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MOMENTS OF RANDOMLY STOPPED U-STATISTICS

By VicTor H. DE LA PENA! AND TzE LEUNG LAI?

Columbia University and Stanford University

In this paper we provide sharp bounds on the L,-norms of randomly
stopped U-statistics. These bounds consist mainly of decoupling inequali-
ties designed to reduce the level of dependence between the U-statistics
and the stopping time involved. We apply our results to obtain Wald's
equation for U-statistics, moment convergence theorems and asymptotic
expansions for the moments of randomly stopped U-statistics. The proofs
are based on decoupling inequalities, symmetrization techniques, the use
of subsequences and induction arguments.

1. Introduction. Let X;, X,,... be i.i.d. random variables and let T be
a stopping time adapted to {F,}, where F, is the o-algebra generated by
Xy, ..., X,. Wald's (1945) equation says that if EX, = 0 and ET < «, then
E(XZ/_; X;) = 0. Chow, de la Pefia and Teicher (1993) recently generalized
this fundamental result in sequential analysis to multilinear U-statistics of
the form
(1.1) S, = Y Xi, o X,

1<i;< - <ig<n

In the case k = 2, de la Pena and Lai (1994) further extended the result to
general U-statistics of order k(= 2), showing that
(1.2) E Y f(X, X;) =0,

1<i<j<T

if for some 1 < p < 2,

E(TY®D) <o,  E|[f(X,, X,)|" <» and

(1.3) E(F( Xy, X,)IX,) = E(F( Xy, X,)IX,) = 0.

The sharpness of this result can be checked by taking f(x,y) =xy and
p = 2, in which case (1.2) along with Wald's first equation gives Wald's
second equation.

In Sections 2 and 5 we extend (1.2) to general U-statistics of order k > 2
under a similar assumption which reduces to (1.3) when k = 2. In this
connection we also prove a sharp bound for the absolute pth moment of a
randomly stopped U-statistic for p < 2. This bound has the property of
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reducing the level of dependence between the sequence of U-statistics and the
stopping time. In Section 3 we use the decoupling method to obtain a bound
for the absolute pth moment, with p > 2, of randomly stopped U-statistics.
We provide several applications of the bounds obtained in Sections 3 and 4. In
particular, they are used to establish moment convergence results in
Anscombe’s theorem for U-statistics, generalizing corresponding results of
Chow, Hsiung and Lai (1979) for stopped random walks. They are also used
to obtain asymptotic expansions of the moments of randomly stopped normal-
ized U-statistics, generalizing recent results of Aras and Woodroofe (1993) for
stopped sample means to stopped U-statistics and addressing a problem of
Aras (1988) related to sequential estimation based on U-statistics.

2. A sharp decoupling inequality and Wald’s equation for U-statis-
tics with kernels in L, 1 <p <2. The proof of Wald's equation for the
multilinear U-statistics (1.1) given in Chow, de la Pefia and Teicher (1993)
does not extend to U-statistics of the general form

(2.1) U, = Y (X X0,

1<ip< - <ig<n

since the proof given there depends heavily on the multilinear features of the
problem. In the case k = 2, de la Pefha and Lai (1997) proved Wald's equation
for (2.1) by using the bivariate structure and decoupling inequalities to bound
E(max, _1|U,D. To generalize this result to general k, we need some new
decoupling inequalities which will in turn enable us to exend and integrate
the two different approaches in Chow, de la Pefia and Teicher (1993) and in
de la Pefa and Lai (1997).

Throughout the sequel we let X,, X,,... be i.i.d random variables with
values in a measurable space (S, S) and let F, be the o-algebra generated by
Xy, ..y X, Let k > 2 and let f: S - R be a Borel measurable function such
that

(2.2) E(Ff( Xy, X)X, X ) =0
for every {i,,...,i,} < {1,..., k} with h < k.
Define U, by (2.1) and let T be a stopping time adapted to {F,}. The following

is a sharp decoupling inequality for E(max, _ . |U,|") and will be proved in
Section 5.

THEOREM 1. Suppose that (2.2) holds and that E|f(X,, ..., X,)I? < « for
some 1 < p < 2. Moreover, assume that f is symmetric in its arguments, that
is,

(2.3) F( Xy X)) = F( Xy X))
for any permutation 7 of {1,..., k}.
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Let {X"),...,{X{¥} be k independent copies of {X,}. Then there exists a
universal constant Cy ,, depending only on k and p, such that

p
E max Y f( X, X
ksn<Tlici,< - <ic<n ( " Ik)
k-1 k—h T
(24) =<Ccp X L E X
h=0t=1 |ip,,=1
- p
Z fT,k,h(Xi(thrtl)v'--1Xi(hh++tt)1---1 Xi(hkgl) ’
ihee=1
where f+ , o =fand forh > 1, f; |, : S*° " - R is given by
(2.5) fT,k,h(yh+1"--1yk): Z f(Xill"'yXih!yh+1!'--!yk)'

1<ip< - <ip<T

This bound generalizes that in de la Pefia (1992b) dealing with multilinear
forms of i.i.d. random variables. In particular, since the bound obtained in
that work is known to be sharp, this bound is also sharp. This fact can also be
verified by observing that the results in de la Pefia (1992a) imply that if the
stopping time is assumed to be independent of all the variables involved, then
both sides of (2.4) are of the same order of magnitude. A variant of the bound
(2.4) is also proved in Section 5 and is used to prove the following extension of
Wald's equation to the case of multivariate U-statistics.

THEOREM 2. Suppose (2.2) and (2.3) hold and that for some 1 < p < 2,
(2.6) E|f(X,,...., X)|" < and ET?*P <o,

where p(k, p) = (p¥/®*~Y —1)"1. Then E(max,_,.7IU,) <= and conse-
quently EU; = 0.

When k = 2, condition (2.6) reduces to (1.3) since p(2, p) =1/(p — 1).
Theorem 2 will be proved in Section 5 where it will be explained in the
remarks following the proof how p(k, p) arises naturally in the induction
argument which modifies and generalizes that of Chow, de la Pena and
Teicher (1993) for the multilinear case (1.1). Denoting the right-hand side of
(2.1) by U, , to show that the kernel of the U-statistic has k arguments (or
order k), a key idea of the proof is to use decoupling inequalities to bound
E(max, _,_1lU, D in terms of E(max,_,_1IU, D%, where 1 <a, <p
and the U, |, represent U-statistics corresponding to certain kernels of lower
order.

3. Ly-norms of randomly stopped U-statistics with p > 2. Itis well
known that for p > 2, E|U,|P = O(n*P/2) if E|f(X,,..., X)IP? <. In this
section we first prove an upper bound of E(max,_,_;|U,") in terms of
ET*P/2 and then apply the result to prove uniform integrability and moment
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convergence. We assume that (2.2) holds as before, but the symmetry condi-
tion (2.3) is not assumed here.

THEOREM 3. For any p > 2, there exists a universal constant C, ,, de-
pending only on k and p, such that

P
E max

(3.1) k<n<T
< Gy p( ETkp/Z)(El fF( Xy, Xk)lkp

Y f( X, %)

1<i;< - <ig<n

)1/k.

Proor. Let {X®},...,{X¥} be k independent copies of {X;}. Let G, be
the o-algebra generated by {X,,..., X} U{X®: i>1} U - U {X®:ix>1}
In what follows, C, and C, , denote universal constants that may change
from one bound to another. The explanation of different steps below is given
in the remarks, labelled (A), (B), and so on, following the proof:

p
E{max Y f( X0 X)) }
N<Tlici;< - <ig<n
n i1 i1 P
=Esup| ), { Y f( X, Xik)}l(Tz i)
no|ig=k i, =k-1 ;=1

IA

=K |ic_,=k-1 Q=1

2\ P/2
XI(T > ik)} } [see (A)]

o=k | i 1=k-1 Q=1

stE{ i [ ikil izilf(xil,.--' X, X9

2\ P/2
XI(T > ik)} } [see (B)]

-
v .
x

o X XY

-1’

E[
g

k k=1 =1

2\ P/2
} [see (C)]

XI(T > ik)|Gik1]
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el T ir—1
= CPE Z E ( Z Z f(xiu---: Xik71' Xi(kk))

) p/2

XNT=i)| |G, -1

o T i,—1
< CPE{_Z [ r X f( X, X, L0 X9)
Tk Tk-1 =

2\ P/2
XI(T > ik)] } [see (D)]

T T i -1 i,—1 p
<C,E{lY X Yoo X (X X0 X(9)
i=Ki1=k—-1i_,=k-2 ij=1
[see (E)]
T i1 i—1 P
<C,E{TP? ¥ )y YK XL X{9)
i 1=k—=11i ,=k=-2 ip=1
[see (F)]
< C(ETkP/2)"*
T i1—1 i,—1 kp/(k—1)\ (k=D/k
x{El X -y f(xil,...,xik*z,xikfl,x{“)
io1=k—-1i,,=k-2 ;=1
< C,(ETKP/2)"*
X {ETkp/Z(kl)
T -1 i,—1 kp/(k—1)\ (k=1/k
X Z Z Z f(Xilll__, XiH, Xi(kki—ll)’ X{k))
ik_o=k—=21i,_3=k-3 ip=1
[see (G)]
kp/2 @) x@ oy [P
< 0 < C H(ETP/2)(E[f(X, X2, x{)[P) [see(H)]. O

REMARKS. We explain here various inequalities and an equality that has
been marked in the preceding proof.



2060 V. H. DE LA PENA AND T. L. LAI

(A) The bound follows from Burkholder’s inequality [cf. Chow and Teicher
(1988)]: there exists a constant B, such that for all martingale difference
sequences (d,),

P p/2

Esup

n

n o)
Y di| < BpE( Y d?
i=1 i=1
(B) Apply Theorem 2 of Hitczenko (1988): for r > 0, there exists a constant
B, such that for all tangent sequences (d,) and (e,) of nonnegative random
variables, E(X{_,d,)" < B,E(X]_;e)". The sequences (d,) and (e,) of
random variables adapted to a filtration (F,) are said to be tangent to each
other if P{d, <x|F,_;} =Ple,<xI|F,_;} as. for all n>1 and all real
numbers x.
(©) Note that E[X] _; - XZizZ3 f(X,..., X, XIUT = i) 16, _,]=
0, assuming T to be bounded in @3. 1) Where we can first replace T by
min(T, m) and then let m — «. Hence

T i,—1
E Z Z f(xil, Ceey Xik,l, Xi(kk)) |(T = ik) Gikfl
i_,1=k-1 ij=1
i —1 i,—1
= X o XX X LX) (T =),
i_1=k-1 i;=1

(D) Apply Lemma 3 in Section 11.3 of Chow and Teicher (1988), recal-
ling that p > 2: for r > 1, there exists a constant B, such that for every se-
quence of nonnegative random variables (z,) and every filtration (F,),
E(Z_ E(z | R < B E(X7_; )"

(E) The bound follows from Burkholder's inequality, assuming the stop-
ping time T to be bounded in (3.1): there exists a constant A, such that for
all martingale differences (d,), EIX{_, d;|” > A E(X]_ )p/2 See Chow
and Teicher (1988), page 396.

(F) Condition on T and { X;} and use the bound E[X]_, Z;|® < A n?/?E|Z,|"
for i.i.d. zero-mean random variables Z,, Z,,...(p = 2).

(G) Apply the same argument as in (F) but with p replaced by kp/(k — 1).

(H) Proceed by induction. First note that by Hdlder’'s inequality relating
the expectation of the product of two nonnegative random variables to their
Ly—qand L),k NOrms,

{E(Tkp/2(kf1)|Z|kp/(k*1))}(k_l)/k (ET*P/2)"*(E|zZ|P/*2)
in which

(k- 2)/k

T i,—1
Z = Z Z f(Xilv . Xik,zv Xi(kk;ll)' X{k)).
i o=k—2 ;=1

Then apply the same argument as before to E|Z|“P/**~?. Repeated use of this
argument gives the final result.

Let m > k. If we replace X{ _, in the chain of inequalities in the proof of
Theorem 3 by X _n, then we can replace TP/2 by TP/2I(T = m) in the
inequality marked by reference to Remark (F) and (ETKP/2)i/k py
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(ET*P/2I(T = m))/¥ in the subsequent inequality, so the preceding proof
also gives the following variant of (3.1):

p

E sup

n=m

i {lSi <”Z f(Xil,...,Xik)}I(Tzik)

i=m C<i_q<iy

(32) (k=1)/k

< C o{ET*P721(T = m)} /" (ET*?/2)

x(E| f( Xy, ..., xk)|kp)1/k.

If E[f(X,,..., X I" < o for some r > 2, then by Lemma 1 of Lai and Wang
(1993) together with Doob'’s inequality for martingales,

r

(3.3) Emax < Cy ,MX2E[f( Xy, ..., X))

n<m

Yy f(Xi,...0 X))

1<i;< - <ig<n

We now give a corollary of (3.2) and (3.3) that will enable us to prove moment
convergence in Anscombe’s (1952) theorem for U-statistics. Let p > 2.
For A c(0,%) and i.i.d. random variables Z,,Z,,... with EZ, =0 and
ElZ,|? < =, Chow and Yu [(1981), Lemma 5] have shown that if {T(a), a € A}
is a family of stopping times such that {(a " 1T(a))?/2, a € A} is uniformly
integrable, then {{£7® Z,/Val|®, a € A} is uniformly integrable. This is ex-
tended to the U-statistics (2.1) in the following.

CoROLLARY 1. Let p > 2 and A c (0,%). Suppose that E|f(X,,..., X,)|*?
< « and that {T(a), a € A} is a family of stopping times adapted to {F.}. If
{(a™'T(a)*?/?a, a € A} is uniformly integrable, then {la~*/?U;,|", a € A}
is uniformly integrable.

Proor. Let m, , =[Aa] and note that

X (X X))

1<iy< - <ig=n

lUg ol < max

n<m, ,

(3.4)

o]

Y I(T(a) = iy) Y f(Xiseen X )|

iy=mg, , 1<ip< - <ip_q<iy

+

Given & > 0, we can choose A sufficiently large so that
1/k
{E(aflT(a))kp/2 I(T(a) > ma’A)} <e forallaeA,
Moreover, sup,. , E(a"'T(a)k?P/?2 = B < ». Hence by (3.2), for all a € A,

p

o]

L N(T(a) =iy L (X X3,

iy=mg, , 1<ip< o <ip_q<iyg

E

k
< G, BUVK(E[f(Xy,..., xk)|”’)l/ eakr/2,
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Therefore in view of (3.4), the uniform integrability of |a=*/?U; )| will
follow if it can be shown that for every A > 0,
/ mi/?

is uniformly integrable. The bound (3.3) with r = kp(> p) implies the uni-
form integrability of (3.5), completing the proof of Corollary 1. O

P
,ae€eA

) f( X, 0 %)

1<iy;< - <ig<n

n<mg ,

(3.5) {( max

Suppose Ef2(X,,..., X,) <« and f is symmetric in its arguments. Then
{k!n"‘/ZU[nt], 0 <t < T} converges weakly to a multiple Wiener integral
{W, (1), 0 <t < T} with respect to some Gaussian random measure [cf. Man-
delbaum and Taqqu (1984)]. Let {T(a), a > a,} be a family of {F }-adapted
stopping times such that T(a)/a —, c¢ for some constant ¢ > 0. Then by
Anscombe’s (1952) theorem, a~*/?U;,, converges in distribution to
ck/2W, (1) /K!. Corollary 1 yields the following result on moment convergence
of a K/2Uq,,.

COROLLARY 2. Let p > 2. Suppose that f satisfies (2.3) and
E[f(X,,..., X )I*P < . Let T(a) be {F,)-adapted stopping times such that
lim, .. Ela'T(a) — (:I"p/2 = 0 for some constant c. Then for every continu-
ous function f: R - R satisfying f(x) = O(|x|?) as | x| — o,

(3.6) lim Ef(a™%/?Uy, ) = Ef(c*/?W, (1) /k!).
a— x©

4. Moments of normalized U-statistics in sequential analysis. Let
g: SX — R be a Borel function of k variables such that g is symmetric in its
arguments [i.e., (2.3) holds with g in place of f] and

(4.1) E[g(Xy,..., X)|* <o for some g > 2.

Let 6 = Eg(X,,..., X,). For n > k, the normalized U-statistic with kernel g
is

Normalized U-statistics were introduced by Halmos (1946) to provide unbi-
ased estimates of 6. Hoeffding (1948, 1961) subsequently proved the asymp-
totic normality of 6, by using the decomposition

é\n_ezkn_ligl(xi)+k(k_1){n(n_l)}_l X %X X))

(43) i=1 1<i<j<n
+o ki e (n =k + 1)) r Gu(Xipp 0 X3, ),
1<i;< -+ <ig<n
where
X) =Eg(x, X,,..., X,) — 86,
(4.4) 91(x) 9( 2 k)

92(%,y) = Eg(X, Yy, X5,..., X,) = 0(x) —g,(y) + 6 andsoon.
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Thus, g; is symmetric in its arguments and
B
Elgj(Xy..... X)[ <= Egy(X;) =0,

(4.5) E{gj(xl,...,xj)|Xi1""’xih}:0

for every proper subset {iy, ..., i} of {1,..., j}.

Although 6, is an unbiased estimate of 6, the corresponding normalized
U-statistic 6; based on a sample {X,,..., X;} from a sequential experiment,
in which the sample size T is not fixed in advance but is sequentially
determined from the current and past data, is biased. In addition to the bias,
the mean squared error E(6; — 6)? is also of fundamental interest in the
theory of sequential estimation.

In this section we consider sequential experiments whose stopping rules
are of the form

(4.6) T=inf{nzk: Xn:Yi+§nza},

i=1
where (X,Y,), (X,,Y,),... are i.i.d. random vectors and for some ¢ > 0,
(47) EY,=p>0, EY? < o, i nNP{&, + un < cn} < o,
(48) {l(igYi+§n—n/C) l ,nzl}

is uniformly integrable for some p > 3,
(4.9) ;I_I’)Tg) ﬁ‘;‘zp{ﬂaﬁé'fw — &> s} =0 forall &> 0.

In addition, it is assumed that there are events A, such that for some
a>3/2,

) ”P( U A
n=1 k

=n

<o and

(4.10)
{mafoMkI“I( Anik), N> 1} is uniformly integrable,
k<n

where A\ denotes the complement of A,.

Stopping rules of the form (4.6) arise naturally in many sequential testing
and estimation problems [cf. Woodroofe (1982), Siegmund (1985)], in which
stopping occurs whenever some statistic Z,, exceeds a threshold a. Typically
Z, can be written in terms of a random walk X, Y; plus a remainder term
&,. Regularity conditions on &, like those above were first introduced by Lai
and Siegmund (1977) in the development of a renewal theory for the per-
turbed random walk X7'Y; + &,. The conditions (4.7)-(4.10) were formulated
by Aras and Woodroofe (1993) in their work on asymptotic expansions for the
first four moments of randomly stopped sample means in sequential analysis.
The following theorem extends their results from sample means to normal-
ized U-statistics.
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THEOREM 4. Suppose g: S¥ - R satisfies the symmetry condition (2.3)
(with g in place of f). Assume (4.1) and (4.7)-(4.10). Define 6, by (4.2),
T(=T, by (4.6), g, and g, by (4.4).

(M If B=max{4,2a/(a —1),2p/(p — 2)}, then as a — o,
(4.11) E6; = 0+ a 'k{EY, g,( X;) + o(1)},
(4.12) E(9; — 0) = a k?EgZ(X,) + O(a 2).

(i) If B = max{4,6a/Qa — 1), 3p/(p — 2)}, then

(4.13) lim aZE(aT - 0)3/k3 = 6p(Egf(X1))(EY10:1(Xy)) + w?EQi( Xy).

a— ®

If B> max{4,4p/(p — 2)}, then

(4.14) lim a?E(8; — 0)'/k* = 3p?(Eg2(X,))’.
a—>®
(i) Letg,,(x) = E{g,(X)g,(x, X))}, S, =X Y, and r,= inf(n: S, > 0}.
Suppose B > max{4, 2a/(a — 1), 2p/(p — 2)}, Y, is nonlattice and
(=122 (g(X),Y)), &,) converges weakly to (Zy, Z,, &). Then (Zy, Z,) is
normal and as a — o,

.
T Y23 (9(X).Y), é1, S+ & —a
i=1

(4.15)
converges weakly to (Zy, Z,, &, p,).,

where p, is independent of (Z,, Z,, £) and has distribution function
u

(4.16) P{p,<u} = f P{S,.> x} dx/ES_, foru > 0.
0

Moreover, ET = a/u + (Ep,— E£¢)/u + 0o(1) and (4.12) can be strengthened
to

lim {a*E(9; - 0)" — auk?Eg¥(X,)|

= n2k2(k — 1)°Eg2( X,, X,) /2 + 4uk?(k — 1)EY, g,,( X;)
+2Kk2{ RE(Y, = w) g2(%,) + (REY,04(X,)))

+k2{Var Y, + 2E£Z2 + p(Ep,— E¢) — 2Ep, }EQ2(X,).

(4.17)

The second-order expansion (4.17) of the mean squared error E(¢’9\T —6)?is
of fundamental interest in the theory of sequential estimation based on
U-statistics, extending corresponding results in the sample mean case [cf.
Aras and Woodroofe (1993) and the references therein]. In his study of
sequential estimation based on U-statistics, Aras (1988) was able to show
that E(6; — 6)*> = O(a™!) and pointed out the main obstacles in his method
to the derivation of a more precise asymptotic formula for E(6; — 6)2.
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The proof of Theorem 4 uses Corollary 1 together with arguments similar
to those of Aras and Woodroofe (1993) (AW henceforth). The following four
lemmas, which use the same notation and assumptions as in Theorem 4,
provide the modifications needed in extending AW to U-statistics.

LEmMmmA 1. Let

gj( Xipr -0 X))
n(n—1)-(n—-j+1)

Gjn=k(k=1)(k-j+1) )y

1<ip<---<ij<n

Then for every n > 0,

E( sup Ig‘;j'nlr) =o(a?) forj=2andpB=>r=>3,

n>na

E( sup gfn) =0(al) forj>1.

nx>na

Proor. Since {g; ,, n > j} is a reverse martingale [cf. Gram and Serfling
(1973)], it follows from Doob’s inequality that

E( suplG,—,nlr) = O(Elg; wl")

n=m

(4.18) _olm-ie

l<ip< - <ij=m
=0O( m*J'"/Z),

where the last relation above follows from Lemma 1 of Lai and Wang (1993).

Putting m = [na] in (4.18) gives the desired conclusions. O

LEMMA 2. Let ¢(X, Y, 2) = g,(x)g,(y, 2) + g,(y)g,(x, 2) + g,(2)g,(X, y),
(X, y) = 9,00 8,(X, ) + 91(¥)g(X, y) — g1,(x) — g1,(y). Then Eg;,(X,) =
0 and for n > 2,

[Za00]( T aax)

1<i<j<n

=X st (%) 4 (0 1) T g(X,)

1<i<j<l<n l1<i<j<n

LEmmA 3. Define ¢ as in Lemma 2 and let

U= X  ¢(X, X, X).

1<i<j<l<n

Then EU, /{T3(T — 1)} = o(a™?).
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Proor. By Proposition 2(iii) of AW, P{T > 5a/c} = o(a"2), where
¢ is given by (4.7) and (4.8) and will be assumed to be less than
min(w, 1/u) without loss of generality. Let U, = U,/{n?(n — 1)}. Then
{E(sup, . 52, U2 = O(a */?) as in (4.18), and therefore by the Schwarz
inequality,

IA

1/2
E|U;/(T2(T — 1))|I(T = 5a/¢) {E( sup Unz) P(T > 5a/c)}

n>5a/c
=o(a %/?).

Let 7=min{T,[5a/c]}. Noting that U; — U, = (U; — Ug, ) I(T > 5a/0),
the preceding argument also shows that

(4.19) ElU; — U,| = o(a™%/?).
Since the stopping time r is bounded by 5a/c, Er%(r — 1)L_JT = EU, = 0and
therefore
_ 2(r—1)\ _
(4.20) a?EU, = aE{ a-— LZ))U}
a

Using the property E sup,. ,|U,l? = O(m~2£/2) with 8 > 2p/(p — 2) and
an argument similar to the proof of Proposition 6 of AW, it can be shown that

aE{|a — p*r?(r - 1)/@%||U,|I(7 < ca/5))}

(4.21) _
< a?(1 + p3c®)E{|U,1(r < ca/5)} — 0.

We next show that
{ala — u¥r?(7—1)/@%||Ul1(ca/5 < 1), a > 1}

(4.22)
is uniformly integrable.

First note that on {ca/5 < 7(< 5a/c¢)},

|a — uri(r— 1)/a2| <la— wprl + wrla® — u?r?|/a® + u’?/a?

4.23
(4.23) <la— prl{l + 5uc (1 + 5uc™ 1)} + 25u3c”?,

(4.24) U< sup |U,l

n>ca/5
Since 7 < 5a/c, it follows from Proposition 8 of AW that {(la — ur|/ Va)?,
a > 1} is uniformly integrable, where B’ = min(4, 2«a, p). Moreover,
EY"sup,. ca,s5lU,l" = O(a™%?) for all 2 < r < B. Hence by Hdlder’s inequal-
ity,

ev/*{(I(a = wr) /&l + 1) sup [G,l} - O(a 2
n>ca/5
for some s > 1, implying that {a(Va +la — u7)sup,. ., sIU,l a > 1} is uni-
formly integrable. This together with (4.23) yields (4.22).
Let Y/ =Y, — wand S, = X"_,Y/. Then as shown in AW, (a — ur)/Va =
S./va +0,(1) and 7/a - 1/u as. Moreover, a*/2U, = (a~%2U Xa/7)%a/
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(r—1). Hence as a — =, ((a— ur)/Va, a*?U.) has the same limiting
distribution as that of (S} /ynu, (u/N*?L,_ i ;. . ¢(X;, X, X)) (as
n — =), whose first component has a limiting normal distribution and whose

second component converges in distribution to a random variable that can be
expressed as a multiple Wiener integral (see Section 3). Therefore by (4.22),

lim aE{(a— (T — 1)%)@}

el o[ )

n
lim ;mZE{( Y Yﬁ)( b o(Xi, Xj, X)) =0,
n— o h=1 1<i<j<l<n

(4.25)

since E{Y,0,(X;)g,(X;, X))} = 0 for i <j <l Combining (4.25) with (4.20)
yields lim, . a®?EU, = 0, which implies the desired conclusion in view of
(4.19). O

LEmmA 4. For 2 <r < B3, E(('9\T — 0)"I(T < ca/5) =o(a PE-1/8),

ProoF. In view of (4.3) and (4.18), E(sup,,. mlé\n —0|")=0(m~"?), as in
the sample mean case considered by AW. Hence the desired conclusion can be
proved by using the same argument as that used to prove Proposition 6
of AW. O

Proor oF THEOREM 4. The proof relies on the decomposition (4.3); in fact,
the results involve g, and g, in the decomposition. We again assume that
¢ < min( u, 1/n) without loss of generality.

The argument of de la Pefia and Lai (1997) for proving (4.11) for the case
k = 2 can be easily extended to general k by making use of Lemma 1. In view
of Lemmas 1 and 4, (4.13) and (4.14) follow from corresponding results for
sample means in AW. To prove (4.12) and (4.17), application of Lemmas 4 and
1 to (4.3) shows that

~ 2
E(OT_ 0) =E{(gf,T+622,T+2§1,T§2,T+251,TQS,T)}
(4.26) XI(T—-1>[ca/5],) +o0(a?)
= Egf 7 + EQ; 7 + 2EQ, 70, 7 + 2EQ; 70,5 7 + 0(a™?),

where T = max{T,1 + [ca/5],} and [x], denotes the smallest integer
greater than or equal to ca/5. We shall show that as a — o,

(4.27) a?EQ2 + — p’k2(k — 1)’ EQ2( Xy, X,)/2,
(4.28) a’EqQ; 70,7 > 2nk?(k — 1) EY,95,(X,),
(4.29) aZEglyfqu - 0.
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From (8) and Proposition 6 of AW applied to ngf [with the necessary
modifications, since AW considers w =1 and more restricted forms of
(Y;, 9,(X;)] together with (4.26)—(4.29), (4.12) follows. Likewise (4.17) follows
from (9) and Proposition 6 of AW together with (4.26)—-(4.29).

To prove (4.27), we first show that
(4.30) {a?% £, a > 1} is uniformly integrable.

This follows from Corollary 1, noting that T-1> ca/5 implies

257 < 5/ k-1 at T 0,0}

1<i<j<T

Since T/a - 1/p as. as a - =, u?(a/w)?g32 + has the same limiting distri-
bution as {k(k — D}u’n"2%, _; .., 9,(X;, X;) (@s n — =), and the limiting
distribution can be expressed in terms of a multiple Wiener integral. There-
fore by (4.30),

2
lim 2Eg2 + = {k(k — 1)}? 2 lim n‘ZE( Y g.(X, xj))
a—x n-—e 1<i<j<n
= $u2K2 (K — 1)°Eg3( X4, X,).
To prove (4.28), we apply the representation in Lemma 2 to
_i‘_"
gl,fgz,f=k2(k_1){ Zgl(xl)}{ Z gz(Xian)} {TZ(T_]-)}'
=1 1<i<j<T
An argument similar to the proof of (4.30) shows that

{(a‘l Y (X, X))

1<i<j<T

a®/(THT-1)) a> 1}
is uniformly integrable, from which it follows that

(4.31) lim aZE{ Y w(X, X)) /(TA(T - 1))} -0,

a-e 1<i<j<T

noting that Ey(X;, X,) = 0. By Proposition 2(iii) of AW, P{T > 5a/c} =
o(a~?), and therefore by the Schwarz inequality,

ET 2 I(T > 5a/¢)

; 91( %)

< E{T‘ll(T > 5a/c) sup n!

n>5a/c

_i glz(xi)‘}

2
< ca 'PY?(T = 5a/c) El/z( sup =o(a?).

n>5a/c

nt _i 91( %)
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Hence, letting 7 = min{T,[5a/c]}, we have

azE{-F_Z i glz(xi)} = aZE{?_Z i 912( Xi)} +0(1)
(4.32) =1 =t

- E{(az/?z _ Mz)-i glz(xi)} + 0(1),

where the last equality follows from Wald's equation EX7_, g,,(X;) = 0.
Since ca/5 < 7 < 5a/c,

|a2/7r'2 _ M2|

_il 912( X;)

Y 91.( X))

i=1

<5¢7Y(5¢7t + p)|la V2(a - pT)la 2 max
m<5a/c

Since {(a~'/2(a — u7))?, a > 1} is uniformly integrable by Proposition 8 of
AW (recalling that 7 < 5a/c¢) and since {n"*max . (X" ; g;,(X;)?, n > 1}
is uniformly integrable, it then follows that {|a? /72 — u?|IXi_,; g,,(X))l, a > 1}
is uniformly integrable. Since 7/a —» 1/u as. and a — u7= X1_,(Y, — w) +
op(\/a), the preceding uniform integrability yields

a— ®©

lim E{(az/?2 - u?) XT: glz(xi)}
i=1

4.33 n n
( ) = ZMr!im E{n_l/z X (Y- M)}{n_l/z )y glz(xj)}
o i=1 i=1
= 2pE(Y; = 1) 9:12( X;) = 2REY g3,( Xy).
From Lemmas 2, 3 and (4.31)-(4.23), (4.28) follows.
The proof of (4.29) is similar, replacing g,,(x) by g5;5(x, y) =
Eg,(X,)gs(X, y, X;) and ¢(x, y) in Lemma 2 by

Y(X,Y.2) = 9y(X)9s( X, ¥, 2) + 93(¥) 95( X, ¥, 2) + 9,(2) g5( X, ¥, Z)
= 013(Y,2) — 913(X, 2) —913(X, y),
and noting that E(g;3(X;, X,) | X;) = 0 = E(g3(X;, X,) 1 X,). O

5. A sharp decoupling inequality and Wald’'s equation for ran-
domly stopped U-statistics. This section is divided into three subsections.
In Section 5.1 we introduce some background results needed in the proofs.
Section 5.2 contains the proof of Theorem 1 and Section 5.3 the proof of
Theorem 2.

5.1. The K-function and a symmetrization lemma. The proof of Theorem 1
uses the following lemmas. Lemma 5 states certain results of Klass (1976,
1981) on his K-function while Lemma 6 provides a symmetrization inequal-
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ity. In Lemma 6 and elsewhere we shall use the notation i, # --- # i, to
denote that i, # i, whenever r # s.

LEmMmA 5. Let Z;,Z,,... be i.i.d. random variables with EZ, = 0. Let
1 < p < 2. There exist universal constants ¢, and C,, depending only on p,
and an increasing function Kp(n) depending on p and the distribution of Z,
such that

p

(5.1) ¢, Kp(n) <E < C,K,(n).

n
Xz
i=1

Moreover, K (n)/n?/? increases with n while K (n)/n decreases with n.
Consequently, for all m < n,

p
< (C,/c,)(m/n)*?E

p
< (C,/c,)nE|Z,|".

p

N

(5.2) E z|,

m
Xz
i=1

i=1

g

(5.3) El Y z,

i=1

LEMMA 6. With the same notation and assumptions as in Theorem 1, there
exist universal constants A, , and B, ,, depending only on k and p, such that

p

Y (X, X))

1<iy# - #ig<n

Y f(XD, ..., X®) i

1<ig# - #ig<n

(5.4) <A pE

p

n
Y oo ) f(xi<11),..., XY, Xi(tk))
ih=1 =1

Proor. The first inequality is from de la Pefia (1992a). As for the second
inequality, the proof follows easily by using the i.i.d. property of the random
variables, together with the triangle inequality for L, norms. We only show
how to do this in the case k = 3 since the general case follows similarly:

p

E Z f(xi(ll)v xi(ZZ), xi(33))

1<ip#i,#iz<n

n n n P

YooY X (X2 X®,x2)

ip=110,=1i5=1

sC3,p{E

n p

Z Z f(Xi(l)! Xi(2)' Xi(3))

h=11<i,<nii#i;

+E
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n p
+E Z Z f(Xi(ll)' Xi(22)' Xi(13))
hh=11<i,<niiy#iy
n p
+E| ¥ > f(X®, X2, X®)

hh=11<i<niiy#iy

+E

n
-Zl f( Xi(ll)' xi(12)’ Xi(13))
i =

Since the variables are i.i.d. and f is symmetric, the three terms involving
double sums above are equal. Moreover, we can remove the restriction i, # i,
by adding and subtracting terms. O

5.2. A sharp decoupling inequality for U-statistics and the proof of Theo-
rem 1. We begin by introducing some notation. Recall that f: Sk - R in
Theorem 1 is assumed to be symmetric in its arguments; that is, (2.3) holds.
Define X;(f): SK"* > R by X,(f)Xy;,..., Ve 1) =y, ..., Vi1, X;). More
generally, for 1 < r < k, let G, denote the class of functions g: S" — R such
that g is symmetric in its arguments. For g € G,, define X;(g) € G,_; by
Xi(a)yy, oy Yeo) = 9(Yyq, ..., Yoo 1, X;), where we set G, = R. Moreover, for
geG and1l <h<r,0<m<n,define S{"(g) € G,_,, by
(55) S (Y1r---1 Yen) = z 9(Xiyroo X Vi Yeon)-

m<i;< - <ip<n

For notational simplicity, let S, , = S{”,. We can also extend the preceding
definition to the case h = r and h = 0 by defining

Sr,n(g)zsg,))n(g)= Z g(xil""!xi,)’
(5.6) 0<iy< - <i <n
SEM(@) (Va0 ¥e) = 9(Ya---0 V)
Since the function S{™, (f) has h arguments, applying S, , to this
function yields a constant by (5.6); that is,
Sh, nSI(<nj)h, n( f)
(5.7) - Y f(X;

1

%),

I<ig< - <ip=ny,m<ip,<ipy,< - <ip_<ig<n

In the same spirit, we have
Sn(f) = Y f(Xil,..., Xik)

1<ip<ip,< - <ig<n

(5.8) n
= Zsk—l,j—lxj(f), n> k.
i=k

Moreover, for k > r > 1 and j > 2!, we have the following extension of the
fundamental relation introduced in Chow, de la Penia and Teicher (1993):

r .
(5-9) Sr,j—lxj(f) = Z Sh,zisﬁz—)h,j—lxj(f)'
h=0
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To see this, note that analagous to (5.8), we have for g = X;(f),
i-1
fic1 X (F) =S, ,i(9) + X Sr—1,n,-1%n(9)
h,=2'+1
=S, ,i(9) + Sr—l,z'sfij)fl(g)
j-1 hy—1

+ )X Sr_2,h,-1%n, Xn(9)

h,>27 h,>2}

r N
=) Sh,2iS$2—)h,j—l(g)'
h=0
Let {X,, n > 1} be an 1 independent copy of {X,, n > 1} and define X.(f),
Sim(f) in terms of the X; instead of X;, for example,

S

~

Sen(f) = Y (XK X )

1<ip< - <ig<n

Composition of the operators S, , and Sfj“)h . therefore leads to
Sh, nSkfh, n( f)
(5.10) - ¥ > F( Xy X X X,

1<ip< - <ipsn m<ip < <ig<n

Throughout the sequel, we use C,, C, , and so on, to denote absolute
constants which may change from one line to another. Moreover, for two non-
negative functions g and h defined on S, we write g < h if g(y;,...,y,) <
h(y,,...,y.) forall (y,,...,y,) € S".

We now proceed to prove a basic decoupling inequality given by (5.12) and
(5.19) below. First, note from (5.9) that

2n+l
2 .
Y (Sr o Xi(H) (T =j)
j=r+1
n 2|+1 r
(511)  =C, X (T=z2) £ X (S8 (D)
i=[log,(r+1)] j=2i+1h=0
n 2|+1 2
=C, Z I(T>2) Z Z (Sh Z'Sr h,j— 1xj(f)) )
i=[log,(r+1)] h=0j=2i41
where C, =2""1. Let 1l <r <k and 1 < a < p. Since
Sr+1,n(f)(yr+2 ..... yk) = Z f(xil""7Xi,+1vyr+2""’yn)’

1<ig< - <ippp<m
application of the inequality in Remark (A) of Section 3, due to Burkholder in
the case p > 1 and to Davis in the case p =1 [cf. Corollary 11.2.1 and
Theorem 11.2.2 of Chow and Teicher (1988)], gives the bound
(5.12) E max |S.yn(H)| <C3 ..F),

r+1<m<T
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where we define J, , .(f) € G _,_; by

2n+1

a2
(5'13) ‘Jr,a,n(f)zE{ Z (Sr,jlxj(f))zl(TZj)} :

j=r+1
We next bound J, , () as follows:
Ji an(F)

< CWE{ znj I(T = 27
i=[

log,(r+1)]

r 2i+1 a/2
X Z[ )y (Sh,Zngi)h,jlxj(f))ﬂ }

h=0]j=21+1
n
=Cr,a Z
i=[log,(r+1)]
r - i+l » ) a/2
X L E((T=2)] ¥ (Sn282% 1%(1))
h=0 j=21+1
n
=Cr,a Z
(5.14) i=[logo(r+1)]
r - g+l _ _ ) /2
x Y ENT=2E|| L (80282 :%(H) | |Fa
h=0 j=2+1
n
<C. XY X
i=[log,(r+1)] h=0
- m ~ i vl :
x{I(T=2)E|  max Y SnaSEh -1 X(f)| |Fa
2i+1<m=<2i*t | , Y
j=2'+1
n
<. T
i=[log,(r+1)]
r _ 2i+1 o _ @
X Y E{T=2YE[l ¥ S,25%) -1 X()| |Fa
h=0 j=21+1

Line 1 in (5.14) follows from (5.9). To derive line 3, condition on F,:;, and
use the independence of the X; from F, for j> 2. Line 4 follows by
applying (conditionally) the reverse inequality of Burkholder and Davis
[Esup,lEi_, dil® > A E(X7_, df)P/? in the notation of Remarks (A) and (E)
of Section 3], and the last line follows from an easy extension of Corollary 2 in
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de la Petia (1992a). The next step is to bound
2i+1

Z Sh,ziggz—i)h,j—lij( f)
j=2'+1

Conditional Jensen’s inequality and Corollary 7.4.6 of Chow and Teicher
(1988) give that with probability 1

E{IShr(9)[" I Fn} =[S m(9) [ I(T =m) for g € G, with h’ > h.
Hence, working conditionally on the X's, we have

(5.15) EI(T = 2)

2i+1 , - “«
ECNT =2 X S, SE i1 X(F)
j=2'+1
(5.16)
2i+1 . - “
<E{(T=2) ¥ S,:520 , .X(f)] ;.
j=2'+1

In view of the symmetry condition (2.3), we can replace the right-hand side of
(5.16) evaluated at (y,,,,..., ¥,) by

I(T > 2"
= r+1-nh)! L L
( ) 1<ig< - <ip<T 214 1<y #Fipo# = #ip <2t
(5.17) w
f(xil,..., i\ ihH,...,Xirﬂ,ywz,...,yk) }

Using de la Pefia (1992a) conditionally on {X;}, this quantity can be decou-
pled. That is, if we take { X"V}, {X("*2} {X{*Y} to be i.i.d. copies of
{X;}, then (5.17) is less than or equal to

Cr,h,aE{ I(TZZi) Z Z
(5.18) Isip< <in=T 2041 <ip, g #ipgo# o #ipgy <20 a
f(Xil’ B Xih’ Xi(hh+t1)’ et Xi(rr++11)1 yr+21 ey YK) }

Hence (5.15) is less than or equal to (5.18).
Putting the upper bound (5.18) for (5.15) into (5.14) shows that
Ji o Y 12, ..., Y,) is bounded above by

i E{I(Tzzi) Y

1h=0 204 1<ip,Fipgo# - Al <27t

C,

n
o

S ( f)(xi(hhfll):---v Xi Yeian o yk)

r+1

|
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Hence, conditional on {X;}, applying Lemma 6 to S, +(f) (instead of f) then
yields the following bound for J, . .(f):

e an(F)(Vrizrh Vi)

n r+1—-h
<C .2 X E{I(T =2")
i=1h=0 t=1
5.19 2! 2!
(5.19) x| X X S p(F)(XEY, L, X,
ihy1=1 ihe=1

r+1
XD Yo i)

noting that 2'** — 2' = 2" and that conditional on {X_}, the X{"* . X
are i.i.d. random variables.

ProoF oF THEOREM 1. Set r+ 1=k and a=p in (5.19). Then the
summands in the upper bound of (5.19) reduce to

2i 2i P
E{I(TzZ‘) Yo X S (H)(XIh XX }
ihe1=1 ihie=1

p/2

IA

Ck,pE{I(Tz 2h)(2'/T)

2! 2! T
x|y - ¥ Y Shr(FH)(XM, L, X,
ihe1=1 ihee-1=10p =1

...,x<k>)

Thit

p}

IA

IA

ck,pE{ I(T > 21)(21t/TH™?

T T T
X E E Z Sh,T(f)(Xi(hh+t1)!""Xi(hh:t)'
ihe1=1 ihet-1=10ps =1

p
LX) }

where the inequalities follow by repeated use of Lemma 5 [see (5.2)] condi-
tionally. Since S, ((f)=f;  ,, putting this in (5.19) and combining the
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result with (5.12) (in which @ = p and r + 1 = k) yield

p
E max )y F(Xi0 e X
k<n<T 1<i;< -+ <ig<n ( 51 Ik)
k-1 k—h © > _ : -
h=0t=1 li=1 j=i
T T '
h h k
X ) Z o . Z fT,k,h(xi(thtl)""’ Xi(h+-:t)"“’ Xi(h+)t)
ihy1=1 =1
k—1 k—h T T i
<Ce, Y YE Y - % fT,k,h(Xi(hh+tl)""’ Xi(hh:t),.... X‘(hkft)
h=0 t=1 ihy1=1 ihie=1

O

5.3. Proof of Theorem 2. The preceding proof of Theorem 1 uses the
bounds (5.12) and (5.19) in the special case « =p and r + 1 = k. We can
consider more general (a,r) and the same argument as in the proof of
Theorem 1 gives the following variant of Theorem 1: for 1 < a <p and
1<r<k,

E maxT|Sr+l,n(f)(yr+2!"'lyk)la

r+l<n<
r+1-h T T
<C . X X E[ X - X Sp(H)(XMD, ., xM,
h=0 t=1 |ip,i=1  ip.=1
(5.20)
+1)
"’xi(hr+t !
Yegorees Yk)
Let g = p(k, p)(= (p¥*=b —1)~1) and
(5.21) a,=p(q/(q+1)) =p/*Dforr=0,1,...,

soa;=pand ¢g_;=1.ForO<h<randl<t<r+1-h,let

T T
Yhe= Z Z Sh,T(f)
(5.22) inp1=1  dpe=1
><(x;hhj11>,..., X0 XDy yk).
Conditional on { X}, {X{"* P}, ... {X{"**"Y}, Y, , is a sum of i.i.d. zero-mean

random variables. For 1 <h <, since 1 < o, < a},_; < 2, it follows from
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Lemma 5 [see (5.3)] that
{Xn} ’ {Xrghﬂ)}' L {Xrghﬂ—l)}]}

{Xn} ) {Xr(‘h+l)}, o {Xr(]h+t*1)}])af/“h—1

E{E[IY, ]

< ChE(E[IY,

T T
SCE(Te/ma|E|| ¥ - ¥ Sy (f)(xMh, ., xhtD,
ihy1=1 ihigo1=1

(5.23)

h+t +1
X0, XY, )

ap/on_q
{Xn},{xr(]h+l)},_”,{Xr(1h+t—1)} D

Repeating this argument then shows that E(E[|Y, /“{X,}]) is bounded
above by

Ch E{Ttar/ah,l(E[lsh’T( f)(X£h+l), . X{Hl),

Yegors yk)|ah71|{ xn}])“r/ﬂh_l}

forh=1,...,rand1<t<r+1—h. Inthe case h=0, since S, (f) =f
by (5.6), a similar argument again gives (5.24) with a_, = p as an upper
bound for E(E[|Y, /“{X.}]). We can also replace ta,/a, ; by (r+1—
ha,/a,_, in the upper bound (5.24). Putting this upper bound for
ECELIY,, [ *{X,}]D into (5.20) yields

(5.24)

A

E max |Sr+l,n(f)(yr+21'--v yk)
r+l<n<T
r
< Cr Z E{T(r+l_h)“r/ah—1
h=0
X (E[ISnr(H)(X{MD,.., x{,
ap ap/on g
(5.25) Verzr v X)) }
r
< CrETp(k,p){ Z (E|Sh,T(f)(X](_h+l)v---u Xl(r+1)’
h=1

S\ /e
Verzooyd)| )

+(E\ (X, XY,y yk)\p)ar/p},
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where the last relation follows from Hdlder's inequality, noting that by (5.21),
forl<hc<r,

(r+1-h)(a/ay_1)(1 - a/a,_y) " =(r+1—h)/(pri-m/k-n_7q)
< (pY* Y — 1) = p(k, p),

since the function x/(e®* — 1) is decreasing in x > 0 for any c > 0. In this
connection, also note that (r + Dea,/p = (r + Dp /& D < p(k, p) since
A+e)=(r+Defor0<e(=pYV*kDY-_1)<landr=12,....

Since E[f(X®, ..., X{)|P < o, it follows from (5.25) that for 1 < r < K,

E{ max | r+1n(f)(xyw,...,x;k>)|‘“}<ao if
(5.26) r+1<n<T '
max E{]S, £ (H)(XM,.. x()[") <o

Forr=h=1, a,_; = a; = p(e (1, 2] and it follows from the Marcinkiewicz—
Zygmund inequality that

p

.
E|SlYT(f)(X}2),...,Xik))|p E| X f( X, X®,..., X{)
i=1

el £

<C E{

I/\

IIMg

p/2
(X, X2, XY (T = i)}

”MS

(X, X2, X8 1(T = i)}
T)E|f(Xq,..., X)[".

Hence, (5.26) gives
E{ max |S2 (XD, X{k))|a1} < oo,
2<n<

Proceeding inductively, (5.26) yields for r = k — 1 the desired conclusion
since a_; =land S, (f)=X;_; ...c;, <n F(X;,..., X; ) by (5.6). O

REMARK. For the special case f(X;,..., X, ) = X, ... X,

(527) Si n(F)(Yrsrio Vi) = ( Z Xil Xir Yerr " Yio

1<i;< - <iy<n
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and therefore we can simply identify S, ((f)as ¥, _; .. i <n Xi, - X; . The
factorization (5.27) also implies that for 1 < « < p,
T T @
El X = X Snr(H)(XM X0 X Veia e i)
ihe1=1 =1
[e3 T :
(5-28) =E |Sh,T(f)| Z Xi(hh:Zh
ihy=1
T [e3 T o
XX X X XTI e vl
ihet-1=1 ihet=1

Using this identity and the independence of the X; and the X{”, we get

T [e3
E{lsh,T(f)l Ef| X XY (X4
=1
T [e3
XEL X X XX
=1
(5.29) T P e
. < E{|Sh ()] E( _ )y xi(hhil) {Xn}
ihi=1
T p a/p
<[l x|k
ihe=1

< C,(EIX,|P) " PET e/ p|s, L (£)]" by (5.3).

Hence in this case, we can replace «,,_; in (5.23) by p, which will be shown to
lead to the weaker moment condition ET~1/(P~D < o as assumed by
Chow, de la Pefia and Teicher (1993).

Consider the moment condition ET? < « for some (> 1) not necessarily
equal to the p(k, p) of Theorem 2. The bounds in (5.25) obtained via Hdlder’s
inequality requires that (r + 1 — h)(«a,/a,_ )1 — a,/a,,_) "t <q for 1 <
h < r. In particular, the case h = r entails that (e, /a,_ X1 — a,/a,_,)"* <
g, so replacing “< q” by “=q” leads to «,/a,_, = q/(q + 1). Since a, = p,
this yields «, = p(q/(g + )" as in (5.21). The boundary condition «,_, =1
then implies q = p(k, p). In the multilinear case f(x;,..., X,) =X, = X,
(5.29) enables us to replace (5.25) by the sharper bound
E rnax_|_|Sr+1,n(.It)(erer"'a)/k)|ﬁr

r+l<n<

r
< Cy (EIX,|P) AP N (T ammeo s, (1) [Py, e vl
h=0
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(r+1-h)
= Cp,r(E|X1|p) ” [Yrgo o )/klﬁr

~1.1=-B¢/Bn-1

r
X Y (ET(HL- M8/ pXL=Be/ Bt (€[S, T(f)|ﬁh—1)3r/ﬁh*l_
h=0

Hence in this case, instead of (r + 1 — h)(«a,/a,_ )1 — @, /a;,_) "t < q, we
require that

(530)  (r+1-h)(B/p)(1-B/Bn1)  <q fori<hs<r.

Replacing “ < q” by “=q" in the case h = r leads to (8,/pX1 — B8,/B8,_,)"*
= q, or equivalently, 8, = q/(p~! + qB,1,). The initial condition 8, = p and
the terminal condition B,_, =1 then yield B8, = pq/(q+7r), gq=(k—1):
(p — D1 Hence in the multilinear case, the weaker moment condition
ET®*-V/(P~D < o suffices for the conclusions of Theorem 1. Moreover, the
factorization (5.27) simplifies the result considerably.
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