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CIRCULAR LAW

BY Z. D. BAI1

National Sun Yat-sen University

It was conjectured in the early 1950’s that the empirical spectral
distribution of an n � n matrix, of iid entries, normalized by a factor of

'1� n , converges to the uniform distribution over the unit disc on the
complex plane, which is called the circular law. Only a special case of the
conjecture, where the entries of the matrix are standard complex Gauss-
ian, is known. In this paper, this conjecture is proved under the existence
of the sixth moment and some smoothness conditions. Some extensions
and discussions are also presented.

1. Introduction. Suppose that � is an n � n matrix with entriesn'Ž . � 4� � 1� n x and x , k, j � 1, 2, . . . , forms an infinite double array ofk j k j k j

iid complex random variables of mean zero and variance one. Using the
complex eigenvalues � , � , . . . , � of � , we can construct a two-dimensional1 2 n n
empirical distribution by

1
� x , y � � i � n: Re � � x , Im � � y ,� 4Ž . Ž . Ž .n k kn

which is called the empirical spectral distribution of the matrix � .n
The motivation for the study of spectral analysis of large-dimensional

random matrices comes from quantum mechanics. The energy level of a
quantum is not directly observable and it is known that the energy levels of
quantums can be described by the eigenvalues of a matrix of observations.
Since the 1960’s, the spectral analysis of large-dimensional random matrices
has attracted considerable interest from probabilists, mathematicians and
statisticians. For a general review, the reader is referred to, among others,

Ž . Ž . Ž .Bai 1993a, b , Bai and Yin 1993, 1988a, b, 1986 , Geman 1980, 1986 ,
Ž . Ž .Silverstein and Bai 1995 , Wachter 1978, 1980 and Yin, Bai and Krish-

Ž .naiah 1988 .
Most of the important existing results are on symmetric large-dimensional

random matrices. Basically, two powerful tools are used in this area. The first
is the moment approach which was successfully used in finding the limiting
spectral distributions of large-dimensional random matrices and in establish-
ing the strong convergence of extreme eigenvalues. See, for example, Bai and

Ž . Ž . Ž .Yin 1993, 1988a, b, 1986 , Geman 1980, 1986 , Jonsson 1982 and Yin, Bai
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CIRCULAR LAW 495

Ž .and Krishnaiah 1988 . The second is the Stieltjes transform which was used
Ž . Ž . Ž .in Bai 1993a, b , Bai and Silverstein 1995 , Marcenko and Pastur 1967 ,ˇ
Ž . Ž . Ž .Pastur 1972, 1973 , Silverstein and Choi 1995 and Wachter 1978, 1980 .

Unfortunately, these two approaches are not suitable for dealing with non-
symmetric random matrices. Due to lack of appropriate methodologies, very
few results were known about nonsymmetric random matrices. The only
known result is about the spectral radius of the matrix � . Bai and Yinn
�Ž . � �Ž .1986 , under the fourth moment and Geman 1986 , under some growth

�restrictions on all moments , independently proved that with probability 1,
the upper limit of the spectral radius of � is not greater than 1.n

Ž .Since the early 1950’s, it has been conjectured that the distribution � x, yn
converges to the so-called circular law, that is, the uniform distribution over
the unit disk in the complex plane. This problem has been unsolved, except

�where the entries are complex normal variables given in an unpublished
Ž .�paper of Silverstein in 1984 but reported in Hwang 1986 . Silverstein’s proof

relies on the explicit expression of the joint distribution density of the
� Ž .�eigenvalues of � see, e.g., Ginibre 1965 . Hence his approach cannot ben

Ž .extended to the general case. Girko presented 1984a, b a proof of this
conjecture under some conditions. However, the paper contained too many
mathematical gaps, leaving the problem still open. After Girko’s flaw was
found, ‘‘many have tried to understand Girko’s ‘proofs’ without success,’’
� Ž .�Edelman 1995 . When the entries are iid real normal random variables,

Ž .Edelman 1995 found the conditional joint distribution of the complex eigen-
values when the number of real eigenvalues are given and showed that the
expected empirical spectral distribution of � tends to the circular law.n

In spite of mathematical gaps in his arguments, Girko had come up with
Ž .an important idea his Lemma 1 , which established a relation between the

characteristic function of the empirical spectral distribution of � and ann
integral involving the empirical spectral distribution of a Hermitian matrix.
Girko’s Lemma 1 is presented below for easy reference.

GIRKO’S LEMMA 1. For any uv � 0, we have

m u , v � exp iux � ivy � dx , dyŽ . Ž . Ž .HHn n
2

2 2
�u � v �

� ln x� dx , z exp ius � ivt dt ds,Ž . Ž .HH H n4 iu	 � s 0

1.1Ž .

' Ž .where z � s � it, i � � 1 and � x, z is the empirical spectral distributionn
Ž . Ž .� Žof the nonnegative definite Hermitian matrix H � H z � � � zI � �n n n n

. �zI . Here and throughout this paper, � denotes the complex conjugate and
transpose of the matrix �.

Ž .It is easy to see that m u, v is an entire function in both u and v. By Bain
Ž . Ž . Ž .and Yin 1986 or Geman 1986 , the family of distributions � x, y is tight.n

Ž .And hence, every subsequence of � x, y contains a completely convergentn
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Ž .subsequence and the characteristic function m u, v of the limit must be also
entire. Therefore, to prove the circular law, applying Girko’s Lemma 1, one

Ž .needs only show that the right-hand side of 1.1 converges to its counterpart
generated by the circular law. Note that the function ln x is not bounded at
both infinity and zero. Therefore, the convergence of the right hand side of
Ž .1.1 cannot be simply reduced to the convergence of � . In view of the resultsn

Ž .of Yin, Bai and Krishnaiah 1988 , there would not be a serious problem for
the upper limit of the inner integral, since the support of � is a.s. eventuallyn

Ž � �.2bounded from the right by 2 � 
 � z for any positive 
 . In his 1984
papers, Girko failed only in dealing with the lower limit of the integral.

In this paper, making use of Girko’s lemma, we shall provide a proof of the
famous circular law.

Ž .THEOREM 1.1 Circular law . Suppose that the entries of X have finite
sixth moment and that the joint distribution of the real and imaginary part of
the entries has a bounded density. Then, with probability 1, the empirical

Ž .distribution � x, y tends to the uniform distribution over the unit disc inn
two-dimensional space.

The proof of the theorem will be rather tedious. Thus, for ease of under-
standing, an outline of the proof is provided first.

The proof of the theorem will be presented by showing that with probabil-
Ž . Ž . Ž .ity 1, m u, v � m u, v for every u, v such that uv � 0. To this end, wen

need the following steps.

1. Reduce the range of integration. First we need to reduce the range of
integration to a finite rectangle, so that the dominated convergence theo-
rem is applicable. As will be seen, proof of the circular law reduces to
showing that for every large A � 0 and small 
 � 0,

��
ln x� dx , z exp ius � ivt ds dtŽ . Ž .H H H n� s 0T1.2Ž .

��
� ln x� dx , z exp ius � ivt ds dt ,Ž . Ž .HH H

� sT 0

2 2 2'�Ž . � � � � � � 4 Ž .where T � s, t ; s � A, t � A , s � t � 1 � 
 and � x, z is the
limiting spectral distribution of the sequence of matrices H which deter-n
mines the circular law.

Ž . Ž .2. Find the limiting spectrum � �, z of � �, z and show that it determinesn
the circular law.

Ž . Ž .3. Find a convergence rate of � x, z to � x, z uniformly in every boundedn
region of z. Then, we will be able to apply the convergence rate to

Ž .establish 1.2 . As argued earlier, it is sufficient to show the following.
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4. Show that for suitably defined sequence 
 , with probability 1:n

�

1.3 lim sup ln x � dx , z � � dx , z � 0,Ž . Ž . Ž .Ž .HH H n
T 
n�� n

and

n

1.4 lim sup ln x� dx , z ds dt � 0Ž . Ž .HHH n
T 0n��

Ž . Ž .The convergence rate of � �, z will be used in proving 1.3 . The proof ofn
Ž .1.4 will be specifically treated. The proofs of the above four steps are rather
long and thus the paper is organized into several sections. For convenience, a
list of symbols and their definitions are given in Section 2. Section 3 is
devoted to the reduction of the integral range. In Section 4, we shall present
some lemmas discussing the properties of the limiting spectrum � and its
Stieltjes transform, and some lemmas establishing a convergence rate of � .n

Ž .The most difficult part of this work, namely, the proof of 1.4 , is given in
Section 5 and the proof of Theorem 1.1 is present in Section 6. Some
discussions and extensions are given in Section 7. Some technical lemmas are
presented in the Appendix.

2. List of notations. The definitions of the notations presented below
will be given again when the notations appear.

� 4 Ž .x : a double array of iid complex random variables with E x � 0,k j k j

� � 2 � �6E x � 1 and E x � �;k j k j
Ž .X � x . Its kth column vector is denoted by x .n k j k , j�1, 2, . . . , n k

'Ž . Ž . Ž .� � 1� n X � � � � .n n jk k
'Ž .R z � � � zI with z � s � it and i � � 1 . Its kth column vector isn n

denoted by r .k
� Ž . Ž .H � R z R z .n

A� denotes the complex conjugate and transpose of the matrix A.
Ž . Ž .m u, v and m u, v denote the characteristic functions of the distribu-n

tions � and the circular law �.n

F X denotes the empirical spectral distribution of X if X is a matrix.
However, we do not use this notation for the matrix � since it is tradition-n
ally and simply denoted as F .n

� � x � iy. In most cases, y � y � n�1�60 ln�1 n. But in some places, yn
denotes a fixed positive number.

Ž . Ž .� x, z denotes the empirical spectral distribution of H and � x, zn n
denotes its limiting spectral distribution.

Ž . Ž . Ž . Ž . � and  � are the Stieltjes transforms of � x, z and � x, z respec-n n
tively.

Boldface capitals will be used to denote matrices and boldface lower case
used for vectors.

The symbol K denotes the upper bound of the joint density of its real andd
imaginary parts of the entries x . In Section 7, it is also used for the upperk j
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bound of the conditional density of the real part of the entry of X when its
imaginary part is given.

Ž 1�120.
 � exp �n , a constant.n
Ž . Ž .Re � and Im � denote the real and imaginary parts of a complex number.

Ž .I � denotes the indicator function of the set in parentheses.
� � � � � Ž . �f denotes the uniform norm of the function f , that is, f � sup f x .x
� �A denotes the operation norm of the matrix A, that is, its largest singular

value.

Ž .3. Integral range reduction. Let � x, y denote the empirical spec-n
'Ž . Ž .tral distribution of the matrix � � 1� n X and � x, z denote then n n

Ž .� Žempirical distribution of the Hermitian matrix H � H � � � zI � �n n n
.zI , for each fixed z � s � it 	 CC. The following lemma is the same as Girko’s

Lemma 1. We present a proof here for completeness; this proof is easier to
Ž .understand than that provided by Girko 1984a, b .

LEMMA 3.1. For all u � 0 and v � 0, we have

m u , v � exp ius � ivy � dx , dyŽ . Ž . Ž .HHn n

3.1Ž .
u2 � v2

� g s, t exp ius � ivt dt dsŽ . Ž .HH n4 iu	

� �where HH ��� dt ds denotes the iterated integral H H ��� dt ds and
n �1 2 s � Re � �Ž .Ž .k

g s, t � � ln x� dx , z .Ž . Ž .Ý Hn n2 2n � s 0s � Re � � t � Im �Ž . Ž .Ž . Ž .k�1 k k

Ž .REMARK 3.1. When z � � for some k � n, � x, z will have a positivek n
measure of 1�n at x � 0 and hence the inner integral of ln x is not well

Ž .defined. Therefore, the iterated integral in 3.1 should be understood as the
generalized integral. That is, we cut off the n discs with centers
� Ž . Ž .�Re � , Im � and radius 
 from the s, t plane. Take the integral outsidek k
the n discs in the s, t plane and then take 
 � 0. Then, the outer integral in
Ž . � Ž . �.3.1 is defined to be the limit w.r.t. with respect to 
 � 0 of the integral
over the reduced integration range.

Ž .REMARK 3.2. Note that g s, t is twice the real part of the Stieltjesn
transform of the two-dimensional empirical distribution � , that is,n

n� dx , dy 1 1Ž .n � ,ÝHH x � iy � z n � � zkk�1

which has exactly n simple poles at the n eigenvalues of � . The functionn
Ž .g s, t uniquely determines the n eigenvalues of the matrix � . On the othern n

Ž . Ž .hand, g s, t can also be regarded as the derivative w.r.t. s of the logarithmn
of the determinant of H which can be expressed as an integral w.r.t. the
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empirical spectral distribution of H, as given in the second equality in the
Ž .definition of g s, t . In this way, the problem of the spectrum of a non-n

Hermitian matrix is transformed as one of the spectrum of a Hermitian
matrix, so that the approach via Stieltjes transforms can be applied to this
problem.

PROOF. Note that for all uv � 0,

u2 � v2 s
exp ius � ivt dt dsŽ .HH 2 22 iu	 s � t

u2 � v2 sign sŽ .
� �� exp ius � iv s t dt dsŽ .HH 22 iu	 1 � t

u2 � v2

� �� sign s exp ius � vs dsŽ . Ž .H2 iu

u2 � v2

� � � �� sin us exp � vs ds � 1.Ž .H� �2 u

Therefore,

exp iux � ivy � dx , dyŽ . Ž .HH n

2 2 nu � v 1 s
� ÝHH 2 22 iu	 n s � tk�1

�exp ius � ivt � iu Re � � iv Im � dt dsŽ . Ž .Ž .k k

2 2 nu � v 1 2 s � Re �Ž .Ž .k� ÝHH 2 24 iu	 n s � Re � � t � Im �Ž . Ž .Ž . Ž .k�1 k k

�exp ius � ivt dt dsŽ .
2 2

�u � v �
� ln x� dx , z exp ius � ivt dt ds.Ž . Ž .HH H n4 iu	 � s 0

The proof of Lemma 3.1 is complete. �

LEMMA 3.2. For all uv � 0, we have

1
m u , v � exp iux � ivy dx dyŽ . Ž .HH

2 2	 x �y �1
3.2Ž .

u2 � v2

� g s, t exp ius � ivt dt ds,Ž . Ž .HH4 iu	
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where

2 s
 2 2, if s � t � 1,� 2 2g s, t �Ž . s � t�
2 s, otherwise.

PROOF. As in the proof of Lemma 3.1, we have, for all uv � 0,

2 2u � v 1 2 s � xŽ .
m u , v � dx dyŽ . HH HH 2 22 24 iu	 	3.3Ž . x �y �1 s � x � t � yŽ . Ž .

�exp ius � ivt ds dt .Ž .

Then, the lemma follows from the fact that the inner integral on the right-
Ž . Ž .hand side of 3.3 equals g s, t , using Green’s formula. �

LEMMA 3.3. For any uv � 0 and A � 2, with probability 1, when n is
large, we have

� 4	 1
� �3.4 g s, t exp ius � ivt ds dt � exp � v AŽ . Ž . Ž .H H n ž /� �v 2� �s �A ��

and

8 A � 1 � 
Ž .
3.5 g s, t exp ius � ivt ds dt � .Ž . Ž . Ž .H H n 22 A� � � �s �A t �A

Ž .Furthermore, the two inequalities above hold if the function g s, t is re-n
Ž .placed by g s, t .

Ž .PROOF. From Bai and Yin 1986 , it follows that with probability 1, when
� � �4n is large, we have max � � 1 � 
 . Hence,k k

�

g s, t exp ius � ivt ds dtŽ . Ž .H H n
� �s �A ��

n� 1 2 s � Re �Ž .Ž .k� ÝH H 2 2n� �s �A �� s � Re � � t � Im �Ž . Ž .Ž . Ž .k�1 k k

�exp ius � ivt ds dtŽ .3.6Ž .

n	
� �� sign s � Re � exp ius � v s � Re � dsŽ . Ž .Ž . Ž .Ž .Ý H k kn � �s �Ak�1

4	 1
� �� exp � v A ,ž /� �v 2
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and

8 A � 1 � 
Ž .
3.7 g s, t exp ius � ivt ds dt � .Ž . Ž . Ž .H H n 22 A� � � �s �A t �A

Ž .Similarly, one can prove the above two inequalities for g s, t . The proof of
Lemma 3.3 is complete. �

Ž . Ž .From Lemma 3.3, one can see that the right-hand sides of 3.4 and 3.5
can be made arbitrarily small by making A large enough. The same is true

Ž . Ž .when g s, t is replaced by g s, t . Therefore, the proof of the circular law isn
reduced to showing

3.8 g s, t � g s, t exp ius � ivt ds dt � 0.Ž . Ž . Ž . Ž .H H n
2� � � �s �A t �A

Finally, define sets

� � � � 2 � � � �T � s, t : s � A , t � A and z � 1 � 
� 4Ž .
and

� � � �T � s, t : z � 1 � 
 ,� 4Ž .1

where z � s � it.

LEMMA 3.4. For all fixed A and 0 � 
 � 1, for all n,

'3.9 g s, t ds dt � 24	 
 .Ž . Ž .HH n
T1

Ž . Ž . Ž . Ž .Furthermore, when g s, t in 3.9 is replaced by g s, t , the estimation 3.9n
remains true.

PROOF. For any fixed u and v, by a polar transformation, we obtain

s � u dt dsŽ . 2	 '� 2 D � cos � d� � 24	 
 ,Ž .HH H2 2
T 0s � u � t � vŽ . Ž .1

Ž .where D � is the sum of lengths of at most two segments which are the
Ž . Ž .intersection of the ring T and the straight line s � u cos � � t � v sin � �1

2' 'Ž .0. In the above, we have used the fact that max D � � 2 4
 � 2
 � 6 
 .�

Ž . Ž . Ž . Ž .This completes the proof of 3.9 for g s, t . The proof of 3.9 for g s, t isn
similar and thus omitted. The proof of Lemma 3.4 is complete. �

Ž .Note that the right-hand side of 3.9 can be made arbitrarily small by
choosing 
 small. Thus, by Lemmas 3.3 and 3.4, to prove the circular law, one

Ž .needs only to show that, for each fixed A � 0 and 
 	 0, 1 ,

3.10 g s, t � g s, t ds dt � 0 a.s.Ž . Ž . Ž .Ž .HH n
T
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( ) ( )4. Convergence of � x, z and the limiting spectrum � x, z . Inn
Ž .this section, we shall establish a convergence rate of � x, z and discussn

Ž . Ž .properties of the limiting distribution � x, z of � x, z . Throughout then
Ž . Ž .remainder of this paper, we shall use the notations o 1 and O 1 in the sense

of ‘‘almost surely.’’ Furthermore, if the quantities represented by the symbols
Ž . Ž .o 1 or O 1 are involved with indices j, l or k, or variables � or z, then the

orders are uniform about these indices and variables.
Ž .Suppose that � �, z is the limiting spectral distribution of some conver-

Ž . Ž . Ž .gent subsequence of � �, z . Denote by  � , z and  � , z , � � x � iy,n n
Ž . Ž .y � 0, the Stieltjes transforms of � �, z and � �, z , respectively, that is,n

1 1 �1
 � , z � � dx , z � tr H � � IŽ . Ž . Ž .Hn nx � � n

and
1

 � , z � � dx , z ,Ž . Ž .H x � �

where � is a complex number with positive imaginary part. The variable z in
these symbols will be omitted when there is no confusion. We will prove the
following lemmas.

LEMMA 4.1. Suppose that the conditions of Theorem 1.1 are true. Write

� � 2� � 1 � z 13 24.1  � � 2 � �  � � � r ,Ž . Ž . Ž . Ž .n n n n� �

Ž .where r � r � , z . Then, we haven n

� � 2� � 1 � z 1
3 24.2  � 2 �  � � 0Ž .

� �

the remainder term r satisfiesn

� � � �sup r : � � x � iy with �� � x � �, u � y , z � M � o � ,� 4 Ž .n n n
4.3Ž . �1�60 �1 �1�60y � n ln n and � � n .n n

Ž .LEMMA 4.2. The limiting distribution function � x, z satisfies

�1 ' '� � � � � �4.4 � x � u , z � � x , z � 	 2 max u , u for all z .Ž . Ž . Ž . � 4
Ž .Also, the limiting distribution function � x, z is supported by the interval

Ž . � � Ž . � �x , x when z � 1 and by 0, x when z � 1, where1 2 2

1 32 4 2'� � � � � �x � �1 � 20 z � 8 z � 1 � 8 z ,Ž .1 2� �8 z
1 32 2 4' � � � � � �x � 1 � 8 z � 1 � 20 z � 8 z when z � 0,Ž .2 2� �8 z

� 4 when z � 0.
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Ž . Ž . Ž .LEMMA 4.3. Let m � and m � denote the two solutions of 4.2 other2 3
Ž . Ž .than  � . For any given constants N � 0, A � 0 and 
 	 0, 1 , there exist

� �positive constants 
 and 
 such that for all large n, � � N, y � 0 and0 1
z 	 T, we have the following:

Ž .i
� �4.5 max  � � m � � 
 ,Ž . Ž . Ž .j 0

j�2, 3

Ž . � � Ž � � � � .ii for � � x � 
 , and � � x � 
 , if z � 1 ,2 1 1 1

� �4.6 min  � � m � � 
 ,Ž . Ž . Ž .j 0
j�2, 3

Ž . � �iii for � � x � 
 ,2 1

� � � �4.7 min  � � m � � 
 � � x ,'Ž . Ž . Ž .j 0 2
j�2, 3

Ž . � � � �iv for z � 1 � 
 , and � � x � 
 ,1 1

� � � �4.8  � � m � � 
 � � x .'Ž . Ž . Ž .j 0 1

REMARK 4.1. This lemma basically says that the Stieltjes transform of the
Ž .limiting spectral distribution � �, z is distinguishable from the other two

Ž .solutions of the equation 4.2 . Here, we give a more explicit estimate of the
Ž .distance of  � from the other two solutions. This lemma simply implies

that the limiting spectral distribution of the sequence of matrices H isn
Ž .unique and nonrandom since the variation from � to � is of order O 1�nn n�1

Ž . Ž . Ž .and hence the variation from  � to  � is O 1�ny .n n�1

LEMMA 4.4. We have

��
4.9 ln x� dx , z � g s, t .Ž . Ž . Ž .H

� s 0

LEMMA 4.5. Under the conditions of Theorem 1.1, for any M � M � 0,2 1

� � � �sup � �, z � � �, z � sup � x , z � � x , zŽ . Ž . Ž . Ž .n n
� � � �M � z �M x , M � z �M1 2 1 24.10Ž .

�1�120� o n .Ž .

Ž .REMARK 4.2. Lemma 4.5 is used only in proving 1.3 for a suitably chosen

 . From the proof of the lemma and comparing with the results in Bain
Ž .1993a, b one can see that a better rate of convergence can be obtained by

Ž .considering more terms in the expansion. As the rate given in 4.10 is enough
Ž .for our purposes, we restrict ourselves to the weaker result 4.10 by a

simpler proof, rather than trying to get a better rate by long and tedious
arguments.
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PROOF OF LEMMA 4.1. This lemma plays a key role in establishing a
Ž .convergence rate of the empirical spectral distribution � �, z of H. Then

approach used in the proof of this lemma is in a manner typical in the
application of Stieltjes transforms to the spectral analysis of large-dimen-
sional random matrices. The basic idea of the proof relies on the following two

Ž . Ž .�1facts: 1 the n diagonal elements of H � � I are identically distributed
and asymptotically the same as their average, the Stieltjes transform of the

˜ �1Ž . Ž . ŽŽ . .empirical spectral distribution of H; 2 for all k � n, 1�n tr H � � Ik n�1
Ž . ŽŽare identically distributed and asymptotically equivalent to 1�n tr H �

�1 ˜. .� I , where the matrix H is defined similarly as H by � with the kthn k
column and row removed. By certain steps of expansion, one can obtain the

Ž . Ž .equation 4.1 which determines the Stieltjes transform  � of H.n
Ž . Ž .Since  � is the limit of some convergent subsequence of  � and hencen

Ž . Ž . Ž .4.2 is a consequence of 4.3 , only 4.3 need be shown.
Ž .To begin, we need to reduce the uniform convergence of 4.3 over an

Ž .uncountable set to that over a finite set. Yin, Bai and Krishnaiah 1988 ,
� � � �proved that � � 2, a.s., where � denotes the operator norm, that is,n n

the largest singular value, of the matrix � when the entries of X are alln
real. Their proofs can be translated to the complex case word for word so that
the above result is still true when the entries are complex. Therefore, with

� �probability 1, when n is large enough, for all z � M,

2 2� � � �4.11 � H � � � z � 3 � M .Ž . Ž . Ž .Ž .max n n

� � 1�60 Ž .Hence, when � � n ln n and 4.11 is true, we have for all large n

1
� � � �Ž .n 2� �� � 3 � MŽ .

and consequently,

2� �� � 1 � z 1
2 2� �r �  � 2 �  �n n n n4.12Ž . � �

� 4Mn�1�60 ln�1 n � o � .Ž .n

Ž � � � 	 �. 1�60 � 	 � �1�7If max � , � � n ln n and � � � � n , then

�2	 	 	 �2 �1�7� � � � � �  � � min y , y � � � � y n ,Ž . Ž . Ž .n n n

which implies that

� 	 � �4 �1�7 �1�144.13 r � � r � � My n � MnŽ . Ž . Ž .n n n

for some positive constant M.
� 	 � �1�4 Ž . Ž 	. ŽSuppose that z � z � n . Let � z and � z arranged in increas-k k

. Ž . Ž .� Ž .ing order be eigenvalues of the matrices H z � � � zI � � zI andn n
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Ž 	. Ž 	 .� Ž 	 .H z � � � z I � � z I , respectively. Then for any fixed � , by Lemman n
A.5, we have

� 	 � � , z �  � , zŽ . Ž .n n

n 	� �1 � z � � zŽ . Ž .k k� Ý 	� � � �n � z � � � z � �Ž . Ž .k kk�1
4.14Ž .

1�21 �	 	 	�2 � �� y z � z tr 2� � z � z I 2� � z � z IŽ . Ž .Ž . Ž .n nž /n
�2 � 	 � �1�6� y z � z 3 � 2 M � Mn .Ž .

Ž . Ž . Ž .This, together with 4.12 and 4.13 , shows that to finish the proof of 4.3 , it
is sufficient to show that

� �4.15 max r � , z � o � ,Ž . Ž . Ž .� 4n l j n
l , j�n

Ž . Ž . � 1�6 � � 1�3 �where � � x l � iy l , l � 1, 2, . . . , n and z , j � 1, 2, . . . , n arel j

� Ž . � 1�60 Ž . 1�60 � �selected so that x l � n ln n, y � y l � n ln n and for each � �n
1�60 � � �1�7n ln n with y � y , there is an l such that � � � � n ; and for eachn l

� � � � �1�4z � M, there is a j such that z � z � n .j
In the rest of the proof of this lemma, we shall suppress the indices l and j

from the variables � and z . The reader should remember that we shall onlyl j

consider those � and z which are selected to satisfy the properties de-l j
scribed in the last paragraph.

Ž . Ž .Let R � R z � r , where r � � for j � k and r � � � z. Thenn k j k j k j k k k k
H � R� R. We have

1 �1
 � � tr H � � IŽ . Ž .n n

n1 1
� ,Ý �12 � �n � �r � � � r R H � � I R rŽ .k�1 k k k k n�1 k k

4.16Ž .

where r denotes the kth column vector of R, R consists of the remainingk k
n � 1 columns of R when r is removed and H � R� R .k k k k

First, notice that
�12 � �� �r � � � r R H � � I R rŽ .k k k k n�1 k k

4.17Ž .
�12 � �� � �� Im r � � � r R H � � I R r � y.Ž .Ž .k k k k n�1 k k

By Lemma A.4, we conclude that
2 2 �5�36 2� � � �4.18 max r � 1 � z � o n ln n .Ž . Ž .Ž .k

j, l , k�n

As mentioned earlier, with probability 1 for all large n, the norm of R is
not greater than 3 � M. We conclude that with probability 1, for all large n,

Ž .�1 �the eigenvalues and hence the entries of R H � � I R are boundedk k n�1 k
Ž .2 Ž .2by 3 � M �y � 3 � M �y . Therefore, the sum of squares of absoluten
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Ž .�1 �values of entries of any row of R H � � I R is not greater thank k n�1 k
Ž .4 2 Ž .4 23 � M �y � 3 � M �y . By applying Lemma A.4 and noticing that r �n k'Ž .1� n x � ze , where e is the vector whose elements are all zero exceptk k k
the kth element which is 1, we obtain

�1� �max r R H � � I R rŽ .k k k n�1 k k
j, l , k�n

1 �1 �� tr R H � � I RŽ .Ž .k k n�1 kž n4.19Ž .
�12 �� �� z R H � � I RŽ .k k n�1 k k k /

� O y�1 n�5�36 ln2 n ,Ž .n

� � Ž .where A denote the k, k th element of the matrix A.k k
Now, denote by � � ��� � � and � � ��� � � the eigenvalues of1 n k , 1 k Žn�1.

H and those of H , respectively. Then by the relation 0 � � � � � � �k l k , l�1 l
� , and by the fact that with probability 1l�1

2� �� � 2 � z � 
 for all large n ,Ž .n

1 1 ��1 �1�tr R H � � I R � 1 � � tr H � � I ,Ž . Ž .Ž . Ž .k k n�1 k k n�1n n n
and

�1 �1tr H � � I � tr H � � IŽ . Ž .Ž . Ž .k n�1

n � � � 1l k , l�1� �Ý
� � � � � � � � �Ž . Ž .l k , l�1 1l�2

4.20Ž .

� � �y2 � 1�y,n

we conclude that

1 �1 �max tr R H � � I R � 1 � � �Ž . Ž .Ž .k k n�1 k nnj, l , k�n
4.21Ž .

� �1 �
2 �4�5� � � �y � 1�y � o n .Ž .Ž .nn n

� Ž .�1 � � 	We now estimate R H � � I R . Let � denote the kth row ofk k n�1 k k k k
˜ 	R , and R denote the matrix of the remaining n � 1 rows of R when � isk k k k

˜ ˜ � ˜ 	removed. Also, write H � R R . Note that � is just the kth row of �k k k k n
with the kth element removed. Then we have

�1�1 	 	� ˜R H � � I R � � H � � I � � � �Ž . ž /k k n�1 k k k n�1 k k kk k

�1	 ˜� H � � I �Ž .k k n�1 k� .�1	 ˜1 � � H � � I �Ž .k k n�1 k

4.22Ž .
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Applying Lemma A.4 with K � y�1, we obtaina n

1�1 �1	 ˜ ˜max � H � � I � � tr H � � IŽ . Ž .k k n�1 k k n�1ž /nj, l , k�n4.23Ž .
� O y�1 n�5�36 ln2 n .Ž .n

˜Ž .. Ž . Ž .By elementary knowledge of matrix theory, � H � � H � � H , andj j k j�2
we have

1 �1 �2 �1 �9�10˜4.24 tr H � � I �  � � 4 y n � o n .Ž . Ž . Ž .Ž .k n�1 n nž /n
By noticing

� 1 �  � � Im � 1 �  � � y ,Ž . Ž .Ž . Ž .Ž .n n

�1	 ˜ ˜� 1 � � H � � I � � yŽ .k k n�1 kž /
Ž . Ž .and by 4.23 and 4.24 , one obtains

 �Ž .n�1 �max R H � � I R �Ž .k k n�1 k k k 1 �  �j, l , k�n Ž .n

�12 	�2 ˜� �� max � y � H � � I � �  �Ž .Ž .k k n�1 k n
j, l , k�n

4.25Ž .

� o � 2 y�3 n�5�36 ln n .Ž .n

Ž . Ž .Combining estimates 4.16 � 4.25 , we conclude that

1 �  �Ž .n 2 �3 �5�36 24.26 max  � � � o � y n ln n .Ž . Ž . Ž .n n22j, l�n � �z � � 1 �  �Ž .Ž .n

Ž 2 �5 �5�36 2 ..From this, one can see that r is controlled by o � y n ln n �n n
Ž . Ž .o � and thus the error estimate 4.1 follows. The proof of Lemma 4.1 isn

complete. �

Ž .PROOF OF LEMMA 4.2. Note that the Stieltjes transform  � of the
Ž .limiting spectral distribution � �, z is an analytic solution in � on the upper
Ž .half plane y � 0 to the equation 4.2 . It can be continuously extended to the

Ž . �‘‘closed’’ upper plane y � 0 but � � 0 . By way of the Stieltjes transform see
Ž . Ž .� Ž .Bai 1993a or Silverstein and Choi 1995 , it can be shown that � �, z has a

Ž � � . Ž .continuous density probably excluding x � 0 when z � 1 , say p �, z , such
that

x
� x , z � p u , z duŽ . Ž .H

0

Ž . �1 Ž Ž .. Ž .and p x, z � 	 Im  x . Since p x, z is the density of the limiting
Ž . Ž . Ž � �.2spectral distribution � �, z , p x, z � 0 for all x � 0 and x � 2 � z . Let

Ž . Ž . Ž . Ž .x � 0 be an inner point of the support of � �, z . Write  x � g x � ih x .
Ž .Then, to prove 4.4 , it suffices to show

'h x � max 2�x , 1 .Ž . � 4
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Ž .Rewrite 4.2 for � � x as

� � 21 � z 1
2 � 2 � 1 � � � 0.

x x

Comparing the imaginary and real parts of both sides of the above equation,
we obtain

1
4.27 2 g x � 1 � .Ž . Ž .Ž . 2 2x g x � h xŽ . Ž .Ž .

and

� � 21 � z g xŽ .22h x � � g x � 1 �Ž . Ž .Ž . 2 2x x g x � h xŽ . Ž .Ž .
1 1 1

� � �22 2 2x 2 xh xŽ .4 x g x � h xŽ . Ž .Ž .
4.28Ž .

1 1 1
� � � .2 4x 2 xh x4 x h x Ž .Ž .

Ž . � 4'This implies h x � max 2�x 1 , because substituting the reverse inequal-
Ž . Ž Ž . . Ž'ity h x � 2�x or h x � 1 will lead to a contradiction if 0 � x � 2 or

. Ž .x � 2, correspondingly . Thus, 4.4 is established.
Ž . Ž .Now, we proceed to find the boundary of the support of � �, z . Since � �, z

has no mass on the negative half line, we need only consider x � 0. Suppose
Ž . Ž .h x � 0. Comparing the real and imaginary parts for both sides of 4.2 and

� Ž . �then making x approach the boundary namely, h x � 0 , we obtain
3 2 � � 2x g � 2 g � g � 1 � z g � 1 � 0Ž . Ž .

and
2 � � 24.29 x 3g � 4 g � 1 � 1 � z � 0.Ž . Ž .

Thus,
2 2� � � �1 � z g � 1 3g � 1 � 1 � z g g � 1 .Ž . Ž .Ž . Ž .

� �For z � 1, the solution to this quadratic equation in g is

2' � ��3 
 1 � 8 z 1
� �4.30 g � g � � if z � 1Ž . 2 ž /3� �4 � 4 z

Ž . � �which, together with 4.29 , implies that, for z � 1,

� � 21 � z
x � �1, 2 g � 1 3g � 1Ž . Ž .

1
 32 4 2'� � � � � �� 1 � 20 z � 8 z 
 1 � 8 z , if z � 0,Ž .½ 52� � �� 8 z�x � �� and x � 4, if z � 0.1 2

4.31Ž .
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� � Ž .Note that 0 � x � x when z � 1. Hence, the interval x , x is the1 2 1 2
Ž . Ž . � �support of � �, z since p x, z � 0 when x is very large. When z � 1,

� � Ž .x � 0 � x . Note that for the case z � 1, g x � 0 which contradicts the1 2 1
Ž .fact that  x � 0 for all x � 0 and hence x is not a solution of the1

Ž . Ž . � �boundary. Thus, the support of � �, z is the interval 0, x . For z � 1, there2
� Ž .2 �is only one solution x � �1� g g � 1 � 27�4, which can also be ex-2

Ž . Ž . Ž .pressed by 4.31 . In this case, the support of � �, z is 0, x . The proof of2
Lemma 4.2 is complete. �

Ž .PROOF OF LEMMA 4.3. We first prove that  � does not coincide with
Ž .other roots of the equation 4.2 for y � 0 and � � x . Otherwise, if for some1, 2

Ž . Ž .� ,  � is a multiple root of 4.2 , then it must be also a root of the derivative
Ž .of the equation 4.2 , that is,

� � 2� � 1 � z
24.32 3 � 4 � � 0.Ž .

�

Ž . Ž .Similar to the proof of Lemma 4.2, solving equations 4.2 and 4.32 , one
Ž .obtains � � x or x and  is the same as g given in 4.30 . Our assertion is1 2

proved.
Ž .We now prove 4.7 . Let  � � be either m or m . Since both  and  � �2 3

Ž .satisfy 4.2 , we obtain
2 � � 23 � � 4 � � 1 � 1 � z ��Ž . Ž . Ž .

4.33 � � � .Ž .
3 � � 2 � �Ž .

Ž . Ž . Ž .Write � �  � �  x . By 4.29 , we haveˆ 2

2 � � 23 � � 4 � � 1 � 1 � z ��Ž . Ž . Ž .
2 � � 2� 3 � � 4 � � 1 � 1 � z ��Ž . Ž . Ž .

22 � �� 3 x � 4 x � 1 � 1 � z �xŽ . Ž . Ž .2 2 24.34Ž .

� � 21 � z x � �Ž .Ž . 2� � 6 x � 4 � 3� � .Ž .ˆ ˆ2 x �2

Ž . Ž .From 4.2 and 4.29 , it follows that
22 � �0 � 3 x � 4 x � 1 � 1 � z �� �Ž . Ž . Ž . ˆ2 2

2 3� 3 x � 2 � � �Ž . ˆ ˆ2

� � 2x � �  x 1 � z � 1Ž . Ž . Ž .Ž .2 2�
x �24.35Ž .

2� 3 x � 2 � � �Ž . ˆ ˆ2

2� �x � �  x � � 1 � z � 1Ž . Ž .Ž . Ž .ˆ2 2� .
x �2
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2 2'Ž .Ž � � . Ž � � .Note that  x 1 � z � 1�4 � 1�4 1 � 1 � 8 z � 1�2. Equation2
Ž .4.35 implies that

� �1 x � �2
� � � �4.36 � � min , � c x � � ,'Ž . ˆ 1 2(2 � �ž /6  x � 14M Ž .Ž .2

for some positive constant c . Note that  is continuous in the rectangle1
�Ž . 4 Ž� , z ; z 	 T, x � 
 � x � x , 0 � y � N , where x � 4 corre-2, min 1 2, max 2, min

. Ž 2 .�Ž 2 .3�2 2sponding to z � 0 and x � 1�8M 1 � 8 M � 1 � 20M �2, max
4 2 4'� Ž � � .8 M corresponding to z � M � A � A . Therefore, we may select a

� � � � � �positive constant 
 such that for all z � M and � � x � 
 , � �ˆ1 2 1
1 12 4Ž . Ž . Ž . � Ž . �min , c �M . Then, from 4.33 and 4.34 and the fact that when � � � ,18 8

� �3 � � 2 � � � � 4,Ž . Ž .
we conclude that

2� �1 1 1 � z x � �Ž .Ž . 2
� �� � � min , � 6 x � 4 � 3� �Ž . Ž .ˆ ˆ2ž /8 4 x �2

1 1 1
2� � � �� min , c x � � � M x � �'1 2 2ž /8 8 36

4.37Ž .

� �� c x � � .'2 2

Ž .This concludes the proof of 4.7 .
Ž . Ž . Ž .The proof of 4.8 is similar to that of 4.7 . Checking the proof of 4.7 , one

Ž . Ž .finds that equations 4.33 � 4.35 are still true if x is replaced by x . The2 1
� �rest of the proof depends on the fact that for all z 	 T, z � 1 � 
 and

� � � Ž . Ž . �� � x � 
 , 3 � � 2 � � � has a uniform upper bound and � can beˆ1 1
made as small as desired provided 
 is small enough. Indeed, this can be1

� �done because x has a strictly positive minimum x at z � 1 � 
 , and1 1, min
Ž . �Ž .hence,  � is uniformly continuous in the rectangle � , z ; z 	 T, x �1, min

4
 � x � x , 0 � y � N , provided 
 is chosen so that x � 
 � 0.1 1, max 1 1, min 1
Ž .We claim that 4.6 is true. If not, then for each k, there exist � and zk k
� � Ž � � � � .with z 	 T and � � x � 
 and � � x � 
 if z � 1 � 
 , such thatk k 2 1 k 1 1 k

1
� �min  � � m � � .Ž . Ž .k j k kj�2, 3

� 	4 	 	Then, we may select a subsequence k such that � � � and z � z 	 Tk 0 k 0
� � � � � �and � � x � 
 . If z � 1 � 
 , we also have � � x � 
 . For at least0 2 1 0 0 1 1

one of j � 2 or 3, say j � 2,
1

� �	 	 � � m � � .Ž . Ž . 	k 2 k k
Ž . Ž . Ž . Ž .If � � 0, by continuity of  � and m � , we shall have  � � m �0 2 0 2 0

Ž . Ž .which contradicts the fact that  � does not coincide with m � except2
� � � �� � x or � � x when z � 1. It is impossible that � � 0 and z � 1 � 
 ,2 1 0 0

Ž . Ž � � 2 . � Ž . �	 	since  � � 1� z � 1 while min m � � �. It is also impossiblek 0 j�2, 3 j k
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� � Ž Ž ..	that � � 0 and z � 1 � 
 , since in this case, we should have Re  � �0 0 k
Ž . Ž � � 2 . Ž Ž ..	 	��, m � � 1� z � 1 and Re m � � �� which follows from2 k 0 3 k

Ž . Ž . Ž . Ž .	 	 	 � � m � � m � � �2. This concludes the proof of 4.6 .k 2 k 3 k
Ž . Ž .The assertion 4.5 follows from the fact that equation 4.2 has no three

Ž .identical roots for any � and z, since the second derivative of 4.2 gives
Ž . Ž . Ž . � � �2�3 equals neither  x nor  x . The proof of Lemma 4.3 is then2 1

complete. �

Ž . Ž . Ž . Ž . Ž .PROOF OF LEMMA 4.4. For x � 0, we have: 1  x � 0 real ; 2  x � 0
Ž . Ž .as x � �� and 3 from 4.2 , as x�0,

2
 ''� � � � � �x  x � 1 � z , if z � 1,Ž .
3�4.38Ž . '� � � �x  x �1, if z � 1,Ž .

�12� � � � � x � z � 1 , if z � 1.Ž . Ž .
0 Ž .Thus, for any C � 0, the integral H  x dx exists. We have by exchanging�C

the integration order,
� 10 C C

 x dx �  �x dx � � du, z dxŽ . Ž . Ž .H H H H u � x�C 0 0 0

�

� ln C � u � ln u � du, zŽ . Ž .H
0

4.39Ž .

� �

� ln C � ln 1 � u�C � du, z � ln u� du, z .Ž . Ž . Ž .H H
0 0

Differentiating both sides with respect to s, we get
� �� �

ln u� du, z � ln 1 � u�C � du, zŽ . Ž . Ž .H H
� s � s0 04.40Ž .

�0
�  x dx .Ž .H

� s�C

�The reasons for the exchangability of the order of the integral and derivative
Ž . �are given after 4.47 .

Ž .Differentiating both sides of 4.2 with respect to s and x, we obtain
2� �� x � 1 � z 2 s xŽ .

24.41  x 3 x � 4 x � � ,Ž . Ž . Ž . Ž .
� s x x

and
2 2� � � �� x � 1 � z  x 1 � z � 1Ž . Ž .

2 x 3 x � 4 x � � .Ž . Ž . Ž . 2� x x x

Comparing the two equations, we get
� 2 sx x � 2 s �Ž .

4.42  x �  x � �  x ,Ž . Ž . Ž . Ž .22� s � x � x� �1 �  x 1 � zŽ . 1 �  xŽ . Ž .Ž .
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where the last equality follows from the fact that

� � 2 � � 2z 1 1 �  x 1 � zŽ . Ž .
4.43 x � � � � ,Ž . 2 2 x 1 �  xŽ . Ž .Ž .1 �  x  x 1 �  xŽ . Ž . Ž .Ž . Ž .

Ž .which is a solution of 4.2 .
Ž .By 4.42 , we obtain

� � 2 s0 0
 x dx � �  x dxŽ . Ž .H H 2� s � x�C �C 1 �  xŽ .Ž .

1Ž . 0�� �2 s dH 2Ž . �C 1 � Ž .
4.44Ž .

2 s 2 s
� � .

1 �  0 1 �  �CŽ . Ž .�

Ž .Letting x�0 in 4.2 , we get


 2� ��, if z � 1,� 14.45  0 �Ž . Ž . 2� � �, if z � 1.2�� �z � 1

Ž .We also have  �C � 0 as C � �. Thus, we get
�0

4.46  x dx � �g s, t .Ž . Ž . Ž .H
� s�C

Ž .Note that 4.42 is still true for x � 0. Therefore, by noticing

� dx , z �dx � 	�1 Im  x � p x , z ,Ž . Ž . Ž .Ž .
we have

��
ln 1 � u�C � du, zŽ . Ž .H

� s 0

�1 �
� Im ln 1 � u�C  u duŽ . Ž .Ž .Hž /	 � s0

1 2 s �2Ž � �.2� z� Im ln 1 � u�C  u duŽ . Ž .H 2ž /	 � u0 1 �  uŽ .Ž .
2� � � �2 s 2 � z 1 �2Ž . Ž � �.2� z� Im  u duŽ .H 2ž /C	 � u0 1 �  uŽ .Ž .

4.47Ž .

2� � � � �2 s 2 � z 1Ž .
� dH 2C	 0 1 � Ž .

2� � � �s 2 � zŽ .
� � 0 as C � �.

C
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Ž .In the first equality above and in 4.40 , the justification of the exchangability
of the order of the integral and derivative follows from the dominated
convergence theorem and the following facts:

Ž . � � ŽŽ .Ž Ž ..i When z � 1, Im ��� s  u is continuous in u and vanishes when
u � x and u � x .2 1

Ž . � � ŽŽ .Ž Ž ..ii When z � 1, for u � 0 Im ��� s  u is continuous in u and
2Ž . � � 2 � Ž .vanishes when u � x , and for small u, by u u � �1 � z see 4.2 and2

Ž .�4.41 ,

� � � �� 2 s u 4 sŽ .
Im  u � �Ž .Ž . 22ž / 3� s � � � � 23u u � 4u u � u � 1 � zŽ . Ž . ' � �xu 1 � zŽ .

which is integrable w.r.t. u.
Ž . � � 3Ž .iii When z � 1 and u small, by u u � �1,

�
�2�3� �Im  u � 4 s uŽ .Ž .ž /� s

which is also integrable w.r.t. u.

Ž . Ž . Ž . Ž .The assertion 4.9 then follows from 4.40 , 4.46 and 4.47 and Lemma 4.4
is proved. �

Ž .PROOF OF LEMMA 4.5. We shall prove 4.10 by employing Corollary 2.3 of
Ž . Ž .Bai 1993a . For all z 	 T, the supports of � �, z are commonly bounded.

Therefore, we may select a constant N such that, for some absolute constant
C,

� �� �, z �� � , zŽ . .n

� �� C  � �  � dxŽ . Ž .H nž � �x �N

�1 � ��y sup � x � y , z � � x , z dyŽ . Ž .Hn /� �y �2 yx n

4.48Ž .

� � 1�2� C  � �  � dx � y ,Ž . Ž .H n nž /� �x �N

Ž .where the last step follows from 4.4 .
Ž . Ž . Ž . Ž .Denoted by m � �  � , m � and m � the three solutions of the1 2 3

Ž . Ž . Ž .equation 4.2 . Note that  � is analytic in � for Im � � 0. By a suitable
selection, the three solutions are all analytic in � on the upper half complex
plane.

Ž . Ž .By Lemma 4.3, there are constant 
 and 
 such that 4.5 � 4.8 hold. By0 1
Lemma 4.1, there is an n such that for all n � n ,0 0

4 3� �4.49  � m  � m  � m � o � � 
 � .Ž . Ž . Ž . Ž . Ž .n 1 n 2 n 3 n 0 n27
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� � Ž �Now, choose an � � x � iy with x � N, y � 0 and min x �0 0 0 0 0 k�1, 2 0
�. Ž . Ž .x � 
 . For a fixed z 	 T, as argued earlier,  � converges to  �k 1 n 0 0

when n goes to infinity along some subsequence. Then, for infinitely many
� Ž . Ž . �n � n ,  � �  � � 
 �3. Hence,0 n 0 0 0

� �min  � � m �Ž . Ž .Ž .n 0 k 0
k�2, 3

2� � � �� min  � � m � �  � �  � � 
 .Ž . Ž . Ž . Ž .Ž . .0 k 0 n 0 0 03
k�2, 3

Ž .This and 4.49 imply, for infinitely many n,
1� �4.50  � �  � � o � � 
 � .Ž . Ž . Ž . Ž .n 0 0 n 0 n3

12 �1�120Ž .Let n be also such that 2� y n � 
 n � 
 �3. We claim that0 n 0 0 0 03
Ž . Ž .4.50 is true for all n � n . In fact, if 4.50 is true for some n � n , then0 0

� � � � � � � �  � �  � �  � �  � �  �Ž . Ž . Ž . Ž . Ž . Ž .n�1 0 0 n�1 0 n 0 n 0 0

1 �1�120� 2� y n � 
 n � 
 �3.Ž .n 0 03

� Ž . Ž .�Here we have used the trivial fact that � �, z � � �, z � 2�n whichn n�1
� Ž . Ž . � Ž .implies  � �  � � 2� y n . This shows thatn�1 0 n 0 n

2� �min  � � m � � 
 ,Ž . Ž .Ž .n�1 0 k 0 03
k�2, 3

Ž .which implies that 4.50 is true for n � 1. This completes the proof of our
assertion.

Ž . � � Ž �Now, we claim that 4.50 is true for all n � n and � � N, min x �0 k�1, 2
�.x � 
 , that is,k 1

1� �4.51  � �  � � o � � 
 � .Ž . Ž . Ž . Ž .n n 0 n3

Ž . Ž . Ž .By 4.6 and 4.49 , we conclude that 4.51 is equivalent to
2� �4.52 min  � � m � � 
 .Ž . Ž . Ž .Ž .n k 03

k�2, 3

Ž .Note that both  and m � , j � 1, 2, 3, are continuous functions in both �n j

Ž . Ž .and z. Therefore, on the boundary of the set of points � , z at which 4.51
1� Ž . Ž . � Ž � Ž .does not hold, we should have  � �  � � 
 � and min  �n 0 n k�2, 3 n3

2Ž . �.�m � � 
 . This is impossible because these two equalities contradictk 03
Ž .4.6 .

� � Ž . Ž . Ž .For � � x � 
 , k � 1 or 2, 4.5 , 4.7 and 4.8 imply thatk 1

� � � �4.53  � �  � � o � � � � x .'Ž . Ž . Ž . ž /n n k

Ž . Ž . Ž .This, together with 4.48 and 4.51 , implies 4.10 . The proof of Lemma 4.5 is
complete. �

( )5. Proof of 1.4 . In this section, we shall show that probability 1,

n

5.1 ln x� dx , z dt ds � 0,Ž . Ž .H H n
z	T 0

Ž 1�120.where 
 � exp �n .n
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Denote by Z and Z the matrix of the first two columns of R and that1
formed by the last n � 2 columns. Let � � ��� � � denote the eigenvalues1 n
of the matrix R� R and let � � ��� � � denote the eigenvalues of Z�Z.1 n�2

Ž � .Then, for any k � n � 2, we have � � � � � and det R R �k k k�2
Ž � . Ž � . Ž � .�1 �det Z Z det Z QZ , where Q � I � Z Z Z Z . This identity can be writ-1 1

ten as
n n�2

�ln � � ln det Z QZ � ln � .Ž . Ž . Ž .Ž .Ý Ýk 1 1 k
k�1 k�1

If l is the smallest integer such that � � 
 , then � � 
 and � � 
 .l n l�1 n l�2 n
Therefore, we have


 1n
0 � ln x� dx , z � ln �Ž . ÝH n kn0 � �
k n

1 1 2
�� min ln det Z QZ , 0 � ln � � ln max � , 1 .� 4Ž . Ž .Ž . Ž .Ý1 1 k nn n n� �
k n

5.2Ž .

Ž . Ž . Ž Ž � ..To prove 5.1 , we first estimate the integral of 1�n ln det Z QZ with1 1
respect to s and t. Note that with probability one, the rank of the matrix Q is
2. Hence, there are two orthogonal complex unit vectors � and � such that1 2
Q � � � � � � � �. Denote the two column vectors of Z by r and r . Then we1 1 2 2 1 1 2
have

1 1 2� � � � �� �ln det Z QZ � ln � r � r � � r � r .Ž .Ž . Ž .1 1 1 1 2 2 2 1 1 2n n

Define the random sets

� � � � � � �14 � � � �EE � s, t : � r � r � � r � r � n , � � n , � � nŽ .� 41 1 2 2 2 1 1 2 1 2

and

� � � � � � �14 � � � �FF � s, t : � r � r � � r � r � n , � � n , � � n .Ž .� 41 1 2 2 2 1 1 2 1 2

It is trivial to see that

� � � � �25.3 P � � n or � � n � 2n .Ž . Ž .1 2

� � � � Ž � . � � �When � � n and � � n, we have det Z QZ � � r � r �1 2 1 1 1 1 2 2
� � � 2 Ž .4� r � r � 4 n � M . Thus,2 1 1 2

1
� �1� �5.4 I ln det Z QZ dt ds � Cn ln n � 0.Ž . Ž .Ž .H EE 1 1n z	T

On the other hand, for any 
 � 0, we have

1
�� �P I ln det Z QZ dt ds � 
Ž .Ž .H FF 1 1ž /n z	T

5.5Ž .
1 2� � � �� �� E I ln � r � r � � r � r dt ds.Ž .H FF 1 1 2 2 2 1 1 2
 n z	T
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' 'Note that the elements of n r and n r are independent of each other1 2
and the joint densities of their real and imaginary parts have a common
upper bound K . Also, they are independent of � and � . Therefore, byd 1 2
Corollary A.2, the conditional joint density of the real and imaginary parts of

� � � �' ' ' 'n � r , n � r n � r and n � r , when � and � are given, is1 1 2 2 2 1 1 2 1 2
Ž .4bounded by 2 K n . Hence, the conditional joint density of the real andd

imaginary parts of � � r , � � r , � � r and � � r , when � and � are given, is1 1 2 2 2 1 1 2 1 2
4 4 8 Ž � � .	 Ž � � .	bounded by K 2 n . Set x � � r , � r and y � r � , �r � . Note thatd 1 1 2 1 2 2 2 1

by Corollary A.2, the joint density of x and y is bounded by K 4 2 rn8.d
� � � � Ž � � � �. � �If � � n, � � n, then max x , y � n � z � n � M. Applying Lemma1 2

Ž .A.3 with f t � ln t, M � � � 1, we obtain
2

�� �� �14E I ln x y � , � dt dsŽ .H ž /Ž �x y � � n , �� � � n , �� � � n. 1 21 25.6Ž . n z	T

� Cn12 n�14 � Cn�2 ,
for some positive constant C.

Ž . Ž . Ž .From 5.3 , 5.5 and 5.6 , it follows that
1

�� �5.7 I ln det Z QZ dt ds � 0 a.s.Ž . Ž .Ž .H FF 1 1n z	T

Ž .Next, we estimate the second term in 5.2 . We have
n�21 1

�119�120ln � � n 
Ž .Ý Ýk nn �k� �
 k�1k n

�1��119�120� n 
 tr Z ZŽ .Ž .n

n 1
�119�120� n 
 Ýn �r Q rk k kk�3

5.8Ž .

n 1
�119�120� n 
 ,Ýn 2 2 2� � �� � � � � �r � � r � � r �k�3 k k1 k k 2 k k3

where for each k, � , j � 1, 2, 3, are orthonormal complex vectors such thatk j

Q � � � � � � � � � � � � which is the projection matrix onto the or-k k1 k1 k 2 k 2 k3 k3
thogonal complement of the space spanned by the 3, . . . , k � 1, k � 1, . . . , n

Ž .columns of R z .
Ž .As in the proof of 5.7 , one can show that the conditional joint density of

the real and imaginary parts of r�� , r�� and r�� when � , j � 1, 2, 3k k1 k k 2 k k3 k j
are given, is bounded by CK n12 . Therefore, we haved

n dt ds
�119�120n 
 EÝ Hn 2 2 2� � �ž /� � � � � �r � � r � � r �z	Tk�3 k k1 k k 2 k k3

du ��� du1 6�119�120 3 13� Cn 
 K n ��� � nH Hn d 2 2ž /2 2 u � ��� �uu � ��� �u �1 1 61 6

5.9Ž .

� Cn13
 by a polar transformationn

� Cn�2 .
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Therefore, by the Borel�Cantelli lemma,

n dt ds
�119�120n 
 � 0 a.s.Ý Hn 2 2 2� � �ž /� � � � � �r � � r � � r �z	Tk�3 k k1 k k 2 k k3

and hence, with probability 1,

n�21 dt ds
�119�1205.10 ln � dt ds � n 
 � 0.Ž . Ž .Ý ÝH Hk nn �z	T z	T k� �
 k�1k n

Ž .Finally, we estimate the integral of the third term in 5.2 . By Yin, Bai and
Ž . Ž� � � �.2 Ž � �.2Krishnaiah 1988 , we have � � � � z � 2 � z , a.s. We concluden n

that

2
5.11 ln max � , 1 dt ds � 0 a.s.Ž . Ž .Ž .H nn z	T

Ž . Ž . Ž . Ž .Hence, 5.1 follows from 5.7 , 5.10 and 5.11 .

6. Proof of Theorem 1.1. In Section 3, the problem is reduced to
Ž . Ž . Ž .showing 3.10 . Recalling the definitions of g s, t and g s, t , we have byn

integration by parts,

g s, t � g s, t exp ius � itv dt dsŽ . Ž . Ž .Ž .H n
z	T

� � iu� s, t dt dsŽ .H
z	T

� � A , t dt � � �A, t dtŽ . Ž .H
2� �t �A

2 2'� � 1 � 
 � t , t dtŽ .H ž /
� �t �1�


6.1Ž .

2 2'�� � 1 � 
 � t , t dtŽ .ž /
2 2'� � 1 � 
 � t , t dtŽ .H ž /

� �t �1�


2 2'�� � 1 � 
 � t 1 , t dt ,Ž .ž /
where

�

� s, t � exp ius � itv ln x � dx , z � � dx , z .Ž . Ž . Ž . Ž .Ž .H n
0

When A is large enough, with probability 1, for all large n, the support of
Ž . Ž .2� �, 
 A � it is uniformly bounded by A � 3 � 1 from the left and byn
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Ž 2 .2A � A � 3 from the right. By Lemma 4.5, we have

� 
A, t dtŽ .H
2� �t �A

2 2Ž .A�A �3� ln x � dx , 
 A � it � � dx , 
 A � it dtŽ . Ž .Ž .H H n
2 2� � Ž .t �A A�3

� 0 a.s.
Ž 1�120.Let 
 � exp �n . In Section 5, we proved thatn


n
ln x� dx , z dt ds � 0, a.s.Ž .H H n

z	T 0

Ž .By 4.4 , we have

n

ln x� dx , z dt ds � 0.Ž .H H
z	T 0

By Lemma 4.5, we have

2 2Ž .A�A �3 ln x � dx , z � � dx , z dt dsŽ . Ž .Ž .H H n
z	T 
n

3 � � � �� 4CA ln 
 max � �, z � � �, z � 0.Ž . Ž . Ž .n n
z	T

This proves that

iu � s, t dt ds � 0.Ž .H
z	T

Similarly, we can prove that

2 2'
� 1 
 
 � t , t dt � 0.Ž .H ž /
� �t �1



The proof of Theorem 1.1 is complete. �

7. Comments and extensions.

7.1. Relaxation of conditions assumed in Theorem 1.1.
7.1.1. On the moment of the underlying distribution. Reviewing the defini-

tion of 
 and checking the proofs given in Sections 5 and 6, one finds thatn
� Ž . � � Ž . Ž .� Ž . Ž .ln 
 � 1�� and max � �, z � � �, z � o � . Hence, 1.3 is al-' 'n n z 	 T n n

Ž . Ž �M .ways true for any choice of � � 0 . The rate of 
 is required to be o nn n
Ž .for some large M, for the proof of 5.9 . Reexaming the proofs of Lemmas 4.1,

� � 4�
 � Ž .4.5 and A.4, one may find that if E x � �, then max � �, z �11 z 	 T n
Ž .� Ž �� .� �, z � o n for some � � 0. Therefore, the circular law is true when the

moment condition in Theorem 1.1 is reduced to the existence of the 4 � 
 th
moment. The details of the proof are omitted.

7.1.2. On the smoothness of the underlying distribution. The purpose of this
subsection is to consider the circular law for real random matrices whose
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entries have a bounded density. The circular law for this case does not follow
from Theorem 1.1 since the joint distribution of the real and imaginary parts
of the entries does not have a joint two-dimensional density. In the following,
we shall consider a more general case where the conditional density of
one linear combination of the real and imaginary parts of the entry when
another is given is uniformly bounded. Without loss of generality, we assume

Ž . Ž . Ž . Ž .that the two linear combinations are Re x cos � � Im x sin � and11 11
Ž . Ž . Ž . Ž .Re x sin � � Im x cos � . Note that the proof of the circular law for the11 11

matrix X is equivalent to that for the matrix ei� X under the condition that
the conditional density of the real part when the imaginary part is given is
uniformly bounded. We shall establish the following theorem.

THEOREM 7.1. Assume that the conditional density of the real part of the
entries of X when given the imaginary part is uniformly bounded and assume
that the entries have finite 4 � 
 moment. Then the circular law holds.

SKETCH OF THE PROOF. A review of the proof of Theorem 1.1 reveals that it
Ž . Ž .is sufficient to prove the inequalities 5.7 and 5.10 under the conditions of

Ž . Ž .Theorem 7.1. We start the proof of 5.7 from 5.5 . Rewrite

� � � 2 � � 2 � � � 2ln y x � ln y � ln y x ,˜Ž . Ž . Ž .
� �where y � y� y .˜

Denote by x and x the real and imaginary parts of the vector x .jr ji j'� �Without loss of generality, we assume that � � 1� 2 . Then, we havei r

� � 2 � � �y � r � � � � � rŽ .2 1 1 2 2 2

2	 	� � r � � r .Ž .1r 2 r 1 i 2 i

Applying Lemma A.1, we find that the conditional density of � 	 r � � 	 r1r 2 r 1 i 2 i
when � , � and r are given is bounded by CK n. Therefore, by Lemma1 2 2 i d
A.3,

1 2� �2 �14E I ln y dt dsŽ .H ž /Ž � y � � n , �� � � n.2n z	T

1
	 	 2 �14� E E IH ž Ž �� r �� r � � n , �� � � n.1 r 2 r 1 i 2 i 2n z	T7.1Ž .

2	 	� ��ln � r � � r � , � , r dt dsŽ . /1r 2 r 1 i 2 i 1 2 2 i

n�7
�7� CK ln x dx � Cn ln n ,Hd

0

for some positive constant C.
Rewrite

2 22 	 	 	 	�� �y x � � r � � r � � r � � r ,Ž . Ž .˜ 1 1r 1 1 i 2 1r 2 1 i
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where
	 		 	 	 	� � y , y � , � , �� , � , � � y , y �� , �� , � , ��Ž . Ž .Ž .˜ ˜ ˜Ž .1 r i 1r 2 r 1 i 2 i 2 r i 1 i 2 i 1r 2 r
	 		 	 	 	� � y , y � , � , � , �� , � � y , y � , �� , �� , �� .Ž . Ž .˜ ˜ ˜ ˜Ž . Ž .1 r i 1 i 2 i 1r 2 r 2 r i 1r 2 r 1 i 2 i

� � 2 � � 2 � �It can be verified that � � � � 1. Thus, we may assume that � �1 2 1
	 	'1� 2 . By Lemma A.1, the conditional density of � r � � r when � , � , y1 1r 1 1 i 1 2

and r are given is bounded by 2 K n. Consequently, we can prove that1 i d

1 2�� �� �7E E I ln y x � , � , y, r dt ds˜Ž .H ž /Ž � y x � � n . 1 2 1 i˜n z	T

1 2	 	� �	 	 2 �7� E E I ln � r � � r � , � , y, r dt dsŽ .H ž /Ž � � r �� r � � � n . 1 1r 1 1 i 1 2 1 i1 1 r 1 1 in z	T

n�7
�7� CK ln x dx � Cn ln n.Hd

0

Ž . Ž .This, together with 7.1 , completes the proof of 5.7 .
Ž .Now, we prove 5.10 . For each k, consider the 2n � 6 matrix A whose first

Ž 	 	 .	three columns are � , �� , j � 1, 2, 3, and other three columns arejk r jk i
Ž 	 	 .	 	� , � . Since � are orthonormal, we have AA � I . Using the samejk i jk r k j 6
approach as the proof of Lemma A.1, one may select a 6 � 6 submatrix A of1

� Ž . � �3A such that det A � n . Within the six rows of A , either three rows come1 1
from the first n rows of A or three come from the last n rows. Without loss of
generality, assume that A has three rows coming from the first n rows of A.1
Then, consider the Laplace expansion of the determinant of A with respect1
to the first three rows. Within the 20 terms, we may select one whose

1 �3absolute value is not less than n . This term is the product of a minor20

from the first three rows of A and its cofactor. Since the absolute value of the1
entries of A is not greater than 1, the absolute value of the cofactor is not
greater than 6. Therefore, the absolute value of the minor is not less than
1 �3n . Suppose the three columns of the minor come from the first, second20

Žand fourth columns of A, that is, from � , � and � the proof of the1k r 2 k r 1k i
.other 19 cases is similar . Then, as in the proof of Lemma A.1, one can prove

that the conditional joint density of � 	 r , � 	 r and � 	 r when �1k r k r 2 k r k r 1k i k r jk
4.5 Ž .and r are given is uniformly bounded by 120K n . Finally, from 5.8 , wek i d

have

n 1

 Ýn 2 2 2� � �� � � � � �r � � r � � r �k�3 k k1 k k 2 k k3

n 1
� 
 .Ýn 2 2 2	 	 	 	 	 	r � � r � � r � � r � � r � � r �Ž . Ž . Ž .k�3 k r k1r k i k1 i k r k 2 r k i k 2 i k r k1 i k i k1r

Using this and the same approach as in Section 5, one may prove that the
Ž .right-hand side of the above tends to zero almost surely. Thus, 5.10 is

proved and consequently, Theorem 7.1 follows. �
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7.1.3. Extension to the nonidentical case. Reviewing the proofs of Theorem
1.1, one finds that the moment condition and the distributional identity of the
entries of the random matrix were used only in Lemma A.4, for establishing
the uniform convergence rate of certain quadratic forms. One requirement for

1�3 Ž 1�2�
this purpose is that the variables can be truncated at n actually, n is
.good enough as discussed in subsection 7.1.1 . Two other requirements are

� Ž . � Ž �1 . � Ž � � 2 . � Ž .max E X � o n and max E X � 1 � o 1 . There-j , j m , j , j j , j m , j , j1 2 1 2 1 2 1 2

fore, we have the following theorem.

THEOREM 7.2. In additional to the smoothness condition assumed in
Theorem 1.1, we further assume that

� � �1
1�2�
max E X I � o n ,Ž .Ž .j , k Ž � X � � n .j , kj , j1 2

� � � 2 �1�2�
max E X I � 1 � o 1Ž .ž /j , j Ž � X � � n .1 2 j , kj , j1 2

7.2Ž .

and

� � 1�2�
7.3 lim sup P x � n � 0.Ž . Ž .� nk jž /
n�� k , j�n

Then the circular law is true.

Ž . Ž .A sufficient condition for 7.2 and 7.3 is the following: in addition to
Ž . Ž � � 2 .E X � 0, E X � 1,jk jk

� � 4�
max E x � � if all x come from a double array,k j k j
k , j

or

� �6�
max E x � � if x depends on n.nk j nk j
n , k , j

Ž .7.2. Spectral radius. As mentioned earlier, Bai and Yin 1986 and Geman
Ž .1986 , proved that with probability 1, the upper limit of the spectral radius
of � is not greater than 1. Combining this result together with Theorem 1.1,n
it follows immediately that with probability 1, the spectral radius of �n
converges to 1. In fact, we can get more, that is, under the conditions of
Theorem 1.1, we have, with probability 1,

lim inf max a Re � � b Im �Ž . Ž .Ž .k k
2 2n�� k�na �b �1

� lim sup max a Re � � b Im � � 1.Ž . Ž .Ž .k k
n�� k�n2 2a �b �1



Z. D. BAI522

APPENDIX

Elementary lemmas.

A1. Lemmas on densities or expectations of functions of random variables.

Ž .LEMMA A.1. Let X � x , . . . , x be a p � n real random matrix of n1 n
independent column vectors whose probability densities have a common bound

Ž .K and let � , . . . , � , k � n be k orthogonal real unit n-vectors. Then, thed 1 k
joint density of the random p-vectors y � X� , j � 1, . . . , k, is bounded byj j
K k nk p�2.d

Ž .	 Ž .PROOF. Write C � � ��� � and let C j , . . . , j denote the k � k sub-1 k 1 k
matrix formed by the j ��� j th columns of C. By Bennett’s formula, we have1 k

det2 C j , . . . , j � det C	C � 1.Ž . Ž .Ž .Ý 1 k
1�j � ��� �j �n1 k

Thus, we may select 1 � j � ��� � j � n, say, 1, 2, . . . , k for simplicity, such1 k
� Ž Ž .. � �k �2that det C 1, . . . , k � n . Let C and C denote the submatrices of the1 2

first k and last n � k columns of C and let X and X denote the submatrices1 2
of the first k and last n � k columns of X, respectively. Furthermore, denote

�1Ž .by c , . . . , c , the row vectors of the matrix C 1, 2, . . . , k . Then, the joint1 k
density of y , . . . , y is given by1 k

k
	�p k k p�2� �p y , . . . , y � det C 1, 2, . . . , k E f y � X C c � K n ,Ž . Ž . Ž .Ž . Ž .Ł1 k i 2 2 i dž /i�1

Ž .	where Y � y , . . . , y . The proof of the lemma is complete. �1 k

For the complex case, we have the following corollary.

COROLLARY A.2. If the vectors and matrices in Lemma A.1 are assumed to
be complex and the joint density of the real and imaginary parts of x arej
uniformly bounded by K , then the joint density of the real and imaginaryd

parts of y , . . . , y is bounded by K 2 k n2 k p.1 k d

Ž . � � Ž . � �LEMMA A.3. Suppose that f t is a function such that H t f t dt � M� ,0
for some � � 0 and all small � . Let x and y be two complex random

Ž .k-vectors k � 1 whose joint density of the real and imaginary parts of x and
y is bounded by K . Then,d

� � � � � � � � � � � 4 k�4A.1 E f x y I x y � � , x � K , y � K � C M� K K ,Ž . Ž . ŽŽ .e e k d e

where C is a positive constant depending on k only.k

PROOF. Note that the measure of x � 0 is zero. For each x � 0, define a
� �unitary k � k matrix U with x�x as its first column. Now, make a change of
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variables u � x and v � U� y. It is known that the Jacobian of this variable
� � � � � � �transformation is 1. This leads to x y � u v . Thus,1

� � � � � � � � � �E f x y I x y � � , x � K , y � KŽ . ŽŽ .e e

� � � � � � � � � � � �� ��� f u v I u v � � , u � K , v � KŽ . Ž .H H 1 1 e e

�p u, Uv du dvŽ .
A.2Ž .

���' 12 k�2 k K 2 k�1e� K s 2	 2 K � d� � f � � d�Ž . Ž .H Hd 2 k e 1 1 2 1 2 2
0 0

�2 k�22 k�2 �1 'A.3 � K s 2	 2 K 2k � 2 k K tf t dt ,Ž . Ž . Ž . Ž .Ž . Hd 2 k e e
0

where s denotes the Euclidean area of the 2k-dimensional unit sphere.2 k
Ž .Here, the inequality A.2 follows from a polar transformation for the real and
Ž .imaginary parts of u dimension � 2k and from a polar transformation for

Ž .the real and imaginary parts dimension � 2 of v . The lemma now follows1
Ž .from A.3 . �

� 4 dLEMMA A.4. Let a , l � n , k, j , j � n, be complex random vari-nlk j , j 1 21 2

� � 2 2 � � 2 2ables satisfying max Ý a � K , max Ý a � K ,n, l, k , j j nlk j , j n, l, k , j j nlk j , j2 1 1 2 1 2 1 2
� � 1�36 � 4and z � n are complex constants. Suppose that X , k, j � 1, 2, . . . is al k j

double array of iid complex random variables with mean zero and finite sixth
� 4moment. Assume for each fixed k, X , j � 1, 2, . . . is independent ofk j

� 4 da , l � n , j , j � n. Then,nlk j , j 1 21 2

1 1
sup a X � z � X � z �Ý nlk j , j k j l k , j k j l k , j1 2 1 1 2 2ž / ž /' 'n nd j , jl�n , k�n 1 2

1 2 2� � � ��� E X � � zj , j 11 k , j l1 2 1ž /n

A.4Ž .

� o n�5�36K ln2 n ,Ž .

where d � 0 is a positive constant and � is the Kronecker delta, that is, � 1k j
or 0 corresponding to k � j or not.

Ž � � 2 .PROOF. Without loss of generality, we may assume that K � 1, E X11
� 4� 1, and that a are real nonrandom constants and z and X arenlk j , j l k , j1 2

real constants and random variables, respectively.
Now, let m be a positive integer. For k, j, defined X � X or zerom k j k j

� � m �3according to X � 2 or not, respectively. Note thatk j

� �
2 m m �3� �P X � X � 2 P X � 2 � �Ž . Ž .� � Ým k j k j 11ž /mm�1 m�1k , j�2
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by the finiteness of the sixth moment of X . Therefore, by the Borel�Cantelli11
Ž .lemma, the variables X in A.4 can be replaced by X , for all n 	k j m k j

Ž m m�1 � � � 1�32 , 2 . In other words, we may assume that for each n, X � n .m k j
In the rest of the proof of this lemma, all probabilities and expectations are

conditional probabilities and expectations for the a-variables given, namely,
we treat the a-variables as nonrandom. For fixed 
 � 0, by Bernstein’s
inequality, we have

n1
2 2 �1�3 2P a X � E X � 
 n ln nÝ Ý Ý nlk j j m k j m11ž /nn l , k j�1

4d�1 2 4 2� �� M n exp �
 ln n� E X � 
 ln n � �.Ý ž /m11
n

which, together with Borel�Cantelli, implies that
n1

2 2 �1�3 2A.5 max a X � E X � o n ln n .Ž . Ž .Ý nlk j j m j j m11
d nl�n , k�n j�1

Because of the truncation, we have

1
�5�36 �5�36 2A.6 max a z X � Mn � o n ln n .Ž . Ž .nlk k k l m , k k

d 'nl�n , k�n

Ž . Ž .By A.5 and A.6 and the fact that
n n1

2 2 �7�3 � �max a E X � E X � M max n aŽ . Ž .Ý Ýnlk j j 11 m11 nlk j j
d dnl�n , k�n l�n , k�nj�1 j�1

� Mn�4�3 � o n�1�2 ln2 n ,Ž .
to finish the proof of the lemma, one need only show that

1
�5�36 2A.7 max a X X � o n ln n ,Ž . Ž .Ý nlk j , j m k j m k j1 2 1 2d nl�n , k�n j �j1 2

and
n1

�5�36 2� �A.8 max z a X � o n ln n .Ž . Ž .Ýl nlk k , j m k j
d 'nl�n , k�n Ž .j�1 j�k

Ž .Note that A.8 is implied by

n1
�5�36 2A.9 max a X � o n ln n ,Ž . Ž .Ý nlk k , j m k j

d 'nl�n , k�n Ž .j�1 j�k

Ž .which can be proved by the same lines in the proof of A.5 .
Ž .In the proof of A.7 , for convenience of notation, we shall omit the

subscripts n, k and l from a and rewrite j , j as k and j. Also, wenlk , j , j 1 21 2

simplify X as X and assume that a � 0 if j � j . We will finish them k j j j j 1 21 2
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Ž .proof of A.7 by establishing that the probability when the left-hand side of
Ž . �5�36 2A.7 is greater than 
 n ln n can be smaller than any a fixed negative
power of n.

Define b � n�31�36a , and for 2 � h � n and 1 � k � j � h, b �nk j k j hk j

b � 2b b . By induction and the condition thath�1, k j h�1, j, h�1 h�1, k , h�1

� 2 � �13�18Ý b � n , one can prove that for any 2 � h � n and n � 60,1� k � j� n nk j

b2Ý hk j
1�k�j�h

2� b � 4b b bÝ h�1, k , j h�1, k , j h�1, k , h�1 h�1, j , h�1
1�k�j�h

2 2�4b bh�1, k , h�1 h�1, j , h�1

1�2
2 2� b � 4 bÝ Ýh�1, k , j h�1, k , jž /

1�k�j�h 1�k�j�hA.10Ž .

�

2h h
2 2b � 4 bÝ Ýh�1, k , h�1 h�1, k , h�1ž /

k�1 k�1

h
2 �13�36 �13�18 2� b � 4n � 4n bŽ .Ý Ýh�1, k , j h�1, k , h�1

1�k�j�h�1 k�1

� b2 � n�13�18 .Ý h�1, k , j
1�k�j�h�1

Let q � Ýn Ýh�1b2 . Then, by definition, we haveh�2 k�1 hk h

n�1
�31�18 2q � n aÝ n�1, n

k�1

n�1 h�1
2� b � 4b b bŽÝ Ý h�1, k h h�1, k h h�1, k , h�1 h�1, h , h�1

h�2 k�1

�4b2 b2 .h�1, k , h�1 h�1, h , h�1

� n�31�18a2Ý k , h
k�h

n�1 h�1 n
2 2� 4 b b b � 4b bŽ .Ý Ý Ý s , k h s , k , s s , h , s s , k , s s , h , s

h�2 k�1 s�h�1

A.11Ž .

n 1�2 1�2 1�2
�13�18 2 2 2� n � 4 b b bÝ Ý Ý Ýs , k h sk s sh sž / ž / ž /

s�3 k�h�s k�s h�s

n 2
2� 4 bÝ Ý sk sž /

s�3 k�s

�13�18 �13�36 �13�18� n � 4 n � n q by A.10Ž . Ž .
� 2n�13�18 .
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˜ n 2 ˜ �13�18Ž .Write b � Ý b . The estimate A.11 implies that b � 2n .j k�j�1 jk j j
Notice that

˜ 2 �13�18b E X � O n .Ž .Ž .Ý j j
j�1

Ž .Then, by A.11 and applying Bernstein’s inequality, we obtain

˜ 2 ˜ 2 2P b X � 2 � P b X � E X � 1Ž .Ý Ý ž /j j j j jž / ž /A.12 j�1 j�1Ž .
� exp �cn1�18Ž .

for some positive constant c.
Now, we shall find the bound for the b ’s. By the definition of b andk h j hk j

Ž .the estimation A.11 , we have

� � � � � � � �b � b � b bk h j h�1, k j h�1, k , h�1 h�1, j , h�1

n

� � � � � �� b � b bÝn , k j sk s s js
s�h�1

A.13Ž .

� n�31�36 � q � 3n�13�18 .
Define

h�1
1 �13�36EE � b X � n ,Ýh hk h k 2½ 5

k�1

n h�1
2 2 2˜EE � b X � 2 � b X � 2Ý Ý Ý0 j j h jh j½ 5 ½ 5

j�1 h�2 j�1

and
h

FF � EE .�h l
l�1

Ž .Then, by A.13 and applying Bernstein’s inequality or Kolmogorov’s inequal-
� Ž . �ity Loeve 1977 , page 266 , we have`

P EE c � C exp �cn1�36 ,Ž .Ž .h

for some positive constants C and c. Consequently,

�1 �5�36 2P n a X X � 
 n ln nÝ k j k jž /
k�j

n
c� P EE � P EEŽ . Ž .Ý0 m

h�3

j�1n
2� exp �
 ln n E I FF I EE exp b X X .Ž . Ž . Ž . Ý Ýn 0 nk j k j½ 5

j�2 k�1
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Thus, to complete the proof of the lemma, it suffices to show that

j�1n

A.14 E I FF I EE exp b X X � O 1 ,Ž . Ž . Ž . Ž .Ý Ýn 0 nk j k j½ 5
j�2 k�1

� Ž .�which is obviously see A.12 implied by

j�1n h�1 n
2 2A.15 E I FF exp � b X � b X X � O 1 .Ž . Ž . Ž .Ý Ý Ý Ýn h jh j nk j k j½ 5

h�2 j�1 j�2 k�1

In fact, by induction, we have

j�1n h�1 n
2 2E I FF exp � b X � b X XŽ .Ž Ý Ý Ý Ýn h jh j nk j k j½ 5

h�2 j�1 j�2 k�1

j�1n h�1 n�1
2 2� E I FF exp � b X � b X XŽ .Ž Ý Ý Ý Ýn h jh j nk j k j½ 5

h�2 j�1 j�2 k�1

2n�1 n�1 n�1
1� 1 � b X X � b X X by b X X �Ý Ý Ýnk j k n nk j k n nk j k n 2ž / ž /

k�1 k�1 k�1

2j�1n�1 n�1
�5�3� E I FF exp b X X 1 � n � b XŽ .Ž Ý Ý Ýn nk j k j nk j k½ 5 ž /

j�2 k�1 k�1

�5�3� �X is independent of FF and E X � Cn ,Ž .n n n

j�1n�1 h�1 n�1
2 2 �5�3� E I FF exp � b X � b X X � n ���Ž .Ž Ý Ý Ý Ýn�1 h jh j n�1, k j k j½ 5

h�2 j�1 j�2 k�1

�2�3 � �1�18 �2�34� E exp b X X � n � exp n � n � 1.� 4212 1 2

Ž .This establishes A.15 and consequently the proof of the lemma is complete.
�

A2. A result known in the literature.

LEMMA A.5. Let A and B be two m � n complex matrices and denote by
� and � the empirical spectral distributions of A�A and B� B, respectively.a b
Then, we have

2

� �� u � � u duŽ . Ž .H a bž /A.16Ž .
�� ��2� 2n tr A A � B B tr A � B A � B .Ž . Ž . Ž .Ž .

Ž .Similar versions of this lemma were used by Bai and Silverstein 1995 ,
Ž . Ž . ŽWachter 1978 and Yin 1986 . The exact version of this lemma but for real
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. Ž .A and B was used in Bai 1993b but it was not stated as a lemma. An
outline of the proof of the lemma is given below:

22 n1
� � � �� u � � u du � � � �Ž . Ž . ÝH a b k kž / ž /n k�1

n n1 12 2
� � � � � � �' ' ' 'Ý Ýk k k kž / ž /n nk�1 k�1

�� ��2� 2n tr AA � BB tr A � B A � B .Ž . Ž . Ž .Ž .

The last step follows from the von Neumann inequality.
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