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LOCALIZATION TRANSITION FOR A POLYMER
NEAR AN INTERFACE1

BY ERWIN BOLTHAUSEN AND FRANK DEN HOLLANDER

University of Zurich and University of Nijmegen¨
Ž .Consider the directed process i, S where the second componenti i� 0

Ž .is simple random walk on � S � 0 . Define a transformed path measure0
� Ž . Ž .�by weighting each n-step path with a factor exp �Ý � � h sign S .1� i� n i i

Ž .Here, � is an i.i.d. sequence of random variables taking values �1i i� 1
Ž . � .with probability 1�2 acting as a random medium , while � � 0, � and

� .h � 0, 1 are parameters. The weight factor has a tendency to pull the
path towards the horizontal, because it favors the combinations S � 0,i
� � �1 and S � 0, � � 	1. The transformed path measure describes ai i i
heteropolymer, consisting of hydrophylic and hydrophobic monomers, near
an oil�water interface.

We study the free energy of this model as n � � and show that there
Ž .is a critical curve � � h � where a phase transition occurs betweenc

Ž .localized and delocalized behavior in the vertical direction . We derive
several properties of this curve, in particular, its behavior for ��0. To
obtain this behavior, we prove that as �, h�0 the free energy scales to its
Brownian motion analogue.

0. Introduction and main results. In this paper we solve a problem
Ž .that was posed by Garel, Huse, Leibler and Orland 1989 and studied by

Ž .Sinai 1993 . It involves a two-dimensional directed random polymer interact-
ing with two solvents separated by an interface. Depending on the interac-

Ž .tion, the polymer either stays near the interface localization or wanders
Ž .away from it delocalization . The main problem is to determine the phase

transition curve.

0.1. A random walk model. To define the model we need two ingredients;

Ž .1. S � S : a simple random walk on � starting at the origin, where P, Ei i� 0
denote its probability law and expectation.

Ž .2. � � � : an i.i.d. sequence of random variables taking values �1 withi i�1
probability 1�2, where �, � denote its probability law and expectation.
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� . � .Fix � � 0, � and h � 0, 1 . Given �, define a transformed probability law
Q�, h, � on n-step paths by settingn

�, h , � ndQ 1n n
0.1 S � exp � � � h � ,Ž . Ž . Ž .Ž . Ýi i ii�0 � , h , �dP Zn i�1

where

sign S , if S � 0,Ž .i i0.2 � �Ž . i ½ sign S , if S � 0Ž .i	1 i

�, h, � � Ž .and Z is the normalizing constant or partition sum. In 0.2 we couldn
�put � � 0 if S � 0. This would be a site rather than a bond model.i i

�, h, � Ž .nWe view Q as modelling the following situation. Think of i, S asn i i�0
a directed polymer on �2, consisting of n monomers represented by the bonds
in the path. The lower half plane is ‘‘water,’’ the upper half plane is ‘‘oil.’’ The
monomers are of two different types, occurring in a random order indexed by
�. Namely, � � 	1 means that monomer i ‘‘prefers water,’’ � � �1 meansi i
that it ‘‘prefers oil.’’ Since � � 	1 when monomer i lies in the water andi

Ž .� � �1 when it lies in the oil, we see that the weight factor in 0.1i
‘‘encourages matches and discourages mismatches.’’ For h � 0 both types of
monomers interact equally strongly with the water and with the oil, being

Ž .attracted by one and repelled by the other. However, for h � 0, 1 the
monomers preferring oil have a stronger interaction with both the solvents
than the monomers preferring water. The parameter � is the overall interac-
tion strength and plays the role of inverse temperature.

Ž .REMARK. In 0.1 we could put the h-dependence in the probability law of
Ž . Ž .�, for instance, by picking � � � �1 � 1 � h �2 and writing �Ý � � ini i i i

the exponent. This would describe a polymer where the two types of monomers
occur with different densities but interact equally strongly with the solvents.

ŽAlternatively we could make a mix of the two types of h-dependence or even
.allow for more general �-sequences with exponential moments . For the

proofs in this paper it is a slight advantage that h enters into the exponent.
Nevertheless, all results carry over with only minor changes in the proofs.

The way in which the polymer behaves near the interface is the result of a
Žcompetition between energy and entropy. The energy is minimal i.e., the

.weight is maximal when all the monomers are placed in their preferred
solvent, but this strategy has low entropy. On the other hand, the entropy is
maximal when the polymer makes large excursions away from the interface,

Ž .but this strategy typically has high energy i.e., the weight is small . What do
we expect will happen under Q�, h, � as n � �?n

1. � � 0. The vertical motion of the polymer is free simple random walk.
Since this is a null recurrent process, the polymer will not stay near the
interface; that is, we have delocalization.
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2. � � 0, h � 0. The polymer will want to stay close to the interface, so that
it can place as many monomers as possible in their preferred solvent and
produce low energy. Indeed, wandering away from the interface would
result in a misplacing of about half the monomers. The polymer can reduce
this fraction by crossing the interface at a positive frequency. This lowers
the entropy, but only by a small amount if the crossing frequency is small.

Ž .The estimates in Sinai 1993 show that for this strategy the gain exceeds
the loss; that is, we have localization.

3. � � 0, h�1. Now wandering away is again the winning strategy, simply
because the monomers preferring water barely interact with either the
water or the oil. By moving away in the upward direction the polymer can
match all the monomers that prefer oil, thereby producing almost the
minimal energy and almost the maximal entropy; that is, we have delocal-
ization.

The above intuitive picture seems to suggest that there is a critical curve
Ž .in the �, h -plane separating the localized from the delocalized phase. It is

the goal of the present paper to prove the existence of this critical curve and
to derive some of its properties.

In order to give a precise definition of the two phases, we need the
Ž .following preliminary result proved in Section 1 .

� . � .THEOREM 1. For every � � 0, � and h � 0, 1 ,

1
�, h , �0.3 lim log Z � � �, hŽ . Ž .nnn��

exists �-a.s. and is nonrandom.

The function � is the specific free energy of the polymer. It is immediate from
Ž . Ž . Ž .0.1 and 0.3 that � �, h is continuous, nondecreasing and convex in both

�variables. Note that our model makes perfect sense for �, h � �. Obviously,
Ž .in this larger parameter space, � �, h is everywhere finite, is symmetric and

convex in both variables and hence is also continuous and unimodal in both
�variables. Moreover, it is easy to show that

0.4 � �, h � �h.Ž . Ž .
Ž . 1�2Ž .Indeed, since P � � �1 for 1 � i � n � C�n n � � , it follows thati

n
�, h , �Z � E exp � � � h �Ž .Ýn i iž /

i�1

n

� exp � � � h � O log nŽ . Ž .Ý i
i�1

0.5Ž .

� exp �hn � o n , �-a.s.,Ž .
where in the last step we use the strong law of large numbers for �. Thus we

Ž .see that the lower bound in 0.4 corresponds to the strategy where the
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polymer wanders away in the upward direction. This leads us to the following
definition.

DEFINITION 1. We say that the polymer is:

Ž . Ž .a localized if � �, h � �h,
Ž . Ž .b delocalized if � �, h � �h.

Ž .In case a the polymer is able to beat on an exponential scale the trivial
strategy of moving upward. It is intuitively clear that this is only possible by
crossing the interface at a positive frequency, which means that the path

Ž .measure localizes near the interface in a strong sense. In case b , on the
other hand, the polymer is not able to beat the trivial strategy on an
exponential scale. In principle it could still do better on a smaller scale, but

�we do not expect this at least not in the interior of the region described by
Ž .�b . We shall not derive any properties of the path measure, but just stick to

Ž .the above definition. See Section 0.4 for a further discussion.
Our first main theorem reads as follows.

Ž . Ž . Ž .THEOREM 2. For every � � 0, � there exists h � � 0, 1 such that thec
polymer is:

localized if 0 � h � h � ,Ž .c0.6Ž .
delocalized if h � h � .Ž .c

Moreover,
Ž . � .� � h � is continuous and nondecreasing on 0, � ,c0.7Ž . Ž . Ž .lim h � � 1, lim h � � 0.��� c �� 0 c

The proof of Theorem 2 is given in Section 2. It will also provide upper and
Ž .lower bounds on h � , namely:c

1
i lim sup h � � 1,Ž . Ž .c���0

1
0.8Ž . ii lim inf h � � 0,Ž . Ž .c���0

1 3
iii lim � 1 	 h � � log 2, log 2 .Ž . Ž .Ž .c 2 2���

0.2. A Brownian motion model. As ��0, the reward to stay close to the
interface gets smaller and so the excursions of the polymer away from the
interface will get longer. Therefore, intuitively we may expect to see a scaling
behavior where both S and � can be approximated by Brownian motions. To
make this more precise, we first define and describe the continuous analogue
of the discrete model. As we shall see in Section 0.3, the scaling happens in a
way that leads to a Brownian motion model. This model retains the full
complexity of the random walk model, except that the Brownian scaling
property gives rise to a simpler form of the phase separation curve.
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The two ingredients of the continuous model are two standard Brownian
motions on �, denoted by:

Ž . Ž .1 B � B ,t t � 0
Ž . Ž .2 � � � ,t t � 0

˜ ˜ ˜ ˜both starting at the origin. We write P, E, respectively, �, �, to denote their
Ž . Ž .probability law and expectation. Similarly as in 0.1 and 0.2 , the trans-

˜�, h, �formed probability law Q on paths of length t, given �, is defined byt

�, h , �˜dQ 1 tt
0.9 B � exp � � d� � h ds .Ž . Ž . Ž .Ž . Hs s s0�s�t � , h , �˜ ˜dP Z 0t

Here,

sign B , if B � 0,Ž .s s0.10 � �Ž . s ½ 0, if B � 0,s

� .the first integral is an Ito integral, and the parameters �, h are both in 0, � .ˆ
Ž .The analogue of Theorem 1 proved in Section 3 reads as follows.

� .THEOREM 3. For every �, h � 0, � ,

1
�, h , �˜ ˜0.11 lim log Z � � �, hŽ . Ž .ttt��

˜exists �-a.s. and is nonrandom.

˜ Ž .The function � has the same qualitative properties as � in 0.3 , including
Ž .the lower bound in 0.4 . Therefore we can maintain the same distinction

between phases as in Definition 1.
The Brownian scaling property tells us that

0.12 B , � � aB 2 , a� 2 for all a � 0,Ž . Ž . Ž .s s D s� a s� as�0 s�0

where � means equality in distribution. This implies that, for fixed �, hD
and as a random variable in �,

˜�, h , � ˜a� , ah , �
20.13 Z � Z for all t � 0 and a � 0.Ž . t D t� a

Hence

1˜ ˜0.14 � �, h � � a�, ah for all a � 0.Ž . Ž . Ž .2a

˜Ž .It immediately follows from 0.14 that � has the following scaling form:

˜ 2Ž . Ž . � . Ž .� �, K� � SS K � for K � 0, � , with K � SS K con-0.15Ž . Ž .tinuous, nondecreasing and convex, satisfying SS K � K.

Ž .The analogue of Theorem 2 proved in Section 3 now reads as follows.
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Ž �THEOREM 4. There exists K � 0, 1 such thatc

SS K � K if K � K ,Ž . c

SS K � K if 0 � K � K .Ž . c

0.16Ž .

˜ ˜Ž . Ž . Ž .By 0.15 , Theorem 4 implies that � �, h � �h for h � K � and � �, h � �hc
for h � K �; that is, the phase separation curve is the straight line � � K �.c c

Although the picture here looks fairly simple, the complexity of the model
is hidden in the constant K , which seems to be a very ungainly and complexc
object. We have rough bounds on K , but nothing like a sequence of boundsc
that could be expected to converge to K .c

0.3. Weak interaction limit. We are now ready to formulate our main
results concerning the weak interaction limit of the random walk model and
its relation to the Brownian motion model.

� .THEOREM 5. For every �, h � 0, � ,

1 ˜0.17 lim � a�, ah � � �, h .Ž . Ž . Ž .2aa�0

Ž .Although 0.17 is intuitively plausible, the estimates needed for its proof are
quite delicate. The reason is that our paths carry exponential weight factors,
which are very sensitive to fluctuations. One should keep in mind that, at
least in the localized region, the path exhibits a behavior that has an
exponentially small probability under the free path measure. It is therefore
clear that the result cannot be proved by a routine application of invariance
principles.

We shall not prove Theorem 5 separately, as it is a consequence of the
more powerful but more technical Theorem 6 below. A proof of Theorem 5

Ž .would be simpler and more transparent than that of Theorem 6 given in
Section 4. However, the unfortunate fact is that Theorem 5 alone does not
lead to a determination of the tangent at � � 0 of the phase separation curve
in the discrete model. In fact, it only yields

1
0.18 lim inf h � � K .Ž . Ž .c c���0

Ž . Ž .Indeed, pick K � K . Then, by 0.15 � 0.17 ,c

1 ˜0.19 lim � a, aK � � 1, K � K .Ž . Ž . Ž .2aa�0

Ž . 2 Ž .This implies � a, aK � Ka and hence h a � aK for small enough a,c
Ž .which proves 0.18 after letting a�0 followed by K � K . It is clear that ac
Ž .statement like 0.17 does not yield

1
0.20 sup h � � K ,Ž . Ž .c c���0
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˜ 2Ž . Ž .simply because � 1, K � K for K � K does not imply that � a, aK � a Kc
for small enough a.

In order to remedy this situation, we introduce the ‘excess’ free energies

� �, h � � �, h 	 �h ,Ž . Ž .
0.21Ž .

˜ ˜� �, h � � �, h 	 �h ,Ž . Ž .
˜so that the delocalized region is characterized by � � 0, respectively, � � 0.

Our main result for the weak interaction limit is the following.

� Ž . �THEOREM 6. Fix � � 0. Let h � 0, h � 0 and 	 � 0 satisfy 1 � 	 h � h.
Then

1
�˜� a�, ah � 1 � 	 � �, h ,Ž . Ž . Ž .2a

0.22Ž .
1

��̃ �, h � 1 � 	 � a�, ahŽ . Ž . Ž .2a
for small enough a.

˜Theorem 6 and the continuity of � and � obviously imply Theorem 5.
Theorem 6 is also sufficiently strong to give us the following corollary.

COROLLARY 1.
1

0.23 lim h � � K .Ž . Ž .c c���0

Ž . Ž . �To get 0.20 from the first line in 0.22 , pick h � K , 	 � 0 and � � 1,c
˜Ž . Ž . Ž Ž . .h � 1 � 2 	 K . Since � 1, K � 0, it follows that � a, a 1 � 2 	 K � 0c c c

Ž . Ž .and hence h a � a 1 � 2 	 K for small enough a. Now let a�0 and 	 �0.c c
The idea behind Theorem 6 is that by slightly varying h we can dominate

the errors that arise in the approximation of the random walk by the
Brownian motion.

REMARK. Theorem 6 can be shown to carry over to the version of the
model where the h-dependence sits in the probability law of �. For the
Brownian motion model there is no distinction between the two versions.
Apparently, the weak interaction limit is largely independent of the details of
the model. This is essentially a stability result. Stability is crucial for our
understanding of the localization problem, and typically hard to prove for
path measures with exponential weight factors.

0.4. Open problems. Our distinction between the localized and the delo-
calized phase, as given in Definition 1, is in terms of the specific free energy
rather than the path measure itself. We would like to show that in the

Ž .localized phase ‘‘ S truly localizes,’’ in the sense that it stays close toi 0 � i� n
the horizontal, while in the delocalized phase it does not. For instance,
consider the following two questions.



A POLYMER NEAR AN INTERFACE 1341

�, h, � Ž .1. For fixed i, does Q S � 
 converge to a nondegenerate limit law asn i
n � �?

Ž . �, h, � Ž �� 4 �2. Is there a d � d �, h � 0 such that lim Q 1 � i � n: S � 0 �nn�� n i
� �.� d 	 � , d � � � 1 for all � � 0?

No doubt the answer is ‘‘yes’’ in the localized phase and ‘‘no’’ in the delocal-
ized phase, but this remains to be proven. Other interesting questions are:
How does the free energy behave close to the critical curve? How large are the
excursions of the path away from the horizontal?

Ž .Sinai 1993 proved that if � � 0, h � 0, then the path localizes in the
Ž .following sense: there exist numbers � � 0, � � � 0 and random variables

Ž . Ž .n � , k � such that0 0

�, 0, � � � 	� Ž�.ksup Q S � k � eŽ .n i

 
log n�i�n	log n0.24Ž .

for k � k � , n � n � , �-a.s.Ž . Ž .0 0

We expect that Sinai’s arguments can be extended to cover the whole
localized region.

Ž . Ž .One could hope to make some progress on problems 1 and 2 above by
looking at the times when the path intersects the interface. In the localized

Ž .region these times admit a Gibbsian description in the limit as n � � .
However, this leads to a Gibbs measure with a random long-range potential
having both signs, which is a notoriously difficult object. Nevertheless, we
expect that a limiting measure exists and that it has exponentially decaying
correlations.

Even the delocalized region is not trivial. It seems intuitively clear that, at
� Ž .�least in the interior of this region i.e., for h � h � , the path just behaves asc

simple random walk conditioned to stay positive, which is well known to have
Brownian scaling with the so-called Brownian meander as limiting measure
� Ž .�see Bolthausen 1976 . However, it appears to be difficult to exclude the
possibility of rare returns to the interface.

Ž .Grosberg, Izrailev and Nechaev 1994 obtain localization for the case
where � is periodic instead of random.

Ž . �, 0, �Albeverio and Zhou 1996 prove that if � � 0, h � 0, then log Zn
Ž .satisfies a LLN and a CLT as a random variable in � . However, there is

no description of the mean and the variance. They further show that
�, 0, � Ž .HQ � d� -a.s. bothn

max j 	 i : S � S � 0, S � 0 for i � k � j ,� 4i j k
0�i�j�n

0.25Ž .
� �max Si

0�i�n

are of order log n as n � �, which is typical for a localized path.
Ž . Ž .Grosberg, Izrailev and Nechaev 1994 and Sinai and Spohn 1996 study

an annealed version of the model in which Z�, h, � is averaged w.r.t. �. Then
free energy and the critical curve can in this case be computed exactly.
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However, the quenched version described in the present paper is qualita-
tively very different and considerably more complex.

1. Proof of Theorem 1. The proof consists of two parts. In Lemma 1 we
prove that the claim holds when the random walk is constrained to return to
the origin at time 2n. In Lemma 2 we show how to remove this constraint.

Fix � and h. Define

2n
�� , � 41.1 Z � E exp � � � h � 1 S � 0 ,Ž . Ž .Ý2 n i i 2 nž /

i�1

where we recall the notation introduced in Section 0.1.

Ž . �,�LEMMA 1. The limit lim 1�2n log Z exists and is constant �-a.s.n�� 2 n

PROOF. We need the following three properties.
�,� � ,� T 2 m �,� Ž .I. Z � Z Z for all 0 � m � n, with T the left-shift T� �2 n 2 m 2 n	2 m i

� .i�1
Ž . Ž �,� .II. n � 1�2n � log Z is bounded from above.2 n

Ž . Ž .III. � T� � 
 � � � � 
 .

Ž . � 4Property I follows from 1.1 by inserting an extra indicator 1 S � 0 and2 m
using the Markov property of S at time 2m. Property II holds because

� log Z� ,� � log � Z� ,�Ž . Ž .2 n 2 n

2n
2 n � 4� log E cosh � exp �h � 1 S � 0Ž . Ý i 2 nž /

i�1
1.2Ž .

� 2n log cosh � � �h .Ž .
Ž �,� .Property III is trivial. Thus, � � log Z is a superadditive process. It2 n n� 0

� Ž .therefore follows from the superadditive ergodic theorem Kingman 1973 ,
� Ž . �,�Theorem 1 that lim 1�2n log Z converges �-a.s. and in mean, and isn�� 2 n

measurable w.r.t. the tail �-field of �. Since the latter is trivial, the limit is
constant �-a.s. �

Our original partition sum was

2n
�1.3 Z � E exp � � � h � ,Ž . Ž .Ý2 n i iž /

i�1

Ž .which is 1.1 but without the indicator. Thus, in order to prove Theorem 1 we
� Ž � � . �must show that this indicator is harmless as n � �. Since log Z �Z �2 n 2 n�1

Ž .� 1 � h , it will suffice to consider n even.

LEMMA 2. There exists C � 0 such that Z�,� � Z� � CnZ�,� for all n2 n 2 n 2 n
and �.
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PROOF. The lower bound is obvious. The upper bound is proved as follows.
By conditioning on the last hitting time of 0 prior to time 2n, we may write

n 2 n
� �� � , � ,Z � Z � Z E exp � � � h �Ž .Ý Ý2 n 2 n 2 n	2 k i ižk�1 i�2 n	2 k�1

� 		1 A 
 A S � 0� 4n , k n , k 2 n	2 k /
1.4Ž .

n 2 nak� �� , � ,� Z � Z E exp � � � h �Ž .Ý Ý2 n 2 n	2 k i ižbkk�1 i�2 n	2 k�1

� 		1 B 
 B S � 0 .� 4n , k n , k 2 n	2 k /
Here we abbreviate the events

� � 4A � S � 0 for 2n 	 2k � 1 � i � 2n ,n , k i

� � 4B � S � 0 for 2n 	 2k � 1 � i � 2n , S � 0n , k i 2 n

1.5Ž .

and similarly for A	 , B	 , and their probabilitiesn, k n, k

� � 	 �a � P A S � 0 � P A S � 0 ,Ž . Ž .k n , k 2 n	2 k n , k 2 n	2 k
1.6Ž . � � 	 �b � P B S � 0 � P B S � 0Ž . Ž .k n , k 2 n	2 k n , k 2 n	2 k

Ž . Ž .both independent of n . The reason for the second equality in 1.4 is that
� � �1 for all 2n 	 2k � 1 � i � 2n on the events A� , B� and � � 	1i n, k n, k i

	 	 Ž .for all 2n 	 2k � 1 � i � 2n on the events A , B � is fixed .n, k n, k

Next, there exist C , C � 0 such that a � C �k1�2 and b � C �k3�2 for1 2 k 1 k 2

Ž .all k � 1. Moreover, without the factor a �b the last sum in 1.4 is preciselyk k
Z�,�. Hence2 n

C1 �� � ,1.7 Z � 1 � n Z . �Ž . 2 n 2 nž /C2

Lemmas 1 and 2 complete the proof of Theorem 1.

2. Proof of Theorem 2. The proof proceeds in a sequence of five steps,
� Ž .�organized as Sections 2.1 and 2.2. Define recall 0.21

2.1 � �, h � � �, h 	 �h.Ž . Ž . Ž .
Let
2.2 DD � �, h : � �, h � 0� 4Ž . Ž . Ž .

Ž .be the region of delocalization see Definition 1 .

Ž .2.1. Existence, continuity and monotonicity of h � .c

Ž . Ž .STEP 1. If �, h � DD, then � � � , h � � � DD for all � , � � 0 satisfying
Ž .� � � 1 	 h ��.
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n Ž . Ž .PROOF. Since �Ý � � h � �hn � o n �-a.s., we have the followingi�1 i
� Ž .�equivalence recall that � � 0 by 0.4 :

� �, h � 0Ž .
n1

� lim log E exp � � � h � 	 1 � 0, �-a.s.Ž . Ž .Ý i iž /nn�� i�1

2.3Ž .

Ž .Thus, to prove the claim we must show that if the r.h.s. of 2.3 holds for
Ž . Ž .�, h , then it also holds for � � � , h � � . To see this, write

n

� � � � � h � � � 	 1Ž . Ž . Ž .Ý i i
i�1

n

� � � � h � 	 1Ž . Ž .Ý i i
i�1

2.4Ž .

n

� � � � h � �� � �� � 	 1 .Ž . Ž .Ý i i
i�1

Since � � 1 and � � 	1, the last sum is less than or equal to 0 wheni i
Ž .� 	1 � h � �� � 0. �

� .For � � 0, � define

� �2.5 h � � inf h � 0, 1 : �, h � DD .� 4Ž . Ž . Ž .c

Ž Ž ..By continuity of � , we have �, h � � DD. It therefore follows from Step 1c
Ž . Ž .that �, h � DD for all h � h � , so that the localized and the delocalizedc

Ž .phase are separated by a single critical curve: � � h � .c

Ž . Ž . � .STEP 2. i � � h � is continuous and nondecreasing on 0, � .c
Ž . Ž Ž .. � .ii � � � 1 	 h � is continuous and nondecreasing on 0, � .c

Ž . Ž .PROOF. i We know that � �, h � 0 is convex in � with boundary value
Ž . Ž . Ž .� 0, h � 0. Therefore, if �, h � DD then also � � � , h � DD for all � � 0.

Ž .Hence � � h � is nondecreasing. Step 1 shows that its slope at the point �c
Ž Ž ..is bounded from above by 1 	 h � ��. Since this is finite for � � 0, we getc

Ž . Ž .continuity on 0, � . Continuity at � � 0 follows from Step 3 i .
Ž .ii This is easily deduced from Step 1. �

Ž .2.2. Bounds on h � .c

Ž . Ž . Ž .STEP 3. h � � 1�2� log cosh 2� . Consequently:c

Ž . Ž . Ž .i lim sup 1�� h � � 1,�� 0 c
1Ž . Ž Ž ..ii lim inf � 1 	 h � � log 2.��� c 2

Ž .PROOF. The claim will follow once we prove that �, h � DD for all h �
Ž . Ž .1�2� log cosh 2� . This will be done by checking the property in the r.h.s. of
Ž .2.3 .
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Ž .Estimate � �, h from above as follows:
n1

� �, h � lim � log E exp � � � h � 	 1Ž . Ž . Ž .Ý i iž /ž /nn�� i�1

n1
� lim inf log E � exp � � � h � 	 1Ž . Ž .Ý i iž /ž /nn�� i�1

2.6Ž .

n1 1 1
	2 �Ž1�h. 	2 �Ž	1�h.� lim inf log E 1 e � e .Ł �� �	14iž /n 2 2n�� i�1

ŽThe first equality is a direct consequence of the superadditivity see Section
.1 . The r.h.s. is less than or equal to 0 as soon as the term between square

brackets is less than or equal to 1. �

Ž . Ž .STEP 4. lim inf 1�� h � � 0.�� 0 c

PROOF. The idea is to find a strategy of the polymer for which the
Ž .contribution to the free energy exceeds �h see Definition 1 . The computa-

tions below are easy but a bit lengthy, due to a necessary fine-tuning of
constants. The proof comes in three parts.

Ž .i As was shown in Section 1,

1
�2.7 � �, h � lim � log ZŽ . Ž . Ž .nnn��

� � Ž .� �with Z our partition sum see 1.3 . We begin by rewriting Z in terms ofn n
the excursions of S away from the origin. To that end, define

� � 0, � � inf i � � : S � 0 , j � 0,� 40 j�1 j i

� � max j � 0: � � n� 4n j

2.8Ž .

and
2.9 � x � log cosh x .Ž . Ž .

Let
�n

2.10 H S, � � � � � � h � � � � � h .Ž . Ž . Ž . Ž .Ý Ý Ýn i iž / ž /
j�1 Ž � Ž �i� � , � i� � , nj	1 j � n

Then, using the up�down symmetry of S for each excursion, we can write
�2.11 Z � E exp H S, � .Ž . Ž .Ž .n n

Ž .ii The length of a typical free excursion has distribution f given by

l 2'2.12 z f l � 1 	 1 	 z ,Ž . Ž .Ý
l

which is the generating function for the probability of first return to the
Ž .origin of simple random walk. In order to bound 2.11 from below, we shall
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be looking for a strategy of the path in which the excursions have distribution
1 l


 2'2.13 f l � f l 1 	 
 , l � 1.Ž . Ž . Ž . ž /1 	 


ŽThis corresponds to a random walk with drift 
 towards the origin i.e.,
1 Ž � Ž .�. .S 	 S � �1 with probability 1 � 
 	sign S for i � 0 . Here 0 �i�1 i i2


 � 1 is a parameter we shall optimize over.
The following lemma is an intermezzo. Abbreviate � � Ý � .I i� I i

� . � .LEMMA 3. For all � � 0, � and h � 0, 1




� �, h � sup f l � � �� � �hlŽ . Ž . Ž .Ž .Ý Ž0, l �½1 � 
0�
�1 l
2.14Ž . 1 � 
 1 	 


	 log 1 � 
 	 log 1 	 
 .Ž . Ž . 52
 2


PROOF. Let P 0 and P
 denote the laws of simple random walk, respec-n n
Ž .tively, random walk with drift 
 , restricted to n-step paths. Then from 2.13 ,

� 

 
n Ý f lŽ .dP f l� n	��n n nS � � 	 �Ž . Ž .Ž . Łi j j	1i�00 f Ý f ldP Ž .j�1 l� n	�n2.15Ž . �n

n�2	� 	1 2n� 1 	 
 1 	 
 .Ž . Ž .
Ž . Ž .Using Jensen’s inequality, we get from 2.11 and 2.15 that


dPn� 
log Z � log E exp H S, � 	 logŽ .n n n 0ž /dPn

dP

n
 
� E H S, � 	 E logŽ .Ž .n n n 0ž /dPn

2.16Ž .

n

 
 2� E H S, � � E � � 1 log 1 	 
 	 log 1 	 
 .Ž . Ž . Ž .Ž . Ž .n n n n 2

� 4Now, � � 1 � min j � 0: � � n is a stopping time. Moreover, a straightfor-n j

 Ž . Ž .ward calculation yields E � � 1 � 
 �
 . Therefore, the optional samplingn 1

theorem gives us
1 



2.17 lim E � � 1 � .Ž . Ž .n nn 1 � 
n��

Ž . Ž . Ž �.In order to bound � �, h � lim 1�n � log Z , it therefore remains ton�� n
consider

� E
 H S, � � E
 � H S, �Ž . Ž .Ž . Ž .Ž . Ž .n n n n

�n

� E � � � � � h .Ž .Ý Ýn iž /ž /ž /j�1 Ž �i� � , �j	1 j

2.18Ž .
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By stationarity of the �-sequence, the summands are functions of � 	 �j j	1
only. Applying the optional sampling theorem again we get

�n1

lim E � � � � � hŽ .Ý Ýn iž /ž /nn�� ž /j�1 Ž �i� � , �j	1 j

2.19Ž .
�1



� E � � � � � h .Ž .Ýn iž /ž /ž /1 � 
 j�1

ŽTo handle the last excursion � 	 � , note that � is linearly bounded and� �1 �n n

 .that the excursion times have an exponential moment under P . Putting then

estimates together we obtain the claim. �

Ž .iii The proof of Step 4 can now be complete as follows. Because � � 0 and
� is convex, we have

� � �� � �hlŽ .Ž .Ž0, l �

� � � � 0 � � �� � �hl 
 � � 0Ž . Ž .Ž .Ž0, l � Ž0 , 1� Ž0 , l �2.20Ž .
1� � �� � 
 � � 0 � �hl .Ž .Ž .Ž0, l � Ž0 , l �2

Ž . 1�2Next, note that there exists A � 0 such that � � 
 � � 0 � Al forŽ0, l � Ž0, l �
Ž . Ž .all l � 1. Now pick h � �� and 
 � �� in Lemma 3, insert 2.13 and 2.20 ,

Ž . � Ž .l � 3�2Ž .and use that f l � 1 � 	1 B�l l � � , to obtain

1 �
2.21 lim inf � �, �� � BI A , � , � 	 � ,Ž . Ž . Ž .2 2�����0

where
� dx 1

2 '2.22 I A , � , � � exp 	 � x � A x � � x .Ž . Ž . Ž .H 3�2 ž /2x0

Ž .The constants � , � can still be optimized. Pick M � 2�BI A, 0, 0 and put
Ž .� � M� . Then, as � �0, the r.h.s. of 2.21 converges to a number greater

Ž . 2than 1. Therefore we have proved that � �, �� � �� for � , � sufficiently
Ž .small. This proves the claim in Step 4 recall Definition 1 . �

3Ž Ž ..STEP 5. lim � 1 	 h � � log 2.��� c 2

Ž .PROOF. Recall Step 2 ii . The claim is proved as follows. As � � �, the
path will tend to make short excursions. Therefore we bound the partition
sum from below by requiring all excursions to have length 2:

2n
� � 4Z � E exp � � � h � 1 S � 0 for 0 � m � nŽ .Ý2 n i i 2 mž /

i�12.23Ž .
n

n1 � �� cosh � � � � � 2h .Ž .Ž . Ł 2 m	1 2 m2
m�1
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Ž . �Use the up�down symmetry of S for each excursion. It follows that recall
Ž .�2.9 :

1
�� �, h � lim � log ZŽ . Ž .2 n2nn��

1 1
� �� 	 log 2 � � � � � � � � 2hŽ .Ž .1 22 2

2.24Ž .
1

� 	 log 2
2
1 1 1 1

� � 2� 1 � h � � 2� 1 	 h � � 2�h .Ž . Ž . Ž .Ž . Ž .½ 52 4 4 2
Ž . Ž 	2 x . Ž .Next, insert � x � x 	 log 2 � O e x � � . Pick h � 1 	 M�� with

M � 0 arbitrary. Then for � � �,
M M 1 3 1

� �, 1 	 � � 1 	 � M 	 log 2 � � 2 MŽ .½ 5ž / ž /� � 4 8 82.25Ž .
� O e	4 � .Ž .

3As soon as M � log 2, the term between braces is greater than 0, implying2
Ž . � Ž . Ž .�that �, 1 	 M�� � DD for � sufficiently large cf. 2.2 and 2.3 . But then

Ž . � Ž .� Ž Ž ..h � � 1 	 M�� for � sufficiently large cf. 2.6 , that is, � 1 	 h � � M.c c
�

Ž . Ž . Ž .Steps 2�5 prove Theorem 2 as well as Properties i � iii in 0.8 .

3. Proofs of Theorems 3 and 4. Essentially the same arguments as in
the proofs of Theorems 1 and 2 carry over to the continuous case. We only
indicate which points need modification.

� 4 Ž .3.1. Proof of Theorem 3. We cannot insert 1 B � 0 , since P B � 0 � 0t t
� Ž .�compare with 1.1 . However, this problem is easily handled through a
comparison argument. Recall the notation introduced in Section 0.2.

Define
t�� ,˜ ˜ � �3.1 Z � inf E exp � � d� � h ds 1 B � 1 B � x .� 4Ž . Ž .Ht s s t 0ž /� �x �1 0

Then:

˜�,� ˜�,� ˜T u � ,� u uŽ .I. Z � Z Z for all 0 � u � t, with T the left-shift T � �t u t	u s
� 	 � .u�s u

˜ ˜�,�Ž . Ž .II. t � 1�t � log Z is bounded from above.t
˜ u ˜Ž . Ž .III. � T � � 
 � � � � 
 for all u � 0.

Properties I and III are obvious. Property II holds because
˜ ˜� ,� ˜ ˜� ,�� log Z � log � ZŽ . Ž .t t

t˜ ˜ � �3.2 � log E � exp � � d� � h ds 1 B � 1 B � 0� 4Ž . Ž .H s s t 0ž /ž /0
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t1 2˜ � �� log E exp � t � �h � ds 1 B � 1 B � 0� 4H s t 02ž /0

1 2� t � � �h ,Ž .2

where the equality follows from the martingale property

t t1 2 2˜ �3.3 � exp f s d� � exp f s ds , f � L 0, t .Ž . Ž . Ž . .Ž .H Hs 2ž /0 0

˜�,�Ž .Thus, � � log Z is a superadditive process.t t � 0
In order to apply the superadditive ergodic theorem, we need an additional

�regularity condition that is absent in the discrete time setting, namely see
Ž . �Kingman 1973 , Theorem 4 the following property.

IV.

˜ ˜� ,�� �3.4 � sup log Z � � for all T � �,Ž . s , tž /
0�s�t�T

˜�,� � .where Z is the partition sum over the time interval s, t ; that is,s, t

t�� ,˜ ˜ � �3.5 Z � inf E exp � � d� � h du 1 B � 1 B � x .� 4Ž . Ž .Hs , t u u t sž /� �x �1 s

To prove Property IV, we first note that, for all �,

˜� ,� ˜ � �3.6 inf Z � inf inf P B � 1 
 B � x � 0 for all T � �.Ž . Ž .s , t t s
0�s�t�T 0�s�t�T � �x �1

˜Ž .Use Jensen’s inequality together with E� � 0. Hence it suffices to proveu
Ž .3.4 without the absolute value signs. But this we may estimate as follows:

˜ ˜� ,�� sup log Zs , tž /
0�s�t�T

t˜ ˜� log E � sup exp � � d� � h duŽ .H u už /ž s0�s�t�T
3.7Ž .

� 4	1 
 B 
� 1 B � 0 .t s /
Ž . Ž . tThe exponent in 3.7 is bounded from above by �h t 	 s � � H � d� .s u u

˜Moreover, we note that under the law � the last integral is just Brownian
2 ˜motion, since � � 1 almost everywhere P-a.s. Thus we obtainu

�� ,˜ ˜ ˜3.8 � sup log Z � �hT � log � sup exp � � 	 � .Ž . Ž .s , t t sž /ž /
0�s�t�T 0�s�t�T

� �But the last integral is finite, because 2� sup � has an exponential0 � u� T u
moment. This proves Property IV.

Properties I�IV guarantee that the superadditive ergodic theorem applies:

˜�,� ˜Ž .lim 1�t log Z converges �-a.s. and in mean, and ist �� t3.9Ž . ˜constant �-a.s.
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Ž .Thus we have the LLN for the quantity defined in 3.1 . In order to get it for
� � � 4our original partition sum, it remains to remove 1 B � 1 and inf fromt � x � �1

Ž .3.1 . This will be done in two pieces.
Define

t�� ,˜ ˜ � �Z x � E exp � � d� � h ds 1 B � 1 B � x ,� 4Ž . Ž .Ht s s t 0ž /0

t
�˜ ˜Z x � E exp � � d� � h ds B � x .Ž . Ž .Ht s s 0ž /0

3.10Ž .

˜�,� ˜� ,�Ž . Ž .In 3.9 we have the LLN for Z � inf Z x . The key estimates aret � x � �1 t
now

˜� ,� ˜� ,� ˜� ,�i Z � Z 0 � C � Z for all t and � ,Ž . Ž . Ž .t t t
3.11Ž .

˜� ,� ˜� ˜� ,�ii Z 0 � Z 0 � CtZ 0 for all t and � .Ž . Ž . Ž . Ž .t t t

Ž .The lower bounds are trivial. The upper bound in ii is obtained from an
Ž .almost literal transcription of the proof of Lemma 2. The upper bound in i

follows from a coupling argument. Indeed, since two Brownian motions
starting at 0, respectively, x, hit each other after a finite time a.s., we have

˜�,� ˜�,� ˜� Ž . Ž . � Ž . Ž .sup Z 0 �Z x � C � with C � � �, �-a.s.� x � �1 t t
˜� ˜�Ž . Ž .The conclusion of 3.11 is that our original partition sum Z � Z 0 hast t

˜ ˜�,�Ž . Ž .the same �-a.s. constant growth rate as Z in 3.1 .t

Ž � �3.2. Proof of Theorem 4. All we have to do is show that K � 0, 1 sincec
Ž .� Ž . Ž .the rest follows from 0.15 . As this inclusion follows from 0.8 and 0.23 ,

strictly speaking there is no need to give a proof here. Still, we indicate a
direct proof of the lower bound for K because it is instructive.c

Fix �, h. In Section 3.1 we saw that

1
�˜ ˜ ˜3.12 � �, h � lim � log Z .Ž . Ž . Ž .ttt��

We begin by expressing our partition sum in terms of the excursions of B
� 4 � .away from the origin. Let NN � s � 0: B � 0 . Then 0, � � NN � � I is as j j

�countable union of disjoint open intervals having full measure Revuz and
Ž . �Yor 1991 , Chapter XII . Let

� 43.13 J � j: I � 0, t 
 0 ,Ž . .� 4t j

where we reserve the index 0 for the interval between t and the last hitting
time of the origin prior to time t. Then, using the up�down symmetry of B for
each excursion, we can write

�˜ ˜ � �3.14 Z � E exp � �� � �h I .Ž . Ý Ž .t I jjž /
j�Jt
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Here, � denotes the increment of � over the set I, and � was defined inI
Ž . Ž . Ž .2.9 . The representation in 3.14 is the continuous analogue of 2.10 and
Ž .2.11 .

˜
 
̃Fix 
 � 0. Let P , E denote the probability law and expectation of Brown-
ian motion with drift 
 towards the origin. Then it follows from the

� Ž . �Cameron�Martin formula Chung and Williams 1990 , Theorem 9.10 , re-
� Ž . �spectively, the Tanaka formula Revuz and Yor 1991 , Theorem VI.1.2 , that

˜
dP
BŽ .Ž .s 0�s�t0˜dP

1t t 2� exp 	
 sign B dB 	 	
 sign B ds� 4 � 4Ž . Ž .H Hs s s20 0
3.15Ž .

1
2� �� exp 
 L 	 B 	 
 t ,Ž .t t 2

� .where L is the local time at the origin in the time interval 0, t . Next,t
1 1
 
 
˜ ˜ ˜Ž . Ž �according to Tanaka’s formula under P , we have E L � 
 � E B 1 Bt t t2 2

14. Ž . Ž . Ž .� 0 � 
 � O 1 . Therefore, substituting 3.15 into 3.14 and using2

Jensen’s inequality, we obtain
1 1

2 
˜ ˜ ˜ � �3.16 � �, h � 	 
 � lim sup � E � �� � �h I .Ž . Ž . Ý Ž .I jjž /ž /2 tt�� j�Jt

Ž .It remains to compute the r.h.s. of 3.16 . This is essentially parallel to
Ž . Ž .2.18 � 2.22 . In order to be able to properly count excursions, one first has to
cut away the excursions that have length smaller than � and then let � �0.
We leave this to the reader.

4. Proof of Theorem 6. Recall the notation introduced in Sections 0.1
and 0.2. Define for the random walk model,

� � 1 ,i �� �	14i

� 
t1
� �, h � � log E exp 	2� � � � h ,Ž . Ž .Ýt i iž /ž /t i�1

4.1Ž .

� �, h � lim � �, hŽ . Ž .t
t��

and for the Brownian motion model,
� � 1 ,s �� �	14s

1 t˜ ˜ ˜� �, h � � log E exp 	2� � d� � h ds ,Ž . Ž .Ht s sž /ž /t 0
4.2Ž .

˜ ˜� �, h � lim � �, h .Ž . Ž .t
t��

By the law of large numbers for �, respectively, �,
� �, h � � �, h � �h ,Ž . Ž .

4.3Ž .
˜ ˜� �, h � � �, h � �h.Ž . Ž .

It suffices to consider the case � � 1.
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4.1. Outline of the proof of Theorem 6. Theorem 6 is proved by a series of
approximation steps. Our approximations will depend on two auxiliary pa-
rameters � and � , where 0 � � � � . Later on, we shall let t � �, a�0, � �0,

Ž . 2� �0 in this order . There will be no danger in assuming that t�a , t�� ,
��a2, ��� are all integers, which we shall do in order to avoid a plethora of
brackets.

Below we shall make a number of quite similar comparisons. In order to
write these in a compact form, we introduce the following notation.

Ž . Ž .DEFINITION 2. Let f a, h and g a, h be real-valued functions.t, � , � t, � , �
� Ž . �We write f � g if for any 0 � h � h, 	 � 0 satisfying 1 � 	 h � h the

Ž .following is true: there exists � such that for 0 � � � � there exists � �0 0 0
Ž .such that for 0 � � � � there exists a � , � such that0 0

�
2 2 2lim sup f a, h 	 1�	 g a 1�	 , h � 0Ž . Ž . Ž .Ž .t , � , � tŽ1�	 . , � Ž1�	 . , � Ž1�	 .

t��4.4Ž .
for 0 � a � a .0

Here � , � , a may depend on h, h�, 	. We write f 
 g if f � g and g � f.0 0 0

Note that � is a transitive relation and therefore 
 is an equivalence
relation.

The function for which we shall make such comparisons will be of the form

1
4.5 f a, h � � log E exp 	2aH a, h ,Ž . Ž . Ž .Ž .Ž .t , � , � t , � , �t

Ž .where the Hamiltonian H a, h is a random variable defined on thet, � , �

Žproduct space of the random walk and the random medium having as
.probability measure the product of P and � . Similar functions will be

considered for the Brownian motion and medium.
� � Ž .Now suppose that we want to prove f � f , where f a, h has thet, � , �

� Ž .Hamiltonian H a, h . We can do this in the following way:t, � , �

1. Split H into two parts

4.6 H � H Ž I . � H Ž II . .Ž .

2. Apply Holder, Jensen and Fubini to get, for 	 � 0,¨

1
Ž I .f a, h � � log E exp 	2 a 1 � 	 HŽ . Ž .Ž .Ž .t , � , � t 1 � 	Ž .

1
	1 Ž II .� log E � exp 	2a 1 � 	 H .Ž .Ž .Ž .	1t 1 � 	Ž .

4.7Ž .
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Ž . �3. The crucial point will be, for given 1 � 	 h � h, to choose the splitting in
such a way that

4.8 H Ž I . � H Ž I . a, h� � H 2 2 2
� a 1 � 	 , h�Ž . Ž . Ž .Ž .t , � , � tŽ1�	 . , � Ž1�	 . , � Ž1�	 .

Ž II . Ž II . Ž �.and that H � H a, h, h satisfiest, � , �

1
�	1 Ž II .4.9 lim sup log E � exp 	2 a 1 � 	 H a, h , h � 0Ž . Ž .Ž .Ž .Ž .t , � , �tt��

Ž .with � , � , a chosen appropriately in the sense of Definition 2 .

Ž . Ž . �Clearly, 4.6 � 4.9 imply f � f .
Before we proceed, let us agree on some conventions about constants: A,

B, C are generic positive constants, not necessarily the same at different
occurrences. They may depend on h, h�, 	, but not on the running parameters
t, a, � , � .

Ž .Return to 4.1�4.3 . Let
1

2� a, h � � a, ah ,Ž . Ž .t , � , � t� a2a4.10Ž .
˜ ˜� a, h � � 1, hŽ . Ž .t , � , � t

Ž .which in fact do not depend on � , � , respectively, � , � , a . What we finally
˜want to prove is � 
 �, since by Definition 2 this implies Theorem 6. In

order to achieve this, we shall introduce three intermediate quantities
i Ž . Ž .F a, h i � 1, 2, 3 and prove thatt, � , �

1 2 3 ˜4.11 � 
 F 
 F 
 F 
 �.Ž .
Ž .The proof of 4.11 comes in four steps, organized as Sections 4.2�4.5. In order

not to overburden notations, we shall often not explicitly express dependen-
cies on a, � , � .

One of the crucial aspects of the proof is that the statement of Theorem 6
Ž Ž . . Ž .does not allow for error factors of the form exp � a, � , � t with � a, � , �

tending to zero as a, � , � �0. The reader should keep this in mind.

4.2. Coarse graining of the RW. We start by defining F1. Divide time into
intervals of length ��a2:

2 24.12 I � j 	 1 ��a , j��a , j � 1.Ž . Ž .Žj

Put � � 0 and0

4.13 � � inf j � � � ��� : S � 0 for some i � I , k � 1.Ž . Ž .� 4k k	1 i j

That is, � , � , . . . number the intervals in which the walk returns to the1 2
Ž .origin leaving gaps of at least ��� 	 1 in the numbering. Define

24.14 I � I � 0, t�a , k � 1,Ž . Ž�k jž /
� �j��k	1 k

� 4 � 42and put m � max k: I � � � min k: � � t�� .t� a k k
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For 1 � k � m 2 , we set s � 1 if the random walk is negative just priort� a k
to its first zero in I , and s � 0 otherwise. For k � m 2 , on the other� k t� ak

hand, we set s � 1 if the random walk is negative at t�a2, and s � 0k k
otherwise. Let
4.15 Z � � � .Ž . Ž . Ýk i

i�Ik

We can now define our first intermediate quantity:
1

1 1F a, h � � log E exp 	2aH a, h ,Ž . Ž .Ž .Ž .t , � , � t , � , �t
m 2t� a

1 � �H a, h � s Z � � ah I .Ž . Ž .� 4Ýt , � , � k k k
k�1

4.16Ž .

STEP 1. � 
 F1.

PROOF. The proof comes in six parts.

Ž . � Ž . Ž .�i We have recall 4.1 and 4.10 :
1

� a, h � � log E exp 	2aH a, h ,Ž . Ž .Ž .Ž .t , � , � t , � , �t
2 m 2t�a t� a

H a, h � � � � ah � � � � ah .Ž . Ž . Ž .Ý Ý Ýt , � , � i i i i
i�1 k�1 i�Ik

4.17Ž .

� Ž . Ž .�Remark that, by a trivial rescaling of the parameters see 4.12 � 4.14 , we
have
4.18 H a, � h � H 2 2 2 �a, h for any � � 0,Ž . Ž . Ž .t , � , � � t , � � , � �

and the same for H 1. Furthermore, for any h , h � 0,1 2

H a, h 	 H 1 a, hŽ . Ž .t , � , � 1 t , � , � 2
m 2 m 2t� a t� a

� a h 	 h � � ah � � � 	 s .Ž . Ž . Ž .Ý Ý Ý Ý1 2 i 2 i i k
k�1 k�1i�I i�Ik k

4.19Ž .

In order to prove � � F1, we split H � H Ž I . � H Ž II . with

4.20 H Ž I . � H 1 a, 1 � 	 h� � H 2 2 2
1 a 1 � 	 , h� ,Ž . Ž . Ž .Ž . Ž .t , � , � t , � , � tŽ1�	 . , � Ž1�	 . , � Ž1�	 .

Ž . Ž . � Ž II .and take the r.h.s. of 4.19 with h � h, h � 1 � 	 h as H . On the other1 2
hand, in order to prove F1 � �, we split H 1 � H �Ž I . � H �Ž II . with

4.21 H �Ž I . � H a, 1 � 	 h� � H 2 2 2 a 1 � 	 , h� ,Ž . Ž . Ž .Ž . Ž .t , � , � t , � , � tŽ1�	 . , � Ž1�	 . , � Ž1�	 .

Ž . Ž . � �Ž II .and take minus the r.h.s. of 4.19 with h � 1 � 	 h , h � h as H . We1 2
Žshall prove that if we choose a, � , � small enough in this order because of

. Ž .Definition 2 , then also the requirement in 4.9 is met:
1

�	1 Ž II .4.22 lim sup log E � exp 	2a 1 � 	 H a, h , h � 0,Ž . Ž .Ž .Ž .Ž .t , � , �tt��

and the same with H �Ž II . instead of H Ž II .. This will prove the claim in Step 1.
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Ž . Ž .ii To prove 4.22 , we first carry out the expectation over �:

	1 Ž II .� exp 	2 a 1 � 	 H a, h , h�Ž .Ž .Ž .t , � , �

2mt� a
�2 	1� exp 	2a 1 � 	 h 	 1 � 	 h �Ž .Ž .Ž . Ý Ý i

k�1 i�Ik

2mt� a
�2 	1	 exp 	2a 1 � 	 1 � 	 h � 	 sŽ . Ž .Ž . Ý Ý i k

k�1 i�Ik
4.23Ž .

2mt� a

	1	 exp log cosh 2 a 1 � 	 � 	 sŽ .� 4Ž .Ý Ý i k
k�1 i�Ik

2 2m mt� a t� a

2 2� �� exp Aa � 	 s 	 Ba �Ý Ý Ý Ýi k i
k�1 k�1i�I i�Ik k

Ž � .for some constants A, B � 0 which depend on h, h , 	 but not on t, a, � , � .
The crucial point is that the second summand in the exponent is able to kill
the first summand for arbitrary A, B � 0, provided the parameters a, � , �
are chosen appropriately. Thus, to complete the proof of � � F1, it remains to
show that

2 2m mt� a t� a1
2 2� �4.24 lim sup log E exp Aa � 	 s 	 Ba � � 0.Ž . Ý Ý Ý Ýi k it ž /t�� k�1 k�1i�I i�Ik k

This is a problem about simple random walk and its zeroes. The only
difference between H Ž II . and H �Ž II . is that the second summand on the r.h.s.
comes with a minus and h , h interchanged. However, this obviously leads1 2

Ž . Ž .to the same type of estimate as 4.23 . Therefore 4.24 proves Step 1
completely.

Ž . Ž .iii To prove 4.24 , we introduce the standard return times of the random
walk:

� 4T � 0, T � inf i � T : S � 0 , l � 1,0 l l	1 i

l 2 � min l : T � t�a2� 4t� a l

4.25Ž .

and the excursion times

4.26 � � T 	 T , 1 � l � l 2 , � � t�a2 	 T .Ž . Ž .l l l	1 t� a l l2 2	1t� a t� a

We further define � � 1 if the sign of the lth excursion is negative, andl
� � 0 otherwise. Then, obviously, we can write the second summand in thel

Ž .r.h.s. of 4.24 as
m 2 l 2t� a t� a

4.27 � � � � .Ž . Ý Ý Ýi l l
k�1 l�1i�Ik
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m 2t� a � �Next we estimate the first summand Ý Ý � 	 s in terms of the samek�1 i� I i kk

quantities. Put t � 0, and let t be the first zero of the random walk in the0 k
Ž . 2 Ž �2interval I 1 � k � m , and t � t�a . On the time interval t , t� t� a m k	1 k2k t� a

the random walk makes a number of excursions, and s just depends on thek
sign of the last one; that is, s � 1 if and only if this is negative. Byk
construction, only this last excursion can have length greater than or equal to
Ž .Ž 2 . 2 � Ž . Ž .���� ��a � ��a see 4.12 and 4.13 . It follows that if i is not in an
excursion of length less than ��a2 and i does not belong to one of the
intervals I , then�k

4.28 � � s for the k with i � I .Ž . i k k

Ž � � 2 .From these considerations we obtain recall that I � ��a�k

m 2 l 2t� a t� a � �
� � 24.29 � 	 s � � 1 � � � m .Ž . Ý Ý Ýi k l l t� a2 2½ 5a ak�1 l�1i�Ik

Ž . Ž . Ž .Combining 4.27 and 4.29 we see that, in order to prove 4.24 , it now
suffices to show that

2lt� a1 �
2lim sup log E exp Aa � 1 � �Ý l l 2½ 5žt at�� l�1

4.30Ž .
2lt� a

2
2�A� m 	 Ba � � � 0Ýt� a l l /l�1

for appropriate a, � , � .
Ž . Živ As the � ’s are independent of the � ’s 0 or 1 with probability 1�2l l
. 2each , we can integrate out the former and replace 	Ba Ý � � in the r.h.s. ofl l l

1 1 2Ž . Ž Ž ..4.30 by Ý log � exp 	Ba � . We next claim thatl l2 2

l 2t� a

1 1 1 2
2A� m 	 1 � log � exp 	Ba � � 0Ž . Ž .Ž .Ýt� a l2 2 24.31Ž . l�1

for 0 � � � � � .Ž .0

Ž � Ž .2To see why, pick any of the intervals t , t 1 � k � m . If any of thek	1 k t� a
Ž � 2excursions on t , t has length greater than or equal to ��a , then for thek	1 k

l indexing this excursion we have
1 1 1 124.32 log � exp 	Ba � � log � exp 	B�Ž . Ž .Ž .Ž .Ž .l2 2 2 2

and hence
1 1 1 24.33 A� � log � exp 	Ba � � 0 for 0 � � � � � .Ž . Ž .Ž .Ž .l 02 2 2

Therefore
Ž .k

1 1 1 24.34 A� � log � exp 	Ba � � 0 for 0 � � � � � ,Ž . Ž .Ž .Ž .Ý l 02 2 2
l
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Žk . Ž �where Ý means summing over all the excursions on t , t . On the otherk	1 k
Ž � 2hand, if all excursions on t , t have length less than ��a , then for allk	1 k

the l indexing these excursions we have

1 1 12 24.35 log � exp 	Ba � � 	 Ba � for 0 � � � �Ž . Ž .Ž .l l 02 2 4

and so

Ž . Ž .k k
1 1 1 12 2A� � log � exp 	Ba � � A� 	 Ba �Ž .Ž .Ý Ýl l2 2 2 8

4.36Ž . l l

1 2� A� 	 Ba t 	 t .Ž .k k	18

�Ž . �Ž 2 . Ž . 2By construction, however, t 	 t � ��� 	 1 ��a � � 	 � �a for 1k k	1
Ž .2� k � m and so the r.h.s. of 4.36 is less than or equal to 0 for 0 � � �t� a

Ž . Ž . Ž . Ž .� � . Combining 4.34 with 4.36 and summing on k, we get 4.31 . Thus, in0
Ž .order to prove 4.30 , it now remains to show that

2lt� a1 �
2lim sup log E exp Aa � 1 � �Ý l l 2½ 5žt at�� l�1

4.37Ž .
2lt� a1 1 1

2� log � exp 	Ba � � 0.Ž .Ý lž / /2 2 2l�1

Ž .v Observe next that

l 2 l 2t� a t� a� 1 1 1
2 2Aa � 1 � � � log � exp 	Ba �Ž .Ý Ýl l l2½ 5 ž /2 2 2al�1 l�1

l 2 l 2t� a t� a� 1 1 1
� � �2 2� Aa � 1 � � � log � exp 	Ba �Ž .Ý Ýl l l2½ 5 ž /2 2 2al�1 l�1

4.38Ž .

1
� A� � log 2,

2

� Ž . � � Ž .�2where � � � 1 � l � l but � � T 	 T compare with 4.26 .l l t� a l l l2 2 2	1t� a t� a t� a
1 Ž .Clearly, A� � log 2 is negligible after taking the t � � limit in 4.37 . By2

the optional sampling theorem, it therefore suffices to prove that

� 1 1 1
� � �2 24.39 E exp Aa � 1 � � � log � exp 	Ba � � 1Ž . Ž .1 1 12½ 5 ž /ž /2 2 2a

for appropriate a, � .
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Ž .vi For fixed � � 0, a Riemann approximation together with the asymp-
Ž � . 3�2 Ž .totic formula P � � k � C�k k � � even yields1

1 �
� �2lim E exp Aa � 1 � �1 1 2½ 5½ ža aa�0

1 1 1
�2� log � exp 	Ba � 	 1Ž .1 5ž / /2 2 2

4.40Ž .

� dx 1 1 1
� 4� C exp Ax1 x � � � log � exp 	Bx 	 1 .Ž .H 3�2 ½ 5ž /2 2 2x0

Ž . Ž .Clearly, the r.h.s. of 4.40 is � 0 when 0 � � � � . This proves 4.37 and0
completes the proof of Step 1. �

4.3. From discrete to continuous medium. We next replace the i.i.d.
Bernoulli random variables � by i.i.d. standard normal random variables � .ˆi i

�Therefore, we define our second intermediate quantity as compare with
Ž .�4.16

1
2 2ˆF a, h � � log E exp 	2aH a, h ,Ž . Ž .Ž .Ž .t , � , � t , � , �t

m 2t� a

2 � �H a, h � s Z � � ah I ,Ž . Ž .� 4ˆÝt , � , � k k k
k�1

4.41Ž .

ˆwhere � is expectation w.r.t. �.ˆ

STEP 2. F1 
 F 2.

PROOF. The proof comes in three parts.

Ž .i We couple the random variables � and � . Remark that these randomˆi i
variables enter into F1 and F 2 only via their partial sums over intervals of

2 � Ž . Ž .�length ��a recall 4.12 � 4.15 . We can define � and � on a commonˆ
�probability space such that for any j � 1 see Komlos, Major and Tusnady´ ´

Ž .�1975, 1976 ,

�
� 	c k34.42 � � 	 � � c log � k � c e , k � 1,Ž . Ž .ˆÝ i i 1 22ž /ai�Ij

for some constants c , c , c � 0. Here �* denotes the coupling measure1 2 3
obtained by independently repeating the KMT-coupling in each ��a2-interval
I . It suffices to prove F � F . Namely, the � and � enter symmetricallyˆj 1 2 i i

Ž .into 4.42 , and therefore the proof of F � F will be exactly the same upon2 1
exchange of � and �.ˆ

Following our general scheme, we choose
m 2t� a

1 � �H a, h � s Z � � ah IŽ . Ž .� 4Ýt , � , � k k k
4.43Ž . k�1

� H Ž I . a, h � H Ž II . a, hŽ . Ž .t , � , � t , � , �
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with
m 2t� a

�Ž I . � �H a, h � s Z � � a 1 � 	 h IŽ . Ž . Ž .� 4ˆÝt , � , � k k k
k�1
m 2t� a

Ž II .H a, h � s � 	 �Ž . Ž .ˆÝ Ýt , � , � k i i
k�1 i�Ik

4.44Ž .

m 2t� a
� � �� a h 	 1 � 	 h s I .Ž .Ž . Ý k k

k�1

With this choice, we have

4.45 H Ž I . a, h � H 2 2 2
2 a 1 � 	 , h� ,Ž . Ž . Ž .Ž .t , � , � tŽ1�	 . , � Ž1�	 . , � Ž1�	 .

Ž . Ž .as required by 4.8 , and so we must show that 4.9 is met:
1

	1 Ž II .4.46 lim sup log E �* exp 	2 a 1 � 	 H a, h � 0.Ž . Ž .Ž .Ž .Ž .t , � , �tt��

Ž . Ž .ii To prove 4.46 , we next claim that for arbitrary A, B � 0,
2mt� a

�* exp Aa s � 	 �Ž .ˆÝ Ýk i iž /k�1 i�Ik4.47Ž .
2mt� a

2 � �� exp Ba s I for 0 � a � a � .Ž .Ý k k 0
k�1

Ž .To see why 4.47 is true, note that, by the independence of the coupling in
disjoint ��a2-intervals, it suffices to prove that

2 � �4.48 �* exp Aa � 	 � � exp Ba I .Ž . Ž .ˆ Ž .Ý i i 1ž /i�I1

Ž .But 4.42 gives

�* exp Aa � 	 �Ž .ˆÝ i iž /i�I1

� �
� exp Aa c log � exp Aa c log � kÝ1 12 2ž / ž /ž /a ak�14.49Ž .

	
�

�* � 	 � � c log � kŽ .ˆÝ i i 1 2ž /ai�I1

�
� exp Aa c log 1 � c exp 	k c 	 Aa .Ž .Ž .Ý1 2 3½ 52ž /a k�1

Ž . Ž 2 � �.This is clearly less than or equal to exp B� � exp Ba I when 0 � a �1
Ž .a � .0
Ž . Ž 	1 . Ž 	1 .Ž Ž . �. Ž .iii Picking A � 2 1 � 	 , B � 2 1 � 	 h 	 1 � 	 h in 4.47 and

Ž . Ž .recalling 4.44 , we get 4.46 . This completes the proof of Step 2. �
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4.4. From discrete to continuous process. The next step consists in replac-
ing the random walk by a Brownian motion. For the random walk we have

Ž . Ž 2defined in 4.13 the random times � , . . . , � m � m for short hence-1 m t� a
.forth . For convenience we put � � t�� . Writem

m m
2� �4.50 a s Z � � ah I � s a� � a hŽ . Ž .� 4ˆ ˆŽ .Ý Ý Ý Ýk k k k i

k�1 k�1 � �j�� i�Ik	1 k j

and note that

24.51 a� � a h � � 	 � � h � 	 � ,Ž . Ž .ˆŽ . Ž .Ý Ý i D � � k k	1k k	1 k�1ž /
� �j�� i�Ik	1 k j k�1

Ž .where � � �� are the scaled random times and � is a Browniank k s 0 � s� t
medium independent of the random walk.

Let Q be the distribution of

4.52 � � m; s , . . . , s ; � , . . . , � ,Ž . Ž .1 m 1 m

Žwhich of course depends on all the parameters t, a, � , � Q is a probability
. Ž . Ž . Ž .distribution on a finite set . Then, in view of 4.41 , 4.50 and 4.51 , we may

Ž .write with an obvious abuse of notation :

1
2 2˜F a, h � � log E exp 	2aH a, h ,Ž . Ž .Ž .ž /t , � , � Q t , � , �t

m1
2H a, h � s � 	 � � h � 	 � ,Ž . Ž .� 4Ýt , � , � k � � k k	1k k	1a k�1

4.53Ž .

˜where � is the expectation over �. Remark now that � can be interpreted as a
Ž Ž .. Ž 2 .functional on the space of continuous paths f s , defined by f ia �0 � s� t

Ž 2 .aS 0 � i � t�a with linear interpolation. Replacing the law of the randomi
˜Ž .walk by the law of a Brownian motion B , we get a distribution Q ofs 0 � s� t

˜�. Obviously, Q and Q are mutually absolutely continuous. We therefore
define our third intermediate quantity as

1
3 2˜F a, h � � log E exp 	2 aH a, hŽ . Ž .Ž .˜ž /t , � , � Q t , � , �t

4.54Ž .
1

3˜� � log E exp 	2 aH a, h ,Ž .Ž .ž /Q t , � , �t
where

˜1 dQ
3 24.55 H � H 	 log .Ž .

2 a dQ

STEP 3. F 2 
 F 3.

Ž . �PROOF. We again use our splitting. If 1 � 	 h � h, then

4.56 H 2 a, h � H Ž I . a, h� � H Ž II . a, h , h� ,Ž . Ž . Ž . Ž .t , � , � t , � , � t , � , �
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Ž .where, as required by 4.8 ,

H Ž I . a, h� � H 3 a, 1 � 	 h�Ž . Ž .Ž .t , � , � t , � , �

� H 2 2 2
3 a 1 � 	 , h� ,Ž .Ž .tŽ1�	 . , � Ž1�	 . , � Ž1�	 .

� mh 	 1 � 	 hŽ .
�Ž II .H a, h , h � s � 	 �Ž . Ž .Ýt , � , � k k k	1a k�1

4.57Ž .

˜1 dQ
� log .

2 a dQ

Ž II . Ž �. Ž .Observe that H a, h, h does not depend on �. According to 4.9 , int, � , �

order to prove F 2 � F 3 we have to show that

m ˜1 dQ
4.58 lim sup log E exp 	A s � 	 � 	 B log � 0Ž . Ž .ÝQ k k k	1t dQž /t�� k�1

Ž 	1 .Ž Ž . �. Ž 	1 .with A � 2 1 � 	 h 	 1 � 	 h , B � 1 � 	 and for � , � , a appropri-
ate. This is, however, immediate from Lemma 4 below upon putting in the

˜lower estimate for dQ�dQ and integrating out the s afterward. Indeed,k
since s are 0 or 1 with probability 1�2 each, the summand can be replacedk
by

1 1 1 14.59 log � exp 	A � 	 � � log � exp 	A� .Ž . Ž .Ž .Ž . Ž .Ž .k k	12 2 2 2

The proof of F 3 � F 2 is similar after putting in the upper estimate for
˜dQ�dQ. �

Ž .LEMMA 4. There exists � � � a, � , � � 0 satisfying

4.60 lim lim sup � a, � , � � 0 for all � � 0Ž . Ž .
� �0 a�0

such that

dQm m
4.61 1 	 � � � � 1 � � .Ž . Ž . Ž . Ž .˜dQ

PROOF. The proof comes in three parts.

Ž .i Let k, l be positive integers such that k � l is even. Define

4.62 q k , l � P S � 0 for k � i � k � l , S � 0 
 S � 0 .Ž . Ž . Ž .i k�l 0

Ž . Ž � .Let further p x � P S � x S � 0 for k � x even.k k 0
ŽAssume that k, l are odd. We are faced here with the usual parity

problems. The case where k, l are even is handled by slight modification. We
.neglect such trivial points in the following discussion. Then, via the reflec-
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tion principle,
l

q k , l � 2 p x P S � 0 for 0 � i � l , S � 0 
 S � xŽ . Ž . Ž .Ý k i l 0
x�1

l

� p x p x 	 1 	 p x � 1Ž . Ž . Ž .Ý k l	1 l	1
x�1

4.63Ž .

l 2 x
� p x p x .Ž . Ž .Ý k l lx�1

Ž .Now, 0 � 2 x�l � 2 1 � x � l , so using the Bernstein large deviation esti-
Ž . Ž .mates for p x and p x we getk l

Ž .3�5k�ll 2 x 2 x
4.64 p x p x � 1 � o 1 p x p x ,Ž . Ž . Ž . Ž . Ž . Ž .Ž .Ý Ýk l k ll lx�1 x�1

Ž .where o 1 refers to k, l � � jointly. But for k � �,
22 x

p x � 1 � o 1 exp 	Ž . Ž .Ž .(k ž /� k 2k4.65Ž .
� 3�54uniformly in x � 1, . . . , k .

Ž . ŽSubstitution into 4.63 yields a Riemann approximation only the odd x ’s
.count ,

2
�1 2 1 1 x 1 1

q k , l � 1 � o 1 dx 2 x exp 	 �Ž . Ž .Ž . H ž /'2 � l 2 k lkl 0
4.66Ž . '2 k

� 1 � o 1 .Ž .Ž . '� k � l lŽ .
Ž . Ž 2 .ii We fix now � , � , a as usual with ��� , ��a integer . For integers

2 Ž . Ž .j � 2, 1 � y � ��a we obtain from 4.66 as a�0 only half of the l ’s count :

� � j 	 1 � j�Ž .
P min i � : S � 0 	 � , S � 0i y2 2 2 2½ 5 ž / žž /a a a a

j��a2
�

� q 	 y , lÝ 2ž /a2Ž .l� j	1 ��a �1

2 2j��a ' ��a 	 y1 2 Ž .
� 1 � o 1Ž .Ž . Ý 2 '2 � ��a 	 y � l lŽ .2Ž .l� j	1 ��a �1

4.67Ž .

2 j� j 	 1 �Ž .
� 1 � o 1 arctan 	 arctan ,Ž .Ž . (( 2 2ž /� � 	 ya � 	 ya

Ž . Ž .where o 1 refers to a�0, uniformly in 0 � � � ��2 for a fixed � � 0 ,
2 Ž .1 � y � ��a and j � 2. The uniformity in j is of crucial importance.
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Ž . Ž .Equation 4.67 is also true for j � 1, although 4.66 is obviously not
correct for fixed l and only k � �. However, some rough estimate like

'Ž . Ž . Ž .q k, l � p 0 � C� k � l suffices to show that the small l ’s in 4.67 arek� l
negligible.

Ž .iii By weak convergence of random walk to Brownian motion, we get
Ž .from 4.67 that for 0 � � � ��2, 0 � y � � and j � 1:˜

˜ � 4P inf u � � : B � 0 	 � � j 	 1 � , j� 
 B � 0Ž .ŽŽ .u ỹ

2 j� j 	 1 �Ž .
� arctan 	 arctan((ž /� � 	 y � 	 y˜ ˜

4.68Ž .

Ž .which, of course, can also be proved directly .
Now define

� a, � , � ; y , y , jŽ .˜
2 2 2 2P min i���a : S �0 	 ��a � j	1 ��a , j��a 
 S �0Ž .� 4 ŽŽ .Ž .4.69 i yŽ . � ˜ � 4P inf u � � : B � 0 	 � � j 	 1 � , j� 
 B � 0Ž .ŽŽ .u ỹ

and

4.70 � a, � , � � sup sup sup � a, � , � ; y , y , j 	 1 .Ž . Ž . Ž .˜
2 j�10�y��˜1�y���a

˜Ž .Then 4.61 follows immediately from the definition of � , Q and Q. Combining
Ž . Ž . Ž .4.67 � 4.70 , we arrive at 4.60 . �

4.5. Coarse graining of the BM. The final step must consist in getting rid
Ž . 3 Ž .of � , � we have already said goodbye to a . The quantity F in 4.54 is

1 Ž .similar to F in 4.16 , but all defined in terms of the Brownian motion and
its zeroes in �-intervals with gaps of size � . The point is to remove these

Ž .restrictions by letting � �0, � �0 in this order .

3 ˜STEP 4. F 
 �.

PROOF. This is quite parallel to Step 1 and we can therefore be brief. For
Ž . 3 Žthe reader’s and our own convenience, we stick to the proof of F � � the

3 .argument for � � F being similar . The proof comes in six parts.

Ž . Ž .i Define the random function � as follows. For 1 � k � m, puts 0 � s� t
Ž �� � 1 on the interval � , � if the Brownian motion is negative just priors k	1 k

to its first zero in this interval, and � � 0 otherwise. On the last intervals
Ž �� , t put � � 1 if B � 0, and � � 0 otherwise. Thenm	 1 s t s

4.71 � � s for s � � , � and 1 � k � m ,Ž . Žs k k	1 k

where the s are defined in terms of the Brownian motion.k
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Ž .ii Our quantities no longer depend on a, so we need a slight modification
of our general scheme. Put

3 3H h � aH a, hŽ . Ž .t , � , � t , � , �

m

� s � 	 � � h � 	 �Ž .Ž .½ 5Ý k � � k k	1k k	1
k�1

m
�k� � d� � h ds ,Ž .Ý H s s

�k	1k�14.72Ž .
t

H̃ h � � d� � h dsŽ . Ž .Ht s s
0
m

�k� � d� � h ds .Ž .Ý H s s
�k	1k�1

Then
1

3 3˜ ˜F h � � log E exp 	2 H h ,Ž . Ž .ž /ž /t , � , � t , � , �t
4.73Ž .

1˜ ˜ ˜ ˜� h � � log E exp 	2 H h .Ž . Ž .ž /ž /t tt
Remark next that, by Brownian rescaling,

1
3 3

2 2 2H 1 � 	 h � H h ,Ž . Ž .Ž .t , � , � D tŽ1�	 . , � Ž1�	 . , � Ž1�	 .1 � 	

1˜ ˜ 2H 1 � 	 h � H h .Ž . Ž .Ž .t D tŽ1�	 .1 � 	

4.74Ž .

Furthermore,
m

�k3 ˜H h 	 H h � h 	 h � dsŽ . Ž . Ž . Ý Ht , � , � 1 t 2 1 2 s
�k	1k�1

m
�k� � 	 � d� � h ds ,Ž . Ž .Ý H s s s 2

�k	1k�1

4.75Ž .

Ž .which is completely analogous to 4.19 .
Ž .iii It should now be clear that the argument runs parallel to Step 1, so

� Ž .�we have to show that compare with 4.24
m1 t˜ � �4.76 lim sup log E exp A � 	 � ds 	 B s � 	 � � 0Ž . Ž .ÝH s s k k k	1ž /t 0t�� k�1

for � , � appropriate. The Brownian motion has at most a finite number of
Ž �excursions of length greater than or equal to � in the interval 0, t . We

Ž �denote by J the complement of these excursion intervals in 0, t . By thet, �

definition of � , we haves

t
� � � �4.77 � 	 � ds � J � m� .Ž . H s s t , �

0
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�See the derivation of the corresponding estimate for the random walk in
Ž . � Ž . Ž . Ž4.29 . Substituting 4.77 into 4.76 and afterward integrating out the s 0k

.or 1 with probability 1�2 each , we see that it suffices to prove
1 ˜ � �lim sup log E exp A J � A� mt , �žtt��

4.78Ž . m 1 1
� log � exp 	B � 	 � � 0.Ž .Ž .Ý k k	1ž / /2 2k�1

Ž . � Ž .�As � 	 � � � 1 � k � m , we trivially have compare with 4.31k k	1
m

1 1 1A� m 	 1 � log � exp 	B � 	 � � 0Ž . Ž .Ž .Ž .Ý k k	12 2 2
4.79Ž . k�1

for 0 � � � � � .Ž .0

Therefore it suffices to prove
1 ˜ � �lim sup log E exp A Jt , �žtt��

4.80Ž . m1 1 1
� log � exp 	B � 	 � � 0Ž .Ž .Ý k k	1ž / /2 2 2k�1

for appropriate � , � .
Ž .iv The � are in fact stopping times for the Brownian motion. They arek

related to another sequence of stopping times: 	 � � � 0 and0 0

	 � inf t � � � � : B � 0 ,� 4k k	1 t

� � j� if 	 � j 	 1 � , j� , k � 1,Ž .Žk k

4.81Ž .

until the smallest m such that 	 � t. By construction, it is clear thatm
�Ž � �� , � � J � 2� for all k.k	1 k t, �

Ž . Ž .Next, remark that in 4.80 we may replace the last � which is just t bym
1ŽŽ . � Žj� if 	 � j 	 1 � , j� , provided we add log 2 in the exponent which ism 2

. Ž .irrelevant in the t � � limit . Therefore, we prove 4.80 in this form.
Ž . Ž .v Clearly, � is FF -measurable, where FF is the natural filtra-k	1 	 s s� 0k	 1

tion of the Brownian motion. Furthermore, because 	 � � � 	 � �k	1 k	1 k	1
we have

� 44.82 � 	 � � inf t � 	 � � : B � 0 	 	 	 � .Ž . k k	1 k	1 t k	1

Therefore, given FF , the conditional distribution of � 	 � dominates	 k k	1k	 1
Ž .the conditional distribution of the r.h.s. of 4.82 , which is independent of FF	k	 1

and just the distribution of 	 	 � . By the optimal sampling theorem it1
� Ž .�therefore suffices to prove compare with 4.39

1 1 1� 44.83 E exp A	 1 	 � � � log � exp 	B 	 	 � � 1Ž . Ž .Ž .Ž .Ž .1 1 12 2 2

Ž .for 0 � � � � and 0 � � � � � .0 0
Ž .vi As 	 does not depend on � , we can first let � �0, and it therefore1

suffices to prove
1 14.84 E � exp 	B	 � exp 	A� for 0 � � � � .'Ž . Ž . Ž .ž /1 02 2
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� Ž .�But 	 has an explicit density compare with 4.66 :1

'1 �
4.85 P 	 � � � ds � ds, s � 0.Ž . Ž .1 '� � � s sŽ .

Therefore

�1 1 2 dv 1 1
24.86 E � exp 	B	 � � exp 	B � v .Ž . Ž . Ž .( (H1 2ž /2 2 � 2 21 � v0

Since

1 1 1 1
2 24.87 lim 1 	 � exp 	B � v � BvŽ . Ž .(½ 5� 2 2 4� �0

� 2 Ž 2 .and H v � 1 � v dv � �, it follows from Fatou that0

1 1 1
4.88 lim 1 	 E � exp 	B	 � �.Ž . Ž .( 1½ 5ž /� 2 2� �0

Ž .This implies 4.84 . �
Ž .Steps 1�4 combine to give 4.11 , proving Theorem 6.
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