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MAXIMA OF PARTIAL SUMS INDEXED BY GEOMETRICAL
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University of Minnesota

The maxima of partial sums indexed by squares and rectangles over
lattice points and random cubes are studied in this paper. For some of these
problems, the dimension (d = 1, d = 2 and d ≥ 3) significantly affects the
limit behavior of the maxima. However, for other problems, the maxima
behave almost the same as their one-dimensional counterparts. The tools for
proving these results are large deviations, the Chen–Stein method, number
theory and inequalities of empirical processes.

1. Introduction. Motivated by comparisons of protein structures with three
dimensional foldings (see [14] and [18] for further details), we study maxima of
partial sums of i.i.d. random variables with indices on d-dimensional lattices points
(d ≥ 2) as well as positive random numbers generated by the uniform distribution
over the three-dimensional cube.

Before stating our main results, let us recall a result for the one-dimensional
case.

In our context, the random variable X is typically assumed to satisfy the
following condition:

X is nonlattice, E(X) < 0, P (X > 0) > 0 and
(1.1)

E exp(tX) <∞ for all t ∈R.

Under condition (1.1), there is a unique constant θ > 0 so that

E exp(θX)= 1.(1.2)

The following lemma was probably first proved by Spitzer (E4 on page 217
of [22]). See also (5.13) in [11].

LEMMA A.1. Let {X,Xn;n ≥ 1} be a sequence of i.i.d. random variables
with X satisfying (1.1). Set Sk =∑k

i=1 Xi, k ≥ 1. Then

K := lim
t→+∞ eθtP

(
max
k≥1

Sk > t

)
=C/θ,

Received April 2000; revised December 2001.
AMS 2000 subject classifications. 60F10, 28C15, 60B10.
Key words and phrases. Maxima, Chen–Stein method, number theory, large deviations, inequali-

ties of empirical processes.

1854



MAXIMA OF PARTIAL SUMS 1855

where

C = A exp{−2
∑∞

k=1
1
k
(E[exp(θSk);Sk < 0] + P (Sk ≥ 0))}
E[X exp(θX)]

and A= exp{∑∞k=1 P (Sk ≥ 0)/k}. The above expression for C follows from i.i.d.
fluctuation sum identities ([11, Chapter 12]).

Lemma A.1 is important for i.i.d. partial sums. Iglehart [13] used this result in
the continuous i.i.d. case in the course of characterizing the asymptotic maximal
waiting time among the first n customers in a standard GI/G/1 queue. One such
result is as follows:

THEOREM A.1. Let {X,Xn;n ≥ 1}, Sk and K be as in Lemma A.1. Set
S0 = 0. Then

P

(
max

0≤i<j≤n(Sj − Si)≤ logn

θ
+ x

)
→ e−Ke−θx

as n→∞

for any x ∈R.

For more information on oscillation phenomena for partial sums of i.i.d. random
variables see [5, 17, 19] and the references therein.

In this paper, we study counterparts of Theorem A.1 for two or higher
dimensional cases. Due to the complexity of higher dimensional spaces, a discrete
version and a continuous version are studied separately.

Now we state our results for the first part.
Denote the set of all positive integers by N and d-fold Cartesian product of N

by N
d , namely, N

d = {I = (i1, i2, . . . , id); ik ∈ N, k = 1,2, . . . , d}. For any
n ≥ 1, define the set of all subcubes and that of rectangles in {1,2, . . . , n}d by
On and Rn, respectively. Precisely, for any � ∈ On and �′ ∈ Rn, there exist
{jk}dk=1, {lk}dk=1 ∈N

d and m ∈N such that

�= {(i1, . . . , id) ∈N
d; 1≤ jk ≤ ik ≤ jk +m≤ n, k = 1,2, . . . , d

}
and

�′ = {(i1, . . . , id) ∈N
d; 1≤ jk ≤ ik ≤ lk ≤ n, k = 1,2, . . . , d

}
.

Assuming that {X,XI ; I ∈N
d} are i.i.d. random variables, let S� =∑I∈�XI ,

Wn = max
�∈On

S� and Un = max
�∈Rn

S�.

We focus mainly on these two statistics in the first part of the paper. Strong laws
and limiting distributions of them are derived.
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For the random variable X mentioned in (1.1), the corresponding log of the
moment generating function and its conjugate which is also called the rate function
are

�X(t)= logE exp(tX), �∗X(x) := sup
t∈R

{tx −�X(t)}.

When there is no confusion, we may for the sake of convenience, write �(t)

for �X(t) and �∗(x) for �∗X(x), respectively. To understand the limiting
distributions of Wn and Un, we need the following local properties of partial
sums corresponding to that of Lemma A.1 in one-dimensional case. Recall Sk =∑k

i=1 Xi, k ≥ 1, are the partial sums of a sequence of i.i.d. random variables
{X,Xi; i ≥ 1}.

THEOREM 1. Suppose condition (1.1) holds. For z > 0, let γ (z) = (z/

�′(θ))1/2 and δ(z)=∑+∞i=−∞ exp{−β(i + z)2}, where β = 2�′(θ)2/�′′(θ). Then

lim
z→∞

√
zeθz

δ(γ (z))
P

(
max
k≥1

Sk2 ≥ z

)
= 1

θ

√
�′(θ)

2π�′′(θ)
.

Although we assume X is nonlattice in all of our results here and later, the lattice
cases can be treated similarly. We omit them in this paper.

When d ≥ 3, we have the following result.

THEOREM 2. Suppose condition (1.1) holds. Let Gn(z) = exp(−nd�∗(z/
nd)), where n := [(z/�′(θ))1/d ] (recall [x] is the biggest integer no larger than x).
Then for any integer d ≥ 3,

lim
z→∞

√
z
(
Gn(z)+Gn+1(z)

)−1
P

(
max
k≥1

Skd ≥ z

)
= 1

θ

√
�′(θ)

2π�′′(θ)
.

Why are the results for d = 1, d = 2 and d ≥ 3 so different? For ease of discussion,
assume that X is bounded. Compared to a given large number z, Sk is very small
both when k is small (because X is bounded) and when k is large (because of
the negative mean). Let %d be the set of integers k which essentially contribute to
maxk≥1 Skd .

By a computation given later in this paper, we know that %1 is the set of integers
in (z−√z log z, z+√z log z). The size of %d is therefore roughly equal to

(z+√z log z )1/d − (z−√z log z )1/d �
√

log z

z1/2−1/d .

Obviously, d = 2 is the critical value in which the size of %d is roughly
√

log z in
contrast to

√
z log z when d = 1. When d ≥ 3, %d consists of at most some fixed

set of integers. The real calculation shows that the size of %d in this case is at most
two.
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Now we turn to another case of local properties of partial sums. Let {X,Xi,j ;
i ≥ 1, j ≥ 1} be i.i.d. random variables and Sp,q =∑p

i=1
∑q

j=1 Xi,j .

THEOREM 3. Let U =maxp≥1,q≥1 Sp,q . Suppose condition (1.1) holds, then

lim
z→+∞ eθz(log z)−1P (U ≥ z)= 1

θ
√
�′(θ)

.

For the one-dimensional case, the proof of Lemma A.1 depends on classical
fluctuation theory. The proofs of the above theorems are totally irrelevant to that.

The following are strong laws for Wn and Un.

THEOREM 4. Suppose condition (1.1) holds, then for any d ≥ 2,

(i) lim
n→∞

Wn

logn
→ d

θ
a.s.,

(ii) lim
n→∞

Un

logn
→ d

θ
a.s.

The following are limit laws of Wn and Un. As usual, log2 n = log(logn),
log3 n= log(log2 n).

THEOREM 5. Suppose that d = 2 and condition (1.1) holds. Let tn =
log δ(γ (2 logn/θ)), where the functions δ(·) and γ (·) are as in Theorem 1. Define
log2 n= log(logn). Then

lim
n→∞P

(
Wn ≤ 1

θ

{
2 logn− 1

2
log2 n+ tn

}
+ x

)
= e−K1e

−θx

for all x ∈R, where K1 = 2−1√�′(θ)/(πθ�′′(θ)).

THEOREM 6. Suppose d ≥ 3 and condition (1.1) holds. Let kn = inf{k ∈
N; (logk)/2 + αkd ≥ logn}, where α = θ�′(θ)/d , and rn = exp{d logn −
d(logkn)/2− kdnθ�

′(θ)}. Then

P
(
Wn ≤�′(θ)kdn + x

)− e−K2rne
−θx → 0,

where K2 = (θ
√

2π�′′(θ))−1.

It is easy to see that rn of Theorem 6 does not converge. Also P (Wn ≤
�′(θ)kdn+x) does not converge, but Theorem 6 gives a first order of approximation
for the probability.
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THEOREM 7. Suppose condition (1.1) holds, for d = 2, we have that

P

(
Un ≤ 2 logn

θ
+ log3 n

θ
+ x

)
→ e−K3e

−θx ∀x ∈R,

where K3 = 1/θ
√
�′(θ).

From Theorem 4, we know that both Un and Wn have the same scale. But
evidently, Un ≥ Wn. Theorem 5 tells us, loosely speaking, that Wn ∼ (2 logn −
(1/2) log2 n)/θ when d = 2. The above theorem says roughly that Un ∼ (2 logn+
log3 n)/θ when d = 2. The difference between them is obvious.

The analogue of Theorem 7 for the high-dimensional case is not derived in this
paper because a related number theoretic problem is unsolved. In fact, one of the
key steps in proving Theorem 7 is to show that∑

k∈Iy
q(k)e−(k−y)2/y ∼ α

√
y logy as y→+∞(1.3)

for some constant α > 0, where q(k)= #{(r, s) ∈N
2; rs = k} and Iy is an interval

depends on y. To solve the analogue of Theorem 7 for the high-dimensional case,
a calculation similar to (1.3) must be done. See Remark 5.6 for further details.

The above results can also be thought as natural extensions of the classical
Erdös–Rényi law (see [10]) and its followups such as [5] to a higher dimensional
setting.

In the second part of this paper, results in the “continuous” setting are obtained.
They are actually motivated by a procedure given by Karlin and Zhu [15], which
studied clusters of charged residues in protein structures. To focus on mathematics,
we omit any details of biology throughout this paper.

Assume that {Y,Yi; i ≥ 1} is a sequence of i.i.d. random variables with uniform
distribution on [0,1]3. For any x = (x1, x2, x3) ∈ R

3, ‖x‖ = max{|x1|, |x2|, |x3|}
is the maximum norm. A ball centered at x and with radius r under this norm is
denoted as B(x, r). We denote by F the set of all subcubes inside of [0,1]3 such
that their six faces are parallel to those of [0,1]3. Specifically,

F = {B(x, r)⊂ [0,1]3; x ∈ [0,1]3, 0 < r < 1/2
}
.(1.4)

Let {X,Xn;n≥ 1} be a sequence of i.i.d. random variables. For any B ⊂ [0,1]3,
define Sn(B)=∑n

i=1 XiI {Yi ∈ B}. We consider the following two statistics:

W̃n =max
B∈B

Sn(B) and Ũn =max
B∈F

Sn(B),(1.5)

where B := {B = B(Yi, r)⊂ [0,1]3; 1≤ i ≤ n, 0 < r < 1/2}.
THEOREM 8. Suppose condition (1.1) holds, then

lim
n→∞

W̃n

logn
= 1

θ
a.s. and lim

n→∞
Ũn

logn
= 1

θ
a.s.
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THEOREM 9. Suppose condition (1.1) holds, then

lim
n→∞P

(
W̃n ≤ logn

θ
+ x

)
= e−Ke−θx

for any x ∈R, where K is a constant as in Lemma A.1.

The method of proof of this result is a combination of the classical fluctuation
theory in the one-dimensional case and the “diffuse” property of high dimensional
spaces. We may think of Theorem 9 as one of the results of scan statistics see [20]
and [21] and the literature therein.

One application of our results is the following change point problem. Suppose
we have independent observation on two dimensional lattice points:

−1.4 −3.3 −1.8 −2.8 −0.2 −2.3 −3.0
−2.4 −3.1 −1.2 −2.5 −2.3 −2.7 −1.6
−0.6 −1.1 −0.3 −4.1 −0.9 −1.5 −0.5
−2.8 −1.9 −3.0 −0.7 −2.8 −1.2 −1.5
−1.2 −1.4 −2.6 1.2 1.4 1.3 −0.7
−1.8 −1.9 −2.5 1.6 1.3 1.4 −4.2
−1.5 −1.6 −1.1 −1.5 −0.1 −2.9 −1.2

FIG. 1.1.

One immediately notices that there is some zone where the data are significantly
different from those in the other parts. [The above data are actually sampled from
the distribution N(−2,1), and the data in the area enclosed by the fifth and sixth
rows and the fourth and sixth columns are later changed manually to the current
ones.] This is a typical setting in change point problems. The goal is to detect
whether there is a zone from which the data are different from the data in other
zones. Siegmund and Yakir in [21] studied this problem recently by using the
likelihood ratio test. Our Theorems 5, 6 and 7 provide another way to study such
a problem in which data are assumed from a population with negative mean and
essential positive part. So far we do not know which method is more efficient.

Finally, let us give the outline of this paper. We will prove results on maxima on
squares, rectangles and random cubes in Sections 2, 3 and 4, respectively. We give
some concluding remarks in the last section.

2. Proofs of Theorems 1, 2, 4, 5 and 6.

2.1. Notation and some auxiliary lemmas. Throughout this paper, we use the
following notation:

N: The set of all positive integers.
R := (−∞,+∞).
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[a]: The integer part of a.
|A| or #A: the cardinality of a set A.
IA or I (A) or 1A or 1(A) are the same function of x := 1 if x ∈ A, = 0

otherwise.
an ∼ bn :an/bn→ 1 as n→∞.
an =O(bn): lim supn→∞ |an/bn|<∞.
an = o(bn): limn→∞ an/bn = 0.
a ∨ b :=max{a, b} and a ∧ b :=min{a, b}.
EAf (ξ1, ξ2, . . . , ξn): suppose ξ1, ξ2, . . . , ξn are random variables. For f (x1, x2,

. . . , xn), a real-valued function on R
n, denote by EAf (ξ1, ξ2, . . . , ξn) the condi-

tional expectation E(f (ξ1, ξ2, . . . , ξn)|B), where B is the σ -algebra generated
by {ξk, k /∈ A} if A ⊂ {1,2, . . . , n} or by {ξ1, . . . , ξn} \ A if A is a subset of
{ξk,1≤ k ≤ n}. The same interpretation applies to PA too.

Before proving the main theorems, we collect some tools which will be
frequently used in this and later sections. Some of those tools are quoted directly
from the literature. They will be denoted by Lemmas A.2 and A.3, etc. as in the
introduction. We use the numbering such as Lemmas 2.1 and 3.2 to denote those
results which need proofs.

The following inequality provides us with bounds for tails of sums of
independent and bounded random variables; see Exercise 14 on page 111 in [4]
or page 193 in [16].

LEMMA A.2 (Bernstein’s inequality). Let {Xi; 1 ≤ i ≤ n} be a sequence
of independent random variables with EXi = 0, EX2

i = σ 2
i and |Xi | ≤ 1. Denote

s2
n =
∑n

i=1 σ
2
i . Then

P (Sn > x)≤ exp
{
− x2

2(s2
n + x)

}
, x > 0.

LEMMA 2.1. Let {Xα;α ∈ �} be a collection of i.i.d. random variables,
where � is a finite set. Suppose that A,A1,B and B1 are subsets of � satisfying
|A| = |A1|, |B| = |B1| and |A ∩ B| ≤ |A1 ∩ B1|. Let 6(x) be a measurable
function on R. If |A| = |B| or 6 is monotone, then

E6(SA)6(SB)≤E6(SA1)6(SB1),

where SC =∑α∈C Xα for any set C.

PROOF. We distinguish two cases.
(i) Suppose |A| = |B|. As mentioned earlier, EA(Y ) := E(Y |Xα,α ∈�\A) for

any random variable Y . Take a subset D ⊂ A1 ∩B1 for which |D| = |A1 ∩ B1| −
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|A∩B|. Then from the invariance property of the joint distribution of {Xα;α ∈�},
it follows that

E6(SA1)6(SB1)= EA1∩B1
(
EA1\B16(SA1)

)2 = E(A1∩B1)\DED
(
EA1\B16(SA1)

)2
≥ E(A1∩B1)\D(E(A1\B1)∪D6(SA1)

)2 =EA∩B(EA\B6(SA)
)2

= E6(SA)6(SB)

where the only “≥” appearing in the above argument is by virtue of the Cauchy–
Schwarz inequality.

(ii) Suppose that 6 is monotone. As above, take a subset D ⊂A1 ∩ B1 so that
|D| = |A1 ∩B1| − |A ∩B|. It follows that

E6(SA1)6(SB1)= EA1∩B1
{
EA1\B16(SA1)E

B1\A16(SB1)
}

= E(A1∩B1)\DED
{
EA1\B16(SA1)E

B1\A16(SB1)
}

≥ E(A1∩B1)\D{E(A1\B1)∪D6(SA1)E
(B1\A1)∪D6(SB1)

}
= E6(SA)6(SB)

where we use the easy fact that Ef (Y )g(Y ) ≥ Ef (Y )Eg(Y ) for any two
increasing functions f, g and a random variable Y in the only inequality appearing
above. �

The following Poisson approximation theorem is a straightforward application
of Theorem 1 in [1], which is a special case of the Chen–Stein method. The lemma
is used quite often in analyzing maxima of random variables.

LEMMA 2.2. Let 9 be a finite set and A be a collection of some subsets
of 9. Suppose that {Xα, α ∈ 9} is a collection of random variables. Write
SA =∑α∈AXα and λ=∑A∈A P (SA > t) for a fixed t ∈R. Then∣∣∣∣P

(
max
A∈A

SA ≤ t

)
− e−λ

∣∣∣∣≤ (1∧ λ−1)(b1+ b2 + b3),

where

b1 =
∑
A∈A

∑
B:B∩A �=∅

P (SA > t)P (SB > t),

b2 =
∑
A∈A

∑
B:B∩A �=∅

P (SA > t, SB > t),

b3 =
∑
A∈A

E
∣∣P (SA > t|σ {SB;B ∩A=∅})− P (SA > t)

∣∣,
where σ {SB;B ∩A=∅} is the σ -algebra generated by the collection of random
variables {SB;B ∩A=∅}. In particular, if {Xα, α ∈9} is a set of independent
random variables, then b3 = 0.
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PROOF. Let YA = 1(SA > t), and BA be the set of all B such that B ∩A �=∅.
Then the result follows from Theorem 1 in [1]. �

The next lemma, whose proof may be found in Remark (a) below Theorem 3.7.4
in [8], collects useful properties of �(t) and �∗(x). Their definitions are given in
the introduction.

LEMMA A.3. Suppose E exp(tX) <∞ for all t ∈R and X is nondegenerate.
Then:

(i) �′′(t) > 0 for all t ∈R.
(ii) �∗(x) is infinitely differentiable in the interior of the convex hull of the

support of X.
(iii) If condition (1.1) holds, then �∗(�′(θ))= θ�′(θ), (�∗)′(�′(θ))= θ and

(�∗)′′(�′(θ))= 1/�′′(θ), where θ is as in (1.2).

LEMMA 2.3. Suppose condition (1.1) holds. Let D�∗ = {x ∈R;�∗(x) <∞}.
Then I (x) :=�∗(x)/x is strictly decreasing on (0,�′(θ)] and strictly increasing
on [�′(θ),+∞) ∩D�∗ .

PROOF. Obviously, the condition (1.1) implies that [0,+∞)⊂ {�(t); t ∈R}.
Moreover, �(t) is a strictly convex function. Thus, for any x2 > x1 ≥�′(θ) such
that �∗(xi) <∞, i = 1,2, there exist t2 > t1 ≥ θ such that xi =�′(ti), i = 1,2. It
follows from ti ≥ θ that �(ti)≥ 0. It is easy to see that �∗(�′(t))= t�′(t)−�(t).
Consequently,

�∗(x1)

x1
= t1 − �(t1)

x1
< t1 − �(t1)

x2
≤ �∗(x2)

x2
.(2.1)

If 0 < x1 < x2 < �′(θ), then there exist 0 < t1 < t2 < θ such that xi =�′(ti) and
�(ti) < 0, i = 1,2. By using the same argument as (2.1), we have �∗(x1)/x1 >

�∗(x2)/x2. �

Let {X,Xn;n≥ 1} be a sequence of i.i.d. random variables with mean µ. Recall
that Sn =∑n

i=1 Xi are partial sums. We always assume that X is nondegenerate.
The following proposition, which is slightly stronger than the usual Bahadur–Rao
theorem (see [2]), provides us with uniform estimates of tail probabilities. It is a
pivotal tool in our proofs.

PROPOSITION 2.1. Suppose X is nonlattice and �(t) <∞ for all t ∈R. Then

sup
a≤η≤b

∣∣Cn(η)P
(
Sn ≥ n�′(η)

)− 1
∣∣→ 0 as n→∞

for any two constants b > a > 0, where Cn(η)= η
√

2πn�′′(η) en�∗(�′(η)).
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PROOF. Obviously, �∗(�′(η)) = sup|t|<a+b{t�′(η) − �(t)} for any η ∈
[a, b]. Since X is nonlattice, the random variable Z := etX/EetX is also nonlattice.
Denote the characteristic function of Z by φZ(s). Then φZ(s)= Ee(t+is)X/EetX

and |φz(s)|< 1 for any s �= 0. By continuity, we have that

sup
δ1≤|s|≤δ2|t|<a+b

∣∣∣∣Ee(t+is)X

EetX

∣∣∣∣< 1

for any constants δj > 0, j = 1,2. It follows from Theorem 3.3 and Remark 3.6
in [3] that P (Sn ≥ n�′(ηn))∼ Cn(ηn)

−1 as n→∞ for any {ηn;n≥ 1} ⊂ [a, b],
which implies our desired result. �

A consequence of the above proposition follows. It will be used as a tool for
finding accurate estimates.

COROLLARY 2.1. Suppose the condition in Proposition 2.1 holds. Then, for
any given δ > 0,

sup
a≤η≤b

sup
|x|≤δ√n logn

∣∣Cn(x, η)P
(
Sn ≥ n�′(η)+ x

)− 1
∣∣→ 0 as n→∞,

where Cn(x, η) = Cn(η) exp{ηx + (x2/2�′′(η)n)}, and Cn(η) is as in Proposi-
tion 2.1.

PROOF. For any |x| ≤ δ
√
n logn, a ≤ η ≤ b and sufficiently large n, there

always exists an unique ηn,x for which �′(ηn,x)=�′(η)+ x/n. This is because
x/n→ 0 and �′(·) is strictly increasing. By the same reason, there exist a1 and b1
satisfying a1 < a < b < b1and {ηn,x; |x| ≤ δ

√
n logn} ⊂ (a1, b1) for n large

enough. Therefore

Cn(x, η)P
(
Sn ≥ n�′(η)+ x

)= Cn(x, η)P
(
Sn ≥ n�′(ηn,x)

)
= Cn(x, η)

Cn(ηn,x)

[
Cn(ηn,x)

(
P
(
Sn ≥ n�′(ηn,x)

))]
.

By Proposition 2.1, it remains to show that

Cn(x, η)

Cn(ηn,x)
→ 1(2.2)

uniformly in x and η. By Taylor’s expansion and Lemma A.3,

Cn(x, η)

Cn(ηn,x)
= η

√
�′′(η)

ηn,x
√
�′′(ηn,x)

exp
[
− x3

6n2 (�
∗)(3)(ξη)

]
,(2.3)

where ξη is between �′(η) and �′(η)+ n−1x. Obviously, we have that |(x3/6n2)

× (�∗)(3)(ξη)| ≤ n−1/2(logn)3/2 supa1≤x≤b1
|�∗(3)(x)|. On the other hand, let
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h= infη∈[a1,b1]�′′(η). Then h ∈ (0,∞) and by the mean value theorem δ
√

logn/n≥
|�′(η)−�′(ηn,x)| ≥ h|η−ηn,x |. Apply the mean value theorem again to the func-
tion x

√
�′′(x) to obtain from (2.3)

∣∣∣∣Cn(x, η)

Cn(ηn,x)
− 1
∣∣∣∣≤ δ

(|a1| + |b1|)h sup
a1≤η≤b1

∣∣(η√�′′(η)
)′∣∣
√

logn

n
.

Therefore, (2.2) is true. �

The following easy fact is called Chernoff’s bound (see, e.g., page 31 in [8]). It
is weaker than Proposition 2.1, but it is a simple and nonasymptotic bound.

LEMMA A.4 (Chernoff’s bound). For any x > EX,

P (Sn/n≥ x)≤ exp
(−n�∗(x)

) ∀n≥ 1.

The following lemma is frequently applied when proving theorems on maxima
of partial sums via the Chen–Stein method.

LEMMA 2.4. Suppose A,B and C are disjoint sets of indices. Let {X,Xα;α ∈
A ∪ B ∪ C} be i.i.d. random variables with X satisfying condition (1.1) and
µ := EX. For any subset D ⊂ A ∪ B ∪ C, we use the notation SD :=∑α∈D Xα .
Then,

P (SA∪B ≥ z, SB∪C ≥ z)≤ 2e−θz−m1ζ ≤ 2e−θz−m2ζ ,

where ζ = supµ<x<0{�∗(x)∧ θ |x|}> 0, m1 = |A| ∨ |C| and m2 = |A∪C|/2.

PROOF. Assume, without loss of generality, |A| ≥ |C|. Then

P (SA∪B ≥ z, SB∪C ≥ z)≤ P (SA ≥ x|A|)P (SB∪C ≥ z)+ P (SB ≥ z− x|A|)
for any x > µ. By the Chernoff’s bound, P (SA ≥ x|A|)≤ exp(−|A|�∗(x)). Also,
by using that E exp(θX) = 1 and the Markov’s inequality, we have P (SB∪C ≥
z)≤ e−θz and P (SB ≥ z− x|A|)≤ exp(−θz− θ |x||A|). Therefore,

P (SA∪B ≥ z, SB∪C ≥ z)≤ 2 exp
{−θz− |A|(�∗(x)∧ θ |x|)}.

The lemma follows by choosing the smallest bound over x ∈ (µ,0). �

LEMMA 2.5. Assume X satisfies condition (1.1). Let d ∈N be a constant and
Sn =∑n

i=1 Xi . Then there exist constants r > 1 and t0 > θ such that∑
k≥rz1/d

P (Skd ≥ z)+ ∑
k≤r−1z1/d

P (Skd ≥ z)= o(e−t0z) as z→∞.
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PROOF. Let r1 = (3�′(θ)/2)1/d . Recall the definition of I (x) in Lemma 2.3.
It follows that λ =: infx≥3�′(θ)/2 I (x) > θ . Then by the Chernoff’s bound and
Lemma 2.3,∑

k≤r−1
1 z1/d

P (Skd ≥ z)≤ ∑
k≤r−1

1 z1/d

e−kd�∗(z/kd) ≤ r−1
1 z1/de−λz = o(e−λ1z)

as z→∞, where λ1 = (θ + λ)/2. On the other hand, for any c > 0

∑
k≥cz1/d

P (Skd ≥ z)≤ ∑
k≥cz1/d

e−kd�∗(0) ≤ e−cd�∗(0)z

1− e−�∗(0) = o(e−λ1z)

for any given c > r2 = (λ1/�
∗(0))1/d . Take r = max{r1, r2 + 1} to conclude the

proof. �

LEMMA 2.6. Suppose condition (1.1) holds. For any two positive functions
a(z) and b(z) such that (a(z) + b(z))/z1/d → 0, and two positive numbers r, s

such that s < c0 < r , where c0 = (�′(θ))−1/d , we have that

z1/2−1/deθz
∑
k∈%z

P (Skd ≥ z)=O
(
e−c(z)2z1−2/d )

as z→∞,

where %z = {k ∈N; sz1/d ≤ k ≤ c0z
1/d − b(z) or c0z

1/d + a(z)≤ k ≤ rz1/d} and
c(z)= a(z)∧ b(z), z > 0.

PROOF. Let %′z = {k ∈ N; c0z
1/d + a(z) ≤ k ≤ rz1/d}. Then, by Proposi-

tion 2.1 and Lemma 2.3,∑
k∈%′z

P (Skd ≥ z)≤ C
∑
k∈%′z

1√
kd

exp
{
−kd�∗

(
z

kd

)}

≤ Cz−1/2+1/d exp
{
−h(z)�∗

(
z

h(z)

)}
,

where h(z) = (c0z
1/d + a(z))d . Here the constant C, which depends on �(·)

and d , may vary from line to line. Write � = z/h(z) − �′(θ). By Taylor
expansion �=−dc−1

0 a(z)z−1/d+O(a(z)2z−2/d). By the Taylor expansion again
and Lemma A.3,

�∗
(
zh(z)−1)= θ�′(θ)+�θ + 1

2
�2(�′′(θ)+ o(1)

)= θz

h(z)
+O
(
a(z)2z−2/d).

Therefore, h(z)�∗(z/h(z))= θz+O(a(z)2z1−2/d). Hence,

z1/2−1/deθz
∑
k∈%′z

P (Skd ≥ z)=O
(
e−a(z)2z1−2/d )

.

By the same arguments, the above estimate is also true if %′z and a(z) are replaced
by %z \ %′z and b(z), respectively. This completes the proof. �
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2.2. Proofs. Recall N is the set of all positive integers. N
d is the d-fold

Cartesian product. Capital letters such as I, J, L, etc. will be used to denote
points in N

d . The notation (i1, i2, . . . , id) = I ≤ J = (j1, j2, . . . , jd) means that
il ≤ jl for all l = 1,2, . . . , d , and I < J when all inequalities are strict. Also, as
convention, I + J = (i1 + j1, i2 + j2, . . . , id + jd) and m= (m,m, . . . ,m) ∈ N

d .
Let �=�(I,J )= {L ∈N

d; I ≤ L≤ J }, Rn = {�=�(I,J ); 1≤ I ≤ J ≤ n}.
We now turn to the proofs of Theorems 1, 2, 4, 5 and 6. To prove Theorem 4, we
need the following two lemmas.

LEMMA 2.7. Define qd(k)= #{(i1, . . . , id) ∈N
d; i1i2 · · · id = k}. Then

m∑
k=1

qd(k)≤m
(
log(em)

)d−1

for m≥ 2 and d ≥ 2.

PROOF. We prove the lemma by induction. When d = 2, it is easy to see that

m∑
i=1

q2(i)=
m∑
i=1

[
m

i

]
.

Note that
q∑

k=p+1

1

k
≤ log

q

p
≤

q−1∑
k=p

1

k

for any two positive integers p < q . Thus

m∑
i=1

q2(i)≤m

m∑
i=1

1

i
≤m log(em)(2.4)

for all m≥ 2. So the lemma is true for d = 2. Observe that

m∑
i=1

qd(i)=
m∑
i=1

[m/i]∑
k=1

qd−1(k).

Suppose the lemma is true for d = l ≥ 2. Then it is easy to check that

m∑
k=1

ql+1(k)=
m∑
i=1

[m/i]∑
k=1

ql(k)≤
m∑
i=1

[
m

i

](
log e

[
m

i

])l−1

≤m
(
log(em)

)l−1
m∑
i=1

1

i
≤m
(
log(em)

)l
,

where the last inequality is from (2.4). The proof is complete. �
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LEMMA 2.8. Suppose that condition (1.1) holds. For any given ε > 0, there
exists c > 0 such that c <�′(θ) < 1/c and∑

k �∈(cz,z/c)
qd(k)P (Sk ≥ z)=O

(
e−ε−1z

)

as z→+∞.

PROOF. First, by Chebyshev’s inequality and Lemmas 2.3 and 2.7, for any
c < �′(θ), we have

∑
k≤cz

qd(k)P (Sk ≥ z)≤
(

max
k≤cz e−k�∗(z/k)

) ∑
k≤cz

qd(k)≤ cz(4 logcz)d−1e−I (1/c)z

=O(e−εz)

for sufficiently large c > 0. By Lemma 2.7, we have that qd(k) ≤ k(4 logk)d−1 ≤
e�

∗(0)k/2 for all k large enough. It follows that for given c > 0,

∑
k≥z/c

qd(k)P (Sk ≥ z)≤ ∑
k≥z/c

qd(k)e
−k�∗(0) ≤ e−�∗(0)z/(2c)

1− e−�∗(0)/2 .

The result follows by choosing c appropriately. �

PROOF OF THEOREM 1. Let a(z)= η
√

log z, η > 1 and Az = {k ∈ N; |k −
γ (z)| ≤ a(z)}. Then by Lemmas 2.5 and 2.6, we know that

√
zeθz
∑
k∈Ac

z

P (Sk2 ≥ z)=O
(
z1/2−η2)

.

Therefore, to prove this theorem, we just need to prove the following two
asymptotic formulas:

√
zeθzδ(γ (z))−1

∑
k∈Az

P (Sk2 ≥ z)∼ 1

θ

√
�′(θ)

2π�′′(θ)
,(2.5)

√
zeθzP

(
max
k∈Az

Sk2 ≥ z

)
∼√zeθz

∑
k∈Az

P (Sk2 ≥ z).(2.6)

By Corollary 2.1,

P (Sk2 ≥ z)∼ 1

θ
√

2πk2�′′(θ)
exp
{
−θz− (z−�′(θ)k2)2

2�′′(θ)k2

}
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uniformly for all k ∈ Az. Note that for these k’s we also have that 1/k2 =
1/c2

0z + O(a(z)/z3/2), 1/
√
k2 = 1/

√
c2

0z + O(a(z)/z) and (z − �′(θ)k2)2 =
O(z−1/2a(z)2). Thus, it follows that

√
zeθz
∑
k∈Az

P (Sk2 ≥ z)

(2.7)

∼ 1

θ

√
�′(θ)

2π�′′(θ)
∑
k∈Az

exp
{
−
(

�′(θ)
2�′′(θ)

)
(z−�′(θ)k2)2

z

}
+ o

(
a(z)2

z

)
.

By the definition of γ (z), we have that

(z−�′(θ)k2)2

z
=�′(θ)2 (k + γ (z))2

z

(
k − γ (z)

)2
= 4�′(θ)

(
k − γ (z)

)2 +O
(
(log z)3/2/z

)
uniformly for all k ∈Az. Therefore

∑
k∈Az

exp
{
−
(

�′(θ)
2�′′(θ)

)
(z−�′(θ)k2)2

z

}
∼ ∑

k∈Az

e−β(k−γ (z))2 +O

(
(log z)2

z

)
.

Obviously,
∑
|k|≥a(z) e−βk2 ≤ 2

∑
k≥a(z) e−βa(z)k =O(z−βη2

), which together with
the above equality and (2.8), yields (2.5).

Now, we prove (2.6).
For any (i, j) ∈ �z := {(i, j) ∈ N

2 : c0
√
z − a(z) ≤ i < j ≤ c0

√
z + a(z)}, set

Ci,j = (j2− i2)|µ|/2. Then, mini,j∈�z Ci,j ∼ c0|µ|√z as z→∞. By Lemma 2.4
there exists a constant C > 0, so that

P (Si2 ≥ z, Sj2 ≥ z)≤ Cz−1/2 exp
{−θz−C−1√log z

}
(2.8)

uniformly for all i, j ∈�z. Therefore, by the inclusion-exclusion formula,

√
zeθz

( ∑
k∈Az

P (Sk2 ≥ z)− P

(
max
k∈Az

Sk2 ≥ z

))

≤√zeθz
∑

(i,j )∈�z

P (Si2 ≥ z, Sj2 ≥ z)

=O
(
e−C

√
logz/2).

Then, (2.6) follows. �

LEMMA 2.9. Suppose condition (1.1) holds. Let g(t) = t�∗(z/t), t > 0.
Recall n = [(z/�′(θ))1/d ], d ≥ 3, and Gk(z) = exp(−g(kd)), k ≥ 1, as in
Theorem 2. We have that:
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(i) lim infz→+∞ eθz+Cz1−2/d
(Gn(z)+Gn+1(z)) > 0 for some constant C > 0.

(ii) lim infz→+∞ z−1+2/d(g((n−1)d)−g(nd)) > 0 and lim infz→+∞ z−1+2/d

× (g((n+ 2)d)− g((n+ 1)d)) > 0.

PROOF. (i) It is easy to check that

dg(t)

dt
=�∗(z/t)− (z/t)(�∗)′(z/t), d2g(t)

dt2
= (z2/t3)(�∗)′′(z/t).(2.9)

Let m be n or n+ 1 so that |m− (z/�′(θ))1/d | ≥ 1/2. By Taylor’s expansion and
Lemma A.3,

g(md)= θz+ 1

2
(�∗)′′

(
�′(θ)+ o(1)

)
md

(
z

md
−�′(θ)

)2

.

Then (i) follows from that (xd − yd)/(x − y) > dyd−1 for any x > y > 0.
(ii) We only need to prove the first lim inf inequality. The second one is

proved similarly. By (2.9), Taylor’s expansion and Lemma A.3, g(md) = θz +
(CX/z)(md − z/�′(θ))2(1+ o(1)) for some constant CX > 0 and m = n− 1, n.
Note that (md − z/�′(θ))2(1/z)=O(z1−2/d) for m= n− 1, n. Thus

g
(
(n−1)d

)−g(nd)= CX

z

{(
(n−1)d− z

�′(θ)

)2

−
(
nd− z

�′(θ)

)2}
+o(z1−2/d).

Consequently, the desired result follows by using the formula that a2 − b2 =
(a + b)(a− b) and nd ≤ z/�′(θ) < (n+ 1)d . �

PROOF OF THEOREM 2. By Lemma 2.5, there exists r > 0 and t0 > θ such
that ∣∣∣∣P

(
max
k≥1

Skd ≥ z

)
− P

(
max

r−1z1/d≤k≤rz1/d
Skd ≥ z

)∣∣∣∣≤ e−t0z.(2.10)

By Chernoff’s bound and (iii) of Lemma A.3, there is a constant CX such that∣∣∣∣P
(

max
r−1z1/d≤k≤rz1/d

Skd ≥ z

)
− P
(

max{Snd , S(n+1)d } ≥ z
)∣∣∣∣

≤
( ∑

r−1z1/d≤k≤n−1

+ ∑
n+2≤k≤rz1/d

)
e−g(kd)(2.11)

≤ CXz1/d(e−g((n−1)d) + e−g((n+2)d)).
By the same arguments as are used to obtain (2.8), we have that P (Snd ≥ z,

S(n+1)d ≥ z)=O(exp(−θz−Cz1−1/d)) for some C > 0. Therefore

P (Snd ≥ z)+ P (S(n+1)d ≥ z)− P
(
max{Snd , S(n+1)d } ≥ z

)
(2.12)

=O
(
e−θz−Cz1−1/d )

.
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Also, by Proposition 2.1, P (Smd ≥ z)∼ θ−1√�′(θ)/2π�′′(θ) z−1/2Gm(z), m=
n,n+ 1. Collecting (2.10), (2.11) and (2.12), we obtain from Lemma 2.9 that

√
z
(
Gn(z)+Gn+1(z)

)−1
P

(
max
k≥1

Skd ≥ z

)
∼ 1

θ

√
�′(θ)

2π�′′(θ)
. �

PROOF OF THEOREM 4. To prove (i) and (ii) at the same time, it suffices to
prove the following two inequalities:

lim sup
n→∞

Un

logn
≤ d

θ
a.s., lim inf

n→∞
Wn

logn
≥ d

θ
a.s.(2.13)

We first prove the lim sup inequality in (2.13).
Given η > 0, set zn = (1+ η)d(logn)/θ . Choose ε in Lemma 2.8 small enough

so that nde−ε−1zn ≤ n−2. Note that the number of rectangles with the same upper-
left corner and area k is at most qd(k). By Lemma 2.8, there exists c > 0 so that

P

(
Un ≥ (1+ η)d logn

θ

)
≤ 1

n2
+ nd

∑
czn≤k≤zn/c

qd(k)P (Sk ≥ zn)

≤ 1

n2 + nde−θzn
∑

czn≤k≤zn/c
qd(k)=O

(
(logn)2

nηd

)
,

where we use E exp(θX)= 1 in the second inequality and Lemma 2.7 in the only
equality above. Put ln = [n2/ηd ]. Then the above inequality implies that

P

(
Uln ≥

(1+ η)d log ln

θ

)
=O

(
(logn)2

n2

)
.(2.14)

The Borel–Cantelli Lemma implies that lim supn Uln/ log ln ≤ (1+ η)d/θ a.s. for
any η > 0. Observe that Un is increasing in n, and ln+1/ln → 1. The lim sup
inequality in (2.13) then follows.

Now, we turn to the proof of the lim inf inequality in (2.13). Set kn =
[(c1d logn)1/d] and mn = [n/kn]d , where c1 = (θ�′(θ))−1. Let {Yi;1≤ i ≤mn}
be i.i.d. random variables with the same law as that of Skdn

. We break the cube

{1,2, . . . , n}d into mn many disjoint subcubes. Then, the partial sums of Xi ’s over
these disjoint subcubes are i.i.d. Therefore, for any given η ∈ (0,1),

P

(
Wn ≤ (1− η)d logn

θ

)
≤ P

(
max

1≤i≤mn

Yi ≤ (1− η)d logn

θ

)

≤ exp
(−mnP

(
Skdn
≥ tn
))
,

where tn = (1− η)d logn/θ . For any η < 1/2, we find δ > 0 such that �′(δ) =
(1− η/2)�′(θ). Note that tn/kdn → (1− η)�′(θ). Then, by Proposition 2.1,

P (Skdn
≥ tn)≥ P

(Skdn

kdn
≥�′(δ)

)
∼ C(δ)√

logn
e−kdn�

∗(�′(δ)).
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Now �∗(x) is strictly increasing on [0,�′(θ)], hence �∗(�′(δ)) < �∗(�′(θ)) =
θ�′(θ), which implies that mnP (Skdn

≥ tn) > nη′ for some η′ = η(δ) > 0 and all n
large enough. Combining all the above inequalities, we obtain

P

(
Wn ≤ (1− η)d logn

θ

)
≤ e−nη

′
,

for all n large enough. It follows from the Borel–Cantelli Lemma that

lim inf
n→∞

Wn

logn
≥ (1− η)

d

θ
a.s.

for any η > 0 small enough. Then the lim inf inequality in (2.13) is proved. �

PROOF OF THEOREM 5. Let an = 2h(log2 n)
1/2, h > 1, and f0 = (θ�′(θ)/

2)−1/2. Denote by En the set of all subsquares in {1,2, . . . , n}2 with side
lengths between f0

√
logn− an and f0

√
logn + an. More precisely, En = {� ∈

On; |√|�| − f0
√

logn| ≤ an}. Define

Wn = max
�∈En

S� and zn = 1

θ

(
2 logn− 1

2
log2 n+ tn

)
+ x.

Throughout the paper, when we do computations with Wn or its counterparts, we
always view it as two iterated maxima. The first maximum is that of S� over all
subcubes � with fixed upper-left corner, and then the second maximum is the
maximum of the former ones over all n2 corners. Based on this observation, by
Lemmas 2.5 and 2.6,

P (Wn > zn)− P (Wn > zn)= e−θxO
(
(logn)−3).(2.15)

Now we use Lemma 2.2 to get the asymptotic distribution. First we need a lemma,
as follows.

LEMMA 2.10. δ((t +O(log t))1/2)/δ(t1/2)→ 1 as t→∞.

PROOF. Just note that δ(t) is a positive, continuous and periodic func-
tion with a period 1. Also, inft∈R δ(t) > 0. Obviously, (t + O(log t))1/2 =
t1/2 +O((log t)t−1/2). Then the conclusion follows from the uniform continuity
of δ(t). �

Let us continue the proof of Theorem 5. Let 9n = {k ∈ N; |k − f0
√

logn| <
an}. By (2.5) and Lemma 2.10, we have that

λ := ∑
�∈En

P (S� ≥ zn)=
∑
k∈9n

(n− k + 1)2P (Sk2 ≥ zn)

= n2
∑
k∈9n

P (Sk2 ≥ zn)+ o(1)(2.16)

∼ n2z−1/2
n e−θznδ(γ (zn))(1/θ)

√
�′(θ)/2π�′′(θ)∼K1e

−θx,
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where K1 = (1/2)
√
�′(θ)/πθ�′′(θ). By Lemma 2.2, to complete the proof, we

just need to show that the corresponding b1 and b2 in the lemma go to zero.
Actually, for any particular � ∈ En, the number of squares which intersect � is
at most 8|�|an. Moreover, P (Sk2 ≥ zn) = e−θxO(n−2√logn) by using the fact
E exp(θX)= 1. Consequently,

b1 ≤ n2 · 8|�|an|9n|2︸ ︷︷ ︸
O(n2(logn)2)

max
(i,j )∈(9n)2

P (Si2 ≥ zn)P (Sj2 ≥ zn)=O
(
n−2(logn)3).

Similarly,

b2 ≤O
(
n2(logn)2) max

�1 �=�2,�1,�2∈En

P (S�1 ≥ zn, S�2 ≥ zn).

For any two �1,�2 ∈ En, �1 �= �2, their symmetric difference, that is,
(�1\�2) ∪ (�2\�1) is at least f0

√
logn − an (this is the key observation in

handling such type of high-dimensional problems in this paper). By Lemma 2.4,
P (S�1 ≥ zn, S�2 ≥ zn) ≤ n−2 exp(−(f0/2)

√
logn) for all n large enough. Thus,

b2 =O((logn)2 exp(−(f0/2)
√

logn)). �

PROOF OF THEOREM 6. Obviously, kn, depends on n, is either [((logn)/

α)1/d] or [((logn)/α)1/d]+1. Define En as the set of all subcubes in {1,2, . . . , n}d
with side length kn, that is, En = {� ∈On; |�|1/d = kn}. Also,

Wn = max
�∈En

S�.

Let zn := �′(θ)kdn + x. By Lemma 2.9 and a proof similar to those of (2.10)
and (2.11) [replacing max{Snd , S(n+1)d } in (2.11) by Skdn

], we have that

P (Wn ≥ zn)− P (Wn ≥ zn)→ 0

as n→∞. Hence, to prove our theorem, it is enough to show that

P
(
Wn ≤�′(θ)kdn + x

)− exp(−K2rne
−θx)→ 0.(2.17)

Note that

λn :=
∑

�∈En

P (Skd > zn)= (n− kn + 1)dP (Skdn
≥ zn).

But, by Corollary 2.1,

P (Skdn
≥ zn)∼ e−θx

θ
√

2π�′′(θ)
exp
{
−d

2
log kn − kdnθ�

′(θ)
}
=K2rnn

−de−θx.

Now we prove the theorem by Lemma 2.2, that is, the Chen–Stein method. It is
easy to check

b1 ≤ nd(2kn)
dP (Skdn

> zn)
2 =O(logn/nd).
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For any two different overlapping subcubes with side lengths kn, their symmetric
difference is at least 2kd−1

n . By Lemma 2.4,

b2 ≤ nd(2kn)
d max
�1,�2∈En,�1 �=�2

P (S�1 > zn, S�2 > zn)

=O
(
(nkn)

d exp
{−θ�′(θ)kdn − ζkd−1

n

})
for some constant ζ > 0. By definition, θ�′(θ)kdn ≥ d logn − (d/2) logkn. It
follows that,

b2 =O
(
(logn)d/2)e−ζ(logn)1−1/d

.

Therefore, (2.17) follows. �

3. Proofs of Theorems 3 and 7. For any constant α, denote Ez = {(p, q) ∈
N

2; |pq −�′(θ)−1z|< α
√
z log z } and

U1
z = max

(p,q)∈Ez

Sp,q .

The definition of Sp,q is given before the statement of Theorem 3 in the
Introduction.

LEMMA 3.1. Suppose condition (1.1) holds. Then

P (U > z)− P (U1
z > z)=O(1/z), z→∞

for large α.

PROOF. Recall q(k) = #{(r, s) ∈ N
2; rs = k}. Obviously, q(k) ≤ √k.

Therefore

P (U > z)− P (U1
z > z)≤ ∑

(p,q)/∈Ez

P (Spq ≥ z)≤ ∑
k /∈9z

√
kP (Sk ≥ z),

where 9z = {k ∈ N; |k − �′(θ)−1z| < α
√
z log z} and Sk = ∑n

i=1 X1,i . By
comparing

∑
n/∈9z

√
nP (Sn ≥ z) with similar expressions in Lemmas 2.5 and 2.6

(d = 1), we see that the only difference between them is that
√
n appears in the

former term. But this term does not dominate the sum. So by checking the proofs
of Lemmas 2.5 and 2.6 (d = 1), we have that

∑
n/∈9z

√
nP (Sn ≥ z)≤ C

zα
2 +

1

z

for some constant C > 0. �
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LEMMA 3.2. Suppose condition (1.1) holds. Recall Ez = {(p, q) ∈N
2; |pq−

�′(θ)−1z|< α
√
z log z }. Then for any α > 0,

lim
z→+∞ eθz(log z)−1

∑
(p,q)∈Ez

P (Sp,q ≥ z)= 1

θ
√
�′(θ)

.

PROOF. We write z = �′(θ)pq + �′(θ)(z/�′(θ) − pq). Then by Corol-
lary 2.1, we have

P (Sp,q > z)∼ e−θz

θ
√

2π�′′(θ)pq
exp

(
− �′(θ)2

2pq�′′(θ)

(
z

�′(θ)
− pq

)2)
(3.1)

uniformly for all p,q ∈ Ez. For simplicity, set y = z/�′(θ). Then Ez =
{(p, q) ∈N

2; |pq − y|< α
√
z log z }. Thus,

θ

√
2π�′′(θ)/�′(θ)eθz(log z)−1

∑
(p,q)∈Ez

P (Sp,q ≥ z)

∼ 1√
z log z

∑
(p,q)∈Ez

exp
(
−K̃

(pq − y)2

y

)

= 1√
z log z

∑
k∈9z

q(k) exp
(
−K̃

(k − y)2

y

)
,

where K̃ =�′(θ)2/2�′′(θ) and 9z = {k ∈ N; |k − y| ≤ α
√
z log z}. To complete

the proof, we need to show that

1√
z log z

∑
k∈9z

q(k) exp
(
−K̃

(k − y)2

y

)
→
√

π

K̃�′(θ)
.(3.2)

Given any γ ∈ (0,1), let �= γ
√
y/ logy and

Ai = {k ∈N; y + i� < k ≤ y + (i + 1)�
}
, i =−iz,−iz + 1, . . . , iz,

where iz = [α√z log z/�] ∼ αγ−1√�′(θ) logy. Since maxk∈9z q(k)=O(
√
z),

∑
k∈9z

q(k) exp
(
−K̃

(k − y)2

y

)
(3.3)

=
iz∑

i=−iz

∑
k∈Ai

q(k) exp
(
−K̃

(k − y)2

y

)
+O(

√
z).

Now we estimate the part
∑

k∈Ai
in (3.3). Note that for any k ∈Ai ,

e−K̃(k−y)2/y − e−K̃(i�)2/y = e−K̃(i�)2/y(eφk(y)− 1),
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where φk(y) := K̃(k − y + i�)(k − y − i�)/y. It is easy to check that ρi :=
maxk∈Ai

|φk(y)| ≤ K̃(2|i| + 1)�2/y ≤ Cγ for some constant C depending on X

and α only. Therefore, since |ex − 1| ≤ |x|e|x| for any x ∈R, we have that∑
k∈Ai

q(k)e−K̃(k−y)2/y = (1+ ρ′i )e−K̃(i�)2/y
∑
k∈Ai

q(k),(3.4)

where ρ′i := eφk(y)− 1. By Theorem 320 on page 264 of [12]

n∑
i=1

q(i)= n logn+ cn+O(
√
n),

where c here is a universal positive constant. Therefore, for any m=mz ∼ n,

n∑
i=m+1

q(k)= (n−m) logn+ (c+ 1)(n−m)+O(
√
n).(3.5)

As a consequence,

∑
k∈Ai

q(k)=
[y+(i+1)�]∑
[y+i�]+1

q(k)= γ
√
y logy +O(

√
y).(3.6)

By (3.3), (3.4) and (3.6), we obtain

1√
z log z

∑
k∈9z

q(k)e−K̃(k−y)2/y ∼ γ√
�′(θ) logy

iz∑
−iz

(1+ ρ′′i )e−K̃(iγ )2/ logy,(3.7)

where ρ′′i = ρ′ + O(1/ log z) ≤ Cγ . Because of the monotonicity of e−x2
on

(0,+∞), it is not difficult to see that

γ√
logy

iz∑
−iz

e−K̃(iγ )2/ logy →
∫ ∞
−∞

e−K̃t2
dt =
√

π

K̃
∀γ ∈ (0,∞).(3.8)

It follows that

lim sup
y→+∞

γ√
logy

iz−1∑
−iz

ρ′ie−K̃(iγ )2/ logy ≤ Cγ.(3.9)

Thus, combining (3.7), (3.8) and (3.9), we obtain that

lim sup
y→+∞

∣∣∣∣∣ 1√
z log z

∑
k∈9z

q(k)e−K̃(k−y)2/y −
√

π

K̃�′(θ)

∣∣∣∣∣≤ Cγ

for arbitrary given γ > 0. Let γ ↓ 0, then (3.2) follows. �
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LEMMA 3.3. Suppose condition (1.1) holds. Given any α > 0 and any
function pz > 0, let

E5
z =
{
(p, q) ∈N

2; |pq −�′(θ)−1z| ≤ α
√
z log z, p ∧ q ≥ pz

}
and Ez be the same as in Lemma 3.2. Then

eθz(log z)−1
∑

(p,q)∈Ez\E5
z

P (Sp,q ≥ z)=O

(
logpz√

log z

)
.

PROOF. Set β±z = z/�′(θ) ± α
√
z log z. Then by Corollary 2.1, we know

that P (Sp,q ≥ z) ≤ Cθz
−1/2e−θz, where Cθ is a constant depending on θ . Set

Bz,p = {q ∈N; β−z ≤ pq ≤ β+z }. Then

∑
(p,q)∈Ez\E5

z

P (Sp,q ≥ z) ≤ 2
∑

1≤p≤pz,

(p,q)∈Ez

P (Sp,q ≥ z)≤ 2Cθz
−1/2e−θz

pz∑
p=1

∑
q∈Bz,p

1

≤ Cθz
−1/2e−θz(β+z − β−z )

pz∑
p=1

1

p

=O(
√

log ze−θz logpz). �

PROOF OF THEOREM 3. Combining Lemmas 3.1, 3.2 and 3.3 we have that
for any ε > 0 there is α > 0 such that

lim sup
z→∞

eθz(log z)−1(P (U ≥ z)− P (U5
z ≥ z)

)≤ ε,(3.10)

where U5
z =max(p,q)∈E5

z
Sp,q and E5

z is as in Lemma 3.3 with pz = exp(ε
√

log z).
We claim that

lim
z→∞eθz(log z)−1

(
P (U5

z ≥ z)− ∑
(p,q)∈E5

z

P (Sp,q ≥ z)

)
→ 0 ∀α > 0.(3.11)

If the claim is true, then by Lemmas 3.2, 3.3 and (3.10),

lim sup
z→∞

∣∣∣∣P (U > z)− 1

θ
√
�′(θ)

∣∣∣∣≤ 2ε

for any ε > 0. Therefore the theorem follows by letting ε ↓ 0. Now we prove the
claim. Observe that

P

(
max
%∈E5

z

S% ≥ z

)
≥ ∑

%∈E5
z

P (S% ≥ z)− ∑
%1,%2∈E5

z ,%1 �=%2

P (S%1 ≥ z, S%2 ≥ z).
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To prove the claim (3.11), it suffices to show that

eθz(log z)−1
∑

%1,%2∈E5
z ,%1 �=%2

P (S%1 ≥ z, S%2 ≥ z)→ 0(3.12)

as z→+∞. By the definition of E5
z , the size of the symmetric difference of any %1

and %2, that is, |%1�%2| is at least exp(ε
√

log z). Thus, by Lemma 2.4, there is
ζ > 0 such that

P (S%1 ≥ z, S%2 ≥ z)≤ 2 exp
(
−θz− ζeε

√
logz
)
,(3.13)

as z is sufficiently large. Therefore∑
%1,%2∈E5

z ,%1 �=%2

P (S%1 ≥ z, S%2 ≥ z)≤ 2|Ez|2 exp
(
−θz− δeε

√
logz
)
,

where Ez = {(p, q) ∈ N
2; |pq −�′(θ)−1z|< α

√
z log z } is as before. By (3.5),

we have that

|Ez| ≤
∑

β−z ≤i≤β+z
q(i)=O

(√
z(log z)3/2

)
,

where β−z and β+z are as in the proof of Lemma 3.3. It follows that∑
%1,%2∈E5

z ,%1 �=%2

P (S%1 ≥ z, S%2 ≥ z)=O
(
z(log z)3 exp

(
−θz− δeε

√
logz
))

,

which implies (3.12). �

PROOF OF THEOREM 7. Denote zn = (2 logn+ log3 n)/θ + x. Take pzn =
e(log2 zn)

1/4
in the definition of E5

z in Lemma 3.3. Of course E5
zn

is a subsequence
of E5

z . Let R1
n be the set of all the rectangles in {1,2, . . . , n}2 whose length

and width, say, p,q , satisfy (p, q) ∈ E5
zn

. Accordingly, W 1
n := max�∈R1

n
S�. By

Lemmas 3.1, 3.2 and 3.3, there is α > 0 such that

eθz(log z)−1
∑

(p,q)∈N2\E5
z

P (Sp,q ≥ z)=O
(
(log z)−1/4)(3.14)

for large z, where E5
z is as in Lemma 3.3 corresponding to pz = exp((log z)1/4).

As before, we view Rn as the union of rectangles with fixed upper-left corners for
all such possible corners. It follows by (3.14) that∑

�∈Rn\R1
n

P (S� ≥ zn)=O
(
n2e−θzn(log zn)

3/4)=O
(
(log2 n)

−1/4).
Thus, to complete the proof, we just need to prove that

P (W 1
n ≥ zn)→ 1− e−K3e

−θx

.(3.15)
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First, it is easy to see that

(n−Ln)
2
∑

(p,q)∈Ezn

P (Sp,q ≥ zn)

(3.16)
≤ ∑

�∈R1
n

P (S� ≥ zn)≤ n2
∑

(p,q)∈Ezn

P (Sp,q ≥ zn),

where Ln := max{p ∨ q; (p, q) ∈ E5
zn
}. Obviously, Ln ≤ �′(θ)−1zn +

α
√
zn log zn =O(logn). By Lemmas 3.2 and 3.3,

n2
∑

(p,q)∈Ezn

P (Sp,q ≥ zn)∼ n2e−θzn log zn

θ
√
�′(θ)

∼ e−θx

θ
√
�′(θ)

.(3.17)

Thus, (3.16) and (3.17) imply that λn :=∑�∈R1
n
P (S� ≥ zn)→ e−θx/θ

√
�′(θ)

as n→∞.
Now we use the Chen–Stein method to complete the proof.
For any � ∈R1

n, define A� = {�′ ∈R1
n; �′ ∩� �= ∅}. It is easy to see that

|A�| = O((logn) log2 n). By Lemma 2.2, to prove (3.15), we need to verify that
b1 and b2 in the lemma go to zero. Recall P (S� ≥ zn) ≤ e−θzn for all � ∈R1

n.
Then

b1 ≤ n2|A�| max
�′∈A�

P (S�′ ≥ zn)
2 =O

(
(logn) log2 n

n2

)
.

By (3.13),

P (S� ≥ zn, S�′ ≥ zn)=O
(
n−2(log2 n)

−1 exp
(−ζe(log2 n)

1/4))
for some ζ > 0 uniformly for all �, �′ ∈R1

n. Since |R1
n| =O(n2(logn) log2 n),

it follows that

b2 ≤ |R1
n||A�| max

�,�′∈R1
n

P (S� ≥ zn, S�′ ≥ zn)

=O
(
(logn)2(log2 n)

2 exp
(−ζe(log2 n)

1/4))
. �

4. Proofs of Theorems 8 and 9. We first prove an inequality on empirical
processes which will be used later. We review some basic definitions and facts
about empirical processes. Let S be a set and G a class of subsets of S. Define
�G(s1, . . . , sn)= #{G∩ {s1, . . . , sn}; G ∈ G} for any {s1, . . . , sn} ⊂ S. Also, let

mG(n)=max
{
�G(s1, . . . , sn); si ∈ S, i = 1,2, . . . , n}

and
V (G)= inf

{
n :mG(n) < 2n

}
.
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Of course, by convention, V (G)=+∞ if mG(n)= 2n for all n≥ 1. Dudley [9]
calls G a Vapnik–Červonenkis (VC for short) class of sets if V (G) <∞. The
quantity V (G) is called the exponent of the VC class G. A result on VC class
given by Vapnik–Červonenkis is the following inequality from [23]:

mG(n)≤ nV (G) ∀n≥ 2.(4.1)

LEMMA 4.1. Let Ld = {∏d
i=1[ai, bi] ⊂ [0,1]d; 0 ≤ ai ≤ bi ≤ 1, i = 1,2,

. . . , d} be a VC class for any d ≥ 1. Then, F , as in (1.4) and as a subset of L3,
is a VC class with some exponent v3. Therefore, for any (y1, . . . , yn) ∈ R

n and
n≥ 2, #{(y1, y2, . . . , yn)∩ F ; F ∈ F } ≤ nv3 .

PROOF. We just need to prove the first part of the lemma. We show it by
induction. Obviously, L1 is a VC class with exponent 3.

Suppose the lemma is true for any 1,2, . . . , d − 1. We now prove that Ld is
also a VC class. Define vk = V (Lk), k ≥ 1. For any nd := 2dvd−1 + 1 distinctive
points y1, . . . , ynd , let

∏d
i=1[ai, bi] be the smallest rectangular solid to contain

those nd points. If there is a point, say y1, in the interior of
∏d

i=1[ai, bi], then
no rectangular solid can contain {y2, . . . , ynd } without y1. If there is no such
point, then {y1, . . . , ynd } must be in the following 2d sets: {a1} × [a2, b2] × · · · ×
[ad, bd ], {b1} × [a2, b2] × · · · × [ad, bd], . . . , [a1, b1] × · · · × [ad−1, bd−1] × {ad}
and [a1, b1] × · · · × [ad−1, bd−1] × {bd}. Then, there is such a set, say, {a1} ×
[a2, b2] × · · · × [ad, bd ], containing at least vd−1 + 1 points of {y1, . . . , ynd }.
By assumption, {a1} × [a2, b2] × · · · × [ad, bd ] is a VC class with exponent no
more than vd−1, so no (n − 1)-dimensional rectangular solid can separate these
vd−1 + 1 points. This implies that mLd (nd) < 2nd . Actually, it is easily seen that
vd ≤ 2d(d + 1)!. �

Suppose that {Y,Yi; i ≥ 1} is a sequence of i.i.d. random variables with the
uniform distribution on [0,1]3. For any C > 0, define

Fn,1 = {B(x, ε) ∈F , x ∈ (0,1)3, 0 < ε ≤ C(logn/n)1/3}.
LEMMA 4.2. For any class of subsets C, define %C = #{{Y1, . . . , Yn} ∩ F ;

F ∈ C}. Then there is a constant v > 0 such that for any C > 0, there is a constant
D > 0 for which

P
(
#%Fn,1 ≥Dn(logn)v

)=O(n−3).

PROOF. Let rn = (logn/n)1/3 and Gi = {B(Yi,Crn) ∩ F ;F ∈ F } for i =
1,2, . . . , n. Since F is a VC class with exponent no greater than v = v3, so is
Gi . By (4.1),

#%G1 ≤
{

n∑
i=1

IB(Y1,Crn)(Yi)

}v
.(4.2)
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Therefore, for t > 0,

P (#%Fn,1 ≥ t)≤ nP (#%G1 ≥ t/n)≤ nP

(
n∑

i=1

IB(Y1,Crn)(Yi)≥ (t/n)1/v

)
.

Substituting Dvn(logn)v for t in the above inequality, we have that

P (#%Fn,1 ≥Dvn(logn)v)≤ nP

(
n∑

i=2

IB(Y1,Crn)(Yi)≥D logn− 1

)
.(4.3)

By Lemma A.2, for any D > 20Cv ,

P

(
n∑

i=2

IB(Y1,Crn)(Yi)≥D logn− 1

)
≤ 2e−KD logn

for large n, where K is a constant depending only on C. The above inequality and
(4.3) yield the desired inequality by choosing D sufficiently large. �

Let {X,Xi; i ≥ 1} be a sequence of i.i.d. X-valued random variables with
law P , where X is a metric space. Let Pn be the empirical law of {Xn}, that is,

Pn = 1

n

n∑
i=1

δXi
.

We assume that H , a class of subsets of X, is a VC class with exponent υ . Let
{Hn ⊂H; n ≥ 1} be a sequence of subclasses of sets and Hn be countable for
each n≥ 1. Set µn := infV∈Hn P (V ) and

f (Pn)= sup
V∈Hn

|Pn(V )− P (V )|√
P (V )(1− P (V ))/n

.

The classical exponential inequality (see, e.g., page 16 of [16]) is

P

(
sup
V∈H

∣∣∣∣∣
n∑

i=1

Pn(V )− P (V )

∣∣∣∣∣≥ ε

)
≤ 8nve−nε2/32.(4.4)

It is not sharp enough in our later proofs because we need to take {P (V ),V ∈H}
into account. The following inequality provides us with a result for this case.

LEMMA 4.3. Suppose supV∈Hn
P (V ) < 1− δ0 for some δ0 ∈ (0,1), then

P (f (Pn)≥ tn)≤ 11nυ+1

(1− δ0)t2
nµn

exp
{
−δ0t

2
n

32

(
1+ 2tn√

nµn

)−1}

for any positive tn satisfying n≥ µnt
2
n + 2.
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PROOF. Let {εi; i ≥ 1} be a sequence of i.i.d. Bernoulli sequence. By the
argument of (11) on page 15 of [16],

P
(
f (Pn)≥ tn

)≤ 4P
(

sup
V∈Hn

|∑n
i=1 εiIV (Xi)|√

P (V )(1− P (V ))/n
>

tn

4

)
(4.5)

for all n≥ 1, where IV (·) is the indicator function of V . By Hoeffding’s inequality
(see, e.g., page 91 of [16]), P (|∑m

i=1 εi | ≥ x) ≤ 2 exp(−x2/2m) for all x > 0. It
follows that

P ε

( |∑n
i=1 εiIV (Xi)|√

P (V )(1− P (V ))/n
>

tn

4

)
≤ 2 exp

{
−δ0t

2
n

32

(
P (V )

Pn(V )

)}
.(4.6)

Set An = {f (Pn) ≤ 2tn}. Note that by (4.1), #{{X1, . . . ,Xn} ∩ V ; V ∈Hn} ≤ nυ

for n≥ 2. It follows from (4.5) and (4.6) that

P
(
f (Pn)≥ tn

)≤ 4nυEX sup
V∈Hn

P ε

( |∑n
i=1 εiIV (Xi)|√

P (V )(1− P (V ))/n
>

tn

4

)
IAn + 4P (Ac

n)

(4.7)

≤ 8nυ exp
{
−δ0t

2
n

32

(
1+ 2tn√

nµn

)−1}
+ 4P
(
f (Pn) > 2tn

)
for n≥ 2. Repeat (4.7) to obtain

P (f (Pn)≥ tn)≤
k∑

l=0

8nυ · 4l exp
{
−4lδ0t

2
n

32

(
1+ 2l tn√

nµn

)−1}

+ 4k+1P
(
f (Pn) > 2k+1tn

)
.

(4.8)

Note that f (Pn) ≤ {n/(µn(1 − δ0))}1/2 for all n ≥ 1. Let k0 = [log4(n/

(µnt
2
n(1 − δ0)))]. Then 2k0+1tn > f (Pn). Consequently, the probability in the

right-hand side of (4.8) is zero. Since x2/(1 + xy) is increasing in x ∈ (0,∞)

for any y > 0 and
∑k0

l=0 4l ≤ 4k0+1/3, by (4.8),

P (f (Pn)≥ tn)≤ 11nυ+1

(1− δ0)t
2
nµn

exp
{
−δ0t

2
n

32

(
1+ 2tn√

nµn

)−1}

for all n such that n ≥ 2 and k0 ≥ 0. The fact that n ≥ µnt
2
n implies that

k0 ≥ 0. �

Before proving Theorem 8, we need the following lemma.

LEMMA 4.4. Suppose condition (1.1) holds. Let F and Fn,1 be same as in
Lemmas 4.1 and 4.2, respectively. Then, there exists C > 0 such that

P

(
max

B∈F \Fn,1
Sn(B)≥ 0

)
=O(n−2).
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PROOF. Set An = {∑n
i=1 IB(Yi) ≥ 7nr3} for any B = B(x, r) ∈ F . Since by

Lemma 4.1, F is a VC class with exponent v3,

P

(
max

B∈F \Fn,1
Sn(B)≥ 0

)
≤ nv3EY

{
max

B∈F \Fn,1
PX
(
Sn(B)≥ 0

)
(IAn + IAc

n
)

}
.

For each B(x, r) ∈ F \Fn,1, 7nr3 ≥ 7nr3
n ∼ 7C3 logn as n→∞. It follows that

PX(Sn(B)≥ 0)IAn ≤ max
n≥4C3 logn

P (Sn ≥ 0)≤ e−4C3�∗(0) logn

for large n. The last inequality is from Chernoff’s bound. Therefore

nv3EY

{
max

B∈F \Fn,1
PX(Sn(B)≥ 0

)
IAn

}
≤ nv3−4C3�∗(0) ≤ 1/n2(4.9)

if C ≥ ((v3 + 2)/(4�∗(0)))1/3. On the other hand, note

EY

{
max

B∈F \Fn,1
PX
(
Sn(B)≥ 0

)
IAc

n

}
≤EY

{
max

B∈Fn,2
IAc

n

}
+EY

{
max

B∈Fn,3
IAc

n

}
,

where

Fn,2 = {B(x, ε) ∈F , x ∈ (0,1]3, ε ∈ [1/3,1/2)
}

and
Fn,3 = {B(x, ε) ∈F , x ∈ (0,1]3, ε ∈ [rn,1/3]}.

Apparently, Ac
n ⊂ {|(1/n)

∑n
i=1 1B(Yi)−Vol(B)| ≥ r3}. Therefore,

EY

{
max

B∈Fn,2
IAc

n

}
≤ P

(
sup

B∈Fn,2

∣∣∣∣∣
n∑

i=1

1B(Yi)− nVol(B)

∣∣∣∣∣≥ n

27

)
(4.10)

≤ 8nv3e−n/215
,

where the last inequality follows from (4.4) because Fn,2 is a VC class with
exponent no larger than v3. Finally, by Lemma 4.3,

P

( ⋃
B∈Fn,3

Ac
n

)
≤ P

(
sup

B∈Fn,3

|(1/n)∑n
i=1 IB(Yi)−Vol(B)|√

P (B)(1− P (B))/n
>

√
nr3

n

8

)

≤ c1n
8e−c1C

3 logn

for sufficiently large n and some universal constant c1 (there is no problem in
applying Lemma 4.3 because the above “sup” equals that over all subcubes in
Fn,3 with rational radius almost surely). The above inequality together with (4.9)
and (4.10) yields the desired result by choosing a large C. �
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PROOF OF THEOREM 8. We only need to prove that

lim sup
n→∞

Ũn

logn
≤ 1

θ
a.s. and lim inf

n→∞
W̃n

logn
≥ 1

θ
a.s.(4.11)

By Lemma 4.4, choose C so that

P

(
max

B∈F \Fn,1
Sn(B)≥ 0

)
=O(n−2).

Therefore, by the Borel–Cantelli lemma, to prove the limsup inequality in (4.11),
it is enough to show that

lim sup
n→∞

maxB∈Fn,1 Sn(B)

logn
≤ 1

θ
.(4.12)

For any ε > 0, let q = 2+ 2ε−1. Define

Vn = max
nq≤k≤(n+1)q

max
B∈Fk,1

Sk(B), n= 1,2, . . . .

By Lemma 4.2, choose D such that Jk := {#%Fk,1 ≥ Dk(logk)6} has proba-
bility O(k−2). It is easy to check that #{(S1(B), S2(B), . . . , Sm(B));B ∈ G} =
#{Sm(B); B ∈ G} for any VC class G. This is because the set {Y1, Y2, . . . , Ym} ∩B

determines sets {Y1, Y2, . . . , Yk} ∩B,k = 1,2, . . . ,m− 1 for any B and m. There-
fore, since Fk,1 is decreasing,

P
(
Vn >

xn︷ ︸︸ ︷
(1+ ε)(log(n+ 1)q)/θ

)
≤EY

{
PX

(
max

B∈Fnq ,1

max
nq≤k≤(n+1)q

Sk(B) > xn

)
IJc

nq

}
+O(n−2q)

≤ 2Dq6nq(logn)6P

(
max

1≤k≤(n+1)q
Sk > xn

)
+O(n−2q)=O(n−2),

where we use the submatingale inequality and the fact E exp(θX) = 1 in the last
inequality. By the same arguments as in (2.14), we obtain (4.12).

Now we turn to prove the liminf inequality of (4.11). For any integer p (which
will be chosen specifically later), let sn,p = (lognp/8npθ�′(θ))1/3 and

Ln =
(n+1)p⋃
i=np+1

B(Yi,2sn,p) and

Jn = {1≤ j ≤ np; Yj ∈ [sn,p,1− sn,p]3 \Ln

}
.

(4.13)

Note that Ln may not be necessarily a subset of [0,1]3 although with a large
probability it is. Evidently,

inf
np<k≤(n+1)p

{
max
B∈B

Sk(B)

}
≥max

j∈Jn
Snp(Bj ),(4.14)
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where Bj := B(Yj , sn,p). Define

Nn =max
{
k; ∃ different i1, . . . , ik ∈ Jn such that inf

1≤s<t≤k ‖Yis − Yit‖> 2sn,p

}
.

It is not difficult to check that Nn ≤ 8−1s−3
n,p = θ�′(θ)p−1(np/ logn) determin-

istically. We claim that the reverse is almost true in the sense that there exists a
constant C′ > 0 so that

P

(
Nn ≤ C′np

logn

)
=O(n−2)(4.15)

for large p. Indeed, list all subcubes
∏3

i=1[(3ki + 1)sn,p, (3ki + 2)sn,p], 0 ≤
ki ≤ [(3sn,p)−1] − 1, i = 1,2,3, as A1,A2, . . . ,Amn . It is easy to check
that infx∈Ai, y∈Aj

d(x, y) > 2sn,p a.s. for all pairs i �= j . Obviously, mn =
2C′np(logn)−1 + O(1) for some constant C′ > 0. Pick all those Ai such that
Yl /∈ Ai for all l = np + 1, . . . , (n+ 1)p , and list them again as Ã1, Ã2, . . . , Ãln .
Then ln ≥ mn − ((n + 1)p − np) = 2C′np(logn)−1 + O(np−1). So, by Cheby-
shev’s inequality,

P

(
ln∑
i=1

I
(
at least one of {Yj ,1≤ j ≤ np} ∈ Ãi

)≤ C′np

logn

)
(4.16)

≤ ln

ln −C′np(logn)−1 (1− s3
n,p)

np =O(n−2)

for p > 16θ�′(θ). Thus claim (4.15) follows.
For any given ε ∈ (0,1/4), set bn = (1− ε) lognp/θ . Then, by symmetry and

(4.15),

P

(
max
j∈Jn

Snp(Bj )≤ bn

)
≤EY

Nn∏
j=1

PX(Snp(Bj )≤ bn
)
I (Yj ∈ [sn,p,1− sn,p]3)

≤EY exp

{
−

Nn∑
j=1

PX(Snp(Bj ) > bn
)
I (Yj ∈ [sn,p,1− sn,p]3)

}

× I

(
Nn ≥ C′np

logn

)
+O(n−2)

≤ max
C′np/ logn≤k≤np

ζk +O(n−2),

where

ζk =EY

{
exp

(
−

k∑
i=1

PX
(
Snp(Bi)≥ bn

)
I (Yj ∈ [sn,p,1− sn,p]3)

)}
.
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Lemma 4.5 below will prove that maxC′np/ logn≤k≤np ζk = O(n−2) for some
p = pε . So by the Borel–Cantelli lemma, maxj∈Jn Snp(Bj )/ lognp ≥ (1 − ε)/θ

eventually. Combine this with (4.14) to complete the proof of liminf inequality
of (4.11). �

LEMMA 4.5. Suppose condition (1.1) holds. Set Gn = {k ∈N; C′np/ logn≤
k ≤ np}. For any given ε ∈ (0,1/4), there exists p > 0 such that maxk∈Gn ζk =
O(n−2).

PROOF. Recall Bi = B(Yi, sn,p). Set Ni = #{1 ≤ j ≤ np; Yj ∈ Bi}, 1 ≤ i

≤ k. By Bernstein’s inequality (Lemma A.2), for any given x ∈ (0,1),

P

(
Ni /∈
(
(1− x) lognp

θ�′(θ)
,
(1+ x) lognp

θ�′(θ)

)
︸ ︷︷ ︸

Ox

)
≤ exp

{−(px2/6θ�′(θ)
)

logn
}

(4.17)

uniformly for i = 1,2, . . . , k and for large n. It follows from Chebyshev’s
inequality similar to (4.16) that

sup
k∈Gn

P

(
k∑

i=1

IOx (Ni)≤ C′np

2 logn

)
=O(n−2)(4.18)

for p ≥ 12θ�′(θ)/x2. If Ni ∈Ox , by Proposition 2.1, there is a constant Cx such
that

PX
(
Snp(Bi) > bn

)≥ min
l∈Ox

Cxe
−l�∗X(bn/ l)

√
l

(4.19)

for large n. Since �∗(t) is increasing on (0,+∞), limx→0+{maxl∈Ox l�
∗
X(bn/l)/

lognp} =�∗((1− ε)�′(θ))/θ�′(θ) < 1 uniformly for any n≥ 2 by Lemma A.3.
So, for the given ε ∈ (0,1/4), choose a suitable x0 ∈ (0,1) in the definition of Ox

such that

inf
i;Ni∈Ox0

PX
(
Snp(Bi) > bn

)≥ Cp,x0n
αεp/

√
logn

for some constant Cp,x0 and αε ∈ (0,1) and large n. Consequently, by (4.18), we
have that

max
k∈Gn

ζk ≤ exp
{−Cn(1−αε)p(logn)−3/2}+O(n−2).

The desired equality follows by taking p sufficiently large. �

We need the following two lemmas to prove Theorem 9. Define

l±n =
1

2

(
logn

θ�′(θ)n

)1/3(
1± β

√
log2 n

logn

)
,
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where the sign on the left-hand side matches the sign on the right-hand side. Let
9n = {(r, i) ∈ [l−n , l+n ] × {1,2, . . . , n}; B(Yi, l

+
n )⊂ [0,1]3} and

Wn,1 = max
(r,i)∈9n

Sn

(
B(Yi, r)

)
.

LEMMA 4.6. Suppose condition (1.1) holds. Let zn = logn/θ + x. Then, for
any α > 0, there exists β > 0 such that

P (Wn ≥ zn)− P (Wn,1 ≥ zn)=O
(
(logn)−α).

PROOF. By Lemma 4.4, it is enough to show that

P

(
max

(r,i)∈9′n
Sn

(
B(Yi, r)

)
> zn

)
=O
(
(logn)−α

)
for some β > 0, where 9′n = {(r, i) ∈ ((0,Lrn) \ (l−n , l+n ))× {1,2, . . . , n}; B(Yi,

l+n )⊂ [0,1]3} for some constant CL. By Lemma 4.2,

EY

{
PX

(
max

(r,i)∈9′n
Sn

(
B(Yi, r)

)
> zn

)}
(4.20)

≤ n(logn)6EY

{
max

(r,i)∈9′n
PX
(
Sn(B(Yi, r)

)
> zn)

}
+O(n−2).

Set c0 = (θ�′(θ))−1/3. Note that |nvol(B(Yi, r)) − c3
0 logn| ≥ 2βc3

0((logn)

× log2 n)
1/2 for any (r, i) ∈ 9′n when n is sufficiently large. Consequently, for

such (r, i),{∣∣∣∣∣
n∑

j=1

IB(Yi,r)(Yj )− nvol
(
B(Yi, r)

)∣∣∣∣∣≤ (βc3
0)
√
(logn) log2 n

}

⊂
{∣∣∣∣∣

n∑
j=1

IB(Yi,r)(Yj )− c3
0 logn

∣∣∣∣∣≥ (βc3
0)
√
(logn) log2 n

}
:=�n.

So, by Bernstein’s inequality, P (�c
n) ≤ 2e−βCL log2 n for some constant CL and

large n. It follows that for any (r, i) ∈9′n,

PX(Sn

(
B(Yi, r)

)
> zn
)≤ PX(Sn

(
B(Yi, r)

)
> zn
)
I�n +

2e−x

n
I�c

n
,(4.21)

where the second term above is obtained by using the Chernoff’s bound for
PX(Sn(B(Yi, r)) > zn). By Corollary 2.1, there exists a constant CX such that

PX(Sn

(
B(Yi, r)

)
> zn
)
I�n ≤

e−θx

n(logn)CXβ2+1/2
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uniformly on (r, i) ∈9′n. Combining this with (4.20) and (4.21), we finally get

P

(
max

(r,i)∈9′n
Sn

(
B(Yi, r)

)
> zn

)
≤ e−θx

(logn)CXβ2−5.5
+ 4e−x

(logn)βCL−6

for n large. The proof is completed by choosing β sufficiently large. �

LEMMA 4.7. Suppose condition (1.1) holds. Let Tn = {1 ≤ i ≤ n; Yi ∈
[l+n ,1− l+n ]3}. Then,

λn :=
∑
i∈Tn

PX

(
max

l−n ≤r≤l+n
Sn

(
B(Yi, r)

)
> zn

)
→Ke−θx in probability,

where K is as in Lemma A.1.

PROOF. First, recall Sn =∑n
i=1 Xi , by Lemma A.1,

λn ≤ nP

(
max
i≥1

Sn > zn

)
→Ke−θx a.s.(4.22)

By Bernstein’s inequality (Lemma A.2),

P
(
Tn ≤ n(1− 2l+n )3− logn

)≤ n−ξ(4.23)

for some constant ξ > 0. Define hn = (8n(l+n )3 log2 n)
1/2 and

Ai =
{∣∣∣∣∣

n∑
j=1

I (‖Yj − Yi‖ ≤ l+n )− 8n(l+n )3

∣∣∣∣∣≤ hn

}
, i = 1,2, . . . , n.

It is easy to check that

max
i∈Tn

P (Ac
i )≤ 2 exp{−CX log2 n}

for some constant CX and large n. Consequently, by Chebyshev’s inequality,

P

(∑
i∈Tn

I (Ai)≤ Tn − nP (Ac
1)

1/2

)
=O
(
(logn)−CX/2) a.s.(4.24)

Also, 8n{(l+n )3−(l−n )3} ∼ (6β/θ�′(θ))
√
(logn) log2 n. Set h′n = ((logn) log2 n)

0.3

and

Li =
{∣∣∣∣∣

n∑
j=1

I (l−n ≤ ‖Yj − Yi‖ ≤ l+n )− 8n
(
(l+n )3− (l−n )3)∣∣∣∣∣≤ h′n

}
,

i = 1,2, . . . , n.

By Bernstein’s inequality again,

max
i∈Tn

P (Lc
i )≤ 2 exp

{−CX(logn)0.1} a.s.(4.25)
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for n large. Thus, by an argument similar to that used in establishing (4.24), we
have

P

(∑
i∈Tn

I (Li)≤ Tn − nP (Lc
1)

1/2

)

=O
(
exp
(−(CX/2)(logn)0.1)) a.s.

(4.26)

From (4.23), (4.24) and (4.26), it follows that with probability approaching 1, at
least n− o(n) of {Yi;1≤ i ≤ n} satisfy the following conditions:

(a) fall into [l+n ,1− l+n ]3;
(b) every box centered at every such Yi and with radius l+n contains at

least 8n(l+n )3 − hn ∼ (θ�′(θ))−1(logn+ 3β
√
(logn) log2 n) elements of {Y1, Y2,

. . . , Yn};
(c) For every such Yi , B(Yi, l

+
n ) \ B(Yi, l

−
n ) contains at least (6/θ�′(θ))

× β
√
(logn) log2 n elements of {Y1, Y2, . . . , Yn}.

By Lemmas A.1, 2.5 and 2.6, there exists γ > 0 for which

nP

(
max
k∈Qn

Sk ≥ zn

)
→Ke−θx,(4.27)

where Qn = N ∩ {k; |k − logn/θ�′(θ)| ≤ γ
√
(logn) log2 n}. Therefore, by (a),

(b), (c) and the definition of λn,

PY
(
λn ≥ (n− o(n)

)
(1/n){Ke−θx + o(1)})→ 1

for sufficiently large β , which together with (4.22) proves the lemma. �

PROOF OF THEOREM 9. We continue to use the notation of Lemmas 4.6
and 4.7. Define Vn,i = maxl−n ≤r≤l+n Sn(B(Yi, r)), i = 1,2, . . . , n. Then Wn,1 =
maxi∈Tn Vn,i . By Lemma 4.6, to prove the theorem, it is enough to show that

P

(
max
i∈Tn

Vn,i > zn

)
→ 1− e−Ke−θx

.(4.28)

By Lemma 2.2, we have∣∣∣∣P
(

max
i∈Tn

Vn,i > zn

)
− 1+EYe−λn

∣∣∣∣≤ b′1 + b′2,

where

b′1 = EY

{∑
i∈Tn

∑
j∈Tn

PX(Vn,j > zn)P
X(Vn,i > zn)I

(
d(Yj , Yi)≤ 2l+n

)}
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and

b′2 = EY

{∑
i∈Tn

∑
j∈Tn

PX(Vn,j > zn,Vn,i > zn)I
(
d(Yj , Yi)≤ 2l+n

)}
.

Evidently, EYe−λn → exp(−Ke−θx) by Lemma 4.7. Also,

b′1 ≤
e−2θx

n2 n2P
(
d(Y1, Y2)≤ 2l+n

)= e−2θxO(logn/n)

since PX(Vn,j > zn)≤ e−θx/n. Moreover,

b′2 ≤ n2EY
{
PX(Vn,1 > zn,Vn,2 > zn)(IMn + IM ′n)

}
,

where

Mn = {n−1(logn)−δ ≤ d(Y1, Y2)≤ 2l+n , Y1, Y2 ∈ [l+n ,1− l+n ]3
}

and

M ′n =
{
d(Y1, Y2) < n−1/3(logn)−δ, Y1, Y2 ∈ [l+n ,1− l+n ]3

}
for some δ ∈ (0,1/6). Obviously,

n2EY {PX(Vn,1 > zn,Vn,2 > zn)IM ′n
}≤ 8e−θx(logn)−3δ.(4.29)

Define κn = the volume of B(Y2, l
−
n ) \B(Y1, l

+
n ). It is easy to check that on Mn,

κn ≥ (2l−n )2{(n−1/3(logn)−δ − (l+n − l−n )
}∼Cn−1(logn)2/3−δ(4.30)

for some constant C > 0 because l+n − l−n = o(n−1/3(logn)−δ) with δ ∈ (0,1/6).
By Bernstein’s inequality, conditionally on Y1, Y2 ∈ [l+n ,1− l+n ]3,

P

(
n∑

i=1

IB(Y2,l
−
n )\B(Y1,l

+
n )(Yi)≤ nκn− (logn)7/12−δ/2

︸ ︷︷ ︸
En

)

(4.31)

≤ exp
(−C(logn)1/6−δ

)
.

Recall the definition of Li appearing between (4.24) and (4.25). We have,
by (4.25),

n2EY
{
PX(Vn,1 > zn,Vn,2 > zn)IMn

}
≤ CX,βn

2(logn)

× log2 nE
Y

{
max

l−n ≤r1,r2≤l+n
PX(Sn(B(Yi, ri)) > zn, i = 1,2

)
IMn∩L1∩L2

}
(4.32)

+ n2PY1,Y2(Mn)(n
−1e−θx) · 4e−CX(logn)0.1︸ ︷︷ ︸

O((logn)e−(logn)0.1 )

.
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For any r1, r2 ∈ (l−n , l+n ), on Mn,B(Y2, r1) \ B(Y1, r2) ⊃ B(Y2, l
−
n ) \ B(Y1, l

+
n ).

Therefore, by Lemma 2.4, (4.30) and (4.31), there exists a positive ζ depending
on X and β such that

PX
(
Sn(B(Yi, ri)) > zn, i = 1,2

)
IEc

n
≤ n−1e−ζ(logn)2/3−δ

for any fixed Y1, Y2 ∈ [l+n ,1− l+n ]3. Consequently, the first term of (4.32) is less
than

Cn2(logn)(log2 n)P
Y1,Y2(Mn)

(
n−1e−ζ(logn)2/3−δ + n−1e−θxe−C(logn)1/6−δ

)
=O
(
(logn)3e−ζ(logn)1/6−δ

)
.

Combining the above equality with (4.32) and then (4.29), we conclude that
b′2 → 0. �

5. Concluding remarks. In this short section, we comment on some results
obtained in this paper and list an open problem.

REMARK 5.1. The one-dimensional setting of Theorem 5 originally arose
from studying GI/G/1 queue in [13] and was later applied to the CUSUM method
and the BLAST program. It would be interesting to know any possible applications
of Theorems 5 and 6 to queuing theory.

REMARK 5.2. Let {Xi; i ≥ 1} be a sequence of i.i.d. random variables and
Sk =∑k

i=1 Xi . Let f : N→N be an increasing function. We studied in Theorems 1
and 2 the asymptotic behavior of maxk≥1 Sf (k) when f (x) = xp,p = 2,3, . . . ,
and the case f (x) = x is treated in Lemma A.1. It would be interesting to see
what happens for general f (x), particularly the case when f (x)/x→∞ but the
fluctuation theory still works.

REMARK 5.3. We impose the condition EetX <∞ for any t ∈ R in almost
every one of our theorems. It would be interesting to see what happens in the case
that the moment generating function does not exist, for example, X is a α-stable
variable (0 < α < 1).

REMARK 5.4. One of basic assumptions in this paper is that random
variables {XI } are i.i.d. It would be interesting to know what happens if random
variables {XI } are not independent, but instead are related in a Gaussian manner.
Also, XI and XJ become asymptotically independent as the distance between
I and J goes to infinity.

REMARK 5.5. We dealt with the maximum indexed by squares and rectangles
in Theorems 5 and 7. One should not have much difficulty in handling general
convex sets by understanding the local behavior as in Theorems 1 and 3 and then
using the Chen–Stein method globally.
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REMARK 5.6. Theorem 7 is a result for d = 2. It is interesting to ask
what happens when d ≥ 3. The key is to address the following number
theoretic question: set qd(k)= #{(p1, . . . , pd) ∈N

d; p1, . . . , pd = k}. What is the
asymptotic behavior of

∑n
k=1 qd(k)? If there exist two constants c1 and c2 such

that
n∑

k=1

qd(k)= c1n(logn)d−1+ c2n(logn)d−2(1+ o(1)
)

as n→∞, then the following result can be proved: under condition (1.1), there
exist a constant K > 0, an integer m> 0, and coefficients a1, a2, . . . , am such that

P

(
Un ≤

m∑
k=1

ak logk(n)+ x

)
→ e−Ke−θx ∀x ∈R,

as n→∞, where logk(n) := log(log(· · · (logn))) with k iterated natural logs.

OPEN PROBLEM. Suppose condition (1.1) holds. Do there exist a constant
K ′ > 0 and a sequence of numbers {an;n≥ 1} such that 0≤ an = o(logn) and

lim
n→∞P

(
Ũn ≥ logn

θ
+ an+ x

)
= 1− e−K ′e−θx

for all x ∈R?
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