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STRONG LAWS FOR LOCAL QUANTILE PROCESSES

By PauL DEHEUVELS

L.S.T.A., Université Paris VI

We show that increments of size h,, from the uniform quantile and
uniform empirical processes in the neighborhood of a fixed point t, € (0, 1)
may have different rates of almost sure convergence to 0 in the range
where h, - 0 and nh,/log n - «. In particular, when h, = n~* with
0 < A < 1, we obtain that these rates are identical for 1/2 < A < 1, and
distinct for 0 < A < 1/2. This phenomenon is shown to be a consequence
of functional laws of the iterated logarithm for local quantile processes,
which we describe in a more general setting. As a consequence of these
results, we prove that, for any ¢ > 0, the best possible uniform almost
sure rate of approximation of the uniform quantile process by a normed
Kiefer process is not better than O(n~%/4(log n)~*).

1. Introduction and statement of main results. Denote by U,(s) =
nN'#{U, <s: 1 <i<n}for —o <s <o the empirical distribution function,
and by V. (t) =inf{ls > 0: U (s) >t} for0 <t <1,V (t)=0for t <0, V(1) =
V,(1) for t > 1, the empirical quantile function based upon the first n > 1
observations from an i.i.d. sequence U,;,U,,... of uniform [0,1] random
variables, Here, #A denotes the cardinality of A. We are concerned with the
local behavior of the uniform quantile process g,(t) = n*/?(V,(t) — t) and of
the uniform empirical process «,(t) = n*/?(U,(t) —t) for —o <t <<, in a
neighorhood of t; € [0,1). For a > 0 and —» <'s, t < «, introduce the incre-
ment functions

{(a,t;s) =B (t+as) — B,(t) and & (a,t;s) = a,(t+as) — ay(t).

Because of the central role they play in nonparametric statistics, local
oscillations of B, and «, have been very much investigated in the literature
[refer to Csorgd and Révész (1981), Shorack and Wellner (1986), Csorgo and
Horvath (1993)]. These are conveniently described through ¢, (h,,t;-) and
&(h,, t;+), where {h,: n > 1} is a bounded sequence of positive constants
satisfying conditions among (H.1-H.6) below. Set log, u = log, u = log(u V e)
and log, u = log, (log,_; u) for p > 2.

(H.1) () h, {0, (i) nh,1;
(H.2) nh,/log, n — o«;
(H.3) nh,/log,(1/h,) — o;
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(H.4) (log(1/h,))/log, n = ¢ € [0, =];
(H.5) nh,/log,(1/(h Vn)) — o;
(H.6) (log(1/(h,Vn))/log, n —» d € [, =].

Introduce the sequences of constants, depending upon h, and n > 1,
a, = (2h,log, n)l/z,
1/2
b, = (2hn{log+(1/(hn\/ﬁ)) + log, n}) ,
¢, = h, + n"?(log, n)"?,
d, = (2h.{log, (1/h,) + log, n})l/z.
The following results are now well known. First, Kiefer (1972a), Mason

(1988), Einmahl and Mason (1988) and Deheuvels and Mason (1990b) showed
that, under (H.1) and (H.2),

limsup{+a;%,(h,,0;1)}

(1.1)

n— o

(1.2)
= Iimsup{ sup =+ a,%¢,(h,,0; s)} =1 as,
n—o O<s<1
and
limsup {+a;%,(h,,0;1)}
(1.3) ne

= Iimsup{ sup + a,*%,(h,,0; s)} =1 as.
n— o O<s<1

Second, Mason (1984), Stute (1982), Mason, Shorack and Wellner (1983),

Deheuvels and Mason (1992) and Deheuvels (1992), showed that, under

(H.D)-(H.4),

Iimsup{ sup  +d;%.(h,;t; 1)}

(l 4) n— o O<t<l-h,
= lim sup{ sup  sup +d.%,(h,,t; s)} =1 as,
n—o O<t<l-h,0<s<1
and
Iimsup{ sup  + d;lgn(hn;t;l)}
(1 5) n—o O<t<l-h,

= lim sup{ sup sup +d %, (h,, t; s)} =1 as.
n—o O<t<l-h,0<s<1
A simple argument [see, e.g., Deheuvels and Mason (1994a)] extends the LIL
in (1.3) to the following description of the increments of size h,, of «,. Under
(H.1) and (H.2), for each specified t, € [0, 1),
limsup{+a;%,(h,, t;1)}

n—o

(1.6)
= Iimsup{ sup + a,%,(h,, tg; s)} =1 as.

n—o O<s<1
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The aim of this paper is to obtain the versions of (1.6) holding when ¢, is
replaced by ¢,. In view of (1.2), (1.3) and (1.4), (1.5), one could expect this
replacement to be possible without any further change in the statement of
the results. In Theorem 1.1 below, we establish the unexpected fact that such
is not the case when t, # 0.

THeorem 1.1. Under (H.1), and (H.5), (H.6), for any specified t, € (0, 1),
we have

limsup { £b, ¢, (h,. t5; 1)}

n— o

(1.7)
= Iimsup{ sup =+ b % (h,, ty; s)} =1 a.s.

n—o O0<s<1

RemMARK 1.1. (i) The definitions (1.1) of a, and b,,, allow us to distinguish
the following three ranges of interest for {h,: n > 1} depending upon the
relative magnitude of b, relatively to a,. Below, we give the corresponding
versions of (1.7) in Theorem 1.1.

(@) The large increment case is that (H.6) holds with d € [—»,0]. It
implies (H.2)-(H.5). Moreover, it entails that (log,(1/(h,/n)))/log, n - 0
and, for each k > 0, ultimately as n — o,

(1.8) h, = n"'2(log n) “.
If we assume in addition that (H.1) is satisfied, we have

limsup{+a,'.,(h,, t;;1)}
(1.9) mr
= Iimsup{ sup + a,%,(h,, ty; s)} =1 as.
n—« O<s<1
(b) The intermediate increment case is that (H.6) holds with d € (0, %), or
equivalently, when

(1.10) h, = n~%2(log n) ~4"°®,

as n — oo, It implies (H.2)-(H.5). Under the additional assumption (H.1), we
have

limsup{+a,%,(h,, ty; 1)}
n— o

(1.11) _ ”
= Ilmsup{ sup iaglgn(hn,to;s)} =(d+1) a.s.

n—o O<s<1

(¢c) The small increment case is that (H.6) holds with d = «, or equiva-
lently, when, for each « > 0, we have ultimately as n — oo

(1.12) h, <n '2(log n) “.
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Under this assumption, (H.5) becomes equivalent to
(1.13) nh,/log n — oo,

so that (H.5) and (H.6) jointly imply (H.2)-(H.4). If, in addition, (H.1) holds,
then

limsup {+a,%,(h,, t,;1)}
n— o

(1.14)
= Iimsup{ sup £ a,(h,, t; s)} = as.
n— o O0<s<1

(ii) In each of cases (a)-(c) above, (H.5) and (H.6) jointly imply (H.2)-(H.4)
and (1.13).

(iii) In view of (1.6), (1.9), (1.11) and (1.14), for t, € (0, 1), the almost sure
asymptotic rates of {,(h,, ty; 1) and §,(h,, t,; 1) coincide for large increments
but differ from each other for small increments. For intermediate increments,
rates are identical, but limiting constants are different.

REMARK 1.2. Theorem 1.1 allows us to give the following answer to Open
Question 2, page 495 in Shorack and Wellner (1986). Define a Kiefer process
{K(n,t): n > 1, t > 0} [Kiefer (1972b)] by

n
K(n,t) = X (Wi(t) — tw;(1)),
i=1
where (W (t): t>0}, n=1,2,..., are i.i.d. standard Wiener processes.
Komlods, Major and Tusnady (1975a, b, 1976) showed that {U,: n > 1} and
{K(n,t): n > 1, t > 0} may be defined on a probability space (Q,, A;,P,), in
such a way that, with probability 1,

(1.15)  sup |a,(t) —n~¥2K(n,t)| = O(n"?(log n)*) asn — .
O<t<1

A version of (1.15) for B, is obtained via the uniform Bahadur-Kiefer
representation [see, e.g., Bahadur (1966), Kiefer (1967, 1970), and Deheuvels
and Mason (1990a)]

limsupn®/“(log n) ™*/*(log, n) " *{ sup [ay(t) + B(1)]
(1-16) n-ow O<t<1

=27V as.
By combining (1.15) and (1.16) with the observation that K'(n, t) = K(n, t) is

a Kiefer process, we obtain the following result due to Csorgd and Révész
(1975). On (Q,, A, P,), we have

sup | By(t) —n~/?K'(n,1)|
(1_17) O<t<1
= O(n~*4(log n)*"*(log, n)*’*) asn — <.
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It is natural to investigate the optimality of (1.17) by the following question.

Does there exist a probability space (Q,, A,,P,) carrying {B,(t): 0 <t <1}

and a Kiefer process K”(n, t), with

(1.18)  sup | B,(t) —n"¥2K"(n,t)|=0O(n"¥*(logn) ") asn - o,
O<t<1

for some £ > 0? Csorgd and Révész (1975, 1981) (see their Remark 4.5.1, page

147) conjectured that the rate in (1.17) is “probably far from being the best.”

The following corollary of Theorem 1.1 disproves in part this conjecture by

showing that (1.18) is impossible.

CoroLLARY 1.1. For any Kiefer process {K"(n,t): n>1, 0 <t < 1} de-
fined on the same probability space as {B,(t): 0 <t < 1}, we have, with
probability 1 for each ¢ > 0,

(1.19) limsupn'/*(log n)g{ sup | Ba(t) — n_l/zK"(“'t)|} = .

n— o O<t<1

Proor. Let B, and K”(n, t) be defined on the same probability space. Fix
any &> 0 and select a t, €(0,1). Put d =¢&/2, h, =n"*2(logn)"¢ and
p, = N**(log n)4/2(log, n)~1/2, Set

n(hy, t;s) = n~Y2(K(n, t + h;s) — K(n, t)),
m(h,, t;s) =n"2(K"(n,t + h;s) — K’(n,t)),
for s > 0and 0 < t < 1. It follows from (1.6), (1.15) and our choice of h, that
limsup p,| &,(hy, to; 1) = limsup p,|m,(hy. 15 1) |

n— o n— o

(1.20)

limsup pp|mn(h,, ty;1) | = 272 as.

n— o«

On the other hand, it follows from (1.11) that
(1.21) limsup p,| Z,(h,, to:1)| = (2(d + 1))"? as.
n— o

An easy argument based upon (1.20) and (1.21) and the inequalities

1Za(hny to: D) | = [ (D, 6 1) | <[ &a(hni to5 1) — mn(hy, G5 1) |

<2 sup | B,(t) — n"*2K"(n,1)],
O<t<1
shows that, almost surely
Iimsuppn{ sup | B,(t) — n1/2K"(n, t)|} > 1((2(d + 1))2 = 22) > 0,
n— o 0<t<1

which, since d = /2, readily implies (1.19). O

RemARK 1.3. (i) The above given proof of Corollary 1.1 becomes invalid for
g =0, since then d = ¢/2 = 0 and the constants in the RHS of (1.20) and
(1.21) are identical.
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(ii) By (1.17) and (1.19), there exists a constant & € [0, 1/2] such that the
best possible uniform almost sure rate of approximation of 3,(t) by a normed
Kiefer process is o(n~!/4(log n)°*¢) and o(n~'/%(log n)®~¢) for each &> 0.
The value of 6 will be investigated elsewhere.

In the remainder of our paper, we will prove Theorem 1.1 and related
results, shedding light on the unexpected mechanism which allows, at times,
the strong limiting behavior of the local quantile process ¢,(h,, ty; - ) to differ
from that of the local empirical process &,(h,, ty; ). By anticipating the
exposition of these arguments, we may give a heuristical explanation of the
origin of this phenomenon, limiting ourselves, for the sake of simplicity, to
h, = 1/n* with A € (0, 1). We will establish in the sequel [see (2.29)] that the
limiting behavior of +¢,(h,, t;; ) coincides essentially with that of
F&.(h,, V, (t); - ). This will allow us to show that the latter sequence behaves
in the same way as or differently from F¢.,(h,, to; - ), according as |V, (t,) — t,
is of smaller or higher order of magnitude than h,. Since, for 0 <t, <1,
|V, (t,) — t,| = 0 at an optimal almost sure rate of O(n~*/2(log, n)*/2), it will
follow that ¢,(h,, t,;-) and ¢,(h,, to;-) have different almost sure rates of
convergence to 0 when 0 < A < 1/2. On the other hand, when either t, = 0,
to=1o0r 1/2 <A <1, IV(ty) — t,l is negligible with respect to h,, and the
almost sure rates of +¢,(h,, ty;-) and F¢,(h,, ty; ) are identical.

2. Proofs—outer bounds.

2.1. A more general framework. The results in Section 1 will be shown to
follow from a description of the limiting behavior of {b;',(h,, t;-): t € [t, —
Cn to + ¢t and {c 'V, (t, — to)}, with b, and c, given by (1.1). The
following notation will be needed. Let |u|< u < |u] + 1 (respectively [u]>
u > [u] — 1) denote the lower (respectively upper) integer part of u. For each
—ow < a<b<owo, we denote by (B[a, b], U) the set B[a, b] of all bounded
functions f on [a, b], endowed with the uniform topology U, generated by
£l =1l 112 = SUpgc(a byl F(S). For any >0, feBla b] and A CBla,b],
A # O, we set

N.(f) ={¢eB[ab]:ll¢g —fll<e} and A°= |J N.(¢),

PEA

[fly = {fbfz(s) ds}/2 if f is absolutely continuous on [ a, b]
a with Lebesgue derivative f = df /ds
and f(0) = 0,
[fly = otherwise.

Weset S ={f € B[a, b]: |[f|4 < 1} [Strassen (1964)], and, for any ¢ € B[ a, b]
and A c B[a, b],

inf,. A J(¢) if A0,

(2.1) J(¢) = ¢l and JI(A) = _
©, otherwise.
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In the sequel, we only consider the cases where either [a, b] =[—1,1] or
[a, b] = [0, 1]. Therefore, whenever a and b are unambiguously defined, we
will use the same notation |-, |fln, S, J(-), N, and A?® independently of
these constants. Throughout, 1(s) = s denotes the identity function.

The following fact gives an extended description [with respect to (1.6)] of
the local behavior of «,.

FacT 1. Under (H.1) and (H.2), for any t, € (0, 1), the sequence of func-
tions {a;%,(h,, t;;-): n > 1} is almost surely relatively compact in
(B[—1, 1], U), with limit set equal to S.

This result is a particular case of Theorem 1.1 of Deheuvels and Mason
(1994a), which extends Corollary 2 of Mason (1988), the latter being written
in the setting of B[O, 1].

Recall that {f,: n > 1} is relatively compact in (B[ a, b], U) with limit set
equal to S if and only if:

1. for each & > 0, there exists an n(&) < « such that f, € S® for all n > n(e).
2. for each ¢ > 0 and f € S, we have infinitely often || f, — || < &.

Since S is a compact subset of (B[ a, b], U), an easy argument shows that,
whenever the conditions above hold, for each U-continuous functional O:
Bla,b] - R U {=}, bounded on S,

(2.2) limsup®(f,) = supO(f).

n—o feS

By applying (2.2) to O(f) = £f(1) and O(f) = sup,_,_, + f(s), we readily
infer (1.3) and (1.6) from Fact 1. The same argument shows that Theorem 1.1
follows from Theorem 2.1 below.

THEOREM 2.1. Under (H.1) and (H.5), (H.6), for any t, € (0,1), the se-
quence of functions {b,.,(h,, t,;-): n> 1} is almost surely compact in
(B[—1, 1], U), with limit set equal to S.

The proof of Theorem 2.1 is postponed until the next sections.

ReEmARk 2.1. (i) Our arguments would allow us to show that Theorems
1.1 and 2.1 remain valid [as well as (1.2)-(1.6)] when (H.1) is replaced by

(H1)' (i) h, -0, (i) Iim(limsup{ max hp/hq})=1.

11\ nse  YN/p<p.g<pn

However, to prove our theorems under (H.1)’ would necessitate rewriting in
this setting the proofs of a series of technical facts borrowed from the
literature. Since this would greatly increase the length of our paper, we will
limit ourselves to the present framework by only considering (H.1).
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(ii) Under the assumptions of Theorem 2.1, the equality in (2.2) holds with
probability 1 for each continuous functional ® on (B[—1,1],U), with f, =
b, .(h,, t,;-). The examples of such applications, corresponding to the vari-
ous possible choices of interest for O, are left to the reader.

2.2. Local Bahadur—Kiefer type approximations. We inherit the notation
of the previous sections and assume throughout that t, € (0,1) is fixed.
Below, we establish local Bahadur—Kiefer type representations [Bahadur
(1966), Kiefer (1967, 1970), Deheuvels and Mason (1990a)], stated in Lemmas
2.3 and 2.4, which relate the local fluctuations of B, to that of «,. This
approach will allow us to derive in Lemma 2.2 the outer bound halves of
Theorem 1.1. First, we give more notation and facts.

Foreach n > 1, denote by 0 < U, , < -+ < U, , < 1 the order statistics of
U,,...,U,, which are a.s. distinct and in (0,1). Set U, , =0and U, ,, , =1
for n > 0. We have, a.s. for n > 1,

V(1) = Uppyn and t< U (Vy(t)) =n~*[nt] <t+n"*
forO0<t<1.

(2.3)

FacT 2. We have, with probability 1, foranyn>1,a>0,0<t<1 and
O<t+asc<l,

(2.4) |¢o(a, t;s) + {an(Vy(t + as)) — an(\/n(t))}| <2n71/2,

The proof follows readily from (2.3) and the triangle inequality [see (1.6) in
Shorack (1982)].

FacT 3. We have, with probability 1,

limsupn'/2(log, n) /%I, — 11l

n— o

= limsupn'/2(log, n) “?lU, — 15 = 2~ 1/2,

n— o

(2.5)

For one proof, see Chung (1949). Notice that [V, — Ils = [[U, — 1[5 a.s.
Introduce the function (see, e.g., pages 439, 440 in Shorack and Wellner
(1986)],

h(x) =xlog x —x+1 for x> 0, h(x) =1 for x
h(x) =« for x <O0.

0,
(2.6)

Set further 8¢ = inf{x > 1: h(x) > 1/C} for C > 0, and
(2.7) RE=(C/2)"*(8¢ —1) forc>0, RE=1 forC =,

FacT 4. Lett, € (0,1) be fixed, and let {A,: n > 1} and {C,: n > 1} be two
sequences of constants satisfying the following set of assumptions for some
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C €(0,] and D € [0, «]:
(iy A,>0,C,>0,A,10,C,10,nA,1,NnC,7T;
(2.8) (i) nA,/{log, (C,/A,) + log, n} - C;
(iii) (log, (C,/A,))/log, n = D.
Then, with probability 1,

lim sup{ sup (2Aflog, (C,/A,) + log, n}) ™/
te[ty—

n-— o Cnh to+Cpl

(2.9)
X I&, (ALt )Ry = RE.

In view of Remark 1 of Hong (1992), (2.9) reduces to the conclusion of his
Theorem 1.2 when D < [0, »), and to the conclusion of his Theorem 1.4 when
D =,

In the sequel, we will repeatedly make use of Fact 4 with different choices
of the auxiliary sequences {A,: n > 1} and {C,: n > 1} whose definitions will
be specified in each application.

The following lemma gives, as a starting point to the proofs of our
theorems, crude upper bounds.

LEMMA 2.1. Under (H.1), we have, with probability 1 for all large n,
(2.10) IV, (t, + h,1) — tll*; < h, + (4/5)n"?(log, n)"? < c,,,
(2.11) IV, (to) + hy 1 = oIty < h, + (4/5)n"2(log, n)"/? < c,,.

Proor. By (H.1)(i), 0 <t, — h, <t, + h, <1 for all large n, whence, by
the triangle inequality,

IV, (t, + h,s) — t,] < [V, (t, + h,s) — (ty + h,s)l + h,ls|
<INV, — g + h, forls| < 1.

(2.10) follows from (2.5), (2.12) and 2°'/2 < 4 /5. The proof of (2.11) is similar
and omitted. O

(2.12)

The next lemma establishes the upper bound halves of Theorem 1.1.

LEmMMA 2.2. Assume that (H.1) and (H.5), (H.6) hold. Then,
(2.13) limsupb;lZ,(h,. to; )M <1 as.

n— o«
Proor. Recalling the definitions (1.1) of b, and c,, set, for any € > 0,
A(e)=(1+e€)h,, c,=h,+n"Y?(log, n)"?
1/2
(214) L (e) = (1 + ©)2A,(e){log, (co/Aq()) + log,n})"?,
L, = Ln(o)'
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Since sup,cgllog, (1 + u) — log, u|l < «, we infer from (2.14), that, for any
€e>0,as n - o,

La(€) = (1 + €)(2h,{log, (1/(h,/n)) + O(log, n) + log, n})l/2
(2.15) =1+ e)(zhn{log+(1/(hn\/ﬁ)) + (1 + o(1))log, n})l/2
=(1+0(1))(1+ €)b,.

Recall from Remark 1.1 that (H.5), (H.6), entail that nh,/log, n — . Thus,
by (2.15),

n~*2L,(¢€)
hn
(2.16) 1/2
= (1 + €)2/? IOng(lr/]r(]hn‘/ﬁ)) + (1 +0(1)) Ior?; - 0.

n n

Likewise, we infer from (H.1)(ii) and (2.15) that, for any € > 0,

Ln(€)
n-1/2

(217 = (1 + €)2v/2{nh,(log, (1/(h,Vn))

1/2
+(1 + o(1))log, n)} - o,
We now select an arbitrary ¢ > 0, and set, in view of an application of Fact 4,

e=¢, A,=A¢) and C, = c,. By (2.15), (2.16) and (2.17), we have, for all
large n and uniformly over s € [ -1, 1],

IA

lh,s + n 2L (&)l < (1L + &)h, = A, and

(2.18)
—Ly(e) +n 2 < —L,(&/2).

A

Consider next, for each s € [ —1, 1], the events
(219) Ef(e,s) = {Vo(to + h,s) — Vi(t,) — h,s > n 2L (&)},
' En(&,8) = {Va(to + h,8) — V(L) — h,s < n~ V2L (&)}

Recall from (2.3) that V,(u) = U, , for 0<u =<1 and U, ,) =n""'r
with probability 1 for 0 <r < n. Set p, = [nt,] and g,(s) = [n(t, + h,s)].
We infer from (2.15) and (H.1) that, whenever n is so large that 0 < t, —
c,—n 2L (e)<ty+c,+n L (e) <1 forall se[—1,1],

Ef(e,8) = {Uyo.n = Uy o+ hys+n 2L (&)}

< {Un(uqn(s>,n) = Un(Yy,.n)

(2.20) > [Un(Upn’n +h,s + nfl/an(a)) — [Un(Upn,n)}
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= {[Un(\/n(to) +h,s + n—l/an(g)) — Uy (Via(to))
<n Y ([n(te + hys)] = [nto])}
< {an(\/n(to) +hys + 0720 (e)) — an(Va(to))
< —-L,(&) + n‘l/z}.
Since our choice of C, = ¢, implies, via (2.12), that V(t)) € [t, — C,, t, + C, ]

with probability 1 for all large n, (2.20), when combined with (2.18) and
(2.19), implies that

IP[ U E:(s,s)i.o.}
(2.21) sel-td

< [P’[ sup €A, )R = Lo(e/2) i.o.}.

te[ty—C,, tp+C,]
Making use of a similar argument for E; (&, s), we obtain likewise that
IP[ U E.(e,59) i.o.}

se[—1,1]
(2.22)

< [P’[ sup €A, )R = L(e/2) i.o.}.

te[ty—C,, to+Cpl

Since, by (H.1), (H.5) and (H.6), A, and C, fulfill (2.8), with C =« and
D =d Vv 0, we may apply Fact 4 in the present setting, to show, via (2.7),
(2.9), (2.14) and (2.15), that

Iimsup{ sup |I§n(An,t;‘)||11/|—n(8/2)}
(2.23) n-o  \te[ty—Cp, to+Cpl

=(1+¢/2) /%<1 as.
In view of (2.19) and (2.21), (2.22) we readily infer from (2.23) that

(2.24) limsup {ll,( Ay to: )k /Ly(e)} <1 as.

n— o

Recalling from (2.15) that L, (&) = (1 + o(1)X1 + &)b,, as n — «, we conclude
(2.13) by choosing & > 0 arbitrarily small in (2.24). O

The main result of this section is stated in the next lemma.
LeEmMA 2.3. Under (H.1) and (H.5), (H.6), we have

(225)  ImbIL Ny toi ) + En(, Va(to) i)l =0 as.

Proor. Fix an arbitrary ¢ > 0, and assume that (H.1) and (H.5), (H.6)
hold. By combining (2.13) with (2.14), (2.15) and (2.16), we see that, with
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probability 1 for all large n,
IVo(to + 1) = Vo(te) = M tlIE = n Y2114, (hy, to; ) IR
(2.26) (1 + &)n"1/?p,
=(1+0(1))n" 2L (&) < &h,,.

Also, we recall from (1.1), (2.10) and (2.11) that, with probability 1 for all
large n,

IA

2.27) max{[IV,(t, + h, 1) — toll11, Vo (to) + h 1 — toll2 4}

. <c¢, =h, +n"2(log, n)"?.
We next apply Fact 4 with A, = ¢h,, C, = ¢, which obviously fulfill (2.8),
C=wo and D=dVO0. It is readily checked that (2A {log, (C,/A,) +
log, NP2 = (1 + o(1))e/?b,. Thus, in view of (2.4), we infer from (2.7), (2.9),
(2.26) and (2.27), that, with probability 1 for all large n,

1£0(hns tos ) + &n(hy, Vi(to); ')”El
<2072 4 flag(Va(to + h 1) = an(Va(to)) = én(hn, Vo) DLy
=2n"Y2 4 {lay(Va(to) + hal) = an(Va(te + ha 1)1,

<2nY2 4 sup l€.(eh,, t; )N <2n Y2 =2gY2p, .
te[ty—c,, to+c,]
By (2.14) and (2.17), n~*/? = o(L,)) = o(b,), whence the RHS of (2.28) is a.s.
ultimately less than or equal to 4¢/?b,. Since we may choose & > 0 arbitrar-
ily small, (2.25) is straightforward. O

(2.28)

The next lemma characterizes in part the range where the a.s. asymptotic
rates of {,(h,, ty;-) and £,(h,, t,; ) are identical. A different argument will
be needed when (H.6) holds with d = 0.

LeEmMA 2.4.  Assume that (H.1) and (H.6) hold with d € [ —«, 0), Then, we
have

r!im ar:l”gn(hn’ to; ) + gn(hn’ to; )”El
(2.29) -
= limb; Y Z,(h,, to;") + &(h,, to;)I*: =0 as.
n— o

Proor. (H.6) holds with d & (—=,0) (respectively d =) iff h, =
n~1/2(log n)~9*°® [respectively h, > n~*/?(log n)© ultimately as n — « for
each « > 0]. Thus, in either of these two cases, we have

b, = (2h,{log, (1/(h,Vn)) + log, n})l/2

= (1 + o(1))(2h, log, N)*? = (1 + o(1))a,.

Fix any £ > 0. Set A, = n"*2(log, n)/? and C,, = h,,. By (2.5), |V.(t,) — t,|
< A, with probability 1 for all large n. Thus, making use of the inequalities,

(2.30)
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forse[—1,1],
|§n(hnvt0; S) + fn(hn!to; S)l = |gn(hn7t0; S) + gn(hnv\/n(to); S)|

+ |§n(hn'\/n(t0); S) - gn(hni t()a S)|1
and

|§n(hn'\/n(t0); 5) - fn(hn’ tO; S)l = |an(\/n(t0) + hns) - an(tO + hns)|
+ |an(\/n(t0)) - an(to)l = “fn( Aty + hnS; )“il + “gn( Aty )“31
SZ Sup ”gn(An!t;.)”];la
te[ty—C,, to+C,
we infer from (2.25) that, with probability 1 for all large n,
bn_l||§n(hn’ ty; ) + gn(hn’ ty; )”El
<e&/2+2bt sup & ( Ayt )Ly
telty—Cp, to+Cpl

Since A, and C,, fulfill (2.8) with C = «» and D = —d, we apply Fact 4 in the
following cases.

(i) When d € (—,0), log(C,/A,) = —(1 + o(1))d log, n, so that, by (2.10)
and (2.30),
2b; ! sup I&,( Ay, t5 )l = O((log n)~*/%) > 0.
te[ty—C,, tg+C,1]
(ii) When d = —, log(C,/A,) = O(log n), so that by (2.10) and (2.30), for
each k> 1,
2b- 1 sup I€.( A, t5 )11 = O((log n)(l‘K)/Z) - 0.
te[ty—C,, tg+C,]
In both cases, we obtain via (2.31) that limsup,_.. b;lI¢.(h,, to; ) +
&(h,, t; DIIt; < & as. Since & > 0 may be chosen as small as desired, the
conclusion (2.29) is straightforward. O

(2.31)

REMARK 2.2. (i) The proof of Lemma 2.4 becomes invalid if we drop the
assumption that n~'/2(log, n)/? = o(h,)). Since this condition always holds
for d € [—c,0), but not for d = 0, there is no hope of establishing (2.29)
when d & [ —o0, 0) without any additional assumption.

(i) Lemma 2.4 and Fact 1 jointly imply that the conclusions of Theorems
1.1 and 2.1 hold under (H.1) and (H.6) when d € [ —=, 0). This covers part of
the large increment case.

RemARK 2.3. Theorem 5 of Einmahl and Mason (1988) shows that the
conclusions of Lemmas 2.3 and 2.4 hold under (H.1), (H.2) only if t, = 0 or 1,
with V.(t)) = 0.

2.2. Local functional laws of the iterated logarithm—outer bounds. The
outer bound halves of Theorem 2.1, will be established via Propositions 2.1
and 2.2.
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ProposITION 2.1. Under (H.1) and (H.5), (H.6), for every & > 0, we have
with probability 1 for all n sufficiently large,

(232) F,={b %, (h, t;):te[t,—c, t,+c,]} €S cB[-1,1].

Given Proposition 2.1 and Lemma 2.3, a simple argument allows us to
prove the following result.

ProprosiITION 2.2. Under (H.1) and (H.5), (H.6), for every £ > 0, we have
with probability 1 for all n sufficiently large,

(2.33) b (h,. ty;-) € S*c B[—1,1].

Proor. It follows from (2.25) that, with probability 1, for each £ > 0 and
all n sufficiently large,

Hbr:lgn(hn! to; ) + br:l ‘fn(hn!\/n(to); )”171 <eg/2.

Since (2.11) implies that V (t,) € [t, — c,,, t, + c,] with probability 1 for all
large n, and (2.32) implies that, with probability 1 for all large n,
bt &(h,, t;-)eS*/2 forall te[t, —c,, t, + c,], the inequality above im-
plies that b, (h,, t;;-) € —S®={—f: fe S*} with probability 1 for all
large n. The conclusion (2.33) follows from the observation that S = —S*,

a

In the remainder of this section, we will prove Proposition 2.1, together
with a series of technical results of independent interest, which will be used
in the forthcoming proof of the inner bound halves of Theorem 2.1. Through-
out, we will assume, without loss of generality, that t, € (0,1/2]. Our
arguments will apply to the case where t, € [1/2,1), after being reformu-
lated via the mapping t, — 1 — t,. Moreover, in Fact 5 and Lemmas 2.6-2.9
below we will assume throughout and unless otherwise specified that the
functions we consider vary in B[O, 1]. We will show later how the correspond-
ing results may be modified in the setting of B[ —1, 1] to complete the proof of
(2.32). A rough outline of our argument, inspired by the proofs of (3.2) in
Deheuvels and Mason (1992), and (2.60) in Deheuvels (1992), is as follows.
We will show in the forthcoming Lemma 2.7 that the increments ¢, of «
behave essentially in the same way as the increments L, of a Poisson
process II,, [see (2.37), (2.38)], then conclude via blocking arguments and the
Borel-Cantelli lemma. The following Lemmas 2.5 and 2.6 evaluate appropri-
ate large deviation probabilities for L,. We will make use of strong approxi-
mations which will allow us to infer these evaluations from similar bounds
for Wiener processes, which are stated in Fact 5 below. Let J be as in (2.1).
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Fact 5. Let {W(t): t > 0} be a standard Wiener process and, for any
A >0, set W,(s) = (2A)7*?W(s) for s € [0, 1]. Then, for each closed (resp.
open) subset F (resp. G) of (B[O, 1], U),
limsupA~* log P(W,, € F) < —J(F) and

Ao x®

liminfA~* logP(W,,, € G) > —J(G).

A—> 0

(2.34)

This result is due to Schilder (1966) [see, e.g., Deuschel and Stroock (1989)
page 12].

Denote by A the complement in B[0, 1] of A ¢ B[O, 1]. The next lemma is
given in view of an application of (2.34) to the special case where F = S% and
G = N(f).

LEMMA 2.5. For each £ (0,1) and fe S c B[0,1] such that 0 < ¢ <
[fly < 1, we have

(i) I(S?) = (1 + &)

(2.35) N
(i) I(N(F)) < (Ifln — &)® <IflH(1 - &)°
Proor. Let ¢ € B[O, 1]. The inequality |||l < 1y is trivial when [y = o
and holds likewise when || < oo, since the Schwarz inequality entails that
(2.36) lll = sup

1. 1/2
s{f 1{;(3)2 ds} = |ly.
O<s<1 (0]

Foreach g S® 1 <C:=|gly <> If C<x then ¢ :=C'geS and|g—
¢lu = C — 1. Therefore, by setting ¢y = g — ¢ in (2.36), we see that ¢ < ||g —
oll < lg — ¢ly = C — 1, which implies that C = |g|ly > 1 + &. Since, by (2.1),
J(S?) = inf,, s-lgl%, we conclude (2.35)(i). Next, our assumptions imply that
0 <|fly <1, and hence, that ||[pf — fl|=(1 — p)lIfll < (1 — p)|fly for all
0 < p < 1. Therefore, by choosing p = 1 — &' f|i" with 0 < &’ < &, we obtain
that g == pf e N(f)and [gly = |flq — &’ < [f|l4(1 — &'). This readily implies
(2.35)(ii) by letting &' 1 e. O

fOsJ/(s) ds

Given a unit-rate homogeneous Poisson process Z(-) on R?, we set for
n>0andtel0,1]
(2.37) II,(t) = E((0,t] x (0, n]),

so that {IT,(t): t > 0} is a (right-continuous) Poisson process with E(TT, (1)) = nt
for t >0 and n > 0. We denote by {II(t): t > 0} = {II,(t): t > 0} a (right-
continuous) standard Poisson process, and set, for n > 1, a > 0 and —» <s,
t < oo,

(2.38) L.(a, t;s) = n~Y2(II(t + sa) — II,(t) — nsa).
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LEMMA 2.6. Assume that (H.1) and (H.5), (H.6) hold. Then, for any
g€(0,1) andfe S with 0 < £ <|f|y < 1, there exists an n = n(e) > 0 such
that, for all large n,

(1 +co/hy) "

n

c
1+ —)P(bnan(hn,to; ) €S°) <

(2.39) h, (log n)**"
< (lOg n)*(]-*"l),
Cn -1 . (1 + Cn/hn)l_lfﬁ-‘(l_n)
1+ h_n)[p(bn Lo(hn. to50) € Ns(f)) = (log n)\flﬁ(l—n)
(2.40)

(1+c,/h,)"
> —
(log n)*™"

Proor. Assume that (H.1) and (H.5), (H.6) hold. Fix < (0,|f|y) and
f € S. By Fact 4 in Deheuvels and Mason (1994b) and Komlos, Major and
Tusnady (1975a, b, 1976), we may construct jointly a standard Poisson
process {II(t): t > 0}, and a standard Wiener process {W(t): t > 0}, such that,
for universal constants C, > 0, C, > 0, C; > 0,

Pl sup [II(x) = x—W(x)|>C,logT +z] <C, exp(—C,z
21y Pl 3P M) (X)) > C, log T + 2] < C, exp(~Cs2)

forT>0, —0o <z < oo,

Given (2.41) and recalling (1.1) and (2.37), (2.38), we make use of the triangle
inequality to write

P(b, 'Ly(h,, ty;+) & S°)
= P(b,*n"/?(II(nh,-) — nh,-) & S°)
P(III(nh, ) = nh,- = W(nh, )l > (&/2)n'/?b,)
+ P(b;'n"Y2W(nh, -) & S*/?)
= Pl,n + Pz,n'

(2.42)

IA

It follows from (H.1)(ii) that, for all large n,
(243) 2<1+c,/h, =2+ (1/(hyn))(log, n)"* < 2n*/2(log, n)""?.

Set z =2z, =(g/2)n*?b, — C, log(nh,)) and T = nh,, in (2.41). We have, for
all large n,

z, > (&/4)n*?p,
(2.44) = (&/4)(2nh,{log. (1/(h,V)) + log, n))”* = 2,
= (3/C3)log n.
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It follows from (2.41), (2.42), (2.43) and (2.44) that, for each specified A € (0, 3]
and all large n,

P, n < C,exp(—C;z,) < C,exp(—C;2),) < C,/n®
< (1/(2¢%))/((log n)*(1 + ¢, /h,)").

We next observe that the complement S¢/2 of S¢/2 in B[O, 1] is closed in
(B[0,1],U). By (2.35)i), & =2((1+ &/2? —1) €(0,=) fulfills 1 <1+

286 < 1+ 48 < J(S*/?). Therefore, by setting F = S*/% in (2.34)(i), we easily
infer from (2.14), (2.15) and (2.30) that, for all large n,

(2.45)

P n = P(Wi-102 5 € S772) < exp(— (1 + 28)h;'bZ2/2)
<exp(—(1+8)h L% /2)
= ((ca/hy) V&) " "/(log n)

<(1+ 1/e)2/((|09 n) (1 +c,/h) ).

Here, we have used the inequalities1 + 6 <2and (1 +u)/(1 +1/e) <u Ve
for u=-c,/h, > 1. By combining (2.42) with (2.46) and (2.45) taken with
A =1+ §, we obtain readily that the LHS of (2.39) is ultimately less than
{X+1/8)* +(1/Qe*)ML + c,,/h,) " °(log n)~*~2. This last inequality entails
that (2.39) holds ultimately as n — « for each n € (0, §).

By a similar argument as that used in (2.42), we may write

P(by La(hp, o3 ) € N(T))
= P(b,*n"/?(II(nh,-) — nh,-) € N,(f))
(2.47) > P(by'n~*2W(nh,-) €N, ,(f))

(2.46)

1+6

— P(It(nh, ) = nh,- = W(nh, )Ilc > (¢/2)n*?b,)
= P3,n - P1,n'

Since |fly <1, by (2.35)i), J(Ng/z(f)) <1-46"<1-28"<1 for &' =
11— (1 —¢£/2?) € (0, 5). N, ,,(f) being open in (B([0,1],U), by setting
G =N, ,(f)in (2.34), we see that, for all large n,

PS,n = P(Vv(hﬁlbﬁ/Z} S Ng/z( f)) > exp(—(l _ 26’)|f|$—|h;lb§/2)
> exp(— (1 - 8)Iflih;'L2/2)
= ((co/hy) V e)(log n))~ G201

> (1/€?)/((log n)(1 + ¢, /h,))3 21k,

Here, we have used (2.14), (2.15), (2.30) and the inequality e(1 + u) > u Vv e
for u=-c,/h, > 1. By combining (2.47) and (2.48) with (2.45) taken with
A = (1 — §")|fl%, we obtain that the LHS of (2.40) is ultimately greater than
or equal to (1/(2e?))1 + ¢, /h )~ A=k (log n)~@ =3t This, in turn, im-

(2.48)
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plies that the first inequality in (2.40) holds ultimately in n — « for each
n <€ (0,6 A §'). The second inequality in (2.40) is always satisfied when
nel0,1],0<|fl[y<land n>3. O

LEMMA 2.7. Fix p>1 and N> 1. For any {t,,...,t,} €[0,t, +c,] C
[0,2 —h,], By,..., B, Borel subsets of (B[0, 1], U), set

(2.49) E, = - {&.(h,.t;;-) € B,
j=1

and

(2.50) E, = H {Li(h,. 1) € B}
j=1

Then, there exists an absolute constant C, such that, for all large n,
(2.51) P(E;) < C,P(E,).

Proor. This is an extended version of Lemmas 2.1 and 3.1 of Deheuvels
and Mason (1992), who showed that P(E,) < 2P(E,) for n > 5, when [0, t, +
¢,] [0, % — h,]. The proof is very similar, and obtained by combining the
following observations.

First, we note that if P,(r) = (r*/rDe~*, r=0,1,... is a Poisson distribu-
tion, then, for integer A,

p.() = P,(A) 1+ 0(1)
su r) = ="
,Zg A A V2

This, in turn, readily implies that, as A + u — % with A/(A + w) = ¢ > 0,

1 1
lim sup{m(?gg PA( r))} < ﬁ

Second, for each n > 1, the Poisson process {IT (t): 0 < t < 1} follows, condi-
tionally on TI (1) = n, the same distribution as {nU,(1): 0 <t < 1}. It follows
that, if we fix 0 < d < 1 and consider two measurable events of the form

E, = {{II,(t):0<t<d}eB} and E,={{nU,(t):0<t<d}eB]},

then, letting R =11,(d), R=T1I,(1) —II,(d), A =nd and x =n(1 — d), we
see that there exists a constant C depending upon d only (C = 2d~*/? will
do), such that, for all large n,

as A — o,

_ n P(R=k
P(Ez) = P(EllR + R = n) = kgop(Elf\l {R= n— k})m

< P(E)) supP(R = k) < CP(E,).

P(R+§=n) k>0

The conclusion (2.51) is readily achieved by suitable choices of B and d. O
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Recall the definitions (1.1) of b, and c,, and (2.14) of L, . By (2.15), under
(H.1) and (H.5), (H.6),

1/2
Ln = (Zhn{IOg+(Cn/hn) + IOgZ n})

=(1+0(1))b, >0 asn— «.
Let y > 0 and 6 € (0, 1] be two constants which will be given precisely later
on. Set »,=|(1+ )| for k>0, and t.(i,0) =t, +i6h, for —M, <
i <M, = [2c,/(6h,)]. Since (1.1) implies that 0 < 6h, < h, < c,, we have
the inequalities
It.(i,0) — to| <M,0h, = [2¢c,/(6h,)]|6h, € [2¢c,,3c,]

for —M, <i <M,

Set T (0) ={t, (i,0): =M, ~<i<M, } and introduce the events, for e > 0
and k > 1,

(2.52)

(2.53)

Ce(e,y) = {(n/m) P02 &y(h,, ) & S°

(2.54)
forsome t € T,(0) and n € (v, vk+l]},

(255) Dy(e.y) ={b,* &, (h, .t;-)&Se forsomete T (0)}.

Vik+1

LEmMA 2.8. For each € > 0, 6 € (0,1] and vy > 0, there exists a K’, such
that, for all k > K’,

(2.56) P(Ci(€,7)) < 2P(Dy(€/2,7)).

Proor. This is a version of Lemma 3.4, pp. 1268-1269 in Deheuvels and
Mason (1992), with small changes of notation. The proof is achieved by
exactly the same arguments, after checking that

(Vee1 — Vk)hvkﬂ_ (Vk+1bv2k+l) = 1/{|09+(1/(hvk+1 VVk+l)) + log, Vk+1} - 0.

Therefore, we omit details. O

LEMMA 2.9. Under (H.1) and (H.5), (H.6), for every & € (0, 1], there exists
with probability 1 an n(e) < e« such that, for all n > n(e),

(257) F,={b % (h,. t;-):te[ty—c,, t, +c,]} cS*cB[0,1].

Proor. Fix e€<(0,1], 6 €(0,1] and vy < (0,1/2]. Recall (2.53), (2.54),
(2.55), and observe that 2 M, + 1 = 2[2c,/(6h,)] + 1 < (4/6)X1 + c,/h,). It
follows therefore from (2.39), (2.51), (2.56) and the Bonferroni inequalities
that there exists an n > 0 such that, for all large k,

P(Cu(e, 7)) < 2P(Dy(e/2,7))

b3 2(2 MVk + 1) (bykilgyk-#l( Vi1 ) & 86/2)
(2.58) <(8/0)(1+¢, /h, | P(bykilgym pr toi ) & S/2)
= (8C /0)(1 + CVk+1/th+1)[p( Vk+1 k+1( Vi+1’ to; ) $ Se/z)

< (8C,/0)(log v,) "™ = O(k-@*m),
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which is summable in k. Thus, by (2.54), (2.58) and the Borel-Cantelli
lemma, a.s. for all large k,

(2.59) byt &y(h,,,, i) € (b, /b)) (w1 /n) V7 SE

uniformly over t € T,(6) ={t, (i,6): -M, <i<M, }and y, <n<uw,,.
By the inequality 1 — (1 + y) /2 <y for 0 < y < 1 and (H.1) we have, for
all large k, and v, < n < p, 4,

0< hn - hvk+1 = hn(l - hvk+l/hvk) = hn(l - Vk/VkJrl)

(2.60)
= (1 +0(1)h,y/(1 + v) < vhy,
0 =< hyk - hn =< hn(hyk/hvk+1 - 1) < hn( Vk+l/Vk - 1)
(2.61)
= (1 +0o(1))h,y <2yh,,
0O<c,—¢,.,
(2.62) 3 1/2 1/2

=h,—h, +(n/log,n) " — (v /109, v,y 1)

By combining the definition (1.1) of b, with (2.60) and (2.61), we obtain that,
for all large Kk,

< vyC,.

(263) Vksrng)lfk+lmax{|(bm<+1/bn)(Vk+1/n)l/2 — 1|, |(bn/ka)(n/Vk)l/2 _ 1|}

< 2v.

By definition, f <S¢ if [f—gll<e for some g with gy < 1. By (2.36),
lgll < Iglu, so that, for each p >0, || pf —gll < pllf —gll + p — 1] X |Igll <
pe + |p — 1|. Thus, pf € Sretlr~1 and

(2.64) pSe={pf:feS csrerlot

By combining (2.64) taken with p = 1 + 2y, with (2.59) and (2.63), we obtain
that, a.s. for all large k, uniformly over t € T,(6) and v, < n < v, 4,

t;-) € (b

Vk+1

(2.65) byt & (h /b0) (s a /M) 2SE C S At ety

V1!

By Fact 4, taken with A, = yh, and C,, = 3c,,, (2.53), (2.54) and (2.64), a.s.
for all large k,

Iimsup{ max  sup by tllg,(h, . t;7) - fn(hn,t;-)llll}

K— o V<NV q teTk(G)
R — . 1
<2 lim { sup bnlllfn(yhn,t,‘)ﬂl} = 2y'/2.
N=% \telty—3cy, to+3¢,]

Thus, by (2.64), (2.65), we have a.s. for all large k, uniformly over t € T, (6)
and v, <n <y, g,

(2.66) byt &(h,.t;) €S (@+2y)e+2y+2yY?)
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Next, we infer from (2.53), (2.62) and y € (0,1/2], that, for all large k and
Vi <ngc< Vet

-1
tb-(1-v) e, o+ (-7 "¢, |

[to —ch to + ] [
[to — 2¢,,, ..t +2¢, ]
[

c
(2.67)
< th+1 k+1 )’ th+1( MVk+1' 6)]
c[to— 3¢, to+3c, ] Slto—3c, t;+ 3c,].

In view of (2.52), an application of Fact 4, taken with A, = 6h and C, = 3c,,
shows that

Iimsup{ sup sup bnlufn(hn,t;-)—fn(hn,t';-)llll}

n—o teltg—c,, totc,] It'—tl<6h,
(2.68)

< 2lim sup{ sup b, tI&(0h,, t; -)Ilil} =20Y? as.

te[ty—3c,, to+3c,]

n— o«

Since (H.1)(i) implies that t, (i+1,0)—t, (i,0)=06h, < 6h, for all
v, < n < v, itfollows from (2.66), (2.67) and (2.68), that, with probability 1
for all n sufficiently large,

F.={b % (h, ;) te[ty—c,. ty+c,l}

c S l@+2y)e+2y+ 2yY/242012)

(2.69)

By (2.69), the observation that (1 + 2y)e + 2y + 2y¥/2 + 20Y/? < &, subject
to an initial choice of ¢ € (0,1], e = /4, y € (0, £2/64] and 6 € (0, £2/64],
yields readily (2.57). O

ProoF oF ProrosiTION 2.1.  In view of (1.1) and (2.64), we apply (2.57) with
the formal replacements of h, and c, by 2h, and c, + h,, respectively. We
readily obtain that, for each £ > 0, almost surely for all large n and t’' €
[ty — ¢, — h, t, + ¢, + h.] there existsan f=1f, . €S with

(2.70) l£.(2h,, t';+) — 225 < &/2.

Observe that &,(h,, t;s)=¢,(2h,,t—h,;(s+1)/2) - ¢Q2h,t—h,,1/2)
for se[—-1,1] and te[t, — c,, t, + c,]. Thus, by setting t' =t — h,, we
infer from (2.70) that

& (hy, t;-) — gty
=& (h,, t;) = 2Y2[f((-+ 1) /2) — f(1/2)}II*1 < &,

where the function g(s) == 2Y2{f((s + 1)/2) — f(1/2)} of s € [—1, 1] satis-
fies g(0) = 0 and g(s) = 2712§((s + 1)/2) The change of variables = 2v — 1
allows us write g% = /1, §(s)?ds = [¢f(v)?dv = |f|} < 1. Given (2.71) and
this last inequality, (2.32) is straightforward. O

(2.71)
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3. Proofs—inner bounds.

3.1. Introduction. In the present section we establish the inner bounds of
Theorem 2.1. In view of (2.25) and S = —S, this amounts to showing that,
for each £ > 0 and f € S, we have almost surely

(3.1) liminfllby & (h,, V,(to);-) — It < e.
n—o

For each f e B[—1,1], define f*e B[0,1] and [f |y (when |f|y < ») by
letting

(32) f*(s)=£f(xs) forse[0,1] and [f*|y = {flf'(is)2 ds}l/z.
0

We will limit ourselves to proving that (3.1) holds when f varies in the set
S, € B[ —1, 1] [with closure equal to S in (B[ -1, 1], U)], which is composed
of all fe S € B[—1,1] such that

o< If*|34,0<I|f 14, and

3.3 .
(33) # = [* f(£s) ds = 1F + IF T3 < 1.
-1

We will consider successively the case of small, large and intermediate
increments, corresponding respectively to d =, d € [—,0] and d € (0, »)
in (H.6). A rough outline of the arguments of our proofs in each of these cases
is as follows. Let f € S,.

1. For small and intermediate increments, we show that, for each small
p > 0and y > 0, there exists almost surely a sequence 1 < R; < R, < -+,
together with a sequence t, € [t, + pcg,,2pCg ], k=1, such that,
for infinitely many indices k, we have jointly |b;* &.(h,,,t.;) — fll'y <
g/2 for all integers n €[R,,(1 + y)R,], and b & (h,, t; ) —
£(h,, V. (1); I*; < &/2 for some integers n € [R,, (1 + y)R,]. The con-
clusion (3.1) follows by combining these inequalities.

2. For large increments with d € [—«,0), we combine Fact 1 and Lemma
2.4. In the remaining case where d = 0, we introduce a sequence 1 < n; <
n, < -+ such that, almost surely for infinitely many indices Kk,
b, 2, (h, to; ) — flit < &/2 and |V, (ty) — to| < n */?(log n,)~*. Here,
k>0 is a constant chosen in such a way that b,'l¢, (h, t5; ) —
& (h,, V, (t,); Il < &/2 for all large k. The conclusion (3.1) follows from
these combined facts.

We start by giving a series of technical lemmas which will be useful for our
needs. Recall (2.38).
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LeEmMmMA 3.1. Under (H.1) and (H.5), (H.6), for any ¢ > 0 and f € S, there
exists an n € (0,1) such that, for all large n,
(l + Cn/hn)lflﬂzH(lfn)
(|0g n)\fIZH(l—n)
(1+co/hy)”
> — .
(logn)™ "

Proor. Set L,*(h,, t,;s) = £L.,(h,, ty; £5s) for s € [0, 1]. Observe that,
whenever n is so large that 0 < t, — h, <t, + h, <1, then, L, (h,, t,;-) €
B[0,1] and L, (h,, ty;-) € B[0,1] are independent and identically dis-
tributed. By (2.40), it follows that, for all large n,

(1 + f]—”)uw(bn—an(hn,to; ) eNn(f))

n

Cn —
1+ h—n)[FD(bn Ly(hyotes) €N(F)) =

(3.4)

Lo 2 JP({b L (i) € W)

N{by "Ly (hy t; 1) € N(F7)))

+12 -2 _
(1 + Cn/hn)l_(lf R+ 8@ -7
>

(log n)<|f+|%.+|f-\2H>(1fn>
(1+c,/hy) MR (14 ¢ /h)
= 3 = -
(Iog n)‘le(l*T)) (Iog n)l n

which is (3.4) O

In our proofs, we will follow the conventions of Section 2.2, by assuming,
without loss of generality, that t, € (0,1/2]. The following additional nota-
tion will be needed. Set

m™(0) = (2 - 0)t, — [Un(to(l - 0)) =1t - n‘l/zan(to(l - 0))
(3.5) for 6 € [0, 1],
Th = 7-n(o) =2t, — [Un(to) =1 - n_l/zan(to)'
LEmmMA 3.2. For each 6 € [0, 1], we have, with probability 1,
(3.6) limsupn(log n) IV, ,(ty) — V,(t,)l <1,

n—o

(3.7) limsupn'/?(log, )~ Y?7,(0) — 7| = 21/2(0t,(1 - Gto))l/z,
n— o
(3.8) limsupn3/4(log, n) ¥V, (ty) — 7| = 25437 ¥/4(to(1 — t,))"",
n— o
(3.9)  limsupn/?(log, n) 2V, (t,) — tol = 2/%(to(1 — t,))"%.

n—ow
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Proor. Note from (2.3) that |V, , ,(t;) — V,(to)l = |U; .1 — U; | with i =
[nty], J=I(n+ Dty,], and i<j<i+1 as. Since U ,; =U,, when

Ui >U o and U,y €00 U ] when U, < U, in either case,

U 1 €U 1 0, Uiy ol 1t follows that, with probability 1,
Vo, 1(te) = Vo(to)l = max {U, ,—U,_;,.} =K.

l<m<n+l

Since n(log n)"'K, — 1 as. [Devroye (1981, 1982)], the inequality above
suffices for (3.6). Making use of the assumption that t, € (0,1/2], we see that
0 <t,0 <t, <1/2, which enables to derive (3.7) from Corollary 2.1 of De-
heuvels (1992). Equation (3.8) is due to Kiefer (1967) [see, e.g., Deheuvels and
Mason (1990a) and Section 3.4 of Deheuvels and Mason (1994b)]. Finally, we
obtain readily (3.9) by combining (3.8) with the law of the iterated logarithm
for nU,(ty), considered as the partial sum of order n of an i.i.d. sequence of
Bernoulli random variables with expectation t,. O

LEmMA 3.3. Under (H.5), (H.6), we have, with probability 1,

(3.10) lim b, * sup [[&(2n "t log n, t;-)llg = 0.
n-—oe O<t<1

ProoF. Recall the definition (3.7) of R{ for C > 0. By Theorem 1(1) of
Mason, Shorack and Wellner (1983) [see, e.g., (4.1.1)—-(4.1.6) in Deheuvels and
Mason (1992)], we have

lim (n¥/2/21log n)b, * sup [1&,(2n"tlog n,t;-)lls = R} < as.
n-—o O<t<1

By Remark 1.1Gii), (H.5), (H.6) imply (1.13) so that b, (log n)/n'/? =

O((nh,,/log n)~*/?2) - 0. This, when combined with the above inequality,

yields (3.10). O

3.2. Small increments (d = ). The main result of this section is stated in
the following proposition.

ProposiTION 3.1. Assume that (H.1) and (H.5), (H.6) hold with d = .
Then, the sequence {b;,(h,,ty;-): n> 1} is almost surely compact in
(B[—1, 1], U), with limit set equal to S.

The following arguments are oriented towards proving Proposition 3.1. We
will assume throughout that (H.1) and (H.5), (H.6) hold with d = «. By (1.12)
and (1.13), this implies that, for each « > 0, we have, ultimately in n — o,

(3.11) nh,/logn >« and h, <n ¥?(logn) “.

Recalling the notation of Sections 1 and 2, we let IT,,, IT and L,(h,, t;-) be as
in (2.37), (2.38) and h be as in (2.6). We let y > 0 denote a constant which will
be specified later on, and set v, = [(l + ‘y)kJ for k > 0. The following fact
will be useful.



LOCAL QUANTILE PROCESSES 2031

Fact 6. Let {TII(t): t > O} be a standard Poisson process. Then, for any
T>0andx =0,

P( sup [II(u) —ul > Tx)

O<u<T
<exp(—Th(1l+x)) +exp(—Th(1 - x))
<2exp(—Th(1 -x)).

(3.12)

Since h(1 + x) < h(1 — x) for x > 0, h(1 — x) = o« for x > 1, (3.12) follows
from Inequality 1, page 569 in Shorack and Wellner (1986) and Lemma 2.1 in
Deheuvels and Mason (1994b).

LEMMA 3.4.  Assume that (H.1) and (H.5), (H.6) hold with d = «. Select an
arbitrary f € S,. Fix any £ (0,1], any p<(0,1/2], and choose a y e
(0,(£/64)?]. Then, with probability 1, for all large k, there exists a t, =
t.(f, &, p) €[ty + pc, ., t;, + 2pc, | such that

(3.13) bt &, (h,,. t:-) — flit < &/2,
and
(3.14) max [lby* &, (h, . t:-) = bt & (h,. t:)llt < &/2.

W<N=<vpiq

Proor. The proof will be achieved in the following three steps.
Step 1. Fix t,i>1and N> linsuchawaythat0 <t<t+iN'h, <1
The random variables
Xm=(N+mU,, (t+iN"*h)) = (n+mU,, (1)
—(n+m—=1U,,n o(t+iNTh )+ (n+m—1U,, (1),
m>1,

are independent with P(X,, = 1) =1 — P(X,, = 0) = p == iN"*h,. On a prob-
ability space enlarged by products, define a sequence of independent random
variables {Y,,: m > 1}, independent of {X,,: m > 1}, and such that, for each
m > 1,

P(Y,=0)=p *(e?—1+p),

k-1
P(Y, = k) =

K e P forinteger k > 1.

Observe that {Z,, = X,Y,,: m > 1} are independent Poisson random variables
with E(Z,,)) = p for m > 1. Moreover, for each M > 1,

P(Xp=Zn,V1<m<M)=(1-P(X, =1)P(Y, #1))"
=(1-p(1—-eP)">1- Mp2
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Since X; + - + X, —mp=(n +m¥2¢ ,  (h, t;iNY) —n¥2 g (h,,t;
iN™'), we infer from this inequality taken with n=»,, p=iN"*h, and
M = v, — ¥, that, foreach ¢ >0, -N<i<Nand te[h,,1-h, ],

P( max b;kll(n/vk)l/zgn(hvk, t;iN"Y) = ¢, (h, I iNTH) > 3/4)

W<N<vp.q

< IP( max b, Y(n/v) " Ly(h,, tiINY) =L (h, 6N > 3/4)

W<N<vpig

+ (V1 — v (i/N )thk
Fix now N > (64/¢)?. By (2.38), it is readily verified that, independently of
tel[h,,1—-h ],
Yk Yk

Qu n(t, &/4) = [|3>( max max by’kl|(n/vk)1/2§n(hyk,t; iN’l)

—N<i<N y<n<r
—&,(h,,. t; iN’1)| > 8/4)
< 2N(» 1 — m)hy,

N
(3.15) +2) "3’( max b, Y|(n/u)"? Ly(h,. t;iN"Y)
i=1

V<N

~L,(h, BN > o4

< 2N(vys — BN,

N
+2) IP( sup M(u) —ul > (a/4)v,§/2bvk).

i=1 0<u<iN 'y —woh,,

Assumptions (H.5) and (H.6) jointly imply that n*/2h_ /b, — «. Moreover,
(Vey1 — v)/ve = v as k - «. Therefore, each i=1,..., N, we have, as
k — oo,

X, n (1) = ((8/4)V&/2bvk)/(iN_l(Vk+l - Vk)hvk)
=(1+ 0(1))ngVk/(4iyvﬁ/2th) - 0.

Since h(1 — u) = (1 + o(1)u?/2 as |ul - 0 and 0 < y < (g/64)?, it follows
that, foreach i = 1,..., N, as k — o,

N (ves — P N(L — Xy n (1)) = (1 + o(1y) VKX (D)

2N
1+0(1 e b,

4b?

Vi

1
22 .og(_)
h,, h, V7

— o0

%
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By (3.12) and (3.15), we obtain therefore that, uniformly over t €[h, ,1 —
h, 1 as k - o,

Q. n(t, e/4) < 4N7th§k
N
(3.16) +4 Y exp(—iN" (v, — ) h, h(1 = x (1))

i=1
<4N(y+ 1)vkh§k.

Step 2. Fix f € S, and choose any p € (0,1/2]. By (3.11) we have, for each

k > 0 and all large n,

k/4

(log n)

(3.17) TniZn, | pcn/2h,] = pc,/2h, — 1

> (p/4)(L + ¢a/hy) = (p/4)(log m)™".
Set My = | pc,,/2h, | for k > 1. We infer from (2.51) that, for all large k,

2 M,
Po=P| N {b*&(h,.to+2jh, ;) &N, f)})
j=Mg+1
2 M,
+Pl U { max  max by‘1|(n/vk)l/2§n(hy b+ 2jh, iNTY)
i=M+1 ~N<i<N p<n<w,, ~ K K
=&, (. to + 2jh,; iN‘l)| > 8/4})
2 M,
<CP[ N (b L(h,.to+2jh, ;) &N, ()]
j=Mg+1
2 M,
+ 2 Qun(ty+ 2jh, , e/4).
ji=Mg+1

By combining (2.37) and the independence of the increments of II, on
nonoverlapping intervals with (3.4), (3.11), (3.15), (3.16) and (3.17), we infer
from the inequality above that there exists an n > 0 such that, for each « > 0
and all k sufficiently large,

"
Pe < Cy(1— P(b L, (h, . to:) €N, 5())) "+ 4N(y + 1) My h?

pC, .
<C, exp(— ﬁkJP(bykl LVk(th’ to;') €N, 5( f)))

3.18 + 4N(y + 1)(log ) *vi/2h
( ) (v )(log vy kK Ny,
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(1+c¢c,/h,)"
(lOg Vk)lin
< C4 exp(_( p/4)(log Vk)T](l+K/2)—l) + (Iog Vk)*K/Z'

Since log v, = (1 + o(1))k log(1 + ), the choice of x =4(1 Vv n™ 1) in (3.17)
and (3.18) entails that ¥, P, < . The Borel-Cantelli lemma implies there-
fore that for all k sufficiently large there exists a t, € {t, + 2jh, : M, <j <
2 M <ty + pc, .ty + 2pc, ] fulfilling (3.13), together with

K/2

+ (log vy)

<G exp(—( p/4)

max { max b;1|(n/vk)l/2§n(hy,tk;iN‘l)

(3 19) v<n<ve, \-N<i<N ¢ K
—&,(h,. t; iN‘1)|} < &/4.

Step 3. Since p € (0,1/2], by Fact 4, taken with A, = N~'h,, C, = 2¢c,, we

obtain readily that

&(h to 1) =& (h, to+ lN'JN‘l)”;

lim supby‘k1|
k— o
< limsupb,* sup [ &.(h,, t; £ 1)
(3.20) n-w telto—cq. to+Cpl
_ 1
_gn(hn't; * lNIJN 1)”0
< 2limsupb;* sup l&(N"*h,, t;)|]0, =2N"2 as,
n—w teltyo—2c,, tg+2c,]
By (2.61) and (2.63), we have, for all k sufficiently large, uniformly over
Vw=N=<wv.,,
(b,/b, )(n/v)"? <1+2y and |h, —h,| <2yh,.
By combining (3.20) with Fact 4, taken with A, = 2yh, and C, = 2c,,, we
obtain therefore that

limsupb, * max (n/vk)l/zn &yt £ 1) = &(h,, b & lN|JN71)||;

K — Ve<N< Vi
s(1+2y){limsupbn‘1 sup | €.(h, £ 1)
n—-o teto—cn, to+cpl
_ 1
_gn(hn’t; * lNIJN l)”o

+ limsup max b;?! sup |§n(hn,t;i[Nle‘1)

koo Pk<N<Viig te[ty—c,, tg+cp,]

“afn s N

< (1+2y){2N1/2+2 limsupb,* sup | gn(thn,t;-)Hll}

n—o te[ty—2c,, to+2c,]

= 2(1 + 2y)(N"Y2 + (29)"?) as.
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This, when combined with (3.19) and (3.20), shows that, with probability 1 for
all large k,

max b;l(l”(n/Vk)l/zgn(hn’ ) — &, (h b )”1—1

W<N<vpiq

(3.21) < e/4+2N"V2 421+ 2y)(N"V2 4 (2y)"?)

<e/4+8(N1/2+ y¥?) <3e/8,

where we have used y < (g/64)><1/2, 0<e<1 and N > (64/¢)> By
(2.63) and (3.20),

limsup(max I(b,/b,)(n/1)*? = 11X by M (N, i) L

k— Ve<SN<Vypq

< 2ylim sup( sup b, & (h,, t; -)Ilil) =2y < g/8,
te[

n—o to—Cn, tog+cpl

which, when combined with (3.21), yields (3.14). O

ProoF orF ProposiTioN 3.1. By Proposition 2.2 and the discussion in
Section 3.1, we need only prove that (3.1) holds for each specified ¢ € (0, 1]
and f € S,. Towards this aim, we apply Lemma 3.4 with the formal replace-
ment of & by £/2, y=(g/128)? and p = 3y(1 + y) Y2Q2t,(1 — t,)/? €
(0,1/2]. By (3.13), (3.14), there exists almost surely for each large k a
t, €[ty + pc,, ty + 2pc, ] such that

(3.22) by %, (hy ti;s) €N, () forall v <n <, ;.
We will now prove that, with probability 1, we have, infinitely often in k,
(3.23) V,(t)) —t,>2pc, and V, (t))—t,<pc,.

For this, we observe that n'/%,(t,) = nU,(t,) — nt, is the partial sum of
order n from a sequence of independent centered Bernoulli random variables
with parameter t,. Making use of the functional version of the Weber (1990)
law of the iterated logarithm for subsequences [see (1.3), (1.4) and Theorem
1.1 in Deheuvels and Lifshits (1993)], we readily obtain that the sequence
g5 (8) = (2ty(1 — 1)~/ %(log, v, ) ~*/?s' %, < (to) of functions of s € [0, 1],

is almost surely relatively compact in (B[O, 1], U), with limit set equal to S.
By setting for s € [0,1] g,(s) = 2t,(1 — t;))"*/?(log, N)~*/?s'/28, . (t,), we
infer from (1.16), that ||g* + gl — 0. This, in turn, implies that {9,,.;
k > 1} is as. relatively compact in (B[O, 1],U), with limit set equal to
S = —S. Since the function g(s) = min(s,1 —s) for 0 <s < 1, belongs
to S, there exists therefore a.s. a sequence 1 < k(1) < k(2) < -+, such that
1 B—— glls = 0 as m — . In particular, for each &, € (0, 2y(1 + y)~1/?),
there exists a.s. an mg(g,) such that

||ng<m>+1 —glls < g,/4 form > my(&).
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Moreover, since vy )/ Vim+1 = (1 + y) ™1, there exists an m,(g,) such that
for m > m(g,),

‘(Vk(m)+1/Vk(m))l/2g(Vk(m)/yk(mH— 1) -(1+ 7)1/29((1 + 7)71)‘

(Vk(m)+1/Vk(m))l/2g(Vk(m)/Vk(m)+1) - 7(1 + 7)71/2‘ < &/4.

Since g(1) = 0, the above two inequalities imply that, for all m > my(g,) VvV
m1(80),

1/2 -1/2
max{| gvk(m)+1(1)|’ ‘(Vk(m)+ 1/Vk(m)) gvk(m)+1(vk(m)/vk(m)+ 1) —y(1+v) / ‘}
< &y/2.

Since (3.11) implies that ¢, = (1 + o(1))n~*/2(log, n)*? > n~*/?(log, n)*/?/2
for all large n, this implies in turn that there exists an m,(&,) > my(g,) V
m,(&,) such that for all m > m,(&,),

1/2
\/vk(m)ﬂ(to) — 15 < £0(2t,(1 — ty)) Gy 1
~1/2 1/2
= %‘y(l + y) ’ (2t0(1 - tO)) CVk(m)+l < pc”k(m)'
—1/2 1/2
\/Vk(m)(to) -t = (7(1 + ) - ‘90)(2to(1 - t)) Comye
~1/2 1/2
> 3y(1+7) A2t - ) %c,, > 20C,,

which shows that (3.23) holds for k = k(m). We infer from (3.22) and (3.23)
that there exists a.s. for all large m an n(m) € [y 1), ¥m)+ 1], Such that
Vomy(to) = tymy and V. (tg) < ty ). By (3.6) and (3.10), it follows that,
a.s. for all large m,
_ 1
bn<r1n>|| 5n(m)(hn(m)’\/n(m)(t0)' ) = &amy(Nogmy» tegmy» ')”4 <e&/2.

By (3.22) and the triangle inequality, this implies that

bn_(:an)fn(m) (hn(m)'\/n(m)(to)’ ) € Na( f)’

which is (3.1). The proof of Proposition 3.1 is therefore complete. O

(3.24)

3.3. Large increments (d € [—<,0]). In the large increment case where
(H.6) holds with d € [ —<, 0], the following proposition holds.

ProposITION 3.2. Assume that (H.1) and (H.6) hold with d € [—x,0].
Then, the sequence {b,%,(h,, t;;-): n> 1} is almost surely compact in
(B[—1, 1], U), with limit set equal to S.

The proof of Proposition 3.2 is postponed until the end of this section. The
following Lemmas 3.5 and 3.6 hold for d = 0 as well as for intermediate
increments with d € (0, »). Let 7, be as in (3.5).
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LeEmMA 3.5. Assume that (H.1) and (H.6) hold with d € [0, »). Then, we
have

(3.25) lim b y(hy. to: ) + &n(hp i) [ =0 as.

ProoF. By (1.8) and (1.10), our assumptions imply that, as n — o,

(3.26) by = (1 + 0(1))(2h,(d + 1)log, n)"?.
Moreover, for any « > d, we have for all n sufficiently large
(327) (i) hy=n""2(logn) “ and (ii) b;* < n'*(log n)"/?.
Since 25/4373/4(t,(1 — ty)Y* < 3, (3.8) implies that |V, (t)) — 7,| < h* =
3n~3/%(log, n)*/* a.s. for all large n. The replacement of h,, d, by h¥, d* =
(2h*{log(1/h*) + log, nH*? in (1.5) yields

limsup (d5) " ll&w(hns Va(to)s ) = (N 7 ) l1%s

n— o«

<2limsup(d¥)™" sup & (h%5tu)lls =2 as.

n—o 0<t<1-hf

(3.28)

Since (3.27) implies that b, *d* — 0, as n — =, the conclusion (3.25) follows
readily from (3.28). O

Let v > 0 denote a constant which will be specified later on. Set
(3.29) n, = |exp(klog? k)|, m = [(1+ y)n,| fork=>1,
N.=n,—n,, and My=m,—n,_, forkz=>2.

For N, <m < M, (equivalently, for n.<n,_, +m<@+ y)n,), m=>1,
n>0andteR, set

[Um;k(t) = mil((nkfl + m)[Unk,ler(t) - nkfl[Unk,l(t))’
(3'29b) Th = 7-n(o) = 2t0 - Mn(to)* Tm;k = 2t0 - [Um;k(to)'
gm;k(hnk't; S)

= m‘l/z{(nk_l + m)l/zgnkiﬁm(hnk, t;s) —m/% & (haot; s)}

RemARrk 3.1. (i) Let k, be so large that n, <m, < n,,, forall k > k,. It
is noteworthy that, for each k > ky, {(U,.\, Toy o ém k): N <m < M, } and
{Up, Ty €n): N <m < M} follow the same distribution. Moreover, the
{Un.2q) T 2qs €m.2¢)" Nog < m < M, }, q > [K,/2] constitute a sequence of
independent random objects.

(ii) For each specified K > 0, we have, ultimately as k — o,

1-N/ng=n_,/n = eXp(_(l +0(1))(log, nk)z)) < (log n,) -0,
log N, = (1 + o(1))log n, = (1 + o(1))log n, _,,

(3.30)
log, n, = (1 +0o(1))log, ny_;.
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LEmMA 3.6. Under (H.1) and (H.6) with d € [0, »), for each « > d, we
have with probability 1,

lim {br:kl max ”fm;k(hnk’Tm;k; ) - fnk,ﬁm(hnkv Tne_,+m> )Hil}

(331) k— o NkSmSMk
=0,
and
lim sup b1 (D t:) — & (D )k }
(332) k_)oc{t:“tg|Snk1/2(|ognk)" Nk Nk!k( N ) Nk,k( ner “0 ) l)
= 0.

Proor. By (3.29), for N, <m < M,,we have n, <n,_, + m < (1 + y)n,,
and hence, by (H.1),

(333)  (1+y) 'h, <(n/(n,+m)h, <h, . <h,.
Making use of (1.10) (which holds for d [0, «)), we obtain likewise that

L<hy /R, = (Me/ne )20
(3.34)
= exp((1 + 0(1))(log, n,)?/2) > = as k - =.

By (3.26), (3.33) and (1.1), this implies that, for all N, < m < M,, ultimately
as k — o,

-1
(1+vy) ¢, <Cy <Cp 4m=<C, <¢C, and

(1+y) 'b, <b < 2b,,.

Ne_;+m =

(3.35)

Our assumptions imply (see Remark 1.1) that (H.1)-(H.4) and (1.5) hold.
Thus, by (3.26), (3.30) and (2.9), we obtain that, uniformly over N, <m <
My=m,—n,_,,as k- oo,

_ 1
bgkl(m/nkfl) v sup ” g“k—l(hnk’t;.)”—l
te[tofcnk, to+Cpy,

= (bnk,l/bnk)(nk—l/nk)l/2

X(l - Iqk—l/nk)il/2 sup bn_k]:1|| gnk—l(hnk—l’ t )”lfl

te[ty—c to+ce

(3.36)

Nk-1? Nk-1

= 2(hnk—1/hnk)1/2(nk*l/nk)l/z = (Ne/n)YP >0 as.
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By an easy argument based upon (2.2) and (2.32), we infer from (3.29), (3.30)
and (3.33), (3.34) that with probability 1 as k — «, we have uniformly over
N, <m < M,

max {|m_l/2(nk—1 + m)l/2 - 1|(bﬂk—1+m/bnk)

Ng<m <M,

(3.37) % sup b;k{1+m|| gnk1+m(hnk,t;')||l_l}

telto—cp,, to+Cp, |
=0O(n_y/n¢) = 0.

By combining the definition (3.29) of ¢, with (3.30), (3.36) and (3.37), we
obtain that, as k — oo,

b-? sup max || & .. (h.  t;") — & h t;-
(338) Nk tE[tO*an,toﬁ'an] NksmsMk” m,k( Ny ) nk—1+m( Nk )”
-0 a.s.

By (2.5), (3.29), (3.30) and (3.34), we see that, a.s. as k — =, uniformly over
N, <m< M,

- Tm;k|

|7'nk,ler

(nk_l )|([Unk,1+m(to) — 1) = (Un,_(t) — )|

m
<2( nk—l)(|092 nk)l/z 2n log,(Nny_; + m)
B ny ny (Nk—y + m)log, ny

X( |ank,1+m(t0)| )
(2log, (N + m))l/z

v | ank—l( tO) |
(21log, nkfl)l/z

1/2

(3.39)

2n, log, Ny,
+
N4 log, ny

1/2 1/2

N, \"?( log, n,

<4
Ny Ny

I , . 1/2 2
=4( ogn n ) exp(—(1 + o(1))(log, ny)*/2)

< ng¥2(log n,) "% = o(ni V2(log, n)*?).

By combining (2.5) with (3.33)—-(3.35) and (3.39), we obtain readily that, a.s.
forall large k, 7, .m €[ty — ¢, t; + ¢, land Ty, € [ty — ¢, t; + ¢, | for
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all N, < m < M,. Thus, by (3.38) and (3.35), the assertions (3.31) and (3.32)
are implied by

lim{ max byt ol & (N Tk )

(3 40) k—o | Ny<sm<My
1
_gnk—1+m(hnk’ Tnk—1+m; )”71} = 0’
and
lim { sup ba ]| & (P, i)
(3a1) < LEIln o

=& (hn, to; S)||ll} =0 as.

By applying (1.5) with the formal replacement of h, by h, :=2(1 + y)?
n~1/2(log n)~@9+3 we infer from (3.39), in combination with (3.27) taken
with « = 2d, that, a.s,,

R _ 1
lim { max bnk1_1+m|| fnk_1+m(hnk’Tm:k;') - gnk—1+m(hnk'7—nk—1+m;')”—1}

k- | Ny<m<M,

< 2 lim s.up{bn1 sup || & (P, t; ')”11}
tel 1

n— o h,,1-h,
<4(1+ ) lim {bn‘ln‘l/“(log n)_(d“)} =0,
n—w

which is (3.40). Likewise, by combining (1.5), taken with the formal replace-
ment of h, by h’ :=n~%2(log n)”*, with (3.27), and our assumption that
k > d, we obtain that, a.s.,

Iimsup{ sup by [ &.(hy, t50) — fn(hn-to?‘)”ll}

n-o t:lt—tol<n~2(log n)~*
<2 Iimwp{b;l sup [ &(h, -)Ill_l}
n- o te[h},1-h7]

= 2 lim {b; 'n~"*(log n)*~*%} = 0,

n— o

which implies (3.41). O

LEMMA 3.7. There exists a constant K = K(t,) such that, for each x > 0
and all large Kk,

P(n}(/Z(TNk;k —t,) € (0, (log nk)f'())
= [P’(n}/z(fr,\,k —t,) € (0, (log nk)f'()) > K(logn,) ".

PROOF. Set Z, = N¢/?(ry — t;). Since N¢/?Z, is the sum of N, indepen-
dent centered Bernoulli random variables with parameter t,, the following
Berry—Esseen type theorem holds [Berry (1941), Esseen (1945); see, e.g.,

(3.42)
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Chow and Teicher (1988), page 305]. There exists a constant I" such that

-1/2

|]j)((to(l — 1)) Z, € (X, Y))

sup
—@<x<y<o

(3.43)
< TN Y2

—(2m) 7?2 fyexp(—tz/z) dt

Set x =0 and y = (N,/n )Y 3(t,(1 — t,))"*/?(log n,)~* in (3.43). By (3.29),
(3.30), for all large k, we have (N, /n,)"? < 4/3 and exp(—t?/2) > 1/2 for
all t € (x, y). Thus, by (3.30) and (3.43),

P(TNk — t, € (0, n*/?(log nk)_K))
= (277)_1/22_1( Nk/nk)l/z(to(l - to))il/z(mg nk)iK - TN, /2

2 (1/6)(to(1 — 1)) *(log ny) ",
which yields (3.42) after setting K = (1/6)(t,(1 — t,)" /2. O

LEMMA 3.8.  Assume that (H.1) and (H.6) hold with d = 0. Let ¢ (0, 1],
k > 0 and f € S, be arbitrary. Then, for K = K(t,) > 0 as in Lemma 3.7, we
have, for all large k,

[P’(brjklgNk(hnk, to;) EN(F), Iy, — Lol < ne /2 (log nk)_K)

(3.44)
> K(lOg nk)—K—(l—s/S)\fI.z..l

Proor. When X and Y are jointly defined on the same probability space,
denote by L(X) (respectively L(X | Y)) the distribution of X (respectively the
conditional distribution of X given Y). Denote by {ap (1) = N*/2(U (1) — t):
te R} and {af(t) = NY2(Uy(t) — t): t € R} two independent replicas of
{an () = NV2(Uy(t) — t): t € R}). Observe that, forO0<a<landl<m<x<
N -1,

L({N(Uy(a+1) = Uy(a)), N(Uy(a) — Uy(a—1))}INUy(a) =m)
=L({(N-m)(Uy_m(1/(1 - a)), mU(1/2))})

We apply this equality for a = t, and N = N,. By setting K, = N, Uy (t;) =
N2ty — my,) and &g(h, , t5;8) = &y (h, , t5; £ 5) for s € [0, 1], we see that,
when k is so large that h, < min{t;,,1 - t;}, we have, for each integer
l1<m<N -1,

u
L({b;klgmk(hnk,to; h—): ue [0, hnk]},

Ny

K0=m)

{bn_klgﬁk(hnk’ to; hl) ve|o, hnk]}

Ny



2042 P. DEHEUVELS

m Y2 u
= L| b, T
k thO tO

(3.45) Cup | Nt T e [0,h, ]
) ny tho k . v Hny ’

—1 N —m v 1/2 v
{b”k ( Ni(1 - to)) -t ““k‘m((l - to>)

—vb 1! m_—thO N’2-v e [0. h
AN -t ) [ , nk]
= L({(l + A ) A a(U) + gy g(U)u e [0, hnk]}’

(A + MDA (V) + i o(v):ve [0,h, 1},
where A, ,(u) = by 't5 %, (u/t)), Ay (V) = by M1 — t)Y %y _(v/(1 = ty)),

m \Y? L Netp—my
A1 = -1, B, 1(U) = —ubp H| ———— | Ng

thO thO
forue [0, h, |,
N, —m 12 m — Nt
A2 = (m) -1, (V) = _Vbn_kl(m)Nkl/z
for v e [0, hnk].

Set C, = 2max{t,*, (1 — t,)"}. By (3.30), for all large k, and m with [N, t, —
m| < ny/?(log n,)~*,

{ tho—m‘ ‘ m — N,t, }
max ,
N, 1 Nk(l - to)
m Ny —m
=max{|l— —|, |1 - ———
(3.46) N, t, N (1 — t5)

n — K
< max{tgl,(l - to)_l}(Wk)nkl/z(log ny)
k

< CynM2(log ny) "

Fix any ¢ € (0, 1]. By combining (3.26)—(3.35) with (3.45), (3.46) and (3.27), we
readily obtain that, for all large k and m with [N, t, — m| < n/?(log n,)~*,

max{| A 11, 1A oI} < Csni*?(log n) " < &/8,
(3.47) max{” e 1(hin, )”; ” e 2(hin, )”;} < Csh,, by t(log ny) ™"

< Cshi/?(log ny) " < &/8.
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Since fe S, (3.3) and (2.36) imply that |[f]l < 1. Thus, by the triangle
inequality, whenever A € R, |Al < &/8, u € B[0,1], [lull <e/8, (1 + Mg+
n €N, ,(f)and ¢ € (0,1],

g = Fll < 12+ AL+ M) g + = Fll+ AL EI+ )
<(1-¢/8) *(3¢/4) < 6s/7 < ¢,

so that g € N,(f). In the particular case where g(s) = A, j(h, s), A=A
and w(s) =y ;(h, ) for j=1,2 and s € [0, 1], we infer from (3.45), (3.46)
and (3.47) that, for all k sufficiently large, we have uniformly over all m with
INt, — m| < ni/?(log n,) ™~

P(byén (N to: ) € N(F)IKg = m)
= P({by (N, toi ) € N.(F7))
(3.48) N {ban, (N, toi7) € N.(F7)}IKo = m)
> P(by Mty %am(ha 1/t) €N, (1))
X P(by (1 = 1) ey, (o, 1/(1 = 1)) €N, (7).

By Theorem 1 of Bretagnolle and Massart (1989), we may define {ay: N > 1}
jointly with a sequence {W™’: N > 1} of Wiener processes, in such a way
that, for all z>0and N > 2,
P — WM 4 W™(1)]Ig = N"2(z + 121log N
(aagy Pl Dl ( gN))

< 2exp(—1z/6).

We apply (3.49), with N=m and z =(g/8m"/?b, h;!/? — 12log m. By
(3.33)-(3.35) and (3.46), we have, ultimately as k — , uniformly over all m
such that [N, t, — m| < ni/2(log n,) ™",

m = (1+0(1))Nyt, = (1 + 0(1))n,ty — o,
z=(1+ o(l))(a/8)t3/2(2nk{log+(1/(hnk\/n—k)) + log, nk})l/2
> 6ny*,

(3.50) _
Xy = (‘9/8)t0bnkhnk1

- (a/8)t0(2h;k1{log+(1/(hnk\/ﬂ)) + log, nk})

1/8
> 2ny/®8.

1/2

Let W = W@, By combining (3.49), (3.50) with the inequality [see, e.g., (1.1.1),
page 23 in Csorgd and Révéesz (1981)] P(IW(1)| = x) < exp(—x?/2) for x > 1,
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we see that, for all large k,

P(b;kltg/zam(hnkl/to) €N, f+))

> P(b, " t/?W(h, 1/t,) €N, (1))
(3.51)

1/4

—~ P(IW(1)l > (&/8)tob, hyt) — 2e7 "
+yV) _ -n¥/*
= P(W(h;;b%k/a EN, (7)) —3e "
By letting d = 0 in (3.26), we see that, ultimately in n — o,
(3.52) h,'b2/2 =(1+o0(1))log, n < ((1 — &/8)/(1 — &/4))log, n.

By (2.35)ii) and (3.3), J(N, ,(f")) <1 - e/DIf*|%4. Thus, by setting G =
N, ,(f)in (2.34), we infer from (3.51), (3.52) that for all large k and uniformly
over |N.t, — m| < ni/?(log n,)~*,

P(bn!t5 %em(h /1) €N, 5( 7)) > exp(—(1 — &/8)If "3 log, n,).
We obtain likewise that
P(by2(1 = t) 2 an,—m(hn /(1 — 1)) €N, ,(F7))
> exp(—(1 — &/8)If [} log, ),

whence, by (3.3) and (3.48), for all large k and m with [N, t, — m| <
ny/2(log n, )%,

I]:D(bn_klgNk(hnk! to;r) €N, FIKy = m)
(3.53) > exp(—(l — s/8)(|f*|f_. + If’lﬁ)log2 nk)
— (Iog nk)*(lfé‘/s)”ﬁ—!.

Recalling that Ny t, — K, = Ni(ry_— t,), we readily infer from (3.42) that for
all large k,

P(INct, — Kol < ni/?(log n, ) *)
> [P’(n}/z(rnk —t5) € (0, (log nk)fk)) > K(log n,) “.
This, when combined with (3.53), readily yields (3.44). O

ProoF oF ProprosiTioN 3.2. When d € (—«,0), the result we seek is
obtained by combining Fact 1 with Lemma 2.4. When d = 0, the following
arguments are needed. By (3.25), Proposition 2.1 and (3.1), our proof boils
down to showing that for an arbitrary f € S,

(3.54) Iimio?fnb;klgnk(hnk, 7o) — fll=0 as.
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In view of (3.31), (3.32), we see that (3.54) holds if, for each ¢ > 0, there exists
a k > 0 such that

P(by %, K(Nn,. to: ) € N.(),

(3.55) )
ITn, .k — tol < ng(log n,) " i.0. (in k)) =1.

By the Borel-Cantelli lemma and Remark 3.1, the assertion (3.55) is equiva-
lent to

oo

P2q = Z P(br:zt gqu(hnzq'tO; ) < N‘E(f)'
1 q=1

s

(3.56) ‘

|7,, — tol < Nzq7?(log nzq)f'()
= OO.
Since (3.44) entails that P, > K(log n,) < @-¢/8Ifk = (1 + 0(1))

(k log k)~*~@-#/8Iflk for all large k, (3.56) holds when 0 < k <1 — (1 —
e/8)|f|, which is allowed by our assumptions. O

3.4. Intermediate increments (d € (0,«)). The main result of this section
is captured in the next proposition.

ProposiTION 3.3. Under (H.1) and (H.6) with d € (0,»), the sequence
{b,%.(h,, t;;-): n > 1} is almost surely relatively compact in (B[—1,1],U)
with limit set equal to S.

The following arguments are oriented towards proving Proposition 3.3. We
will assume throughout that (H.1) and (H.6) hold with d € (0, »). By (1.1),
(1.10) and (3.26), this implies that, as n — o,

h, = n~%2(log n) """ = o(c,),
(357) ¢, =(1+0(1))n"?(log, n)*/?,
b, = (1 + 0(1))(2h,(d + 1)log, n)"’? = n~/4(log n)~¥/2+°®

Recall from (3.29) the definitions of n, = [exp(k log? k)|, m, = [(1 + y)n|
fork>=1, N=n,—-n,_,and M, =m, — n,_, for k > 2, where y > 0 is an
auxiliary constant. Following Komlos, Major and Tusnady (1975a, b), we
assume, without loss of generality, that {U,;: n > 1} sits on a probability space
on which is defined a two-parameter Wiener process {W(x, y): x > 0, y > 0}
such that the Kiefer process K(x, t) = W(x, t) — tW(x, 1) fulfills (1.15). We
will make use of the following additional notation. For any (possibly noninte-
ger) r >0, we will set w,(x) =r"*2W(r, x) and rewrite for convenience
(1.15) into

(358) lla, = {w, — Iw,(1)}Il = O(n~*?*(log n)z) a.s.as n — o,



2046 P. DEHEUVELS

Keeping in mind that, for each r > 0, {w,(x): x > 0} is a standard Wiener
process, we set,forn>1, h<t<1-—h,se[-1,1],

P (h, t;s) = w,(t+ hs) —w,(t) — hsw,(1),

n@(h, tis) = w,(t + hs) — wy(t),
and, for k > 2, N, < m < M, (equivalently, for n, <n,_, + m <m,), and
m>1,

ik (h, t;s)
(360) = m_1/2<(nk—l + m)l/znr(\i),ﬁm(h, t;s) — ni/—zl”)rgi),l(h- t; 5)>,
i=12.
Moreover, for k > 2 and N, < m < M, (or equivalently, forn, <n,_, + m <
m,), we let T be as in (3.29), and set, for each (possibly noninteger)
r,s>0 M,<s<N,and0 < 6<1,
SM(0) =t — 12 {w, (to(1 = 0)) = to(1 — 6)w, (1))
=t, — r H{W(r, ty(1 - 0)) — t,(1 — 0)W(r, 1)},
P(0) =to — rH{w(To(1 = 6)) — to(1 — 6)
><{Wr(l) - Wr(tO(:L + 9)) + Wr(to(l - 0))}}’
S0(0) =t = s7H{(ney +5)(to — 30, (6))
—n4(to — zngl(a))}, j=1,2.

REmMARK 3.2. (i) For j=1,2, M, <s <N, and s> 0, 3 follows the
distribution of 3. For all large d,, {2{},: M,, <s < N, }, q > g, consti-
tutes a sequence of independent processes.

(i) Let #(0,1) and h > 0 be such that 0 <ty (1 —6) <ty —h <t, +
h <ty,(1 + 6) <1. Then, for any Wiener process {W(t): t > 0}, we have
independence of {W(t, + hl) — W(ty)} € B[—1,1] and W(1) — W(t,(1 + 6))
+ W(ty(1 — 6)). It follows that, whenever [t — t,| + h < 6t,, we have inde-
pendence of 3@(6) and n@(h, t;-), and likewise of %2, (6) and n,(h, t;-),
for all large n and k, uniformly over m > 0 fulfilling M, < m < N,.

(iii) 1t follows from (3.58) and the definitions (3.29), (3.59), and (3.61) of
nP(h, t; s), 7,(0) and 3(9) that there exists a constant C, < « such that,
a.s. for all large n and h € (0, 1),

sup lI&,(h,t;-) = nP(h, t;)lI; < Cyn~ 2 log? n,
(362) telh,1-h]

(3.59)

(3.61)

sup [28(0) — 7,(0)l < Cgn~*log? n.
0<l0,1]

LemmA 3.9. Let (H.1) and (H.6) hold with d € (0,*). Then, we have
almost surely

=0,
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(3.64) Iimsup{brjl max ||§n(hnk,7n;~)—gn(hn,fn;-)uil}szyl/Z,

k
K o ng<n<m,

(3.65) Iimsup{ max [byt — byt X [1€,(h,, 7 ')Ilfl} <2y,

Kk— o ne<n<m,
(3.66) lim { sup c;l max |E(nlzn .k(e) _ Tn(0)|} o
ke 00, 1] K ne<n<my k-1
(3.67) lim {cn‘ln max [0, (0) - Tn—nk,l;kl} _o.

(3.68) lim sup{c;kl max [Z0) . . (0) - Eﬁflnkfl;k(a)l} < 2(6y)"2

K — o ng<n<m,

Proor. In view of (3.29) and (3.31), the proof of (3.63) reduces to showing
that

(3.69) jim (b o i T ) = k(o T i)
=0 a.s.
By the triangle inequality, we write

bn_k1 max ”gm;k(hnk'Tm;k;') - F'?rgnz;)k(k"nk’Tm;k;')”:Ll
3

Ng<m<M

IA

b-! max (he T )= oD (h T )
(3.70) Mk NksmsMkngm'k( UUER ) nm’k( ng' Tmik )H 1

- . . 1
+ byt max Hnr(nl;)k(hnk!Tm;kv ) - nlng?k(hnk!-rm;k’ ')H*l

Ny
Ny<m<My
= E; + Ey .
By (3.29), (3.30), (3.57) and (3.60)—(3.62), with probability 1 for all large k and
N, <m < N,,

E;« < GCebyt | max m~*/%(log®(n,_, + m) + log®(n,_,))
k=M= My

3.71
( ) —1/2p—1 2 _ ~—1/4 2+d/2+0(1)
< 3C; N */7by, “log® ny = ny~/*(log ny) - 0.

The law of the iterated logarithm for Wiener processes, in combination with
(3.29), (3.57) and (3.59) shows that, ultimately,

E,«<by'/h, max (n- ne_.) AW(n,1) — W(n,,1)|

ne<n<m,

<byth, (m/N)Y? sup m¥2lw(s, 1) — W(t,1)|
(3.72) O0<s,t<my

2(1 + v)"?b; th, (log, n )"

IA

=n;Y%(log n,) " ¢?"® 50 as.

We obtain readily (3.69), and hence, (3.63), from (3.70), (3.71) and (3.72).
To establish (3.64), we first recall from (3.33) and (3.35) that, for all large
k, and uniformly over n,<n<m,, we have h,<h, <(1+ y)h, and
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bn‘k1 < 2b;% This, in turn, implies that for all large k, uniformly over
nk <ngc< mk,

byt 1€n(Nn,, i) = E(hy, 7o L,
<2 sup b MIE(vh,, 6.

t:|t—rl<h,

(3.73)

Recalling (1.1), (2.5) and (3.5), we see that =, + h, € [t, — ¢, t, + c,] a.s. for
all large n. By (3.73), this entails that the LHS of (3.64) is almost surely
smaller than or equal to

2 Iimsup{ sup b;lllén(yhn,t;')||l—1}-
n—o teltg—c,, to+c,l

An application of Fact 4, taken with A, = yh, and C, = c,,, shows readily
via (2.9) and (1.1) that this last expression equals 2y'/? almost surely, which
completes the proof of (3.64). O

We observe, via (3.33)—(3.35) and (3.57), that, for all large k, uniformly
over n, < n < m,,

lb, /b, — 1| < 2{(hnk/hmk)1/2 _ 1} < 2{(mk/nk)1/2 _ 1}
<2{1+y)* -1} <.

We conclude (3.65) readily by an application of Proposition 2.1 in combination
with (2.2).

To establish (3.66), we combine (3.29) and (3.61), then make use of (3.62) in
combination with (3.7), (2.5), and (3.30), to obtain that, a.s. for all large k and
n with n, <n <m,

155 01 k(0) = 7(0)]
= (n=ncy) Hn{EP(0) - 7(0))
—n SO (0) = 7 (0)) + N o{7(0) — o) — Ny o7, () — 1o}
<(n- nk_l)fl(Ce{Iog2 n + log® n,_,}
+4n,_,{n"*2(log, n)""* + n, }4?(log, nk_l)l/z})
< 8(n,_1/n) " *{nc?(log, n )%} = o(c,).

which yields (3.66).

We observe that (3.67) is implied by (3.39) and (3.62). Finally, the proof of
(3.68) is obtained as a consequence of the law of the iterated logarithm, via
the same argument as in (3.72). O
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LEmMA 3.10. Under (H.1) and (H.6) with d € (0,«), for any N > 1, we
have almost surely

limsup (bt max ny (N T )
k

K- o0 k<m<

(3.74) ~ 0&(Pa T NI N*l)||£l} < 4yl/2 4+ 2N"V/2,

lim sup{bn‘k1 max [(m/N.)"? — 1| x Ik T ks -)IIfl} < 2vy.

K— o Ne<m< M,

Proor. We infer from (3.63) and (3.64), that almost surely

Iimsup{bn‘klN max [In@(h, 1mic:) = n,f;)k(hnk,Tm;k;[NIJN‘l)Ilil}
k

k— o k=M<
s4yl/2+limsup{bn’l max ||§n(hn:7'n§')—fn(hnyTnilN|JN71)||171}-
K —> o K ng<n<m,

Next, we proceed as in (3.20) and (3.73) with the formal replacement of y by
N1, to obtain that the expression above is almost surely less than or equal to

4yt/2 + 2 Iimsup{ sup bnlllfn(Nlhn,t;-)llil} =4yY2 + 2N~ 1/2
n-— o te[ty—c,, to+cy,]

which proves the first half of (3.74). The second half follows along the same
lines via (3.30). O

Fix p€(0,1/2]. Set My = | pc, /2h, |, and, for —N <i<Nand M +
l<j<2M,

Ak(‘g’ J) = {bn_klnl(\lz:;m(hnk! t, + 2jhnk; ) € Na( f)}v
B(e, ], 1) = {bn_kl max |(m/Nk)1/277r(nz;)k(hnk’ ty +2jh,; iN_l)

N <m< My

@M to + 2R, N7 e},

(3.75) y
Cle. 1) = N Bu(e,J,i),  Di(e i) =Ade/2,]) N Cle/4,]),
2 M,
Ei(e) = U Du(e.]).
=M/ +1

We denote here by E the complement of the event E.

LEMMA 3.11.  Assume that (H.1) and (H.6) hold with d € (0, «). Select an
arbitrary f € S,. Fix any ¢ € (0,1], p €(0,1/2], and N > 1. Then, for all k
sufficiently large, we have

(3.76) P(E(s)) = %min{k—l+<d+1>(1f\f|a)+<a/8)<d+1>|f\2H, %}.

ProoF. By (357), h.'b2 /2 = (1 + o(D)Xd + Dlog, n, = (1 + o(1))X(d +
Dlog k as k — «. Thus, by (2.34), (2.35), (3.3) and (3.60), we obtain that, for
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all large k and je {M, +1,...,2 M/},
P, k(&) = P(Ac(e, 1))
(3.77) = P(W{hgklbnzk/a € N,( f+)) X P(W(h;klbgk/z} € N,( f_))
> exp(— (1 — &)l flih; b2 /2] = kG- e/2d+ DI,

Since N,/(N, — M,) = 1/y, the inequality P(|W| > x) < 4P(W(1) > x) <
2exp(—x2/2) for x > 1 [see (1.5.1) and (1.1.1) in Csorgd and Révész (1981)],
when combined with Bonferroni’'s inequality entails that, independently of
je{M +1,...,2 MW}, for all large k,

P(e) = 1= P(Cyle. 1)) = P(,UNBk(s, i i))

™Mz

2

IA

IP( sup W (u)l > 8Nk1/2bnk)

1 0<u<iN~ M —Noh,

W] > N7y,
\/iNil( Mk - Nk) hnk

Mz

(3.78) 2 P

i=1

<4§:ex - # Nbn,
h p 2iN_1(Mk_ Nk)hnk

N(d + 1)log, nk)
- -0
1y
Recalling from (3.75) that the events A, (e/2, j) and C,(&/4, j) are indepen-
dent, we infer from (3.78) that, for all large k, we have P(D,(e, j)) =
P, (e, 2)1 — P, (g/4) > 3P, (&/2), independently of je {M +
1,...,2 M/}. Since the events {D,(&, j): M + 1 <j < 2 M/} are independent,
it follows from (3.77), (3.78) and the inequality 1 — (1 —u)" > 1 — e~ " for
r>0and0 <u <1 that

=4 % exp(—(l +0(1))
i=1

2 M,
P(E(e)) =P U Dk(gaJ))
J=M/+1
(3.79) =1-(1-Py(e/2)(1 =Py (£/4))) .

>1- eXp(—M‘gPlyk(s/Z)(l - szk(a/4)))

>1— exp(_%Mé/k—(l—a/4)(d+1)\f|,24)_
By (3.57), we have, ultimately as k - =, ¢, /h,, = (log n)dtod = kdro@® >
kO-(e/BAaT I and - MY = | pc,,/2h,, | = (p/Be, /h, = (log n)*+°® =

kd+om) > gKd-(s/8)Xd+ DItk By combining this last inequality with (3.79) and
1 —e Y > tmin{u, 3} for u > 0, we obtain readily (3.76). O
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PrRooF oF PropPosITION 3.3.

Step 1. Fix feS, and &< (0,1], with < 8/{(d + D|f|5}. Set y=
(e/128)?, which implies that 2y + 2y'/? < £/32. Proposition 2.1 and (3.1)
reduce our proof to show that the event {3n € {n,,..., m,}: ||b,*%.(h,, 7.;")
— f|X1 < &} holds i.0. in k with probability 1. Making use of (3.63), (3.64) and
(3.65), in combination with the triangle inequality and 2y + 2y¥2 < £/32,
we obtain readily that this property is satisfied whenever the event

b, 12 (N Trsis ) — FllZL < (31/32) e for some m € {N,,..., M},

holds i.o. in k with probability 1. Let My = | pc, /2h, | be as in (3.75). By
the argument used in the proof of Proposition 3.1, we reduce our proof to
show that the following statement holds. There exists a p > 0 such that the
events E, and E; below hold jointly i.0. in k with probability 1.

E, = {Forsomeje {M+1,...,2 M/}, we have

(i)(a) by '@ (h, .ty + 2jh, ;) — fllZ; < 8¢/186,
(i)(b) b, ' max Iln(z) (o, to +2jh, ;)
Ny<sm<M

— 1. (P to + 2R )l < 78/16}.

Ec = {TNk;k = Pcnk/hnk and 2pcnk/hnk = TMk;k}'

Set N = (128/¢)?, so that 4yY? + 2y + 2N"¥2 < 65/128 + ¢/64 = £/16.
Making use of (3.74) in combination with the definition (3.75) of E,(¢), it is
readily verified that there exists an event (), of probability 1, such that
{Q, NnE i0}={Q, NnEL(e)io0}.

The following arguments are needed to conclude our proof by showing that
P(E; N Ex(e)io) = 1.

Step 2. Set & = {(&/8)d + 1)|f|4}/2, which, by our choice of ¢ and f
satisfies 0 < § < 1. Recalling the notation (3.61), set for k > 2, 6 € (0, 1] and
s> 0,

(3:80)  Gy(8,5) = s(My — n1) o7 Hto = I, 0, s.(0)),
where the choice of g2 = 1/Var(G,(6,1) = 1/Var(3?(#)) ensures that
{G(0,s): s=>0} is a standard Wiener process. Since g,°> = t,(1 —t,) as

® — 0, there exists a 6, > 0 such that (15/16)(t,(1 — t)"? < g, <
(17 /16)(t(1 — t, )2 for all § € (0, 6,]. Note further that

Gy(0, N /(Mg — ny_y))

3.81

(38 = N (M, — nk—l)_l/z%_l(to - Eﬁi;k("))*
and

(3.82) G(0,1) = (M — ”k—l)l/za'_l(t 3 k(9))

Set €=(1/16)8(1 — (1 + y)™') < y5/16 < 1/16. The function g,(s) =
—&min(s, 1 —s) for s € [0, 1] satisfies |g,/% = 82 < 1. Therefore, by (2.34),
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(2.35) and (3.57), we obtain that for all large k,
P(Ec(€)) = P(nﬁl/zcﬁkle‘k(e’ ) € N( 93))
(3.83) = ”:D(W{nkcﬁk/a € Ne(ga))

> exp(—(log k)lg,l%) = k2" = k~(e/8XdDIflk,

(1 + y)~'). Therefore, for all large k, on the event E,(e) = {n,*/?c; 'G,(0, )
e N.(g;)}, it holds that

026 16,(0, Ny/(Mi = 1)) + 6(1 = (1+9) )l <3¢/2 and
Ing26,16,(6, 1)l < 3¢/2

By (3.30), we see that ni/2(M, — n,_)"?/N, > (1 + y)¥2 and ni/2(M, —
Nne_,) Y2 > (1 + y)~*/2 Therefore, by (3.81), (3.82) and our choice of v, for
all large k, on the event E,(e) it holds that

ltp = 3@ (0) + 8(1— (1 +y) ")ge, |
(3.84) <2ec, 0
= (1/8)8(1 = (1 + ) ')cn,,
and likewise
(3.85) Ity — 32 (0) < 2ec, 0= (1/8)6(1 — (1 +v) )cn 0.

By combining (3.7) with (3.57), (3.66), (3.67) and (3.68) we see that, a.s. for all
large Kk,

(3.86) [0k (0) — Ty, il < (2(07)1/2 + 2{6ty(1 — 0'[0)}1/2)0,]k < 49", .

Set now 6 = min(6,,{(1/64)8(1 — (1 + y) Ht,(1 — t,)}?). By (3.84), (3.85) and
(3.86), we have

40%%c, < (1/8)8(1— (1 +v) )c, 0

Thus, by (3.84), (3.85), there exists an event Q, of probability 1 such that, on
Q, N Ee),

(3.87) Tk = (3/8)8(1— (1 + 7)) {to(1 — 1)} *cy,s
and
(3.88) Tu k< (1/4)8(1 = (1 + 7)) {te(1 - )} “cp,.

for all large k. In view of the definition of E, we combine (3.69) with (3.87)
and (3.88), to obtain that, for some suitable event Q, c Q, of probability 1,
the inclusion of events {Q; N E(e) i0} c{Q;NE; io} holds for p=
(1/3)8(1 — (1 + y) Ht,(1 — t,}?, which is allowed by our assumptions.
Step 3. By putting together the results of Steps 1 and 2, we see that are
done if we can prove that P(E,(e) N E, (&) i.0.) = 1 for the above choices of ¢,
e, N, v, 8, 0 and p. Now, it is easily checked via Remark 3.2 that E,.(s) and
E,,(e) are independent for all g so large that hnzq < 0t,, and moreover, that,
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{E, (&) N Eyq(e): g = qg} is a sequence of independent events. Therefore, the
Borel-Cantelli lemma reduces our proof to show that

(3.89) Y P(Eyq(£))P(Ezq(e)) = =,
q

By (3.76) and (3.83), we have P(E,(&)P(E,(&)) > imin{k 1+@+DA-Ifi)
1K~ (e/8Xd+DIfIL} for all large k. Since 82 = (£/8)(d + 1| f|% < 1, we obtain
readily (3.89) as sought. O

For the proof of theorem 2.2, combine Propositions 3.1, 3.2 and 3.3.

Concluding comments. Statistical applications of our theorems, together
with investigations of local quantile processes under other sets of assump-
tions, will be considered elsewhere.

Acknowledgments. We thank the referees for insightful comments. In
particular, one referee observed that a direct proof of the first equality in (1.7)
was possible by a simplified version of our arguments. The comments of a
second referee led to some improvements in the proof of Lemma 3.4.
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