable for case II (except in the uninteresting case of degenerate
random variables ξ1, ξ2, . . .). So cases I and II provide distinct examples.

The stopping times for case II are, for the most part, unordered by index, but are
“distinctly valued” (never assume a common value). In this regard, we should point
out that Doob’s condition (b) can be relaxed (without affecting his conclusion)
to the requirement that the stopping times τ1, τ2, . . . are distinctly valued. This
follows from Theorem 2 in Section 3, and the discussion in I′′ below.

III. Here is a third type of example. Let {B1,B2, . . .} ∈ B be a countable
partition of X, and let

τk = inf{n > k : ξn is a member of the same partition set Bm as ξk}, k ≥ 1.(1)

It is easily seen that the τk’s are distinctly valued stopping times and that
the stopped random variables ξτ1, ξτ2, . . . are i.i.d. and distributed as ξ1, ξ2, . . . .
Moreover, it is easily verified that examples of this third type are distinct from
those of types I and II.

So what do these three types of examples have in common? It would seem very
little, but it turns out that all of the stopping times, for all three examples, possess
a common structure which guarantees that each ξτi (i = 1,2, . . .) is distributed
as ξ1. We call stopping times that possess this structure indexical: a stopping time τ
is said to be indexical if, together with A1 = X, there exist, for n = 2,3, . . . ,
properly measurable nonempty random subsets An = An(ξ1, . . . , ξn−1) of X,
defined on [τ ≥ n] and depending on the observations ξ1, . . . , ξn−1, and countable
partitions of these sets,

An =An,1 +An,2 + · · · (n≥ 1; here, + denotes disjoint union),(2)

consisting of properly measurable random subsets An,k = An,k(ξ1, . . . , ξn−1)

(k ≥ 1), depending on the observations ξ1, . . . , ξn−1, which satisfy the following
axioms:

(3a) if τ ≥ n and ξn ∈An,1, then τ = n;
(3b) if τ ≥ n and ξn /∈An, then τ > n and An+1 =An;
(3c) if τ ≥ n and ξn ∈An,k for some k ≥ 2, then τ > n and An+1 =An,k.

Throughout the paper, we adopt the convention that the random variables
ξ1, ξ2, . . . are defined on the product measurable space (�,F) = (X∞,B∞), so
that ξn = ξn(ω) is just the nth component of ω. Then P , depending on F , becomes
the usual product probability measure, denoted F∞. However, we will continue
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to use the standard notation P . Below, the sigma field generated by ξ1, . . . , ξn
will be denoted by Fn (F0 = {�,∅}). The “proper measurability,” required of An
and An,k above, takes the following form: the sets {(ω, x) : τ (ω)≥ n, x ∈An} and
{(ω, x) : τ (ω)≥ n, x ∈An,k} are Fn−1 × B-measurable sets.

Observe that

An+1 ⊂An on [τ > n] (n≥ 1),(4)

τ = inf{n≥ 1 : ξn ∈An,1}(5)

and

An,0 +An,1 +An,2 + · · · =An,0 +An = X,(6)

where An,0 denotes the set complement of An.
We refer to the sets An, An,0, An,1 and the difference An −An,1, respectively,

as the possible set, the impossible set, the stopping set and the continuation set at
time n. The continuation set An − An,1 is partitioned into An,2,An,3, . . . , which
will be referred to as the continuation subsets at time n. Thus, the union of these
continuation subsets is the continuation set. Notice, under axiom (3c), that the
points of the continuation subset An,j (j ≥ 2) become impossible points at time
n+ 1 if ξn ∈An,k for some k ≥ 2, k �= j .

It is shown in Section 2 (Theorem 1), when τ is indexical, that the conditional
distribution of ξτ given Fn−1 assumes the simple form

P (ξτ ∈B|ξ1, . . . , ξn−1)= F(B|An) := F(B ∩An)
F (An)

on the set [τ ≥ n].(7)

This holds for n = 1,2, . . . , whenever the distribution F is such that
P (τ < ∞)= 1. Since A1 = X, it follows trivially from (7), when n = 1, that
P (ξτ ∈ B) = F(B), B ∈ B. So, as required, ξτ has distribution F (that of ξ1)
whenever F and indexical τ are such that P (τ <∞)= 1.

Remarkably, under considerable generality, in order for condition (7) to hold for
n ≥ 1, and for all distributions F , the stopping time τ must be indexical. That is,
from (7), one can uncover the partitions of the sets An, n≥ 1, appearing in (2), and
to show that the indexicality axioms (3a)–(3c) must hold. The precise statement of
this converse to Theorem 1 (Proposition 1) is stated and proven in Section 4.

We next describe the stopping times appearing in examples I, II and III as
indexical stopping times:

I′. Each predictable stopping time τ of type I has the possible set An = X

for every n, and stopping set An,1 = X, or = ∅ (the empty set), depending on
whether or not τ = n (this depending on just the random variables ξ1, . . . , ξn−1).
The partition of An consists of the stopping set An,1 and the single continuation
subset An,2 = X −An,1, either ∅ or X, again depending on whether or not τ = n.
This description meets the requirements for indexicality. So predictable stopping
times are indexical.
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II′. The “Ignatov stopping times” described in II are only slightly more
complicated. τ1 is identically equal to 1 and qualifies as a predictable stopping
time; nothing more needs to be said about it. For τk with k ≥ 2, the possible
set An consists of those points x in X that have rank less than or equal to k
among {ξ1, . . . , ξn−1, x}. Those points x ∈ An for which the rank is k go into the
stopping set An,1, and the remainder go into the single continuation subset An,2.
This description meets the requirements for indexicality. So these Ignatov stopping
times are indexical. The “nesting” of the possible sets An [see (4) above] is
apparent. Since there must be a finite first k-record, a.s., for every k, independent of
the distribution F , all of the stopping times for this example are a.s. finite. Note that
if no x satisfies F(x−) < F(x)= 1, then all ith k-records exist with probability 1,
in which case only the occurrence time of the first k-record is indexical; the
remaining k-records are stochastically larger than ξ1. If F(x−) < F(x)= 1 occurs
for some x, then no ith k-record (i ≥ 2) exists with a positive probability.

III′. Since τk > k in example III, one needs a single continuation set An,2 = X

and an empty stopping set An,1 when n < k, so that An = X. This keeps sampling
going through the kth observation. For n = k, one must use the sets Ak,i , i =
2,3, . . . , to store information about the partition elements {Bm :m = 1,2, . . .}.
It is convenient to set Ak,i = Bi−1 for i = 2,3, . . . (Ak = ∑

m≥1Bm = X and
Ak,1 = ∅). Then, for n > k, if ξk assumes a value within the partition element Bm,
one sets An = An,1 = Bm and An,0 = Bcm, and waits for the next observation to
occur in Bm. The resulting stopping time τk is indexical. Clearly, all of the τk’s are
finite a.s., independent of the choice of distribution F .

So indexical stopping times preserve the common distribution of the i.i.d.
sequence ξ1, ξ2, . . . . What preserves the independence? We turn to this issue
next. A pair of indexical stopping times τ1 and τ2, arising from the indexical

sets A(1)n , A(1)n,k and A(2)n , A(2)n,k , respectively, will be called disentangled if for
each n = 1,2, . . . , and each ω-point in [τ1 ≥ n, τ2 ≥ n], there exists an index
s = s(ω) ∈ {1,2} such that one of the following statements holds:

(8a) A(s)n ⊂ A
(3−s)
n,k for some k �= 1 (impossible set or single continuation subset

on the right);
(8b) A(s)n = A

(s)
n,2 (possible set for index s consists of exactly one continuation

subset);
(8c) card(A(s)n )= 1 (possible set for index s consists of a single point).

While (8b) may be replaced by A(s)n = A
(s)
n,k for some k ≥ 2, we shall adopt the

convention, when there is only one continuation subset, of denoting it by An,2
(superscripted as needed).

It turns out, whenever the indexical stopping times τ1 and τ2 are disentangled,
and F is such that these stopping times are almost surely finite, that the
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stopped random variables ξτ1 and ξτ2 are independent. Surprisingly, to extend this
independence to the entire sequence ξτ1, ξτ2, . . . , it is only necessary to assume
that the indexical stopping times τ1, τ2, . . . are pairwise disentangled. That is, it
is only necessary to verify disentanglement for each distinct pair of (indexical)
stopping times. A precise statement to this effect, with proof, is given in Section 3
(Theorem 2). A converse to Theorem 2 appears in Section 4 (Proposition 2), in
which the naturalness of conditions (8a)–(8c) is revealed.

We next describe the stopping times appearing in examples I, II and III as
pairwise disentangled stopping times:

I′′. For distinct-valued predictable (indexical) stopping times τ (1) and τ (2),
we have A(1)n = A

(2)
n = X for every n (see I′). In examining what happens for

[τ (1) ≥ n, τ (2) ≥ n], we have three cases to consider: (i) if [τ (1) = n, τ (2) > n],
then condition (8b) obtains with s = 2: A(2)n =A

(2)
n,2 = X (see I′ above). Moreover,

condition (8a) obtains with s = 1: X = A
(1)
n ⊂ A

(2)
n,2 = X; (ii) if [τ (1) > n,

τ (2) = n], the situation is like that of case (i) with the indices reversed; (iii) if
[τ (1) > n, τ (2) > n], then A(1)n =A

(2)
n =A

(1)
n,2 =A

(2)
n,2 = X, so that conditions (8a)

and (8b) obtain with s = 1 and 2. So distinctly valued predictable stopping times
are pairwise disentangled.

II′′. Let τ (1) = tk,1 and τ (2) = tl,1 denote the occurrence times of the first
k-record and first l-record, respectively, and suppose, for definiteness, that k < l.
For fixed n and x ∈ X, let r(x) := 1 + ∑n−1

i=1 1{ξi≥x} denote the rank of x
among {ξ1, . . . , ξn−1, x}. Then, on [τ (1) ≥ n, τ (2) ≥ n] = [tk,1 ≥ n, tl,1 ≥ n],
we have A(1)n = {x : r(x) ≤ k} ⊂ {x : r(x) < l} = A

(2)
n,2 (see II′). Consequently,

condition (8a) always obtains with s = 1. So the occurrence times of first
k-records, k = 1,2, . . . , are pairwise disentangled. It should be remarked that,
while Ignatov’s theorem implies the independence of the corresponding stopped
random variables, Theorem 2 below says that these stopped random variables are
indeed (conditionally) independent given ξ1, . . . , ξn−1 for each n= 1,2, . . . (n= 1
corresponding to Ignatov’s independence result).

III′′. Let τ (1) = τk and τ (2) = τl , as defined in (1), with k < l, and suppose
for some fixed n and ω that [τ (1) ≥ n, τ (2) ≥ n]. If n < l, then condition (8b)
holds with s = 2: A(2)n = A

(2)
n,2 = X (see III′). When n = l (> k), condition (8a)

holds with s = 1 and k = m(1) + 1: A(1)n = A
(1)
n,1 = Bm(1) = A

(2)
n,(m(1)+1)

(see III′),
where Bm(1) is the partition element Bm that contains ξk . Finally, when n > l, we
note that the partition element Bm(2) containing ξl must be disjoint from Bm(1) ,
so that condition (8a) holds for s = 1 and 2: A(s)n = Bm(s) ⊂ Bc

m(3−s) = A
(3−s)
n,0 for

s = 1 and 2 (see III′). Consequently, the collection of stopping times described
in III are pairwise disentangled.
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Despite the strong suggestion, provided by the examples of types I, II and III,
that indexical stopping times must be distinctly valued to obtain the independence
of the corresponding stopped random variables, such a requirement is neither
sufficient nor necessary. We can illustrate this point for X = {0,1} with pairs
of indexical stopping times. Let τ ≡ 1, σ = inf{n ≥ 2 : ξn = ξ1}, and γ ≡ 2, all
indexical. The first two are distinctly valued, but, obviously, P (ξσ = ξτ ) = 1:
no independence. The second and third stopping times can assume the common
value 2, and, yet, ξσ and ξγ are independent. The two indexical stopping times
σ and γ are disentangled; they illustrate the need for condition (8c).

We close this section with an example of a nonindexical stopping time τ for

which ξτ
D= ξ1 (equality in distribution) for every distribution function F . Let

ξ1, ξ2, . . . be i.i.d. Bernoulli random variables taking values in X = {0,1}, with B

its power set. Here, the entire class of possible distributions F is parameterized
by p = P (ξ1 = 1) ∈ [0,1]. Consider the stopping time τ which stops at the right
endpoint of the following complete set of nine sample paths

(0,1), (0,0,0), (1,0,0), (1,1,0), (1,1,1),

(0,0,1,0), (0,0,1,1), (1,0,1,0), (1,0,1,1),

occurring, respectively, with probabilities

p(1 − p), (1 − p)3, p(1 − p)2, p2(1 − p), p3,

p(1 − p)3, p2(1 − p)2, p2(1 − p)2, p3(1 − p),

adding to 1. (Every path is attainable, and the set is exhaustive.) Thus, the range
of τ is {2,3,4}. The first, fifth, seventh and ninth paths, appearing in bold type
(as do the corresponding probabilities), result in ξτ = 1, and this occurs with
probability p(1 − p) + p3 + p2(1 − p)2 + p3(1 − p) = p. If τ were indexical,
then, clearly, the possible set A2 when ξ1 = 0 would have to be all of X, so that,
according to equation (7) and Theorem 1, we would have P (ξτ = 1|ξ1 = 0) =
F({1})/F (X)= p/1 = p. However, by direct calculation,

P (ξτ = 1|ξ1 = 0)= P (ξτ = 1, ξ1 = 0)

P (ξ1 = 0)

= p(1 − p)+ p2(1 − p)2
1 − p = p+ p2(1 − p) > p

for 0< p < 1. So τ is not indexical. This can also be shown, more directly, from
the definition.

2. Establishing the right distribution for the stopped r.v. The following
theorem validates the use of (7) as described in the Introduction.
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THEOREM 1. Let ξ1, ξ2, . . . be i.i.d. random variables with common distrib-
ution F on (X,B). Further, let τ be an indexical stopping time, with associated
indexical sets An, An,i , for which P (τ <∞)= 1. Then, for each n= 1,2, . . . ,

Qn(B,ω) := F(B ∩An)
F (An)

=
∫
B 1An(x)F (dx)∫
X 1An(x)F (dx)

(here, 0/0 is understood as 0)
(9)

defines a regular version of the conditional probability P (ξτ ∈ B|Fn−1) on
B × [ω : τ ≥ n].

PROOF. It must be shown that (i) Qn(·,ω)= F(·∩An)
F (An)

is a probability measure

on (X,B), for almost all ω for which τ = τ (ω)≥ n, and (ii)Qn(B, ·)= F(B∩An(·))
F (An(·))

is a version of the conditional probability P (ξτ ∈ B|ξ1, . . . , ξn−1) on [τ ≥ n] for
each fixedB ∈ B. Clearly, (i) is obvious providing F(An) > 0 a.s. The proof of (ii)
requires truncation and induction. The fact that F(An) > 0 a.s. on [τ ≥ n] is indeed
a consequence of (ii) since P (ξτ ∈ X|Fn−1) = F(F ∩ An)/F (An) = 0/0 = 0 on
�′ = {ω : τ ≥ n, F (An) = 0} ∈ Fn−1, from which it follows that P (�′) = 0. So
we need to establish (ii).

Informally stated, the stopping time τ is truncated at time r by enforcing
stopping at the first time n ≥ r for which ξn is contained in a possible set.
Stopping any sooner would destroy the indexicality possessed by τ , which must
be preserved. Formally, the stopping time τ (r) is the indexical truncation of τ at
time r if it stops according to τ before time r and stops thereafter at the first time n
for which ξn ∈ Ar . According to this prescription, the analogues of An and An,i ,
appropriate to τ (r), remain unchanged before time r . For time n≥ r , the possible
set assumes the form A

(r)
n =Ar , which, in turn is “partitioned” into a stopping set

and no continuation subsets:A(r)n,1 =A
(r)
n =Ar . It is apparent from this description

that τ (r) is conditionally distributed as a geometric random variable when n ≥ r .
The analogue of Qn(B,ω), appropriate to τ (r), assumes the form

Q(r)n (B,ω)=
F(B ∩An∧r)
F (An∧r)

on [τ (r) ≥ n],(10)

where n∧ r = min(n, r).
We claim that P (ξτ(r) ∈ B|Fn−1), on [τ (r) ≥ n], is a.s. as described in (10).

Assume, for the moment, that the claim is true, and observe that

|P (ξτ(r) ∈ B|Fn−1)− P (ξτ ∈B|Fn−1)| = ∣∣E[(
1{ξ

τ (r)
∈B} − 1{ξτ∈B}

)∣∣Fn−1
]∣∣

≤ E
[∣∣1{ξ

τ (r)
∈B} − 1{ξτ∈B}

∣∣∣∣Fn−1
]

≤ E
[
1{τ≥r}

∣∣Fn−1
]

→ 0 a.s. as r → ∞.



1940 G. SIMONS, Y.-C. YAO AND L. YANG

So P (ξτ(r) ∈ B|Fn−1) → P (ξτ ∈ B|Fn−1) as r → ∞. Hence, by the claim and
noting that [τ (r) ≥ n] = [τ ≥ n] for r ≥ n, we have

P (ξτ ∈ B|Fn−1)= lim
r→∞

F(B ∩An∧r)
F (An∧r)

= F(B ∩An)
F (An)

=Qn(B,ω) a.s. on [τ ≥ n].
So it remains to establish the claim. This will require backward induction.

For n ≥ r , on [τ (r) ≥ n], τ (r) stops at the first time k ≥ n for which ξk ∈ Ar .
Thus, on [τ (r) ≥ n],

P (ξτ(r) ∈B|Fn−1)= F(B ∩Ar)
F (Ar)

= F(B ∩An∧r)
F (An∧r)

=Q(r)n (B,ω) a.s.,

establishing the claim for n≥ r .
We proceed by backward induction on n = r − 1, r − 2, . . . ,1. Suppose (10)

holds for the stopping time τ (r) when n is replaced by n+ 1 ≤ r , that is, that on
[τ (r) ≥ n+ 1],

P (ξτ(r) ∈ B|Fn)=Q
(r)
n+1(B,ω)=

F(B ∩An+1)

F (An+1)
a.s.

Note that A(r)r =Ar andA(r)n,i =An,i for n < r , so that the superscript “(r)” in A(r)n,i
will be suppressed below.

On [τ (r) ≥ n],
P (ξτ(r) ∈ B|Fn−1)= E

(
1{ξ

τ (r)
∈B}|Fn−1

)
= E

{
E

[ ∞∑
i=0

1{ξ
τ (r)

∈B, ξn∈An,i}
∣∣∣Fn

]∣∣∣∣Fn−1

}

=
∞∑
i=0

E
{
E

[
1{ξ

τ (r)
∈B, ξn∈An,i}

∣∣Fn]∣∣Fn−1

}

=
∞∑
i=0

E{Ti|Fn−1},

(11)

where Ti = E(1{ξ
τ (r)

∈B, ξn∈An,i}|Fn) for i = 0,1, . . . . When, ξn ∈ An,0 (the

complement of An), axiom (3b) tells us that [τ (r) ≥ n + 1] and An+1 = An, so
that

T0 = E
(
1{ξ

τ (r)
∈B, ξn∈An,0}

∣∣Fn)
= 1{ξn∈An,0}P (ξτ(r) ∈ B|Fn)
= 1{ξn∈An,0}

F(B ∩An+1)

F (An+1)
(by the induction hypothesis)

= 1{ξn∈An,0}
F(B ∩An)
F (An)

.

(12)
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When ξn ∈An,1, axiom (3a) tells us that [τ (r) = n], so that

T1 =E
(
1{ξn∈B∩An,1}

∣∣Fn) = 1{ξn∈B∩An,1}.(13)

When ξn ∈An,i with i ≥ 2, axiom (3c) tells us that [τ (r) ≥ n+1] andAn+1 =An,i ,
so that

Ti = E
(
1{ξ

τ (r)
∈B, ξn∈An,i}

∣∣Fn)
= 1{ξn∈An,i}P (ξτ(r) ∈B|Fn)
= 1{ξn∈An,i}

F(B ∩An+1)

F (An+1)
(by the induction hypothesis)

= 1{ξn∈An,i}
F(B ∩An,i)
F (An,i)

.

(14)

Combining (11)–(14), and noting that An = ∑∞
i=1An,i , we obtain

P
(
ξτ(r) ∈ B∣∣Fn−1

) =
∞∑
i=0

E
{
Ti

∣∣Fn−1
}

= F(B ∩An)
F (An)

F (An,0)+ F(B ∩An,1)

+
∞∑
i=2

F(B ∩An,i)
F (An,i)

F (An,i)

= F(B ∩An)
F (An)

(
1 − F(An)) + F(B ∩An)

= F(B ∩An)
F (An)

=Q(r)n (B,ω).

This completes the induction step, and the proof. �

3. Independence of the stopped sequence. For this section, we assume
that X is a complete separable metric space (a Polish space) with B the
corresponding σ -field of Borel sets. We are uncertain whether this restriction is
genuinely needed at this point, but we are unable to carry out an induction step
in the proof of our next theorem without it. In any event, this represents a modest
restriction on our sequence of random variables ξ1, ξ2, . . . .

THEOREM 2. For every distribution F on (X,B) and any collection T

of pairwise disentangled indexical stopping times τ with τ < ∞ a.s., the
corresponding stopped random variables ξτ , τ ∈ T, are conditionally independent
given Fn for n= 0,1, . . . .
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The reader is reminded that, by definition, the σ -field F0 is degenerate. Thus
this theorem states, when n = 0, that the stopped random variables ξτ , τ ∈ T,
for which τ <∞ a.s. are (unconditionally) independent. Moreover, since they are
indexical, Theorem 1 asserts that these stopped random variables have common
distribution F .

PROOF OF THEOREM 2. The heart of our proof is backward induction: if
the stopped random variables ξτ with τ a.s. finite are conditionally independent
given Fn, then, under the assumptions of indexicality and pairwise disentangle-
ment, they are conditionally independent given Fn−1. Beyond this, an appropriate
truncation argument is needed to get the backward induction started.

The induction step. Fix F . It is enough to work with a finite but variable number
of a.s. finite stopping times τ1, . . . , τr in T. If

P (ξτi ∈Bi, i = 1, . . . , r|Fn)

=
r∏
i=1

P (ξτi ∈Bi |Fn) for all B1, . . . ,Br in B and r = 1,2, . . . ,
(15)

for some n≥ 1, then we must show that

P (ξτi ∈Bi, i = 1, . . . , r|Fn−1)

=
r∏
i=1

P (ξτi ∈Bi |Fn−1) for all B1, . . . ,Br in B and r = 1,2, . . . .
(16)

Our proof of this will include the use of forward induction based on r . Of course,
(16) holds for r = 1. Thus the induction hypothesis assumes the truth of (15) and
the truth of the equality in (16) for up to r − 1 stopping times (r ≥ 2), and the task
is to show the equality in (16) for r stopping times.

To begin with, we observe, for a given r , when one of the stopping times τj
in (16) is less than n that, given Fn−1, one knows whether or not ξτj is in Bj . If it
is not in Bj , both sides of (16) assume the value zero, and there is nothing more to
prove. If it is in Bj , then the index j can be removed from both sides of (16) and
the task that remains is to establish the validity of

P (ξτi ∈ Bi, i = 1, . . . , r, i �= j |Fn−1)=
r∏

i=1, i �=j
P (ξτi ∈Bi |Fn−1),

which involves r − 1 stopping times. Then the induction hypothesis for r − 1
establishes this. What is left to establish is the equality in (16), for the given r , on
the set [τi ≥ n, for i = 1, . . . , r].

As a second step, we recall, from Theorem 1, that

P (ξτi ∈Bi |Fn−1)= F(Bi ∩A(i)n )
F (A

(i)
n )

on [τi ≥ n],(17)
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where A(i)n refers to the possible set at time n for the indexical stopping time τi .
(In addition, we shall have need to refer to the impossible set A(i)n,0, the stopping

set A(i)n,1 and the continuation subsets A(i)n,k , k ≥ 2, for τi at time n.) A small
technical point: we established, within the body of the proof of Theorem 1, that
the denominator on the right-hand side of (17) is strictly positive a.s. Consequently,
what must be established for all B1, . . . ,Br in B is the formula

P (ξτi ∈Bi, i = 1, . . . , r|Fn−1)

=
r∏
i=1

F(Bi ∩A(i)n )
F (A

(i)
n )

on [τi ≥ n, for i = 1, . . . , r].(18)

The third step is to partition the set T = [τi ≥ n, for i = 1, . . . , r] into subsets
based on the conditions (8a)–(8c) appearing in the definition of disentangled
stopping times. It is enough to work with (8a)–(8c) for a single pair of stopping
times. For definiteness, we will work with the first pair. Then the task will be
to establish (18) on each of these subsets. Since the conditions (8a)–(8c) are not
always mutually exclusive, the subsets we describe might actually overlap, but this
will not matter; their union will cover T .

Corresponding to (8a), we must introduce the subsets

�(s, k) := {
ω ∈ T :A(s)n ⊂A

(3−s)
n,k

}
, s = 1,2, k �= 1.(19)

Here, k assumes the values 0,2,3, . . . . The reader is reminded that the expression
to the right of “T :” does depend on ω through the values of the observations
ξ1, . . . , ξn−1, which are suppressed in the notation. Corresponding to (8b), we must
introduce two more subsets:

�(s)′ := {
ω ∈ T :A(s)n =A

(s)
n,2

}
, s = 1,2.(20)

Corresponding to (8c) we need two additional sets:

�(s)′′ := {
ω ∈ T : card(A(s)n )= 1

}
, s = 1,2.(21)

It follows from the disentanglement of τ1 and τ2 that the union of all of these
subsets is the Fn−1-measurable subset T .

Now these subsets of T might not be Fn−1-measurable, a technical difficulty
which, potentially, could derail our proof of the induction step. However, we claim
that all of them are “universally measurable sets” in the sense that they belong
to the completion of Fn−1, under F , for every distribution function F on (X,B);
this is adequate for our purposes. The proof of this claim appears in the Appendix.
(This is the only place that we require the topological assumption that we made at
the start of this section.)

Establishing (18) on�(s, k). For definiteness, we take s to be 1. On�(1, k), we
have A(1)n ⊂ A

(2)
n,k, where k = 0 or k ≥ 2. If, in addition, ξn ∈ A(1)n , then it follows
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from (3b) and (3c) that A(2)n+1 =A
(2)
n,∗, where A(2)n,∗ denotes A(2)n or A(2)n,k as k = 0 or

k ≥ 2, respectively. Consequently,

P (ξτ2 ∈ B2|Fn)=
F(B2 ∩A(2)n+1)

F (A
(2)
n+1)

= F(B2 ∩A(2)n,∗)
F (A

(2)
n,∗)

,(22)

where the rightmost side is Fn−1-measurable. On the other hand, if ξn /∈A(1)n , then
it follows from (3b) that A(1)n+1 =A

(1)
n , so that

P (ξτ1 ∈B1|Fn)= F(B1 ∩A(1)n+1)

F (A
(1)
n+1)

= F(B1 ∩A(1)n )
F (A

(1)
n )

,(23)

where the rightmost side is Fn−1-measurable.
Now

P (ξτi ∈Bi, i = 1, . . . , r|Fn−1)= E
(
P (ξτi ∈Bi, i = 1, . . . , r|Fn)

∣∣Fn−1
)

=K1 +K2,

where

K1 =E
(
P (ξτi ∈ Bi, i = 1, . . . , r|Fn) · 1{ξn∈A(1)n }

∣∣Fn−1

)
and

K2 =E
(
P (ξτi ∈Bi, i = 1, . . . , r|Fn) · 1{ξn /∈A(1)n }

∣∣Fn−1

)
.

From (22), then (23), and the induction assumption, we obtain

K1 = F(B2 ∩A(2)n,∗)
F (A

(2)
n,∗)

E
(
P (ξτi ∈Bi, i �= 2|Fn) · 1{ξn∈A(1)n }

∣∣Fn−1

)

= F(B2 ∩A(2)n,∗)
F (A

(2)
n,∗)

E
(
P (ξτi ∈Bi, i �= 2|Fn)(1 − 1{ξn /∈A(1)n }

)∣∣Fn−1

)

= F(B2 ∩A(2)n,∗)
F (A

(2)
n,∗)

×




r∏
i=1
i �=2

F(Bi ∩A(i)n )
F (A

(i)
n )

− F(B1 ∩A(1)n )
F (A

(1)
n )

×E
(
P (ξτi ∈ Bi, i = 3, . . . , r|Fn) · 1{ξn /∈A(1)n }

∣∣Fn−1

)
 ,
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and from (23), then (22), and the induction assumption, we obtain

K2 = F(B1 ∩A(1)n )
F (A

(1)
n )

E
(
P (ξτi ∈ Bi, i = 2, . . . , r|Fn) · 1{ξn /∈A(1)n }

∣∣Fn−1

)

= F(B1 ∩A(1)n )
F (A

(1)
n )

E

(
P (ξτi ∈ Bi, i = 2, . . . , r|Fn)

(
1 − 1{ξn∈A(1)n }

)∣∣Fn−1

)

= F(B1 ∩A(1)n )
F (A

(1)
n )

×
[
r∏
i=2

F(Bi ∩A(i)n )
F (A

(i)
n )

− F(B2 ∩A(2)n,∗)
F (A

(2)
n,∗)

×E
(
P (ξτi ∈ Bi, i = 3, . . . , r|Fn) · 1{ξn∈A(1)n }

∣∣Fn−1

)]
.

Adding K1 and K2, combining the last terms of K1 and K2 and then using the
induction assumption once more, we obtain

F(B2 ∩A(2)n,∗)
F (A

(2)
n,∗)

r∏
i=1
i �=2

F(Bi ∩A(i)n )
F (A

(i)
n )

+
r∏
i=1

F(Bi ∩A(i)n )
F (A

(i)
n )

− F(B2 ∩A(2)n,∗)
F (A

(2)
n,∗)

r∏
i=1
i �=2

F(Bi ∩A(i)n )
F (A

(i)
n )

=
r∏
i=1

F(Bi ∩A(i)n )
F (A

(i)
n )

.

This completes the proof for ω-points in subsets of the form �(s, k).
Establishing (18) on �′(s). For definiteness, we take s to be 1. On �′(1), if

ξn ∈ A(1)n = A
(1)
n,2, then it follows by (3c) that A(1)n+1 = A

(1)
n,2 (= A

(1)
n ). If, instead,

ξn /∈ A(1)n , we must have A(1)n+1 = A
(1)
n by (3b). So for ω in �′(1), we have

A
(1)
n+1 =A

(1)
n , so that (23) holds. Thus, by the induction assumption,

P (ξτi ∈Bi, i = 1, . . . , r|Fn−1)

=E
(
P (ξτi ∈ Bi, i = 1, . . . , r|Fn)

∣∣Fn−1
)

=E
(
P (ξτ1 ∈ B1|Fn)P (ξτi ∈Bi, i = 2, . . . , r|Fn)

∣∣Fn−1
)
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= F(B1 ∩A(1)n )
F (A

(1)
n )

P (ξτi ∈ Bi, i = 2, . . . , r|Fn−1)

=
r∏
i=1

F(Bi ∩A(i)n )
F (A

(i)
n )

.

This completes the proof for ω-points in subsets of the form �′(s).
Establishing (18) on �′′(s). Again for definiteness, we take s to be 1. For

ω ∈ �′′(1), ξτ1 must take the value of the singleton A(1)n . Thus, by the induction
assumption,

P (ξτi ∈Bi, i = 1, . . . , r|Fn−1)= P (ξτ1 ∈B1|Fn−1)P (ξτi ∈Bi, i = 2, . . . , r|Fn−1)

= P (ξτ1 ∈B1|Fn−1)

r∏
i=2

P (ξτi ∈ Bi |Fn−1)

=
r∏
i=1

F(Bi ∩A(i)n )
F (A

(i)
n )

.

This completes the proof for ω-points in subsets of the form �′′(s), and completes
the justification of the induction step.

The truncation step. To complete the proof, we must replace the given
stopping times τ1, . . . , τr by a sequence of somewhat simpler disentangled
indexical stopping times τ̄1(ν), . . . , τ̄r (ν), ν = 1,2, . . . , which we shall write more
compactly as τ̄1, . . . , τ̄r . Let

τ̄1 =
{
τ1, if τ1 < ν,

inf
{
n≥ ν : ξn ∈A(1)ν }

, if τ1 ≥ ν,
and, recursively, for i = 2, . . . , r ,

τ̄i =
{
τi, if τi < ν,

inf
{
n≥ ν :n >max(τ̄1, . . . , τ̄i−1) and ξn ∈A(i)ν }

, if τi ≥ ν.
Of course, ξτ̄i = ξτi on [τi < ν], so that∣∣P (ξτi ∈ Bi for i = 1, . . . , r|Fn−1)− P (ξτ̄i ∈Bi for i = 1, . . . , r|Fn−1)

∣∣
≤ P (

max(τ1, . . . , τr)≥ ν|Fn−1
) → 0 as ν → ∞.

Likewise, |P (ξτi ∈ Bi|Fn−1)−P (ξτ̄i ∈ Bi |Fn−1)| → 0 as ν→ ∞ for i = 1, . . . , r .
Thus, if (18) holds for all n with τi’s replaced by τ̄i’s, then it holds without the
replacement, and the proof is complete.

It is easy to see that τ̄1, . . . , τ̄r are indexical: when n ≥ ν, Ā(i)n = A
(i)
ν =

Ā
(i)
n,1 +Ā(i)n,2, with one of the latter two an empty set, depending on n, and implicitly

on ω, whatever is needed to enforce stopping at time τ̄i . Likewise, it is easy to
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verify their pairwise disentanglement. Indeed, for τ̄i and τ̄j with i < j , for n≥ ν,

on [τ̄i ≥ n, τ̄j ≥ n], we have Ā(j)n = Ā
(j)
n,2 =A

(j)
ν ; that is, (8b) holds.

It remains to verify (18) when the τi’s are replaced by τ̄i’s. Because the
induction step has already been established, it is enough to show this for each
n ≥ ν, with the focus of attention on the ω-set [τ̄i ≥ n for i = 1, . . . , r]. By
the description of the τ̄i ’s, on [τ̄i ≥ n, i = 1, . . . , r] (with n ≥ ν), τ̄1 is the first
time k ≥ n that ξk ∈ A(1)ν , and for i = 2, . . . , r , τ̄i is the first time k > τ̄i−1 that
ξk ∈ A(i)ν . In other words, given ξ1, . . . , ξn−1 for which τ̄i ≥ n, i = 1, . . . , r , the
differences τ̄1 − (n − 1), τ̄2 − τ̄1, . . . , τ̄r − τ̄r−1 are (conditionally) independent
geometrically distributed random variables with respective parameters F(A(i)ν ),
i = 1, . . . , r . It follows that

P (ξτ̄i ∈ Bi, i = 1, . . . , r|Fn−1)=
r∏
i=1

P (ξτ̄i ∈ Bi |Fn−1)

=
r∏
i=1

F(Bi ∩A(i)ν )
F (A

(i)
ν )

=
r∏
i=1

F(Bi ∩ Ā(i)n )
F (Ā

(i)
n )

.

This completes the proof. �

4. Converses. The intent in this section is to demonstrate that the indexical
and disentanglement assumptions are natural. Given this limited objective, we shall
state and prove Propositions 1 and 2 under conveniently restrictive assumptions.
Proposition 1 shows that the stopping time τ must be indexical in order for the
conditional distributions of ξτ to be as described in (7) for all n ≥ 1 and all
distributions F . Likewise, Proposition 2 shows that two indexical stopping times τ1

and τ2 must be disentangled in order for ξτ1 and ξτ2 to be conditionally independent
under all distributions F .

PROPOSITION 1. Assume X is countable with B = 2X (the power set of X),
and let τ be a stopping time which is a.s. finite for every distribution F that is fully
supported on X. Further, suppose (7) holds for all such F , for every B ∈ B and
for n= 1,2, . . . , where A1 = X, and An = An(ξ1, . . . , ξn−1) is a suitably chosen
nonempty subset of X, defined on [τ ≥ n] and depending on the observations
ξ1, . . . , ξn−1, for n≥ 2. Then the following hold:

(i) An+1 ⊂An on [τ > n];
(ii) [τ ≥ n and ξn /∈An] ⊂ [τ > n and An+1 =An];
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(iii) [τ ≥ n and ξn ∈An] = [τ = n] + [τ > n and ξn ∈An+1(ξ1, . . . , ξn)];
(iv) depending on ξ1, . . . , ξn−1, there exists a countable partition of An by

subsets An,i =An,i(ξ1, . . . , ξn−1), i = 1,2, . . . , such that the following hold:

(a) [τ ≥ n and ξn ∈An,1] = [τ = n];
(b) [τ ≥ n and ξn ∈An,i] = [τ > n and An,i =An+1] for i ≥ 2.

PROOF. (i) Suppose, for given ξ1 = x1, . . . , ξn−1 = xn−1, that τ > n when
ξn = x and, contrary to (i), that y belongs to An+1(x1, . . . , xn−1, x) but not to
An = An(x1, . . . , xn−1) for some y in X. Then, for any F supported on X, one
obtains from (7) with E := [ξ1 = x1, . . . , ξn−1 = xn−1],

P (ξτ = y|E)= F({y}|An)= F({y} ∩An)
F (An)

= 0,

and the contradiction

P (ξτ = y|E) ≥ P (ξτ = y|E,ξn = x)F ({x})
= F

({y}|An+1(x1, . . . , xn−1, x)
)
F({x})

= F({y})
F (An+1(x1, . . . , xn−1, x))

F ({x}) > 0.

Thus An+1 ⊂An on [τ > n], as asserted.

(ii) Suppose τ ≥ n for given ξ1 = x1, . . . , ξn−1 = xn−1 and, contrary to (ii),
that τ = n when ξn = x /∈ An = An(x1, . . . , xn−1). Then by (7) with E = [ξ1 =
x1, . . . , ξn−1 = xn−1],

0 = F(Acn ∩An)
F (An)

= P (ξτ /∈An|E)≥ P (ξn = x|E),

which leads to the contradiction F({x1}) · · ·F({xn−1})F ({x})= 0, since no factor
in the product can be zero when F is supported on X. Thus τ > n when τ ≥ n and
ξn /∈ An. Next, suppose, contrary to the second part of (ii), that An+1 is a proper
subset ofAn when τ > n and ξn = x /∈An =An(x1, . . . , xn−1). Let y belong to An
but not to An+1 = An+1(x1, . . . , xn−1, x) and choose for F a distribution which
has F({x})= 3/5 and F({y})= 1/5, so that

P (ξτ = y|E)= F({y} ∩An)
F (An)

≥ F({y})
1 − F({x}) = 1/5

1 − 3/5
= 1

2
.

However, this is contradicted by

P (ξτ = y|E)≤ P (ξn �= x|E)= P (ξn �= x)= 1 − F({x})= 2/5.

Finally, in view of (i), An+1 must be a subset of An, and, hence, An+1 = An.
It follows that τ > n and An+1 =An when τ ≥ n and ξn /∈An, as asserted.
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(iii) Observe that

[τ ≥ n, ξn ∈An] = [τ = n, ξn ∈An] + [τ > n, ξn ∈An].
By (ii), [τ = n, ξn ∈ An] = [τ = n], and by (i), [τ > n, ξn ∈ An] ⊃ [τ > n,

ξn ∈An+1]. It remains to show [τ > n, ξn ∈An] ⊂ [τ > n, ξn ∈An+1]. For given
ξ1 = x1, . . . , ξn−1 = xn−1 for which τ ≥ n, suppose to the contrary, ξn = x ∈An =
An(x1, . . . , xn−1) is such that τ > n and x /∈An+1(x1, . . . , xn−1, x). Then consider
a distribution F for which F({x})= 2/3, and observe, by (7), that

P (ξτ = x|E)= F({x} ∩An)
F (An)

≥ F({x})= 2

3
,

where E = [ξ1 = x1, . . . , ξn−1 = xn−1]. But this is contradicted by

P (ξτ = x|E)= P (ξτ = x|E,ξn = x)F ({x})
+P (ξτ = x|E,ξn �= x)

(
1 − F({x}))

≤ 0 · (2/3)+ 1 · (1/3)= 1/3.

Thus, x ∈ An+1(x1, . . . , xn−1, x). That is, ξn ∈ An+1, as asserted, completing the
proof of part (iii).

Part (a) of (iv). In view of part (iii), for given ξ1 = x1, . . . , ξn−1 = xn−1 for
which τ ≥ n, it is apparent that the set An,1 = An,1(x1, . . . , xn−1) described in
part (a) of (iv) should be defined thusly:

An,1 = {
x ∈An : τ = n when (together with the given

ξ1 = x1, . . . , ξn−1 = xn−1) ξn = x
}
,

and nothing more needs to be said.
Part (b) of (iv). For given ξ1 = x1, . . . , ξn−1 = xn−1 for which τ ≥ n, the sets

An,i =An,i(x1, . . . , xn−1), i ≥ 2, which, together with An,1 =An,1(x1, . . . , xn−1),
describe the partitioning of An = An(x1, . . . , xn−1), are generated by the sets
An+1(x1, . . . , xn−1, x), x ∈ An −An,1. Since X is countable, at most a countable
number of sets can be generated in this way.

We note, as a consequence of (iii), that x is always a member of An+1(x1, . . . ,

xn−1, x). Moreover, we claim for x ∈ An − An,1 that An+1(x1, . . . , xn−1, x) ⊂
An − An,1, which together with x ∈ An+1(x1, . . . , xn−1, x) implies that the
union of all of the sets An+1(x1, . . . , xn−1, x) with x ∈ An − An,1 equals
An −An,1. If, to the contrary of the claim, y ∈ An,1(x1, . . . , xn−1) for some
y ∈ An+1(x1, . . . , xn−1, x) (i.e., τ = n when ξn = y), then consider a distribu-
tion F for which F({x}) = F({y}) = 2/5, and observe with E = [ξ1 = x1, . . . ,

ξn−1 = xn−1] that

P (ξτ = y|E)= F({y} ∩An)
F (An)

≤ F({y})
F ({x})+ F({y}) = 1

2
.
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However, this is contradicted by

P (ξτ = y|E) ≥ P (ξτ = y|E,ξn = y)F ({y})
+P (ξτ = y|E,ξn = x)F ({x})

= 1 ·
(

2

5

)
+ F({y} ∩An+1(x1, . . . , xn−1, x))

F (An+1(x1, . . . , xn−1, x))
·
(

2

5

)

≥
(

2

5

)
+ 2/5

1
·
(

2

5

)
= 14

25
>

1

2
.

This proves the claim.
For the sets An+1(x1, . . . , xn−1, x), x ∈ An − An,1, to be a partition of

An −An,1, every pair of sets An+1(x1, . . . , xn−1, x) and An+1(x1, . . . , xn−1, y)

(x �= y) must be either equal or disjoint. We will now show that the two sets are
equal if, in addition, y is a member of the first set, and x is a member of the
second. Also, we will show that the only other alternative is that neither of these
memberships holds, and the two sets are disjoint. There are several cases to be
ruled out:

Suppose x /∈ An+1(x1, . . . , xn−1, y), y /∈ An+1(x1, . . . , xn−1, x), but the inter-
section of these two sets contains a point u ∈An−An,1. Clearly, u �= x and u �= y.
Consider a distribution F for which F({x}) = F({y}) = F({u}) = 3/10. Then,
by (7) with E = [ξ1 = x1, . . . , ξn−1 = xn−1],

P (ξτ = u|E)= F({u} ∩An)
F (An)

≤ F({u})
F ({x})+ F({y})+ F({u}) = 1

3
.

However, this is contradicted by

P (ξτ = u|E)≥ P (ξτ = u|E,ξn = u)F ({u})
+P (ξτ = u|E,ξn = x)F ({x})
+P (ξτ = u|E,ξn = y)F ({y})

= F({u})
F (An+1(x1, . . . , xn−1, u))

F ({u})

+ F({u})
F (An+1(x1, . . . , xn−1, x))

F ({x})

+ F({u})
F (An+1(x1, . . . , xn−1, y))

F ({y})

≥ (3/10)2

1
+ (3/10)2

1 − 3/10
+ (3/10)2

1 − 3/10
= 243

700
>

1

3
.

Another possibility is to suppose x /∈ An+1(x1, . . . , xn−1, y) but y ∈
An+1(x1, . . . , xn−1, x), so that the intersection of these two sets contains
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the common point y ∈ An −An,1. Consider a distribution F for which F({x})=
F({y})= 5/11. Then, by (7),

P (ξτ = y|E)= F({y} ∩An)
F (An)

≤ F({y})
F ({x})+ F({y}) = 1

2
.

However, this is contradicted by

P (ξτ = y|E) ≥ P (ξτ = y|E,ξn = x)F ({x})
+P (ξτ = y|E,ξn = y)F ({y})

= F({y})
F (An+1(x1, . . . , xn−1, x))

F ({x})

+ F({y})
F (An+1(x1, . . . , xn−1, y))

F ({y})

≥ 5/11

1
·
(

5

11

)
+ 5/11

1 − 5/11
·
(

5

11

)
= 425

726
>

1

2
.

The case with the roles of x and y reversed is ruled out by a similar argument.
Thus, we have now shown that if An+1(x1, . . . , xn−1, x) and An+1(x1, . . . ,

xn−1, y) are not disjoint, then they must both contain x and y. Finally, suppose that
An+1(x1, . . . , xn−1, x) and An+1(x1, . . . , xn−1, y) are neither disjoint nor equal,
with both, necessarily, containing the points x and y. For definiteness, suppose
the first set is not a subset of the latter and let v ∈ An − An,1 be a member of
An+1(x1, . . . , xn−1, x) that is not a member of An+1(x1, . . . , xn−1, y). Clearly,
v �= x and v �= y. Also, by (iii), v is also a member of An+1(x1, . . . , xn−1, v).
Thus, An+1(x1, . . . , xn−1, x) and An+1(x1, . . . , xn−1, v) are not disjoint, and it
follows (as we have shown in the context of x and y) that x is a member of
An+1(x1, . . . , xn−1, v). Consequently, x is a member ofAn+1(x1, . . . , xn−1, v) and
An+1(x1, . . . , xn−1, y). Since the latter two sets are not disjoint, it follows that v is
a member of An+1(x1, . . . , xn−1, y), and this is a contradiction. This completes
part (b) of (iv), and the proof of the proposition. �

PROPOSITION 2. Assume X is countable with B = 2X (the power set of X),
and let τ1 and τ2 be indexical stopping times (with corresponding sets A(i)n
and A(i)n,k for k ≥ 0 and i = 1,2), which are a.s. finite for every distribution F
that is fully supported on X. Suppose ξτ1 and ξτ2 are conditionally independent
given Fn−1, for n ≥ 1, as described in (18) with r = 2. Then τ1 and τ2 must be
disentangled. That is, for each n≥ 1 and ω-point in [τ1 ≥ n, τ2 ≥ n], there must
be an index s = s(ω) ∈ {1,2} which satisfies one of the three conditions (8a)–(8c).

PROOF. Suppose, to the contrary, that there exists an n ≥ 1 and values
x1, . . . , xn−1 in X such that [τ1 ≥ n] and [τ2 ≥ n] on E := [ξ1 = x1, . . . , ξn−1 =
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xn−1], with all of the following holding:

(24a) A(1)n �⊂A
(2)
n,k and A(2)n �⊂A

(1)
n,k for k = 0,2,3, . . . ;

(24b) each of A(1)n and A(2)n includes either a (nonempty) stopping set or at least
two continuation subsets (or both);

(24c) neither A(1)n nor A(2)n has cardinality 1.

By considering various choices for F , we will arrive at a contradiction. We shall
only consider distributions F whose support is all of X.

We must systematically rule out a number of cases:

Case (i) A(1)n,1 and A(2)n,1 are not disjoint. If there exists a u ∈A(1)n,1 ∩A(2)n,1, then
(by the conditional independence for n+ 1 in the first case of xn below [cf. (18)
and (3b)]),

P (ξτ1 = u, ξτ2 = u|E,ξn = xn)

=




F({u})
F (A

(1)
n )

F ({u})
F (A

(2)
n )

, for xn ∈A(1)n,0 ∩A(2)n,0,
1, for xn = u,

0, otherwise.

(25)

(The latter case of “otherwise” includes the subcase of stopping at time n by τi with
ξτi = xn �= u, i = 1 or 2; and it includes the subcase of xn ∈ A(i)n,k with k ≥ 2, for

i = 1 or 2, and, consequently, with τi ≥ n+ 1 and, necessarily, ξτi ∈A(i)n+1 =A
(i)
n,k,

thus ruling out ξτi = u.) Hence,

P (ξτ1 = u, ξτ2 = u|E)= F({u})
F (A

(1)
n )

F ({u})
F (A

(2)
n )

F (A
(1)
n,0 ∩A(2)n,0)+ F({u}),

which, by conditional independence for n, must also equal

P (ξτ1 = u|E)P (ξτ2 = u|E)= F({u})
F (A

(1)
n )

F ({u})
F (A

(2)
n )

.

So

F(A(1)n )F (A
(2)
n )= F({u})F (A(1)n ∪A(2)n ).(26)

On account of (24c) above, both A(1)n and A(2)n are strictly larger than the singleton
set {u}. So one can easily find a distribution F which contradicts (26). For
instance, one can make the factors on the left-hand side of (26) at least as large
as 2F({u}) > 0 and, at the same time, the second factor on the right-hand side at
most 3F({u}). This leads to the contradiction 2 ·2 ≤ 1 ·3, a contradiction that rules
out case (i). So, at this point, we may add to assumptions (24a)–(24c) the following
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working assumption:

(24d) A(1)n,1 ∩A(2)n,1 = ∅.

Case (ii) A(1)n,1 and A(2)n,0 are not disjoint, nor are A(2)n,1 and A(1)n,0. If there exists

a u ∈A(1)n,1 ∩A(2)n,0 and a v ∈A(2)n,1 ∩A(1)n,0, then

P (ξτ1 = u, ξτ2 = v|E, ξn = xn)

=




F({u})
F (A

(1)
n )

F ({v})
F (A

(2)
n )

, for xn ∈A(1)n,0 ∩A(2)n,0,
F ({v})
F (A

(2)
n )

, for xn = u,

F ({u})
F (A

(1)
n )

, for xn = v,

0, otherwise.

[The arguments for the various subcases are similar to those used for (25).] Hence,

P (ξτ1 = u, ξτ2 = v|E)= F({u})
F (A

(1)
n )

F ({v})
F (A

(2)
n )

F
(
A
(1)
n,0 ∩A(2)n,0

)

+ F({v})
F (A

(2)
n )

F ({u})+ F({u})
F (A

(1)
n )

F ({v}),

which simplifies to

P (ξτ1 = u, ξτ2 = v|E)= F({u})
F (A

(1)
n )

F ({v})
F (A

(2)
n )

[
1 + F (

A(1)n ∩A(2)n
)]
.

However, the assumption of conditional independence for n asserts that

P (ξτ1 = u, ξτ2 = v|E)= F({u})
F (A

(1)
n )

F ({v})
F (A

(2)
n )

.

Thus F(A(1)n ∩ A(2)n ) = 0, which implies A(1)n ∩ A(2)n = ∅. Since this conclusion
is inconsistent with (24a), case (ii) is ruled out, and we may hereafter assume its
converse as a working assumption. Because of the symmetry in case (ii), we shall,
without loss of generality, add to our working assumptions:

(24e) A(2)n,1 ∩A(1)n,0 = ∅.

Case (iii) A(2)n,1 is not empty. From (24d) and (24e), we may conclude [see (6)]

thatA(2)n,1 ⊂A
(1)
n,2 +A(1)n,3 +· · · . Hence, there exists a u ∈A(2)n,1∩A(1)n,k for some k ≥ 2,
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and

P (ξτ1 = u, ξτ2 = u|E, ξn = xn)

=




F({u})
F (A

(1)
n )

F ({u})
F (A

(2)
n )

, for xn ∈A(1)n,0 ∩A(2)n,0,
F ({u})
F (A

(1)
n,k)

, for xn = u,

F ({u})
F (A

(1)
n,k)

F ({u})
F (A

(2)
n )

, for xn ∈A(1)n,k ∩A(2)n,0,

0, otherwise.

So

P (ξτ1 = u, ξτ2 = u|E)
= F({u})
F (A

(1)
n )

F ({u})
F (A

(2)
n )

×
[
F(A

(1)
n,0 ∩A(2)n,0)+

F(A
(1)
n )F (A

(2)
n )

F (A
(1)
n,k)

+ F(A
(1)
n )F (A

(1)
n,k ∩A(2)n,0)

F (A
(1)
n,k)

]
.

Because of the assumed conditional independence for n, the terms within the
bracket must add to unity, but, in fact, exceed unity when F is chosen to make
0< F({u})≤ F(A

(1)
n,k) < 1/9, F(A(1)n − A

(1)
n,k) > 1/3 and F(A(2)n −A

(1)
n,k) > 1/3.

[Note, A(1)n − A
(1)
n,k �= ∅ by the first part of (24b), and A(2)n − A

(1)
n,k �= ∅ by the

second part of (24a).] So again, this case is contradicted, and we can strengthen
working hypothesis (24e) to read:

(24f) A(2)n,1 = ∅.

A consequence of (24f), together with (24b), is that A(2)n includes two or more
continuation subsets A(2)n,i and A(2)n,j with i �= j , i,j ≥ 2. Now suppose u ∈ A(1)n,k is

such that u belongs to the continuation subset A(2)n,i . [By (6), there must be such
a k, k ≥ 0.] Then, except when k = 1, the second condition in (24a) guarantees
the existence of a second point v ∈A(2)n that is not a member of A(1)n,k. Clearly, the

index j above can be chosen so that v ∈ A(2)n,j . (In the case A(2)n − A
(2)
n,i ⊂ A

(1)
n,k,

we simply have the roles of i and j reversed.) Thus, in summary, there exist
u,v ∈ X such that u ∈A(1)n,k ∩A(2)n,i , v ∈A(1)n,l ∩A(2)n,j with i �= j , i,j ≥ 2, and either
k = l = 1 or k �= l, k, l ≥ 0. It is important to note that this summary statement
contains no conditional clauses; once it is refuted (by appropriate demonstrations
of contradictions), the proof of Proposition 2 is complete.
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Because of symmetry, without loss of generality, we can assume that k ≥ l.
There are two cases to consider, each with two subcases: k = 1 and k > 1.

Case (iv) k = 1. Here, we have

P (ξτ1 = u, ξτ2 = u|E, ξn = xn)= F({u})
F (A

(2)
n,i)

for xn = u,

so that

P (ξτ1 = u, ξτ2 = u|E)= F({u})
F (A

(1)
n )

F ({u})
F (A

(2)
n )

≥ F({u})
F (A

(2)
n,i)

F ({u}),

and, hence,

F
(
A(1)n

)
F

(
A(2)n

) ≤ F (
A
(2)
n,i

)
.(27)

For the subcase l = 1, (27) is contradicted by choosing F so that F({v}) > 1−ε,
F({u}) < ε, and F({u}) > 1

2F(A
(2)
n,i) for small ε > 0.

For the subcase l = 0, (27) is contradicted by choosing F as above, but with the
restriction on v replaced by the restrictions F({v}) > 1

2 − ε and F({y}) > 1
2 − ε,

where y ∈ A(1)n − A
(2)
n,i . Such a y must exist on account of the first part of (24a),

and we note that y �= u and y �= v.
Case (v) k ≥ 2. Note that

P (ξτ1 = u, ξτ2 = u|E, ξn = xn)= F({u})
F (A

(1)
n,k)

F ({u})
F (A

(2)
n,i)

for xn = u,

so that

P (ξτ1 = u, ξτ2 = u|E)= F({u})
F (A

(1)
n )

F ({u})
F (A

(2)
n )

≥ F({u})
F (A

(1)
n,k)

F ({u})
F (A

(2)
n,i)

F ({u}),

and, hence,

F
(
A(1)n

)
F

(
A(2)n

)
F({u})≤ F (

A
(1)
n,k

)
F

(
A
(2)
n,i

)
.(28)

For the subcase l ≥ 1, we have u, v ∈ A(1)n ∩ A(2)n , and (28) is contradicted
by choosing F so that F({v}) > 1 − ε, F({u}) < ε, F({u}) > 1

2F(A
(1)
n,k) and

F({u}) > 1
2F(A

(2)
n,i) for small ε > 0.

For the subcase l = 0, there are two possibilities:

(a) If A(1)n,k ⊂ A
(2)
n,i , the first condition in (24a) guarantees the existence of

a y ∈ A(1)n − A
(2)
n,i , necessarily with y /∈ A(1)n,k , y �= u and y �= v (since v /∈ A(1)n ).

Then (28) is contradicted by choosing F so that F({v}) > 1
2 − ε, F({y}) > 1

2 − ε,

F({u}) < ε, F({u}) > 1
2F(A

(1)
n,k) and F({u}) > 1

2F(A
(2)
n,i) for small ε > 0.

(b) If A(1)n,k �⊂A
(2)
n,i , let u′ ∈A(1)n,k −A(2)n,i . By the first part of (24b), A(1)n,m �= ∅ for

some index m, 0<m �= k.
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If A(1)n,m �⊂ A
(2)
n,i , choose y ∈ A

(1)
n,m − A

(2)
n,i . Then (28) is contradicted by

choosing F as in part (a) above.
Alternatively, if A(1)n,m ⊂ A

(2)
n,i , choose y ∈ A(1)n,m. The case of m = 1 can be

treated as for k = 1 in Case (iv) above (with u replaced by y). For m > 1, one
obtains the inequality

F(A(1)n )F (A
(2)
n )F ({y})≤ F(A(1)n,m)F (A(2)n,i)(29)

in the same manner (28) is obtained, but with m replacing k, and y replacing u.
Finally, (29) is contradicted by choosing F so that F({v}) > 1

2 − ε, F({u′}) >
1
2 − ε, F({y}) < ε, F({y}) > 1

2F(A
(1)
n,m) and F({y}) > 1

2F(A
(2)
n,i) for small ε > 0.

�

APPENDIX

The task here is to verify that the ω-sets described in (19), (20) and (21) are
“universally measurable sets” in that they are measurable under the completion
of Fn−1 for every distribution F . To accomplish this, we first need to establish
some general mathematical facts concerning the product measurable space arising
from two Polish spaces (Y,C) and (Z,D). If E ⊂ Y × Z, is a Borel set (a set in
the product σ -field C × D), then the set

E′ = {
y ∈ Y : (y, z) ∈E for some z ∈ Z

}
is called the projection of E on Y. Following an error by Lebesgue in 1905,
Souslin demonstrated about 10 years later that a projection set need not be
measurable. Later, this observation led to the defining and general study of analytic
sets, of which E′ is an example. From this, it was discovered that analytic sets are
universally measurable sets in the sense that they are measurable in the completion
of C under every distribution on (Y,C). The reader is referred to Bruckner,
Bruckner and Thomson (1997) for a readable discussion of these matters.

Now let ) denote the set of cardinals and, for M ⊂ ), let

E[M] := {y ∈ Y : card(Ey) ∈M},
where Ey denotes the y-section of E. Further, let Mn := {γ ∈ ) :γ ≥ n},
n= 0,1,2, . . . , and observe that E′ = E[M1]; and, of course, E[M0] = Y. Finally,
let M denote the smallest σ -field containing the sets Mn, n≥ 0.

PROPOSITION 3. Every subset of Y of the form E[M], E ∈ C × D, M ∈ M, is
a universally measurable set.

PROOF. It is easily verified that it is enough to show that sets of the
form E[Mn] are universally measurable sets since M consists of those sets M
of countable cardinality and those whose complement is of countable cardinality.
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We have already dealt with E[M0] and E[M1]. We shall demonstrate that E[M2]
is a universally measurable set; the remaining sets E[Mn], n ≥ 3, can be dealt
with similarly. To this end, introduce the Polish space (Z′,D′) := (Z × Y × Z,

D×C×D) and observe for the Borel set Ê ⊂ Y×Z′ of the form {(y1, z1, y2, z2) ∈
E×E :y1 = y2 and z1 �= z2} that E[M2] = Ê[M1]. Thus, E[M2] is an analytic subset
of Y and, hence, is a universally measurable set. �

Finally, we return our attention to the ω-sets described in (19), (20) and (21).
Each of these sets, as does T in (19)–(21), depends on ω = (ω1,ω2, . . .) through
its first n − 1 components only. So, for the purpose of this discussion, we may
(and will) view them as a subset of Y = X(n−1), the (n− 1)-fold product of X.
Further, let Z = X. Here, C = B(n−1) and D = B, where B is the σ -field attached
to X. For each distribution F on (X,B), there is a corresponding distribution
on (Y,C). Together, these give rise to a collection C̄ (a σ -field) of universally
measurable sets. We now argue that the sets in (19), (20) and (21) are members
of C̄. Since �(s, k) + (Y − T ) = E[∅] when E = {(ω1, . . . ,ωn−1, x) :x ∈ A(s)n
and x /∈ A(3−s)

n,k }, it follows that �(s, k) = E[∅] ∩ T ∈ C̄. Likewise, �′(s) =
E[∅] ∩ T ∈ C̄ when E = {(ω1, . . . ,ωn−1, x) :x ∈ A(s)n and x /∈ A(s)n,2}. Finally,

�′′(s)= E[{1}] ∩ T ∈ C̄ when E = {(ω1, . . . ,ωn−1, x) :x ∈A(s)n }. So, to conclude,
all of the sets in (19), (20) and (21) are universally measurable sets, as required.

Acknowledgment. We are indebted to S. R. S. Varadhan for a helpful
suggestion that led us to the formulation and proof of Proposition 3.
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