
The Annals of Probability
2002, Vol. 30, No. 4, 1539–1575

CHARACTERIZATION OF STATIONARY MEASURES
FOR ONE-DIMENSIONAL EXCLUSION PROCESSES

BY MAURY BRAMSON,1 THOMAS M. LIGGETT2

AND THOMAS MOUNTFORD3

University of Minnesota, University of California, Los Angeles and
University of California, Los Angeles

The product Bernoulli measures να with densities α, α ∈ [0,1], are the
extremal translation invariant stationary measures for an exclusion process
on Z with irreducible random walk kernel p(·). Stationary measures that are
not translation invariant are known to exist for finite range p(·) with positive
mean. These measures have particle densities that tend to 1 as x → ∞ and
tend to 0 as x → −∞; the corresponding extremal measures form a one-
parameter family and are translates of one another. Here, we show that for
an exclusion process where p(·) is irreducible and has positive mean, there
are no other extremal stationary measures. When

∑
x<0 x

2p(x) = ∞, we
show that any nontranslation invariant stationary measure is not a blocking
measure; that is, there are always either an infinite number of particles to
the left of any site or an infinite number of empty sites to the right of the
site. This contrasts with the case where p(·) has finite range and the above
stationary measures are all blocking measures. We also present two results
on the existence of blocking measures when p(·) has positive mean, and
p(y) ≤ p(x) and p(−y) ≤ p(−x) for 1 ≤ x ≤ y. When the left tail of p(·)
has slightly more than a third moment, stationary blocking measures exist.
When p(−x) ≤ p(x) for x > 0 and

∑
x<0 x

2p(x) <∞, stationary blocking
measures also exist.

1. Introduction. Exclusion processes are among the most heavily studied
models in the area of interacting particle systems. Much of their theory is described
in Chapter VIII of Liggett (1985) and Part III of Liggett (1999). The one-
dimensional exclusion process η. = (ηt )t≥0, with random walk kernel p(·), is a

continuous time Markov process on {0,1}Z. A configuration η ∈ {0,1}Z is said
to be occupied by a particle at x if η(x) = 1, and is empty (or has a hole) at x
if η(x) = 0; we use the convention of identifying η with the set of its occupied
sites. A particle moves from an occupied site x to an empty site y at rate p(y− x).
When the site y is already occupied, such a particle remains at x; there is always
at most one particle at a given site. The exclusion process η. is formally defined as
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the Feller process on {0,1}Z, with generator


f (η)= ∑
x,y∈Z

(
f (ηxy)− f (η)

)
p(y − x)η(x)

(
1 − η(y)

)

for cylindrical functions f , where

ηxy(x)= η(y), ηxy(y)= η(x) and ηxy(z)= η(z) for z 
= x, y.

We assign the usual local topology to configurations in {0,1}Z.
A basic problem is the characterization of stationary measures for exclusion

processes. Assume that the random walk kernel p(·) is irreducible, by which we
will mean that for each x ∈ Z, p(n)(x) + p(n)(−x) > 0 for some n ∈ Z

+. It is
well known that the product Bernoulli measures να with densities α, α ∈ [0,1],
at each site are the extremal translation invariant stationary measures for the

process. When the mean µ def= ∑
x xp(x)= 0, there are no nontranslation invariant

stationary measures. [See Liggett (1985) for both results.]
This behavior contrasts with the case where p(·) is nearest neighbor with

a bias to the right. The extremal nontranslation invariant stationary measures are
then given by the one parameter family of translates of a measure ν on {0,1}Z

[Liggett (1976)]. The measure ν is a blocking measure; that is, it is concentrated
on configurations which are completely occupied by particles far enough to the
right and are completely empty far enough to the left. In particular, it is a profile
measure; that is, ν({η :η(x) = 1}) → 1 as x → ∞ and ν({η :η(x) = 1})→ 0 as
x → −∞. The existence of stationary blocking measures for a restricted class of
p(·) with µ > 0 was shown in Ferrari, Lebowitz and Speer (2001); the existence
of stationary blocking measures for finite range p(·) with µ > 0 was shown in
Bramson and Mountford (2002). (By symmetry, analogs of the above results of
course hold when µ< 0.)

We first present a result in the opposite direction.

THEOREM 1.1. Assume that η. is an exclusion process whose random
walk kernel p(·) has mean µ ∈ (0,∞) and is irreducible. Then, the only
possible extremal nontranslation invariant stationary measures consist of a profile
measure ν, together with its translates.

By the preceding discussion, these profile measures exist when p(·) also has
finite range, and in that case are blocking measures. Our next result shows that
blocking measures need not exist for more general p(·).

THEOREM 1.2. Assume that η. is an exclusion process whose random walk
kernel p(·) has finite mean and satisfies

∑
x<0 x

2p(x) = ∞. Then, no stationary
blocking measures exist.
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When µ ∈ (0,∞), we believe that a stationary profile measure always
exists. For

∑
x<0 x

2p(x) = ∞, Theorem 1.2 would then imply the existence of
a stationary profile measure that is not a blocking measure. No such examples are
currently known.

We also present two results on the existence of blocking measures under the
monotonicity condition on p(·),

p(y)≤ p(x) and p(−y)≤ p(−x) for 1 ≤ x ≤ y.(1.1)

Under (1.1), we substantially relax the tail behavior on p(·) assumed in Bramson
and Mountford (2002). Theorem 1.3 requires slightly more than three moments on
the left tail of p(·).

THEOREM 1.3. Assume that η. is an exclusion process whose random walk
kernel p(·) has mean µ ∈ (0,∞), and satisfies (1.1) and∑

x>0

x3(logx)2+δp(−x) <∞(1.2)

for some δ > 0. Then, there exists a stationary blocking measure ν satisfying∑
x<0

ν
({η :η(x)= 1})<∞ and

∑
x≥0

ν
({η :η(x)= 0})<∞.(1.3)

Theorem 1.3 does not apply to exclusion processes whose random walk kernels
have left tails with between two and three moments. Theorem 1.4 includes these
cases under the additional condition on p(·),

p(−x)≤ p(x) for x ≥ 1.(1.4)

THEOREM 1.4. Assume that η. is an exclusion process whose random walk
kernel p(·) has meanµ ∈ (0,∞), and satisfies (1.1), (1.4) and

∑
x<0 x

2p(x) <∞.
Then, there exists a stationary blocking measure ν satisfying∑

x

ν
({η :η(x)= 1, η(x + 1)= 0})<∞.(1.5)

Combining Theorems 1.2 and 1.4, it follows that for p(·) with positive mean
and satisfying (1.1) and (1.4), a stationary blocking measure exists for the
corresponding exclusion process exactly when

∑
x<0 x

2p(x) < ∞. We also note
that the proof of Theorem 1.3 requires the third moment assumption (1.2) to
establish the bounds on ν in (1.3), which are important for the proof. As discussed
at the end of Section 5, it would not be surprising if (1.3) in fact fails in the absence
of a third moment. The weaker bounds on ν, in (1.5), still hold under a finite second
moment, and are used in the construction of the stationary blocking measure in
Theorem 1.4.
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The proof of Theorem 1.1 employs only “soft” analysis, making use of
a standard coupling together with general properties of exclusion processes that
have been available since Liggett (1976). The proof of Theorem 1.2 is short and
involves direct computation. The proofs of Theorems 1.3 and 1.4 are analytic in
nature. They are quite different than that given in Bramson and Mountford (2002),
where a hydrodynamic limit from Rezakhanlou (1991) is used.

We now summarize the contents of the remaining five sections, and sketch some
of the main ideas behind the theorems. Our methodology for showing Theorem 1.1
involves coupling two copies of an exclusion process with different stationary
initial measures. Sites where the processes differ are referred to as “discrepancies.”
Their movement is tied to the random walk kernel p(·). When two discrepancies
of opposite types meet, they both disappear. If the joint exclusion process is itself
stationary, this imposes substantial constraints on the possible joint configurations
at any given time, and therefore on the relationship between the corresponding
stationary marginal measures. These constraints lead to the characterization of
stationary measures in Theorem 1.1.

Sections 2 and 3 are devoted to showing Theorem 1.1. The main result in
Section 2 is Proposition 2.5. Assume that the coupling is between exclusion
processes, where the initial state of the second process is the translation of
the initial state of the first process by one unit to the left, and the processes
have stationary initial measures. The proposition states that when p(·) has finite
mean and is irreducible, the expected number of discrepancies that visit an
interval [−T,T ] at any time in [√T ,T ], is o(T ) as T → ∞. To demonstrate
Proposition 2.5, we will first bound the density of discrepancies for large times
when the stationary measures are the product measures να . We then apply this
result to the general case by representing the Cesaro limits of a stationary measure
and its translates as convex combinations of να , α ∈ [0,1].

Assume now that the joint exclusion process in the coupling is itself stationary.
In Proposition 3.2, we apply Proposition 2.5 and lower bounds on the rate at which
discrepancies of opposite type meet to show that the joint measure is concentrated
on coordinates (η, ξ) with either η ≤ ξ or η ≥ ξ . When the marginal measures
are extremal, then either η = ξ , η < ξ or η > ξ must always hold. [η ≤ ξ means
that η(x) ≤ ξ(x) at each x, and η < ξ means that, in addition, η(y) < ξ(y) at
some y.] In the first case, the measures are να , and in the second case, they are
profile measures; the third case cannot occur when µ ∈ (0,∞). This is shown in
Propositions 3.3 and 3.4. Similar reasoning can be applied to a jointly stationary
exclusion process, whose coordinates each have extremal stationary measures, to
show that these measures are, in fact, translates of one another.

In Section 4, we demonstrate Theorem 1.2. The basic idea is that because of the
condition

∑
x<0 x

2p(x)= ∞, particles far to the right of 0 jump frequently enough
far to the left of 0, so that a stationary measure must have particles arbitrarily far to
the left or empty sites arbitrarily far to the right. Such a measure is not a blocking
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measure. The computations needed to analyze the jumps of the particles are done
in Lemma 4.1 and Proposition 4.2.

We demonstrate Theorem 1.3 in Section 5. The main result in the section
is Proposition 5.4, which provides a fairly general sufficient condition for the
existence of a stationary blocking measure. Theorem 1.3 follows once we verify
the condition (5.20) in the proposition, which is done using Proposition 5.5.
The main idea behind the demonstration of Proposition 5.4 is to find a blocking
product measure so that the exclusion process with this initial measure moves
stochastically to the right with respect to an appropriate partial order on
configurations. Both this partial order and the condition (1.1) were introduced
in Ferrari, Lebowitz and Speer (2001). The limiting measure as t → ∞ is then
the desired stationary blocking measure. Sufficient conditions for the evolution
to move the distribution to the right are given in Proposition 5.1, with the
nonpositive derivative in (5.6) on the initial measure being the main condition
to check. Verification of (5.6) under the condition (5.20) of Proposition 5.4
requires a number of steps. Much of this work is carried out in Lemma 5.2 and
Proposition 5.3. We note that the proof of Theorem 1.3 is much shorter than that
for the result in Bramson and Mountford (2002) that was cited earlier.

Theorem 1.4 is proved in Section 6. The main result in the section is
Proposition 6.5, which is a slight generalization of Theorem 1.4. The argument
consists of two main steps. In Proposition 6.1, we choose random walk kernels
pε(·), ε > 0, such that pε(n) → p(n) as ε ↓ 0. With an appropriate choice of
pε(·), Theorem 1.3 implies that the exclusion processes corresponding to pε(·)
have stationary blocking measures that satisfy (6.2), which is a uniform version
of (1.5). It follows that the exclusion process with random walk kernel p(·) has
a stationary blocking measure. Part of the work in showing Proposition 6.1 is
carried out in Lemmas 6.2 and 6.3. In order to apply the proposition, we still
need to check that (6.2) is satisfied for appropriate random walk kernels pε(·).
This is done in Lemma 6.4 and Proposition 6.5. In Lemma 6.4, we establish the
identity (6.12), which expresses

∑
x<0 x

2p(x) in terms of a subadditive function
M(·). This identity is used in Proposition 6.5 to obtain the desired bound (6.2) on
the stationary blocking measures. At the end of the section, we summarize how
the results of Bramson and Mountford (2002) could be used to prove Theorem 1.4
without assuming (1.1). We would still require assumption (1.4), however.

2. Discrepancies in the coupled process. In order to couple copies of an
exclusion process, we use a standard graphical representation. Let N x,y, x, y ∈ Z,
denote a Harris system of independent Poisson point processes, with rates p(y−x)

corresponding to the underlying random walk of the exclusion processes. One
stipulates that if at t ∈ N x,y, ηt−(x) = 1 and ηt−(y) = 0, then ηt (x) = 0 and
ηt (y) = 1, with there otherwise being no change in η.. That is, at t ∈ N x,y ,
“a particle tries to move from site x to site y.” The filtration (Ft )t≥0 for the process
will be the natural filtration associated with the whole Harris system, together with
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the initial configurations of the different copies of the exclusion process under
consideration.

Let η. and ξ. be two copies of such an exclusion process. At time 0, we
refer to those sites where η0(x) > ξ0(x) as positive discrepancies and those sites
where η0(x) < ξ0(x) as negative discrepancies. One can check that, as time
evolves, a discrepancy moves from x to y at t ∈ N x,y if neither process already
occupies y, and a discrepancy moves from x to y at t ∈ N y,x if both processes
already occupy y. When two discrepancies of opposite types meet, they disappear;
discrepancies are never created. At a site x where there is no discrepancy, ηt (x)=
ξt (x). Hence, the presence of only a “few” discrepancies at a given time implies
the processes are “close” then. We denote by (Xk

t )t≥0, the process corresponding
to the discrepancy initially at k, if it exists; we continue Xk

. after the discrepancy
disappears by keeping its position fixed.

Let η. be an exclusion process with a stationary initial measure. Let η1
0(x) =

η0(x + 1) be the translation of η0 by one unit to the left and let η1
. denote the

corresponding exclusion process which is generated by the same Harris system
as η.. The main result in this section is Proposition 2.5, which states that when
p(·) has finite mean and is irreducible, the expected number of discrepancies
that visit the interval [−T,T ] at any time in [√T ,T ] is o(T ) as T → ∞.
That is, the “local density” of discrepancies is typically small after large times.
Such discrepancies can either originate in [−MT,MT ] or [−MT,MT ]c, for
appropriate M > 1. Lemmas 2.3 and 2.4 will show that the contribution of
discrepancies from [−MT,MT ] is small, and Lemma 2.2 will show that the
contribution from [−MT,MT ]c is also small.

In Lemma 2.2, we will need to bound the movement of discrepancies. This is
easy to do in terms of a random walk, since a discrepancy can move from x to y at
time t only if t ∈ N x,y or N y,x . We set p̄(x)= p(x)+ p(−x).

LEMMA 2.1. Let Xk
. , k ∈ Z, be a discrepancy of (η., ξ.). Then, there exists an

increasing random walk Z. on Z, which is adapted to F., with Z0 = 0 and which
jumps from x to y, y > x, at rate p̄(y − x), so that

Xk
t −Xk

s ≤ Zt −Zs for all s ≤ t.

For Lemma 2.2, we fix an M with

M ≥∑
x

|x|p(x)+ 3.(2.1)

Although the result is stated for discrepancies, it is true more generally and relies
only on the random walk bounds in Lemma 2.1 and not on the disappearance of
discrepancies.

LEMMA 2.2. Let η. and ξ. be coupled exclusion processes, with p(·) having
finite mean. Then, the expected number of discrepancies for (η., ξ.) that originate
in [−Mt,Mt]c and visit [−t, t] by time t is o(t) as t → ∞.
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PROOF. By symmetry, it suffices to show this limit for discrepancies that visit
[−t,∞) by time t and that originate in (−∞,−Mt). Such discrepancies must
cross the site −Mt by time t , going from some x < −Mt to some y ≥ −Mt .
We consider separately the contribution from discrepancies which first cross at y
satisfying (a) y ≥ (−M + 1)t and (b) y ∈ [−Mt, (−M + 1)t). We denote by N1

t ,
respectively N2

t , the number of such discrepancies in each case.
In case (a), the rate at which such crossings occur is bounded above by the sum∑
z≥t zp̄(z), which equals

∑
|z|≥t |z|p(z). By assumption, this goes to 0 as t → ∞.

So, E[N1
t ] = o(t).

After moving to [−Mt, (−M + 1)t), the discrepancies in case (b) must
subsequently move distance at least (M − 2)t to the right. By (2.1), this is at least
t (
∑
z |z|p(z)+ 1). The motion of a given discrepancy is bounded above by that

of the increasing random walk Z. in Lemma 2.1. Applying the strong Markov
property to Z. when the discrepancy first hits [−Mt,−(M + 1)t), it follows that

E[N2
t ] ≤

(
t
∑
z

|z|p(z)
)
P

(
Zt ≥ t

(∑
z

|z|p(z)+ 1

))
.(2.2)

The first sum on the right-hand side is finite by assumption. Since E[Z1] ≤∑
z |z|p(z), it follows from the weak law of large numbers that the probability

in (2.2) goes to 0 as t → ∞. So, E[N2
t ] = o(t). The lemma follows from this

together with the bound on E[N1
t ]. �

Let (η., η
1
.) be the coupled exclusion process, where η1

0 is the translate of η0

by one unit to the left. Set V k
t = 1 if there is initially a discrepancy at k and this

discrepancy has not disappeared by time t , and set V k
t = 0 otherwise. Lemma 2.3

states that Eνα [V 0
t ] → 0 uniformly in α as t → ∞, where να is the measure of η0.

(Since να refers here to just the first coordinate, this is a slight abuse of notation.)
This behavior is intuitively fairly clear, since ηt and η1

t have the same density
of particles, and therefore individual discrepancies will ultimately meet those of
the opposite type. The proof makes use of the extremality of να among translation
invariant measures, which will ensure that λ({η = ξ})= 1 for any measure λwhich
is a Cesaro limit of (η., η

1
.) over [0, t] as t → ∞.

LEMMA 2.3. Assume that p(·) is irreducible. Then,

Eνα [V 0
t ] → 0 uniformly in α ∈ [0,1] as t → ∞.(2.3)

PROOF. It suffices to show that (2.3) holds for each fixed α. To see this, set
ft (α) = Eνα [V 0

t ]. The functions ft are continuous, with ft(α) ↓ 0 as t ↑ ∞ for
each α. The uniformity in (2.3) therefore follows from the compactness of [0,1].

In order to show Eνα [V 0
t ] → 0 as t → ∞ for a given α, we instead show that

the density of discrepancies of (ηt , η1
t ) decreases to 0 as t → ∞. The two are



1546 M. BRAMSON, T. M. LIGGETT AND T. MOUNTFORD

equivalent, since for each t , (ηt , η1
t ) is translation invariant and ergodic [see, e.g.,

Liggett (1985), page 38], which implies the existence of a nonrandom limiting
density over [−x, x] as x → ∞. For this, we consider the Cesaro average of
the measures corresponding to (ηs, η

1
s ) over [0, t]; that is, the measure λt on

({0,1} × {0,1})Z given by

Eλt [g(η, ξ)] = 1

t

∫ t

0
Eνα[g(ηs , η1

s )]ds(2.4)

for bounded continuous functions g. It suffices to show that the weak limit λ of
any converging subsequence λtn as tn → ∞ has no discrepancies; that is, λ is
concentrated on η= ξ .

The measure λ is stationary in time (although, conceivably not ergodic).
Since λt is translation invariant, so is λ. Also, since p(·) is irreducible, λ assigns
no mass to configurations (η, ξ) that have discrepancies of both types; otherwise,
the density of discrepancies would decrease over time [see, e.g., Liggett (1985),
page 385]. So, λ is a convex combination λ=∑3

i=1 ciλ
i of measures λ1, λ2 and λ3,

concentrated respectively on η= ξ, η < ξ and η > ξ .
These three measures are each translation invariant. Consequently, so are their

marginals. But, η0 and η1
0 were assumed to have measure να , which is stationary,

and thus the marginals of λ are also να . They are the convex combination of
the marginals of λ1, λ2 and λ3. Since να is extremal among translation invariant
measures, it follows that the marginals of λi are also να when ci > 0. Since the
first and second marginals have different densities for both λ2 and λ3, c2 = c3 = 0
must therefore hold. So, λ is concentrated on η= ξ , as desired. �

Let (η., η
1
.) be a coupled exclusion process, where η0 is stationary with

distribution ν. Lemma 2.4 states that the expected number of discrepancies that are
initially in [−N,N ] and persist up until time t is o(N) as t → ∞ and N → ∞.
The proof uses Lemma 2.3, and our ability to write a Cesaro limit of ν and its
translates as a convex combination of the product measures να .

LEMMA 2.4. Let η. be an exclusion process with a stationary initial
measure ν. Assume that p(·) is irreducible. Then,

1

N

N∑
k=−N

Eν[V k
t ] → 0 as t → ∞ and N → ∞.(2.5)

PROOF. Let νk denote the translation of the measure ν by k units to the left,
and let ν̄N be the measure which is the Cesaro average of ν−N, . . . , νN . Suppose
that ν̄ is the weak limit of ν̄Ni along some subsequenceNi . Since f (η)=Eη[V 0

t ]
is continuous in η for a given t ,

Eν̄[V 0
t ] = lim

i→∞Eν̄Ni [V 0
t ] = lim

i→∞
1

2Ni + 1

Ni∑
k=−Ni

Eν[V k
t ].(2.6)
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The measure ν̄ is both stationary and translation invariant, and p(·) is
irreducible. So, ν̄ is a convex combination of να , α ∈ [0,1]. It therefore follows
from Lemma 2.3, that Eν̄[V 0

t ] → 0 as t → ∞. Since Eν[V k
t ] is decreasing in t for

each k, it follows from this limit and (2.6) that

1

Ni

Ni∑
k=−Ni

Eν[V k
t ] → 0 as t → ∞ and i → ∞.

This implies (2.5). �

Proposition 2.5 is the main result of this section; it is an important ingredient
in the proof of Proposition 3.2. The proposition considers the same coupling
of exclusion processes as in Lemma 2.4, and bounds the expected number of
discrepancies to visit [−T,T ] at any time in [√T ,T ], for large T . The proof is a
simple application of Lemmas 2.2 and 2.4.

PROPOSITION 2.5. Let η. be an exclusion process with a stationary initial
measure. Assume that p(·) has finite mean and is irreducible. Then, the expected
number of discrepancies for (η., η

1
.) that visit [−T,T ] at any time in [√T ,T ] is

o(T ) as T → ∞.

PROOF. It follows from Lemma 2.4, by setting t = √
T and N = [MT ], that

the expected number of discrepancies that originate in [−MT,MT ] and still exist
at time

√
T is o(T ), for given M . It follows from Lemma 2.2, by setting t = T ,

that the expected number of discrepancies that originate in [−MT,MT ]c and
visit [−T,T ] by time T is o(T ), for M chosen as in (2.1). The assertion of the
proposition is an immediate consequence of these two observations. �

3. The stationary measures. In this section, we prove Theorem 1.1. The
argument requires several steps, which we now sketch. Consider an extremal
stationary measure ν for the exclusion process. Let ν1 denote its translate one
unit to the left. In Proposition 3.2, we couple ν and ν1 using a stationary
joint measure λ, and show that λ({(η, ξ) :η ≤ ξ or η ≥ ξ}) = 1. For this, we
need to show that positive and negative discrepancies cannot both exist for
any configuration under λ. Proposition 2.5 and Lemma 3.1 provide the main
ingredients.

It follows from Proposition 3.2 that λ is a convex combination of stationary
measures λ1, λ2 and λ3 concentrated on η = ξ , η < ξ and η > ξ , respectively.
Because of the extremality of ν, it is in fact not difficult to show that λ must be
equal to one of these three measures. When λ = λ1, one has ν = ν1; that is, ν is
translation invariant. So, ν = να for some α ∈ [0,1]. When λ= λ2, it follows from
Proposition 3.3 that ν is a profile measure. In Proposition 3.4, we show that λ= λ3
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is not possible when µ > 0. So, if ν is extremal and stationary but not translation
invariant, it must, in fact, be a profile measure.

In order to complete the proof of Theorem 1.1, we need to show that any ex-
tremal stationary profile measure ν′ is a translate of a given ν. Proposition 3.5, the
analog of Proposition 3.2, compares ν and ν′, and shows that under any stationary
joint measure γ , one has γ ({(η, ξ) :η ≤ ξ or η ≥ ξ})= 1. The same reasoning as
before shows γ is either concentrated on η = ξ, η < ξ or η > ξ . Comparison of
translates νn of ν with ν′, using Propositions 3.3 and 3.5, shows that νn = ν′ for
some n.

For Propositions 3.2 and 3.5, we will need to know that the probability that
discrepancies of opposite types at given sites disappear by a fixed time is bounded
away from 0. To show this, let Ax,y denote the set of configurations (η, ξ) that
have discrepancies of opposite types at x and y. Let ax,y be the infimum, over all
(η, ξ) ∈Ax,y , of the probability that at least one of these discrepancies disappears
by time 1 for a coupled exclusion process with initial configuration (η, ξ).

LEMMA 3.1. For a coupled exclusion process with irreducible p(·), ax,y > 0
for all x 
= y.

PROOF. Since p(·) is irreducible, there exist x0, . . . , xm, with x0 = x and
xm = y, so that p(xi − xi−1) > 0 for each i [or p(xi−1 − xi) > 0 for each i, in
which case the proof is the same]. Fix these x0, . . . , xm, set L= {x0, . . . , xm} and

G= {(xi−1, xi) : 1 ≤ i ≤m} ∪ {(z,w) : z /∈L,w /∈ L}.
With positive probability, no event in N u,v will occur for any (u, v) ∈ Gc by
time 1.

Assume now that none of these events, (u, v) ∈ Gc, occurs by time 1. When
t ∈ N xi−1,xi , we will say there is a potential move to the right from xi−1 at time t .
We consider the event of

(m+1
2

)
potential moves to the right, that are respectively

from xm−1; xm−2, xm−1; xm−3, xm−2, xm−1; . . . ; x0, x1, . . . , xm−1, and that are
stipulated to occur by time 1, and in the order in which they are listed. If no
other potential moves on L occur during this time, this sequence results in a
configuration in which all particles are as far to the right as possible; that is, its
coordinates have the form

0 0 0 0 0 0 1 1 1 1 1

0 0 0 1 1 1 1 1 1 1 1

on L. In particular, at most one type of discrepancy can remain on L. So, at least
one of the discrepancies initially at x and y will have disappeared. The probability
that there are events in the Poisson processes N xi−1,xi that occur in exactly this
order by time 1 with no other potential moves on L is positive, and depends only
on L, and not on the configuration. Since these Poisson processes are independent
of N u,v for (u, v) ∈Gc, it follows that ax,y > 0. �
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Let η. be an exclusion process with an extremal stationary measure ν as its
initial measure and denote by λt the measure at time t of the coupled process
(η., η

1
.). We write λ̄T for the Cesaro average of λt over [√T ,T − 1]. Suppose that

λ is the weak limit of λ̄T along some subsequence Ti , where Ti → ∞ as i → ∞.
Then, λ is stationary with respect to the coupled pair of exclusion processes
corresponding to its coordinates; the marginals of λ are ν and ν1.

In order to show that ν is either a product measure or a profile measure, we will
use λ. Proposition 3.2 is a first step in this direction. It follows with some work
from Proposition 2.5 and Lemma 3.1.

PROPOSITION 3.2. Assume that p(·) has finite mean µ and is irreducible.
Then, λ({(η, ξ) :η≤ ξ or η≥ ξ})= 1.

PROOF. We need to show that λ(Ax,y) = 0 for each x and y. Let wx,y
t1,t2

be
the expected number of discrepancies for the coupled exclusion process (η., η

1
.),

where η0 has the stationary measure ν, that visit either x or y and disappear during
[t1, t2]. By Proposition 2.5,

lim
T→∞

1

T
w
x,y√
T ,T

= 0.(3.1)

On the other hand,

w
x,y
t1,t2

≥ ax,yEν

[∫ t2−1

t1

1{(ηt ,η1
t )∈Ax,y} dt

]
,(3.2)

where Ax,y and ax,y are given before Lemma 3.1 and 1G is the indicator function
of G. To see (3.2), we note that if Nt1,t2 is the maximal number of points in
[t1, t2] at which Ax,y occurs, that are each at least distance 1 apart, then Nt1,t2 ≥∫ t2
t1

1{(ηt ,η1
t )∈Ax,y} dt . The inequality then follows by repeated application of the

strong Markov property.
On the subsequence Ti on which λ is defined,

1

Ti − 1 − √
Ti
Eν

[∫ Ti−1

√
Ti

1{(ηt ,η1
t )∈Ax,y} dt

]
→ λ(Ax,y) as i → ∞.

Together with (3.2), this implies

lim inf
T→∞

1

T
w
x,y√
T ,T

≥ ax,yλ(Ax,y).(3.3)

In order for (3.1) and (3.3) to be consistent, λ(Ax,y)= 0 must hold, as desired. �

It follows from Proposition 3.2 that λ is a convex combination
∑3
i=1 ciλ

i of
measures λ1, λ2 and λ3 concentrated on η = ξ , η < ξ and η > ξ , respectively. It
is not difficult to see that λ must equal one of these measures: the three measures
are stationary, and hence so are their marginals. The marginals of λ are ν and ν1,
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which are stationary and extremal. Hence, the corresponding marginals of λi are
also ν and ν1, when ci > 0. This is not simultaneously possible for both marginals
unless ci = 1 for some i, because of the inequalities between η and ξ for the sets
defining λi .

When λ = λ1, one has ν = ν1, and hence ν is translation invariant as well
as being stationary and extremal. So, ν = να for some α ∈ [0,1]. We need to
investigate the other two cases. The following result provides information on the
behavior of ν({η :η(x)= 1}) as x → ±∞ when either λ= λ2 or λ= λ3.

PROPOSITION 3.3. (a) Suppose λ({(η, ξ) :η < ξ})= 1. Then,

lim
x→∞ ν

({η :η(x)= 1})= lim
x→−∞ ν

({η :η(x)= 0})= 1.(3.4)

Moreover, limn→∞(Eν1[∑n
x=−n η(x)] −Eν[∑n

x=−n η(x)])= 1.
(b) Suppose λ({(η, ξ) :η > ξ})= 1. Then,

lim
x→∞ ν

({η :η(x)= 0})= lim
x→−∞ ν

({η :η(x)= 1})= 1.(3.5)

Moreover, limn→∞(Eν1[∑n
x=−n η(x)] −Eν[∑n

x=−n η(x)])= −1.

PROOF. We will show (a); (b) follows from (a) by symmetry. Set

fn(η, ξ)=
n∑

x=−n
1{η(x)<ξ(x)}.(3.6)

By assumption, fn(η, ξ) ≥ 0 with fn(η, ξ) ≥ 1 a.s. for sufficiently large n.
Therefore,

lim
n→∞Eλ[fn(η, ξ)] ≥ 1.(3.7)

However, the marginals of λ are ν and ν1, and ν1 is the translate of ν, so
E[fn(η, ξ)] can be written as a telescoping series,

Eλ[fn(η, ξ)] =
n∑

x=−n

[
λ
({ξ(x)= 1})− λ

({η(x)= 1})]

=
n∑

x=−n

[
ν1({η :η(x)= 1})− ν

({η :η(x)= 1})]

= ν
({η :η(n+ 1)= 1})− ν

({η :η(−n)= 1}).
Together with (3.7), this implies that (3.4) holds and limn→∞Eλ[fn(η, ξ)] = 1.
[In fact, limn→∞ fn(n, ξ)= 1 a.s.] This limit immediately implies the other limit
in (a). �
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When µ> 0, we can rule out the case λ= λ3 in Proposition 3.4. The argument
applies the asymptotics in (3.5) to a coupling of ν with ν1/2. [Any choice of να ,
α ∈ (0,1), can be used.]

PROPOSITION 3.4. Suppose λ({(η, ξ) :η > ξ}) = 1 and that µ exists. Then,
µ≤ 0.

PROOF. There exists a coupled exclusion process (η., ξ.), with stationary
initial measure γ having marginal measures ν and ν1/2 on its first and second
coordinates. [See Liggett (1985), page 383.] Let Dn(η, ξ) denote the number of
discrepancies for (η, ξ) that lie in (−n,n). We will consider the rate of change of
Eγ [Dn(ηt , ξt )] at t = 0. Since γ is stationary, this rate is zero. On the other hand,
the following computation will show that it is strictly negative for large n unless
µ≤ 0.

We will show that cn, the difference of the rates at which discrepancies move
from (−∞,−n] to (−n,n) and from (−n,n) to (−∞,−n], is strictly negative for
large enough n, if µ > 0. By symmetry, the analog also holds for the intervals
[n,∞) and (−n,n). (One obtains the same process by replacing particles by
holes, holes by particles, and substituting −x for x.) Since the disappearance of
discrepancies can only decrease Dn further,

d

dt
Eγ [Dn(ηt , ξt )]

∣∣∣
t=0

≤ 2cn < 0

for large n, if µ > 0. However, this contradicts the stationarity of γ , and so one
must have µ≤ 0 as claimed.

Let x ∈ (−∞,−n] and y ∈ (−n,n). Under an event in N x,y , a discrepancy
moves from x to y when one coordinate at x and neither at y is occupied,
and a discrepancy moves from y to x when both coordinates at x and one
coordinate at y are occupied. Analogous behavior occurs under an event in N y,x .
Consequently,

cn =∑
z>0

[
p(z)

∑
y−x=z

x≤−n, |y|<n

(
γ
({η(x) 
= ξ(x), η(y)= ξ(y)= 0})

−γ
({η(x)= ξ(x)= 1, η(y) 
= ξ(y)}))

+p(−z) ∑
y−x=z

x≤−n, |y|<n

(
γ
({η(x) 
= ξ(x), η(y)= ξ(y)= 1})

−γ
({η(x)= ξ(x)= 0, η(y) 
= ξ(y)}))

]
.

By part (b) of Proposition 3.3 and the choice of measure ν1/2 for the second
coordinate of γ , the probabilities of the first and fourth sets in the display go to 0 as
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x, y → −∞, and the probabilities of the middle two sets go to 1/4 as x, y → −∞.
The functions inside the brackets are dominated by z(p(z) + p(−z)), which is
integrable by assumption. So, by dominated convergence,

lim
n→∞ cn = −1

4

∑
z>0

z
(
p(z)− p(−z))= −1

4

∑
z

zp(z) < 0. �

After Proposition 3.2, we concluded that λ is either concentrated on configura-
tions of the form η = ξ , η < ξ or η > ξ . In the first case, the extremal stationary
measure ν is translation invariant (and hence equal to να , for some α). By Propo-
sition 3.4, the last case is not possible when µ ∈ (0,∞). So, any extremal non-
translation invariant stationary measure corresponds to the case η < ξ , and hence
by part (a) of Proposition 3.3, is a profile measure. Thus all extremal stationary
measures are either homogeneous product measures or profile measures. In order
to complete the proof of Theorem 1.1, we only need to show that these profile
measures, if they exist, form a one parameter family of translates.

The reasoning is similar to that already used to compare ν with its translate ν1.
Let ν and ν′ be extremal stationary profile measures for the exclusion process. Let
γ be a stationary measure for the coupled exclusion process that has marginals ν
and ν′. Then, the following analog of Proposition 3.2 holds.

PROPOSITION 3.5. Assume that p(·) has finite mean and is irreducible. Then,
γ {(η, ξ) :η≤ ξ or η ≥ ξ} = 1.

PROOF. We need to show that γ (Ax,y) = 0 for each x and y, where Ax,y is
the set of configurations (η, ξ) that have discrepancies of opposite types at x and y.

Since ν and ν′ are both profile measures, the expected number of discrepancies
that originate in [−MT,MT ] is o(T ) as T → ∞, for given M . Choosing M as in
(2.1), it follows from Lemma 2.2 that the expected number of discrepancies that
originate in [−MT,MT ]c and visit [−T,T ] by time T is o(T ). So, the expected
number of discrepancies that visit [−T,T ] by time T is o(T ).

On the other hand, the expected number of discrepancies at x or y at time t , that
disappear by time t + 1, is at least ax,yγ (Ax,y), where ax,y is the infimum given
before Lemma 3.1. So, for large T , the expected number of discrepancies that
visit [−T,T ] and disappear by time T is at least ax,yγ (Ax,y)T . By Lemma 3.1,
ax,y > 0. Because of the previous paragraph, it follows that γ (Ax,y) = 0. Since
this holds for each x and y, the proposition follows. �

Using the same reasoning as immediately following Proposition 3.2, it follows
from Proposition 3.5 that either γ ({η = ξ}) = 1, γ ({η < ξ}) = 1 or γ ({η > ξ})
= 1. An elementary translation argument together with Proposition 3.3 enables us
to finish the proof of Theorem 1.1.



STATIONARY MEASURES FOR EXCLUSION 1553

PROOF THAT ν′ IS A TRANSLATE OF ν . Denote by νn the translate of ν by
n units to the left. Let γ n denote the stationary measure before Proposition 3.5
with marginals νn and ν′. Then, either γ n({η = ξ}) = 1, γ n({η < ξ}) = 1 or
γ n({η > ξ})= 1 for a given n.

As n → ∞ or n → −∞, νn converges weakly to point masses on η ≡ 1 or
η≡ 0, respectively. So, for some n0, γ n({η < ξ})= 1 holds for n= n0 − 1 but not
for n= n0. In particular,

lim
m→∞

(
Eν′

[
m∑

x=−m
η(x)

]
−Eνn0−1

[
m∑

x=−m
η(x)

])
≥ 1,

lim
m→∞

(
Eν′

[
m∑

x=−m
η(x)

]
−Eνn0

[
m∑

x=−m
η(x)

])
≤ 0.

(3.8)

On the other hand, by part (a) of Proposition 3.3,

lim
m→∞

(
Eνn0

[
m∑

x=−m
η(x)

]
−Eνn0−1

[
m∑

x=−m
η(x)

])
= 1.

It follows from this that the limit on the first line of (3.8) must be 1, and that on the
second line must be 0. So, of the three possibilities for n= n0 in the first paragraph,
only γ n0({η= ξ})= 1 can hold. That is, νn0 = ν′, and so ν′ is a translate of ν. �

4. Nonexistence of blocking measures. Here, we demonstrate Theorem 1.2,
namely that stationary blocking measures cannot exist for an exclusion process η.

when its random walk kernel p(·) has finite mean and satisfies∑
x<0

x2p(x)= ∞.(4.1)

The basic idea will be to show that, on account of (4.1), particles far to the right
of 0 jump frequently enough far to the left of 0, so that a stationary measure must
have particles arbitrarily far to the left or holes arbitrarily far to the right. Hence,
such a measure will not be a blocking measure.

Let Y kt denote the position of the particle or hole at time t that was initially
at k. In both cases, a jump from either x to y or from y to x occurs at most at rate
p(y − x)+ p(x − y). Let Z. denote an increasing random walk with Z0 = 0, and
which jumps from x to y, y > x, at this rate. For an appropriate copy of Z. which
is adapted to F.,

|Y kt − Y ks | ≤ Zt −Zs for all s ≤ t.

Note that Z1 has mean
∑
x |x|p(x) <∞. We choose M so that

M >
∑
x

|x|p(x),(4.2)
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and let τ denote a stopping time for η.. It follows by applying the strong Markov
property and the law of large numbers to Z., that

P
(|Y ku − Y kτ | ≥Ms for some u ∈ [τ, τ + s] | Fτ

)≤ 1/3 a.s.(4.3)

for large enough s, which does not depend on k or the choice of τ .
Let AL denote the set of η with either η(x) = 1 for some x ≤ −L or η(x)= 0

for some x ≥ L. For m and r with m≤ r , define

τr(m)= inf
{
t ∈ [2r − 2m,2r] :ηt ∈A(M+1)2m

}
,

with τr(m)= ∞ if no such t exists. Set τ4,r = minm∈[4,r] τr(m), where 4≤ r .
On the event τ4,r ≤ 2r , ητ4,r either has a particle to the left of −(M + 1)24 or

a hole to the right of (M + 1)24. Using (4.3), the following lemma shows that, for
large enough 4, this event usually persists at time 2r .

LEMMA 4.1. Let η. be an exclusion process for which p(·) has finite mean.
Then, for r ≥ 4 and large 4,

P (η2r ∈A24 | Fτ4,r )≥ 2/3 a.s. on {τ4,r ≤ 2r}.(4.4)

PROOF. Assume that τ4,r = τr(m0) ≤ 2r , and let Y kτ4,r be the position at this
time of a particle to the left of −(M + 1)2m0 or a hole to the right of (M + 1)2m0 .
Since τ4,r is a stopping time, it follows from (4.3) that

P
(|Y k2r − Y kτ4,r | ≥M2m0 | Fτ4,r

)≤ 1/3 a.s.

for large enough 4, on this set. Off of the exceptional set in the display, Y k2r lies to
the left of −2m0 or to the right of 2m0 , depending on whether Y k. is a particle or
a hole. Since 4≤m0, one has η2r ∈A24 , which implies (4.4). �

Using Lemma 4.1, we obtain the following behavior of η. for large times starting
from an arbitrary initial state.

PROPOSITION 4.2. Let η. be an exclusion process for which p(·) has finite
mean and satisfies (4.1). For given L, there exists a tL not depending on η0, so that
for all t ≥ tL,

P η0
({
ηt (x)= 1 for some x ≤ −L or ηt (x)= 0 for some x ≥ L

})≥ 1/3.(4.5)

Any η. with stationary initial measure ν must satisfy the bound given in (4.5)
(with η0 replaced by ν) at all times, including at time 0. Such a measure is
obviously not a blocking measure, and so Theorem 1.2 follows immediately from
Proposition 4.2.
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PROOF OF PROPOSITION 4.2. By restarting η., it suffices to show (4.5) at
t = 2r , for appropriate r depending on L. We may also assume L= 24, where 4 is
large.

Let B4,r be the event that for some m ∈ [4, r], there are

x ∈ (−∞,−(M + 1)2m], y ∈ [(M + 1)2m, (M + 2)2m]
and t ∈ [2r − 2m,2r ],(4.6)

with t ∈ N y,x . If B4,r occurs at time t , then ηt (x) = 1 or ηt (y) = 0 (or both),
irrespective of the configuration at t−. In each case, ηt ∈A(M+1)2m , and therefore
τ4,r ≤ 2r . We will show that for each 4, P η0(B4,r )→ 1 uniformly in η0 as r → ∞.
Together with Lemma 4.1, this implies that, uniformly in η0,

lim
4→∞ lim inf

r→∞ P η0(η2r ∈A24)≥ 2/3.(4.7)

The bound in (4.5) follows by choosing 4 and r sufficiently large in (4.7).
To show that P η0(B4,r )→ 1 uniformly in η0 as r → ∞, we observe that

P η0(B4,r )= 1 − exp

{
−

r∑
m=4

2m
(M+2)2m∑

y=(M+1)2m

∞∑
z=(M+1)2m+y

p(−z)
}
.(4.8)

The two inner sums give the rate at which an event occurs in N y,x for x and y
chosen as in (4.6), with z = y − x, and the factor 2m is the allocated amount of
time for a given m. The outer sum follows from the independence of the subevents
corresponding to different m, since the intervals [(M + 1)2m, (M + 2)2m] are
disjoint. Replacing y in (4.8) by its maximum (M + 2)2m implies that

P η0(B4,r )≥ 1 − exp

{
−

r∑
m=4

22m
∞∑

z=(2M+3)2m
p(−z)

}
(4.9)

for all η0. But, it follows from (4.1) that
∞∑
m=0

22m
∞∑

z=2m+j
p(−z)= ∞

for a given j . [For z ∈ [2m−1,2m), p(−z) has coefficient 1 + · · · + 22(m−j−1) >

2−2(j+1) · 22m after reversing the order of summation.] So, the right-hand side of
(4.9) goes to 1 as r → ∞. �

We point out that any stationary profile measure for which p(·) has finite mean
and satisfies (4.1) is, in fact, concentrated on configurations with both an infinite
number of particles to the left of any site and an infinite number of holes to the right
of the site. To see this, note that the sets of configurations F1 and F2 satisfying
these two events are each invariant with respect to the exclusion process. So,
any extremal stationary profile measure ν with ν(F1) + ν(F2) > 0 will satisfy
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ν(F1)= 1 or ν(F2)= 1; we need to show both must hold. Suppose that ν(Fi)= 1
holds for a given i. The measure ν′ obtained from ν by interchanging particles and
holes, and substituting −x for x is also an extremal stationary profile measure. By
Theorem 1.1, for irreducible p(·), ν′ must be a translate of ν, which can only be the
case if ν(Fj )= 1 for the other index j . With some additional work, the conclusion
still holds when p(·) is not irreducible, since one can then apply Theorem 1.1 on
the appropriate sublattices.

5. Existence of blocking measures under third moment assumptions. In
this section and the next, we construct stationary blocking measures for the
exclusion process under the monotonicity assumption (1.1) on the random walk
kernel p(·). Proposition 5.4 is the main result in this section and provides criteria
for the existence of a stationary blocking measure; together with Proposition 5.5,
it implies Theorem 1.3. Our construction is based on monotonicity ideas from
Ferrari, Lebowitz and Speer (2001) and from the proof of the contact process
critical value bound in Holley and Liggett (1978). [See also of Liggett (1985),
page 274, for the latter result.]

We begin with a few comments about the connections between our approach and
that of Holley and Liggett (1978). To find an upper bound for the contact process
critical value, it is necessary to prove that the process has a nontrivial stationary
distribution for appropriate parameter values. The Holley–Liggett proof does so
by finding an initial distribution (a renewal measure in that case) for which the
distribution at time t is increasing in t in an appropriate sense. The usual stochastic
monotonicity was not the appropriate sense there, and it is not the appropriate
sense here. Ferrari, Lebowitz and Speer (2001) provides the right definition of
monotonicity for us. We choose the initial distribution to be a product measure,
since it is easy to compute with. The details of the proof here are quite different
from those in the Holley–Liggett paper.

Let 8 be defined by

8=
{
η :
∑
x<0

η(x) <∞,
∑
x≥0

[1 − η(x)]<∞
}
.

The exclusion process corresponding to p(·) is a (countable state) Markov chain
on 8. A stationary blocking measure is simply a stationary distribution for this
Markov chain. Ferrari, Lebowitz and Speer (2001) defined a partial order on 8 by
saying that η � ζ if η is obtained from ζ by moving finitely many particles to the
right. More precisely, this means that∑

x

[η(x)− ζ(x)] = 0,(5.1)

(note that only finitely many terms in this sum are nonzero, since η, ζ ∈ 8) and
that ∑

x≤u
η(x)≤ ∑

x≤u
ζ(x)(5.2)



STATIONARY MEASURES FOR EXCLUSION 1557

for all u. In the presence of (5.1), (5.2) is equivalent to∑
x≥u

[1 − η(x)] ≤ ∑
x≥u

[1 − ζ(x)](5.3)

for all u. We will say that a function F on 8 is increasing if η � ζ implies
F(η)≤ F(ζ ).

In their paper, Ferrari, Lebowitz and Speer prove a more general form of the
following statement (see their Lemma 4.2): If p(·) satisfies (1.1) and η0 and ζ0
satisfy η0 � ζ0, then the processes ηt and ζt with these initial configurations can be
coupled so that ηt � ζt for all t ≥ 0. An easy consequence of this is the following
proposition. Here and later on, we denote by q(η, ζ ) the transition rates of the
exclusion process on 8; that is,

q(η, ηxy)= p(y − x)η(x)[1 − η(y)] + p(x − y)η(y)[1 − η(x)],
q(η, η)= −∑

x,y

p(y − x)η(x)[1 − η(y)],(5.4)

and q(η, ζ )= 0 otherwise.

PROPOSITION 5.1. Assume that the random walk kernel p(·) has a finite
mean.

(a) Suppose that p(·) satisfies (1.1). If F is a bounded increasing function on8,
then so is the function η→Eη[F(ηt )] for any t ≥ 0.

(b) Suppose that F is bounded, and ν is a probability measure on 8 that
satisfies (1.3). Then

d

dt
Eν[F(ηt )]

∣∣∣
t=0

= ∑
η,ζ∈8

ν(η)q(η, ζ )F (ζ ).(5.5)

If p(·) also satisfies (1.1) and

d

dt
Eν[F(ηt )]

∣∣∣
t=0

≤ 0(5.6)

for all bounded increasing functions F , then Eν[F(ηt )] is nonincreasing in t

for each such F . Furthermore, there exists a stationary blocking measure π that
satisfies ∫

F dπ ≤
∫
F dν(5.7)

for all nonnegative increasing functions F .

PROOF. For part (a), use the coupling (ηt , ζt ) provided by Ferrari, Lebowitz
and Speer and take expected values of both sides of the inequality F(ηt )≤ F(ζt).
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Turning to part (b), note first that (1.3) implies that ν concentrates on 8.
Furthermore,∑

η 
=ζ
ν(η)q(η, ζ )=∑

η

ν(η)
∑
x,y

p(y − x)η(x)[1 − η(y)]

≤∑
η

ν(η)

[∑
x≤0

η(x)+ ∑
y≥0

[1 − η(y)] + ∑
y<0<x

p(y − x)

]
,

(5.8)

which is finite by (1.3) and the finite mean assumption on p(·). By the Kolmogorov
backward equation for continuous time Markov chains,

d

dt
Eη[F(ηt )] =∑

ζ

q(η, ζ )Eζ [F(ηt )]

for t ≥ 0, η ∈8, and bounded F . Multiplying both sides of this expression by ν(η)
and summing gives

∑
η

ν(η)
d

dt
Eη[F(ηt )] =∑

η,ζ

ν(η)q(η, ζ )Eζ [F(ηt )],(5.9)

and if one first takes absolute values and the supremum on t ,

∑
η

ν(η) sup
t≥0

∣∣∣∣ ddt Eη[F(ηt )]
∣∣∣∣≤ ‖F‖∞

∑
η,ζ

ν(η)|q(η, ζ )| = 2‖F‖∞
∑
η 
=ζ

ν(η)q(η, ζ ).

[The last equality comes from
∑
ζ q(η, ζ ) = 0.] Note that the double series on

the right converges since (5.8) is finite. This justifies the exchange of order of
summations above, and since we now have

∑
η

ν(η) sup
t≥0

∣∣∣∣ ddt Eη[F(ηt )]
∣∣∣∣<∞,

the order of the derivative and the sum on η in (5.9) can be interchanged. This
gives (5.5).

Now,

d

dt
Eν[F(ηt )] =∑

η,ζ

ν(η)q(η, ζ )Eζ [F(ηt )] ≤ 0,

where the equality comes from (5.9), and the inequality comes from (5.5) and (5.6)
applied to the function ζ → Eζ [F(ηt )], which is increasing by part (a). So, we
conclude that Eν[F(ηt )] ↓ in t . If h is any bounded increasing function on Z

k+,
then F(η) = h(

∑
x≤u1

η(x), . . . ,
∑
x≤uk η(x)) is a bounded increasing function

on 8. Therefore, for the process with initial distribution ν, the distribution of∑
x≤u ηt (x) is stochastically decreasing in t , jointly in u. The same is true for

the distribution of
∑
x≥u[1 − ηt (x)]. It follows that the limiting distribution π
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of ηt exists, and is concentrated on 8. This distribution is stationary, and satisfies
(5.7). �

In order to use Proposition 5.1, we must find measures ν that satisfy (1.3) and
(5.6). If α(·) is a function on the integers that satisfies 0 < α(x) < 1 for all x, let
να be the product measure on {0,1}Z with marginals

να
({η :η(x)= 1})= α(x).

These are natural first guesses for ν, since product measures are convenient for
calculations. We need to find a useful expression for the left-hand side of (5.6)
with this choice for ν. This is the purpose of the next result.

LEMMA 5.2. Suppose that p(·) has a finite mean and α(·) satisfies∑
x<0

α(x) <∞,
∑
x≥0

[1 − α(x)]<∞.(5.10)

For a bounded F on 8 and x, y ∈ Z, define

φ(x, y)=∑
η

να(η)η(x)[1 − η(y)][F(ηxy)− F(η)].

Then,

d

dt
Eνα [F(ηt )]

∣∣∣
t=0

=∑
x,y

p(y − x)φ(x, y).(5.11)

Furthermore, if F is also increasing, then φ(x, y) has the same sign as x − y.

PROOF. First note that (5.10) is just (1.3) in this case. By (5.5),

d

dt
Eνα [F(ηt )]

∣∣∣
t=0

=∑
η,ζ

να(η)q(η, ζ )F (ζ )

= ∑
x,y,η

p(y − x)να(η)η(x)[1 − η(y)][F(ηxy)− F(η)]

=∑
x,y

p(y − x)φ(x, y),

which is (5.11). To check that the manipulations involving these series are justified,
we need to know that the series on the right-hand side of (5.11) converges
absolutely. This follows from

|φ(x, y)| ≤ 2α(x)[1 − α(y)]‖F‖∞,(5.12)

the finite mean of p(·) and (5.10), since∑
x,y

p(y − x)α(x)[1 − α(y)] ≤ ∑
x≤0

α(x)+ ∑
y≥0

[1 − α(y)] + ∑
y<0<x

p(y − x) <∞.
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This proves (5.11).
For the final statement in the lemma, note that for η, x and y for which η(x)= 1

and η(y)= 0, ηxy � η if x < y and η� ηxy if x > y. Therefore, if F is increasing,
the summands of φ(x, y) have the same sign as x − y. �

Note that if F is increasing, the right-hand side of (5.11) is negative if p(x)= 0
for all x < 0, as should be expected, since then particles can only move to the
right. In general, in order to verify (5.6), we need to cancel out positive terms in
(5.11) against negative terms. Here is the strategy. Proposition 5.3 below gives
inequalities that allow us to replace φ(x, y) in (5.11) by sums of multiples of
φ(z, z + 1) or φ(z + 1, z), z ∈ Z, according to whether x < y or x > y. It also
relates φ(z, z+ 1) to φ(z+ 1, z). Consequently, the right-hand side of (5.11) can
be bounded by an expression that just involves φ(z+ 1, z), which is nonnegative.
Proposition 5.4 says that if the coefficients of φ(z+1, z) in the resulting expression
have the right sign, then the right-hand side of (5.11) will be nonpositive, and hence
(5.6) holds. Proposition 5.5 provides a relatively easy way of checking the main
hypothesis of Proposition 5.4.

To begin this development, define β(x) = α(x)/[1 − α(x)]. Note that β(·) is
increasing whenever α(·) is.

PROPOSITION 5.3. Suppose F is a bounded increasing function on 8 and
α(·) is increasing on Z. Then, for n≥ 1 and x ∈ Z,

φ(x, x + n)
β(x + n)

β(x)
≤

x+n−1∑
z=x

φ(z, z+ 1)
β(z+ 1)

β(z)
(5.13)

and

φ(x + n,x)
β(x)

β(x + n)
≤

x+n−1∑
z=x

φ(z+ 1, z)
β(z)

β(z+ 1)
.(5.14)

Furthermore, for any z,

φ(z+ 1, z)β(z)= −φ(z, z+ 1)β(z+ 1)≥ 0.(5.15)

PROOF. We begin with (5.15), which is the easiest part to prove. Let ζ have
distribution να . Then, since να is a product measure,

φ(z, z+ 1)= α(z)[1 − α(z+ 1)]{E[F(ζ ) | ζ(z)= 0, ζ(z+ 1)= 1
]

−E
[
F(ζ ) | ζ(z)= 1, ζ(z+ 1)= 0

]}(5.16)

and

φ(z+ 1, z)= α(z+ 1)[1 − α(z)]{E[F(ζ ) | ζ(z)= 1, ζ(z+ 1)= 0
]

−E
[
F(ζ ) | ζ(z)= 0, ζ(z+ 1)= 1

]}
.

(5.17)
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By the definition of β(·),
α(z)[1 − α(z+ 1)]β(z+ 1)= α(z+ 1)[1 − α(z)]β(z)

= α(z)α(z+ 1).

Therefore, multiplying (5.16) and (5.17) by β(z + 1) and β(z), respectively, we
conclude that the equality in (5.15) holds. The nonnegativity in (5.15) comes from
the last statement of Lemma 5.2.

To prove (5.13), it is enough to show that

φ(x, x + j + 1)
β(x + j + 1)

β(x)
− φ(x, x + j)

β(x + j)

β(x)

≤ φ(x + j, x + j + 1)
β(x + j + 1)

β(x + j)

for j ≥ 0. To see this, note that (5.13) is obtained by summing these inequalities
over 0 ≤ j ≤ n−1, since the sum of the left-hand side telescopes and φ(x, x)= 0.
Similarly, to prove (5.14), we want to show that

φ(x + j + 1, x)
β(x)

β(x + j + 1)
− φ(x + j, x)

β(x)

β(x + j)

≤ φ(x + j + 1, x + j)
β(x + j)

β(x + j + 1)

for 0 ≤ j ≤ n − 1. Both of these inequalities follow from the following
subadditivity statement: If u < v <w or w < v < u, then

φ(u,w)
β(w)

β(u)
≤ φ(u, v)

β(v)

β(u)
+ φ(v,w)

β(w)

β(v)
.(5.18)

To check (5.18), define

gabc =E
[
F(ζ ) | ζ(u)= a, ζ(v)= b, ζ(w)= c

]
(5.19)

for a, b, c ∈ {0,1}. Then, arguing as in (5.16) and (5.17),

φ(u,w)

α(u)[1 − α(w)] = α(v)[g011 − g110] + [1 − α(v)][g001 − g100],
φ(u, v)

α(u)[1 − α(v)] = α(w)[g011 − g101] + [1 − α(w)][g010 − g100]

and

φ(v,w)

α(v)[1 − α(w)] = α(u)[g101 − g110] + [1 − α(u)][g001 − g010].
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Therefore, substituting α(·) in for β(·),

φ(u, v)
β(v)

β(u)
+ φ(v,w)

β(w)

β(v)
− φ(u,w)

β(w)

β(u)

= [1 − α(u)]α(v)α(w)[g011 − g101]
+ [1 − α(u)]α(v)[1 − α(w)][g010 − g100]
+ α(u)[1 − α(v)]α(w)[g101 − g110]
+ [1 − α(u)][1 − α(v)]α(w)[g001 − g010]
− [1 − α(u)]α(v)α(w)[g011 − g110]
− [1 − α(u)][1 − α(v)]α(w)[g001 − g100]

= α(w)[α(u)− α(v)][g101 − g110]
+ [1 − α(u)][α(v)− α(w)][g010 − g100].

All the terms on the last line of this equality are nonnegative, since both α and F
are increasing. To see this, note that since F is increasing, g101 ≤ g110 if v < w

and g101 ≥ g110 if w < v, while g010 ≤ g100 if u < v and g010 ≥ g100 if v < u. This
proves (5.18), and hence (5.13) and (5.14). �

Combining Lemma 5.2 and Propositions 5.1 and 5.3, we obtain Proposition 5.4,
which is the main result of this section. It provides a fairly general sufficient
condition for the existence of a stationary blocking measure. The proposition given
after the proof of Proposition 5.4 facilitates the verification of the condition (5.20)
in certain cases.

The condition (5.20) may be a bit hard to absorb. To understand it, note that if
β(·) were a constant, (5.20) would simply say that the mean of p(·) is nonnegative,
since each of the inner sums is then equal to n. Of course, β(·) cannot be constant
in view of (5.10). However, when the mean of p(·) is strictly positive, it should be
possible to choose a function β(·) that is almost constant in such a way that (5.20)
still holds. We will see later that this is often the case.

PROPOSITION 5.4. Suppose that p(·) has a finite first moment and satisfies
(1.1). Assume that α(·) is increasing and satisfies (5.10). If

∞∑
n=1

p(−n)
z∑

x=z−n+1

β(x + n)

β(x)
≤

∞∑
n=1

p(n)

z∑
x=z−n+1

β(x)

β(x + n)
(5.20)

for all z ∈ Z, then there is a stationary blocking measure π that satisfies∑
x≤u

π
({η :η(x)= 1})≤ ∑

x≤u
α(x)
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and ∑
x≥u

π
({η :η(x)= 0})≤ ∑

x≥u
[1 − α(x)]

for all u.

PROOF. By Proposition 5.1, it suffices to check (5.6) for ν = να . We therefore
need to check that the right-hand side of (5.11) is nonpositive for all bounded
increasing F . By (5.13) and (5.14) of Proposition 5.3,

∑
x,y

p(y − x)φ(x, y)=
∞∑
n=1

{
p(n)

∑
x

φ(x, x + n)+ p(−n)∑
y

φ(y + n,y)

}

≤
∞∑
n=1

{
p(n)

∑
x

x+n−1∑
z=x

φ(z, z+ 1)
β(x)β(z+ 1)

β(x + n)β(z)

+p(−n)∑
y

y+n−1∑
z=y

φ(z+ 1, z)
β(y + n)β(z)

β(y)β(z+ 1)

}
.

(5.21)

The series on the right-hand side of (5.21) converges absolutely. To see this, first
consider the sum involving p(n). All terms are nonpositive by Lemma 5.2, and the
absolute value of the sum is bounded above by 2‖F‖∞ times

∞∑
n=1

p(n)
∑
x

x+n−1∑
z=x

α(z)[1 − α(z+ 1)]β(x)β(z+ 1)

β(x + n)β(z)
.

Recalling the definition of β(·), and using its monotonicity to replace β(x)/

β(x + n) by one, this expression is at most
∞∑
n=1

p(n)
∑
x

x+n−1∑
z=x

α(z+ 1)[1 − α(z)] =
∞∑
n=1

np(n)
∑
z

α(z+ 1)[1 − α(z)],

which is finite by (5.10) and the finite first moment assumption on p(·). The sum
involving p(−n) contains only nonnegative terms, and is at most 2‖F‖∞ times

∞∑
n=1

p(−n)∑
z

z∑
y=z−n+1

α(z)[1 − α(z+ 1)]β(y + n)

β(y)
.

By substituting x for y and applying (5.20), this is at most

∑
z

α(z)[1 − α(z+ 1)]
∞∑
n=1

p(n)

z∑
x=z−n+1

β(x)

β(x + n)

≤∑
z

α(z)[1 − α(z+ 1)]
∞∑
n=1

np(n),

which is again finite.
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Using (5.15), we get

γ (z)= φ(z+ 1, z)β(z)= −φ(z, z+ 1)β(z+ 1).(5.22)

Interchanging the order of summation on the right-hand side of (5.21) yields

∑
z

γ (z)

∞∑
n=1

{
− p(n)

z∑
x=z−n+1

β(x)

β(z)β(x + n)
+ p(−n)

z∑
y=z−n+1

β(y + n)

β(z+ 1)β(y)

}
.

Since F is increasing, φ(z + 1, z) ≥ 0 by the last statement of Lemma 5.2;
consequently, γ (z) ≥ 0. Since α(·) is increasing, so is β(·), which allows us to
replace the term β(z) by β(z+1). Application of (5.20) shows that, after summing
over n, the first term in the above display dominates the second, and hence the
quantity in the display is nonpositive, as required. �

REMARK. The stationary blocking measure constructed in Proposition 5.4 not
only has a finite expected number of particles to the left of the origin, but this
number has finite exponential moments of all orders. To see this, apply (5.7) to the
function F(η)= exp{σ∑x<0 η(x)}, for σ > 0. Then,∫

F dπ ≤
∫
F dνα = ∏

x<0

[1 + (eσ − 1)α(x)] ≤ exp

[(
eσ − 1

)∑
x<0

α(x)

]
<∞.

In the final inequality, we have used 1 + u≤ eu.

In order to apply Proposition 5.4, we need an easily checkable sufficient
condition for (5.20). This is the purpose of Proposition 5.5. Theorem 1.3 follows
immediately from Propositions 5.4 and 5.5 by setting

g(x)= (1 + x)[log(e+ x)]1+δ/2,

δ > 0, in the latter result. Note that in order for the α(·) provided in Proposition 5.5
to satisfy (5.10), g must satisfy ∫ ∞

0

1

g(t)
dt <∞,

which explains the choice of g(·) above.

PROPOSITION 5.5. Let g(·) be an increasing function on [0,∞) that satisfies
g(0)= 1 and

d2

dx2 logg(x)≤ 0(5.23)

for all x ≥ 0. For ε > 0, define βε(n)= g(εn) and βε(−n)= 1/g(εn) for n≥ 0. If
p(·) has strictly positive mean and

∞∑
n=1

n[g(n)]2p(−n) <∞,(5.24)

then βε(·) satisfies (5.20) for sufficiently small ε > 0.
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PROOF. Note that (5.23) implies βε(n) is logconcave for n≥ 0, and hence

βε(1)

βε(0)
≥ βε(2)

βε(1)
≥ βε(3)

βε(2)
≥ · · · .

Using these bounds, we will first check that
z∑

x=z−n+1

βε(x + n)

βε(x)
≤ n

(
βε(n)

)2(5.25)

for all z by considering the cases x ≥ 0, x ≤ −n and −n < x < 0 separately. In the
first case,

βε(x + n)

βε(x)
≤ βε(n)

βε(0)

by the logconcavity of β(·), over [0,∞). In the second case, x and x + n are both
nonpositive, so

βε(x + n)

βε(x)
= βε(−x)
βε(−x − n)

≤ βε(n)

βε(0)
.

In the third case,

βε(x + n)

βε(x)
= βε(x + n)βε(−x)≤ βε(x + 2n)βε(−x)≤ (

βε(n)
)2
,

where the first inequality follows from the monotonicity of βε(·) and the second
inequality from its logconcavity over [0,∞). Since βε(0)= 1, (5.25) follows.

These three cases also imply that
z∑

x=z−n+1

βε(x)

βε(x + n)
≥ n

(
βε(n)

)−2
(5.26)

for all z. On account of (5.25) and (5.26), (5.20) will hold provided that
∞∑
n=1

n
(
βε(n)

)2
p(−n)≤

∞∑
n=1

n
(
βε(n)

)−2
p(n).(5.27)

However, the limits of the two sides of this inequality, as ε ↓ 0, are
∑∞
n=1 np(−n)

and
∑∞
n=1 np(n), respectively; the first of these bounds requires (5.24) and the

dominated convergence theorem. Since the mean of p(·) is positive, (5.27) holds
for sufficiently small positive ε. This completes the proof. �

We conclude this section with several remarks. First, Proposition 5.4 provides
explicit bounds on the tails of the stationary blocking measure. Here is an example.
Take g(x)= (1+x)2 in Proposition 5.5. Supposep(·) has finite positive mean, and
satisfies (1.1) and

∞∑
n=1

n5p(−n) <∞.(5.28)
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Choose ε > 0 sufficiently small so that

∞∑
n=1

n(1 + εn)4p(−n)≤
∞∑
n=1

n(1 + εn)−4p(n).

This is possible by (5.28) and the dominated convergence theorem, since the mean
of p(·) is strictly positive. This last inequality is (5.27), so (5.20) is satisfied. In
this case, α(−n)= 1/[1 + (1 + εn)2] for n≥ 0. Therefore, by Proposition 5.4, the
blocking measure π satisfies

∑
x<−N

π
({η :η(x)= 1})≤ ∑

n>N

1

1 + (1 + εn)2

≤
∫ ∞
N

dx

(1 + εx)2
= 1

ε(1 + εN)

for N ≥ 0.
Second, when combined with Theorem 4.1 of Ferrari, Lebowitz and Speer

(2001), our results can be used to show that stationary blocking measures exist
even in certain cases in which the monotonicity assumption (1.1) is not satisfied.
In particular, if the kernel p∗(·) is defined by

p∗(n)= cmin{p(1), . . . , p(n)} and p∗(−n)= cmax{p(−n),p(−n− 1), . . .}
for n≥ 1, where the constant c is chosen so that

∑
x p

∗(x)= 1, then p∗(·) satisfies
(1.1). If p∗(·) satisfies the assumptions of Proposition 5.4 for an appropriately
chosen α(·), then it follows that the process corresponding to p(·) has a stationary
blocking measure.

Finally, the results of this section say nothing about kernels whose negative
tails have a finite second moment but infinite third moment. We suspect that
stationary blocking measures exist in this case, and, in fact, we will prove this
under an additional assumption in the next section. It is possible that a proof that
applies more generally could be carried out along the lines of the present section,
using an initial measure ν that is not a product measure, or perhaps by weakening
condition (5.20).

As pointed out earlier, the stationary measures constructed in this section not
only concentrate on8, but also have the property that the number of particles to the
left of the origin has exponential moments of all orders. Perhaps a second moment
assumption is the right condition for the existence of stationary blocking measures,
but a third moment assumption is the right condition for the existence of stationary
measures with a finite expected number of particles to the left of the origin. If that
is the case, it would explain why using να as the initial distribution for the process
in this section forces us to assume third moments, since for independent Bernoulli
random variables η(x),

∑
x η(x) <∞ a.s. is equivalent to

∑
x E[η(x)]<∞.
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6. Existence of blocking measures under second moment assumptions.
This section is devoted to the proof of Theorem 1.4, which asserts the existence
of a stationary blocking measure under the assumptions (1.1) and (1.4), when the
left tail of the random walk kernel p(·) has a finite second moment. This result
supports the possibility discussed at the end of the last section, and provides
a partial converse to Theorem 1.2. As far as we know, the stationary blocking
measure of the process may not have a finite expected number of particles to the
left of the origin.

The main idea is to approximate p(·) by random walk kernels pε(·), ε > 0,
that satisfy the hypotheses of Theorem 1.3, and to show that any limit π of the
stationary blocking measures πε thus obtained is a stationary blocking measure
for p(·). This program is carried out in Proposition 6.1 under an assumption that
is checked in Lemma 6.4 and Proposition 6.5.

In Proposition 6.1, we will need an upper bound on the expected number of
blocks of particles in configurations with the stationary blocking measures πε; this
is given by (6.2). We will also need the upper bound on pε(·) in (6.1). Here and
later on, we use 80 to denote the subset of 8,

80 =
{
η ∈8 :

∑
x<0

η(x)= ∑
x≥0

[1 − η(x)]
}
.

Note that 8 is the union of translates of 80, and that 80 is closed for the exclusion
process. So, if there is a stationary blocking measure for the process, it can be
taken to concentrate on 80.

PROPOSITION 6.1. Assume that the random walk kernel p(·) has mean µ ∈
(0,∞), and that the random walk kernels pε(·), ε > 0, satisfy

lim
ε↓0

pε(n)= p(n) and pε(n)≤ Cp(n)(6.1)

for each n, where C is a constant. Also, suppose that for each ε, the exclusion
process with kernel pε(·) has a stationary measure πε that concentrates on 80,
with

lim sup
ε↓0

∑
x∈Z

πε
({
η :η(x)= 1, η(x + 1)= 0

})
<∞.(6.2)

Then the exclusion process with kernel p(·) has a stationary blocking measure
on 80 that satisfies (1.5).

By taking the limit along an appropriate sequence of the measures πε, it is
not difficult to obtain a stationary measure π for the exclusion process with
kernel p(·). [See Liggett (1985), page 18.] However, it is not at all obvious that π
concentrates on8 (or80) and the demonstration of this is fairly long. We therefore
provide some intuition before proving Proposition 6.1.



1568 M. BRAMSON, T. M. LIGGETT AND T. MOUNTFORD

An example of a possible limit π that we need to rule out is the measure that
puts mass 1

2 on each of the two configurations η≡ 1 and η ≡ 0. Suppose that such
a measure is, in fact, the limit of πε as ε ↓ 0. Then, for small ε > 0, there will
be a large block of particles extending in both directions from the origin, with
probability close to 1

2 (with the corresponding statement also holding for a large
block of holes). Since the configuration is in 80 and there are many particles to
the left of the origin, there must also be many holes to the right of the origin.
If (6.2) holds, it follows that there must be some site z for which [z − N,z) is
completely occupied by particles and [z + K,z + K + N) is completely empty,
where N is large but K is not; sites in [z, z + K) may be either occupied or
empty. However, the limiting distribution for an exclusion process with positive
drift whose initial configuration is a finite perturbation of “all particles on the
left followed by all holes on the right” is the product measure with density 1

2 .
In particular, this measure has infinitely many blocks of particles. Since πε is
stationary, this will contradict (6.2). Hence, π cannot be as assumed above, with
mass concentrated on η≡ 1 and η≡ 0.

We now proceed to the proof of Proposition 6.1. We begin with two lemmas. We
let A(K,N), K,N ∈ Z

+, denote the set of configurations η on which, for some
z ∈ Z, η(x + z)= 1 for x ∈ [−N,0) and η(x + z)= 0 for x ∈ [K,K +N).

LEMMA 6.2. Assume that the kernel p(·) has mean µ ∈ (0,∞), that the
kernels pε(·), ε > 0, satisfy (6.1) for some C, and that the corresponding exclusion
processes have stationary measures πε. Then, for given K ,

∑
x∈Z

πε
({
η :η(x)= 1, η(x + 1)= 0

})
>
K

5
πε
(
A(K,N)

)
(6.3)

for large enough N and sufficiently small ε.

PROOF. By Theorem 1.1 of Liggett (1977), if η is any configuration for which
η(x) = 1 for x < 0 and η(x) = 0 for x ≥ K , the exclusion process with kernel
p(·) and initial configuration η has a measure at time t that converges to the
homogeneous product measure with density 1

2 as t → ∞. Since there are only
finitely many such configurations η for a given K , there exists a t > 0 so that for
each such η,

K−1∑
x=0

P η
(
ηt (x)= 1, ηt (x + 1)= 0

)
>
K

5
.(6.4)

Let Pε denote probabilities with respect to the exclusion process with kernel
pε(·). By the first part of (6.1) and Theorem 2.12 on page 17 of Liggett (1985),

lim
ε↓0

P η
ε

(
ηt (x)= 1, ηt (x + 1)= 0

)= P η(ηt (x)= 1, ηt (x + 1)= 0
)
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for each η and t . Therefore, for sufficiently small ε, (6.4) holds with P η replaced
by P η

ε .
It follows from this last inequality that, for large enough N and sufficiently

small ε,
K−1∑
x=0

P η
ε

(
ηt (x)= 1, ηt (x + 1)= 0

)
>
K

5
(6.5)

for all η ∈ A(K,N). To see this, let Z. be the random walk appearing in
Lemma 2.1. By the second part of (6.1), Pε(Zt = x) ≤ eCtP (Zt = x). Also, let
(η., ξ.) be a coupled pair of exclusion processes with initial configuration (η, ξ)
satisfying η(x)= ξ(x) for x ∈ [−N,K +N ]. It follows from Lemma 2.1 that

Pε
(
ηt (x) 
= ξt (x) for some x ∈ [0,K))≤ 2

∞∑
x=N

Pε(Zt ≥ x)

≤ 2eCt
∞∑
x=N

P (Zt ≥ x).

(6.6)

Since p(·) has finite mean, (6.5) follows from (6.6) by choosing N sufficiently
large.

The measure πε is stationary for the exclusion process with kernel pε(·).
Together with (6.5), this implies that∑

x∈Z

πε
({
η :η(x)= 1, η(x + 1)= 0

})

= ∑
x∈Z

∫
P η
ε

(
ηt (x)= 1, ηt (x + 1)= 0

)
πε(dη)

>
K

5
πε
(
A(K,N)

)
,

which is (6.3). �

It will be convenient to introduce the following random variables corresponding
to the stationary measures πε in Lemma 6.2, in order to interpret (6.3). Let
Lε be the number of finite blocks of particles (or equivalently, of holes) for a
configuration in 8. Let Xε(i) and Yε(i), i = 1, . . . ,Lε, be the lengths of the ith
finite blocks of particles and holes, starting from the left. (The length of a block of
k consecutive elements is taken to be k.) Note that the ith block of particles lies to
the left of the ith block of holes.

Since the space of probability measures on {0,1}Z is compact, there is a
sequence of ε’s tending to 0 on which πε converges weakly to some probability
measure π on {0,1}Z. By taking an appropriate subsequence, we can also ensure
that the random vector(

Lε,Xε(1), . . . ,Xε(Lε),0, . . . , Yε(1), . . . , Yε(Lε),0, . . .
)
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converges in distribution to a random vector(
L,X(1), . . . ,X(L),0, . . . , Y (1), . . . , Y (L),0, . . .

)
in the weak topology, as ε tends to 0. (These vectors are elements of Z̄

+ × (Z̄+)Z+

×(Z̄+)Z+
, where Z

+ = {0,1,2, . . .} and Z̄
+ = Z

+ ∪ {∞}.)
Suppose now that (6.2) holds for the measures πε . This implies that the

distributions of Lε are tight as ε ↓ 0, and so L < ∞ a.s. We make no assertion
about the random variablesX(1), . . . ,X(L) and Y (1), . . . , Y (L) at this point; they
may be infinite. In particular, they might not correspond to the blocks of particles
and holes of π , and π(8) 
= 1 is possible. However, because of Lemma 6.2, the
following limiting behavior must hold.

LEMMA 6.3. Assume that the kernel p(·) has mean µ ∈ (0,∞), and that the
kernels pε(·), ε > 0, satisfy (6.1) for some C, and the corresponding exclusion
processes have stationary measures πε that concentrate on 80 and satisfy (6.2).
Then, the random vectors defined above satisfy

P
(∃ 1 ≤ i ≤ j ≤L :X(i)= Y (j)= ∞)= 0.(6.7)

PROOF. One can check that

πε
(
A(K,N)

)≥ P

(
∃ 1 ≤ i ≤ j ≤ Lε :Xε(i)≥K +N, Yε(j)≥K +N,

∑
i<k≤j

Xε(k)+
∑

i≤k<j
Yε(k)≤K

)
.

(6.8)

The event on the right-hand side of (6.8) says that for some i ≤ j , the ith finite
block of particles and the j th finite block of holes are each large, but the sum of
the lengths of intervals in between is relatively small. Passing to the limit in (6.3)
and (6.8), as ε tends to zero along the chosen subsequence, implies that for everyK
there is an N so that

P

(
∃ 1 ≤ i ≤ j ≤ L :X(i), Y (j)≥K +N,

∑
i<k≤j

X(k)+ ∑
i≤k<j

Y (k)≤K

)

≤ 5

K
lim sup
ε↓0

∑
x∈Z

πε
({
η :η(x)= 1, η(x + 1)= 0

})
.

Letting K → ∞ and applying (6.2) furthermore implies that

P

(
∃ 1 ≤ i ≤ j ≤L :X(i)= Y (j)= ∞,

∑
i<k≤j

X(k)+ ∑
i≤k<j

Y (k) <∞
)

= 0.

One may increase i and decrease j so that both sums are automatically finite. This
implies (6.7). �
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We now complete the demonstration of Proposition 6.1.

PROOF OF PROPOSITION 6.1. Let π be the measure introduced before
Lemma 6.2. On account of the limit in (6.1), π is stationary with respect to
the random walk kernel p(·) [Liggett (1985), page 18]. We need to show that
π is concentrated on 8. Once we know this, it follows that π must assign a
positive probability to some translate of80, which, after conditioning and shifting,
produces a stationary blocking measure on 80. The bound (1.5) follows by
applying Fatou’s lemma to (6.2).

To show that π(8) = 1, we use the random variables Lε,Xε(i) and Yε(i)

that were introduced before Lemma 6.3. For a given η ∈ 80, define kε ≤ Lε,
Xε ∈ [0,Xε(kε + 1)) and Yε ∈ [0, Yε(kε)] so that

∑
x<0

η(x)=
kε∑
i=1

Xε(i)+Xε and
∑
x≥0

[1 − η(x)] = Yε +
Lε∑

i=kε+1

Yε(i).(6.9)

In words, kε is the number of blocks of particles lying entirely within (−∞,0),
Xε is the number of particles to the left of the origin in the (kε + 1)st block and Yε
is the number of empty sites to the right of the origin in the kε th block. Note that
either Xε = 0 or Yε = 0 must always hold, and that Xε = 0 when kε =Lε.

Since η ∈80, the left sides of the two equations in (6.9) are equal, and so

kε∑
i=1

Xε(i)+Xε = Yε +
Lε∑

i=kε+1

Yε(i).(6.10)

On account of Lemma 6.3, the random variables on both sides of (6.10) are tight
as ε ↓ 0 along the subsequence defined before the lemma. Consequently, so are∑
x<0 η(x) and

∑
x≥0[1 − η(x)] with respect to the measures πε. It follows that

the limit π concentrates on 8. �

In order to apply Proposition 6.1, we need to be able to verify (6.2). An
important step is carried out in the following lemma, where we introduce the
subadditive function M(·), and show that it satisfies (6.12). This equality figures
centrally in the proof of Proposition 6.5, and explains how the second moment
assumption arises. Note that the M(1) defined below is the expected number of
finite blocks of particles relative to the measure ν.

LEMMA 6.4. Assume that the random walk kernel p(·) has finite mean with∑∞
n=1 n

2p(−n) <∞, and that ν is a stationary measure that satisfies (1.3). For
n ∈ Z, set

M(n)= ∑
x∈Z

ν
({
η :η(x)= 1, η(x + n)= 0

})
.
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Then, M(−n)=M(n)+ n for n≥ 1,

M(m+ n)≤M(m)+M(n)(6.11)

for m,n≥ 1 and
∞∑
n=1

n2p(−n)=
∞∑
n=1

nM(n)[p(n)− p(−n)].(6.12)

PROOF. First note that M(n) is finite for each n by (1.3), since

M(n)≤ ∑
x≤0

ν
({
η :η(x)= 1

})+ ∑
x≥n

ν
({
η :η(x)= 0

})
.

To check that M(−n)=M(n)+ n for n≥ 1, write

M(−n)−M(n)

=∑
x

[
ν
({
η :η(x)= 0, η(x + n)= 1

})− ν
({
η :η(x)= 1, η(x + n)= 0

})]

=∑
x

[
ν
({
η :η(x + n)= 1

})− ν
({
η :η(x)= 1

})]

= lim
N→∞

N∑
x=−N

[
ν
({
η :η(x + n)= 1

})− ν
({
η :η(x)= 1

})]

= lim
N→∞

[
N+n∑

x=N+1

ν
({
η :η(x)= 1

})− −N+n−1∑
x=−N

ν
({
η :η(x)= 1

})]= n.

The final equality above is a consequence of the fact that ν is a blocking measure.
For (6.11), write

ν
({
η :η(x)= 1, η(x +m+ n)= 0

})
≤ ν

({
η :η(x)= 1, η(x + n)= 0

})+ ν
({
η :η(x + n)= 1, η(x +m+ n)= 0

})
and sum on x.

We still need to show (6.12). In a stationary blocking measure, the net rate at
which particles go from the left of x to the right of x is zero. Therefore, for fixed x,∑

u≤x<v
p(v − u)ν

({
η :η(u)= 1, η(v)= 0

})

= ∑
u≤x<v

p(u− v)ν
({
η :η(u)= 0, η(v)= 1

})
.

Summing over x gives
∞∑
n=1

np(n)M(n)=
∞∑
n=1

np(−n)M(−n).
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The right-hand side above is finite, since M(−n) = M(n) + n ≤ n[M(1) + 1]
by (6.11), and the negative tails of p(·) have a finite second moment. Now use
M(−n)=M(n)+ n. �

Using Proposition 6.1 and Lemma 6.4, we obtain the following sufficient
condition for the existence of a stationary blocking measure. Theorem 1.4 is an
immediate consequence, since (6.13) trivially follows from (1.4) and µ > 0. The
proposition applies in certain other cases as well. For example, if p(n) ≥ p(−n)
for n 
= 2, then (6.13) holds if p(1)+ 4p(2) > p(−1)+ 4p(−2).

PROPOSITION 6.5. Suppose that the random walk kernel p(·) has mean
µ ∈ (0,∞), and satisfies (1.1) and

∑∞
n=1 n

2p(−n) <∞. Also, suppose that
∞∑
n=1

nγ (n)[p(n)− p(−n)]> 0(6.13)

for all strictly positive subadditive sequences γ (·). Then, a stationary blocking
measure satisfying (1.5) exists.

PROOF. Let pε(·), ε > 0, be the random walk kernel

pε(n)=C(ε)e−ε|n|p(n),
where C(ε) is the normalizing constant that makes

∑
n pε(n)= 1. Note that pε(·)

satisfies (1.1), and that
∑
n npε(n) > 0 for small enough ε. Theorem 1.3 therefore

implies the existence of a stationary blocking measure πε for the exclusion process
corresponding to pε(·) that satisfies (1.3), when ε is small. Without loss of
generality, we may assume that πε is concentrated on 80. All of the conditions
of Proposition 6.1 are clearly satisfied, except for (6.2). To conclude that a
stationary blocking measure for p(·) that satisfies (1.5) exists, it therefore suffices
to verify (6.2).

Let Mε(n) be defined as in the statement of Lemma 6.4 relative to πε, and write
(6.12) as

∞∑
n=1

n2pε(−n)=Mε(1)
∞∑
n=1

n
Mε(n)

Mε(1)
[pε(n)− pε(−n)].(6.14)

Condition (6.2) says that lim supε↓0Mε(1) <∞. Since the left-hand side of (6.14)
is bounded by assumption, to show (6.2) it suffices to show that

lim inf
ε↓0

∞∑
n=1

n
Mε(n)

Mε(1)
[pε(n)− pε(−n)]> 0.(6.15)

Take any sequence εk tending to 0 for which

γ1(n)= lim
k→∞

Mεk(n)

Mεk (1)
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exists for each n≥ 1. By (6.11), Mε(n)≤ nMε(1). So,

lim inf
k→∞

∞∑
n=1

n
Mεk(n)

Mεk (1)
[pεk (n)− pεk (−n)] ≥

∞∑
n=1

nγ1(n)[p(n)− p(−n)](6.16)

by Fatou’s lemma [applied to the terms involving p(n)] and the dominated
convergence theorem [applied to the terms involving p(−n)]. By (6.11), Mε(·)
is subadditive, and therefore, so is γ1(·). In view of (6.13), (6.15) and (6.16), the
demonstration of (6.2) reduces to showing that γ1(n) > 0 for all n≥ 1.

To show this, it suffices to check that

πε
({
η :η(x)= 1, η(x + n)= 0

})≥ δ(n)πε
({
η :η(x)= 1, η(x + 1)= 0

})
(6.17)

for ε ≤ 1, where δ(n) ∈ (0,1] is independent of ε and x, since summing (6.17)
over x gives Mε(n)≥ δ(n)Mε(1). For (6.17), it suffices to check that

πε
({
η :η(x)= 1, η(x + 1)= 1, η(x + n)= 0

})
≥ δ(n)πε

({
η :η(x)= 1, η(x + 1)= 0, η(x + n)= 1

})
.

(6.18)

Because of (1.1), we may assume that p(−1) > 0. [Otherwise, p(x) = 0 for all
x < 0, and the proposition holds trivially.] Allowing only a specified sequence of
jumps of size 1 to the left by particles over times t ∈ (0,1], one can check that the
event on the left side of (6.18) occurs at time 1, with at least a fixed fraction of the
probability that the event on the right occurs at time 0, where the bound is uniform
over ε ≤ 1. Since πε is stationary, this implies (6.18), and completes the proof of
the proposition. �

We recall that the bound (1.5) for the blocking measures π produced in this
section is weaker than the bound (1.3) for the blocking measure in Section 5. In
particular, although we know that the expected number of blocks of particles for π
is finite, we do not know whether the expected number of particles to the left of
the origin is finite. This issue was also addressed at the end of Section 5.

In this section, we have chosen to assume (1.1), so that in the approximation
argument used in the proof of Proposition 6.5, we could use Theorem 1.3. This
choice makes this paper relatively self-contained, and in particular, makes it
independent of the harder arguments in Bramson and Mountford (2002). One
could instead use their results to prove Theorem 1.4 without assumption (1.1).
One would then truncate p(n), instead of using the approximation in the proof of
Proposition 6.5. This approach would be straightforward, except for the fact that
they did not prove that the stationary blocking measures they constructed satisfy
(1.3). However, note that (1.3) was used in Lemma 6.4 only to guarantee that
M(n) < ∞. But if µ > 0 and (1.4) holds, this can be proved directly using the
technique of the proof of Lemma 6.4. In the final argument in that proof, sum on
|x| ≤N instead of on all x. Then (6.12) is replaced by the inequality

∞∑
n=1

nMN(n)[p(n)− p(−n)] ≤
∞∑
n=1

n2p(−n)
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for the following truncated version MN(n) of M(n):

MN(n)= ∑
x∈Z

ν
({
η :η(x)= 1, η(x + n)= 0

})#([−N,N ] ∩ [x − n−, x + n+))
|n| .

(Here n− and n+ denote the negative and positive parts of n, respectively.) Note
that MN(n) ≤ 2N + 1 for each n 
= 0, and that MN(n) ↑ M(n) as N ↑ ∞. The
above inequality can be then used in place of (6.12).

REFERENCES

BRAMSON, M. and MOUNTFORD, T. (2002). Stationary blocking measures for one-dimensional
nonzero mean exclusion processes. Ann. Probab. 30 1082–1130.

FERRARI, P. A., LEBOWITZ, J. L. and SPEER, E. (2001). Blocking measures for asymmetric
exclusion processes via coupling. Bernoulli 7 935–950.

HOLLEY, R. and LIGGETT, T. M. (1978). The survival of contact processes. Ann. Probab. 6 198–206.
LIGGETT, T. M. (1976). Coupling the simple exclusion process. Ann. Probab. 4 339–356.
LIGGETT, T. M. (1977). Ergodic theorems for the asymmetric simple exclusion process II. Ann.

Probab. 5 795–801.
LIGGETT, T. M. (1985). Interacting Particle Systems. Springer, Berlin.
LIGGETT, T. M. (1999). Stochastic Interacting Systems: Contact, Voter and Exclusion Processes.

Springer, Berlin.
REZAKHANLOU, F. (1991). Hydrodynamic limit for attractive particle systems on Z

d . Comm. Math.
Physics 140 417–448.

SCHOOL OF MATHEMATICS

UNIVERSITY OF MINNESOTA

206 CHURCH ST. SE
MINNEAPOLIS, MINNESOTA 55455
E-MAIL: bramson@math.umn.edu

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF CALIFORNIA, LOS ANGELES

405 HILGARD AVENUE

LOS ANGELES, CALIFORNIA 90095
E-MAIL: tml@math.ucla.edu

malloy@math.ucla.edu


