The Annals of Probability
2002, Vol. 30, No. 2, 826-873

INTEGRATION OF BROWNIAN VECTOR FIELDS

BY YVES LE JAN AND OLIVIER RAIMOND

Université Paris-Sud

Using the Wiener chaos decomposition, we show that strong solutions
of non-Lipschitzian stochastic differential equations are given by random
Markovian kernels. The example of Sobolev flows is studied in some detail,
exhibiting interesting phase transitions.

0. Introduction. The purpose of this paper is to present an extended notion
of strong solutions of stochastic differential equations (SDEs) driven by Wiener
processes. These solutions can be defined on rather general spaces, in the context
of Dirichlet forms.

More interesting, they are not always given by flows of maps but by flows of
Markovian kernels, which means splitting can occur. Coalescent flows also appear
as solutions of these SDEs. Conditions are given under which coalescence and
splitting occur or not.

A variety of examples are studied. The case of isotropic Sobolev flows on the
sphere or on the Euclidean space shows in particular that splitting is related to
hyperinstability and coalescence to hyperstability. These notions (which will be
developed in Sections 9 and 10) are related to the explosion of the Lyapunov
exponent toward +o00 and —oo0.

The typical example we have in mind is the Brownian motion on a Riemannian
manifold. We consider a covariance on vector fields which induces the Riemannian
metric on each tangent space. When the covariance function has enough regular-
ity, it is known that one can solve the linear SDE driven by the canonical Wiener
process associated with this covariance [or in other terms to the local characteris-
tics associated with this covariance (see Section 3 below)] and get a multiplicative
Brownian motion on the diffeomorphism group, which moves every point as a
Brownian motion (see [18] or [23]). However, models related to turbulence theory
produce natural examples where the regularity condition is not satisfied. Except
for the work of Darling [7], where strong solutions are not considered, these SDEs
have not been really studied. The idea is to define the solutions by their Wiener
chaos expansion in terms of the heat semigroup. We call it the statistical solution.
A similar expansion was given by Krylov and Veretennikov in [17], for SDEs with
strong solutions.

In this form, they appear as a semigroup of operators, and the fact that these
operators are Markovian is not clearly visible in the formula. To prove this, we
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consider an independent realization of the Brownian motion on the manifold
and couple it with the given Wiener process on vector fields using certain
martingales. Then the Markovian random operators which constitute the strong
solution are obtained by filtering the Brownian motion with respect to this Wiener
process. They determine the law of a canonical weak solution of the equation
given the Wiener process on vector fields. This construction has been adequately
generalized to be presented in the case of symmetric diffusions on a locally
compact metric space. It is a convenient and well-studied framework but this
assumption could clearly be relaxed (in particular to the framework of coercive
forms). Relations with particle representations and filtering of stochastic partial
differential equations (SPDEs) can be observed (see [19]).

The example of Sobolev flows is studied in detail on Euclidean spaces and
spheres and is of major interest especially in dimensions 2 and 3 where an
interesting phase diagram is given in terms of the two parameters determining the
Sobolev norm on vector fields: The differentiability index and the relative weight
of gradients and divergence free fields (compressibility).

Some of these results have been given in the note [21], and a preliminary
version of this work was released in [22]. They are directly connected and
partially motivated by a series of works of Gawedzki and Kupiainen on turbulent
advection [2, 13, 14].

1. Covariance function on a manifold. Let X be a manifold. A covariance
function C on T*X is a symmetric map from 7*X? in R such that, for any
(x,y)e X 2 (C restricted to TrX x Ty*X is bilinear and such that, for any n-tuples
(&1,...,&) of T*X,

(1.1) Y CE.&)>0.
ij
For any £ = (x,u) € T*X, let C¢ be the vector field such that, for any &' =
(y,v) e T*X,
(Ce(y),v) =C(£,8).

Let Hy be the vector space generated by the vector fields Ce. Let us define the
bilinear form on Hy, (-, - ) g such that

(1.2) (Ce, Ceryg =C(£,8).
As (1.1) is satisfied, the bilinear form (-, - ) g is a scalar product on Hy. We denote
by || - |z the norm associated with (-, - ) g.

Let H be the separate completion of Hy with respectto || - ||g. (H, (-, )H) is
a separable Hilbert space and we will designate it as the self-reproducing space
associated with the covariance function C. H is constituted of vector fields on X
and, forany 4 € H and any § = (x,u) € T*X,

(1.3) (Ce,h)p = (h(x),u).
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Let (ex)x be an orthonormal basis of H, then (1.3) implies that, for any
E=(x,u)eT*X,

(1.4) Ce=) (ex(x),u)ey.

k

This equation implies that, for any & = (y, v) € T*X,

(1.5) CE.EN) =) (ex(x), u)(ex(y), v).
k
Therefore
(1.6) C=) eaQe.
k

REMARK 1.1. On the other hand, if we start with a countable family of vector
fields (Vi)x, such that forany &§ = (x,u) € T*X, Y 1 (Vi (x), u)? < oo, itis possible
to define a covariance function on X by the formula

C:ZVk@)Vk.
k

Examples of isotropic covariances are given in Sections 9 and 10. See also [1].

Now assume a Riemannian metric (-, - ), is given on X, the linear bundles 7' X
and T*X can be identified. We will now suppose that the covariance is bounded
by the metric, that is, that

C(S’ g) 5 (Ma M)x

for any & = (x,u) € T*X. Note that this condition implies that |h(x)|, < ||h| g
forany h € H.

Let us denote by m(dx) the volume element on X. Given any differentiable
function f such that |V f| is square integrable, we can map it linearly into
Df in the Hilbert tensor product L>(m)®H setting (Df, g ® h) = [x g(x) x
(Vf(x),h(x))ym(dx) for all g € L*(m)and h € H.

Note that

(1.7) IDfN3(x) < |Vfx)?

[this notation comes from the identification L?(m)®H with the Lz—space of
H -valued functions on X ] and that

(1.8) 1DF 2y = [ 19 dm.
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2. Covariance function bounded by a Dirichlet form. We can extend these
notions to the framework of local Dirichlet forms. Let X be a locally compact
separable metric space and let m be a positive Radon measure on X such that
Supp[m] = X.

Let (&, F) be a regular Dirichlet space, ¥ C L?(X, m). We suppose that the
Dirichlet form is local and conservative. We denote by P; the associated Markovian
semigroup, by A its generator and by D (A) the domain of A. We also suppose
that m is an invariant measure, hence that P;1 = 1. We also assume that, for any
feF,=L>®m)NF,thereexists I'(f, f) € L' (m) such that, for any g € ¥y,

@.1) 26(fg.f) — E(f2 g) = f T (f.f)dm.

I can be extended to ¥ and we denote by I'(f, g) the L!'(m)-valued bilinear form

on F2, where for any (f,¢) € F2, I'(f,g) = 3 (f +¢.f + 8 —T(f — g,
f — g)). A sufficient condition for the existence of I (see [3], Corollary 4.2.3) is
that £ (A) contains a subspace E of D(A), dense in F, such that

VfeE, e D(A).
Then, for (f, g) € E2,
(2.2) I'(f,8)=A(fg) — fAg — gAf.

A necessary and sufficient condition for the existence of the energy density (or
carré du champ operator) I" is given in Theorem 4.2.2 in [3].

FUNDAMENTAL EXAMPLE 2.1. X is a Riemannian manifold with metric
(-, -), m is the volume measure, ¥ = H'(X) and, for any (f,g) € F2

§(.9)=1 [ (V. Vg)dm.
In this case, I'(f, g) = (V f, Vg).

Let H be a separable Hilbert space and D a linear map from ¥ into the Hilbert
tensor product L2(m)&®H such that, for any f € F,

(2.3) IDf )% <T(f, f)(x)

m(dx)-a.e. The most interesting case is when there is equality in (2.3).
We define the covariance function C as a bilinear map from ¥ x ¥ into
L*(m @ m) by

24) (C(f, )4 ® V) [2(mam) = /X (DF(x), D)) nu()v(y)m(dx)m(dy).
Note that
(2.5) (Cf ) u®u)2ugmy < 28(f,f)||u||%z(m)-

We say that C is a covariance function bounded by the Dirichlet form (&, ).
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REMARK 2.2. Alternatively, we could define the covariance as a positive
symmetric bilinear map from ¥ x ¥ in L?(m ® m) [i.e., such that, for any
u; € L?(m) and any f; € F,

2.6) /Zlh@l/tjc(fi»fj)dm@)zzo]
iJ
such that
2.7) (CU L)t @ ud 12y < 26(F, Ul 20,

and construct as before a Hilbert space such that (2.3) holds.

Indeed, we define H as the separated closure of the space Hp spanned by
elements of the form u ® f, with u ® f € L*(m) ® ¥, and equipped with the
(possibly degenerate) scalar product

(M ® f’ v ®g>H = (C(f’ g)’ u ® v)Lz(m®m)'
And for f € F, Df is defined such that forany u ® v® g € L*(m) ® L>*(m) ® F,
(Df,u®v ®g>L2(m)®H =(C(f,8),u® U)Lz(m®m)'

Forany h € H and f € F define Dy, f = (Df, )y, which belongs to L*(m).
Then, for any orthonormal basis (e ) of H,

(2.8) C=> D ®D,,.
k

Moreover, for any f € F,

(2.9) IDfI = (De ).
k

Note that condition (2.3) implies that, for any finite family (u;, f;) €
L>®(m) x F,

(2.10) Y wiuiD(fi f) <D uiu;T(fi fi),

iJ iJ
where D(f, g) denotes (Df(x), Dg(x))u = > i D¢, f(x)De,g(x). When the u;
are step functions with discontinuities in a set of zero measure, (2.10) is satisfied
as > juiujD(fi, fj) = |D(X; u; f;)|?. Then we can extend this result to any
family (u;) by density in L>(T'(f, f) dm) for every f € .

REMARK 2.3. [Itisclear that, given a covariance C on T*X as in Section 1, we
can build the self-reproducing space H consisting of vector fields and the mapping
D: HY(X) — L*(m)®H so as to construct a covariance function as in Section 2.
Now suppose conversely that we have a separable Hilbert space H, a linear map D
and a covariance C as in Section 2, and suppose we are in the Riemannian case.
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The condition ||Df(x)||%{ <I'(f, HHiix) = |Vf(x)|2 implies that C(f, g)(x, y)
depends only on V f(x) and Vg(y), and so there is a covariance C sayon T*X so
that C(f, g)(x,y) =C(V f(x), Vg(¥)). So in the Riemannian case, any Section 2
covariance function reduces to a Section 1 covariance function.

Further, we can now assume without any loss of generality that the separable
Hilbert space H is the self-reproducing space corresponding to C and thus consists
of vector fields.

REMARK 2.4. The bilinear mapping D is a derivation: for any 4 € H and any
f € F such that f2 € F,

(2.11) Dnf>=2fDyf.

Note that in the Riemanian manifold case (Fundamental example 2.1), Dy, f =
Vi f whenI' = D.

PROOF. We first make the remark that

Y (Do f*=2f Do, [)> = D(f*. f2) —AfD(f>.f) +4f>D(f. f).
k
Integrating this relation with respect to m and using (2.10), we get that
/ Y (Do f>=2fDe f)*dm < / (D22 —4fT (2 ) +4f°T(f. 1)) dm
k

=0.
This implies that, for every k, D, f2 - 2fDe, f=0. O

3. Construction of the statistical solutions. In Fundamental example 2.1,
when X is a Riemannian manifold, C is smooth and, when equality holds in (2.3),
it is well known (see [18, 23]) that a stochastic flow of diffeomorphisms on X can
be associated with C. Then, with the notation of Definition 2.1 in [23], the local
characteristics of the flow are (A, L), where A = C and L is the Laplacian on X.

The object of this section is to show that, in the general situation considered
above, it is always possible to define a flow of Markovian kernels associated with C
and (&, ¥) (which is induced by the stochastic flow when C is smooth).

Let a covariance function C bounded by a Dirichlet form (&, ¥) on a locally
compact separable metric space be given as in the preceding section [(2.3) is
satisfied]. Let W; be a cylindrical Brownian motion on H defined on some
probability space (2, #, P), that is, a Gaussian process indexed by H x RT
with covariance matrix cov(W,(h), Wy(h')) =s At (h,h')g. Set Wk = W, (ep).
(WkK: k e N) is a sequence of independent Wiener processes and we can represent
W; by > Wtkek. Informally, the law of W; is given by

%6—0/2) SN dt pyyy

Let?’,:o(Wsk; keN; s<t)y=o(W; s <t).
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PROPOSITION 3.1. Let St0 = P;. We can define a sequence S;' of random op-
erators on L*(m) such that E[(S} f)z] < Ptf2 in LY(m) and S} is Fi-measurable,
by the recurrence formula, in L>(m ® P) [i.e., in the Hilbert tensor product
L*m)&L*(P)]

t
G.1) SIS = RS+ X [ (SHDePes )W,
k

REMARK. The stochastic integral in (3.1) here makes sense as a Hilbert-
valued It6 integral. Recall that given a real Wiener process W; and a Hilbert
space H, for any F progressively measurable in L>(Py ® df)®H and any
heH, ([[FuydW,,h)g = [{{Fw),h)gdW, and E[| [{ Fu)dW,|31=
JS WF @)l du.

PROOF OF PROPOSITION 3.1. Suppose we are given S}', an F;-measurable
random operator on L?%(m) such that E[(S} f)z] < P,fz.

Let f € L?(m). For any positive t, P; f € ¥ and D,, P;_, f is well defined and
belongs to L%(m),

t
E(SIT O 1= )+ /O E[(S!(Dg, Pr—s f))Z]ds, m-a.e.
k

t
<P+ /0 Py(DP_ f)ds

t
<(Pf)+ fo Py(T(Pi_y f. Pr_s f)) ds.

For f € L®(m) N L2(m), & Py((Pi—s [)?) = Py(T(Pi—s f. Pi—s f)) and

t
(3.2) Pf2=(Pf)+ /0 Py(T(Pi_ f. Pr_s f)) ds.

An approximation by truncation shows that (3.2) remains true for f € L?(m) and
E[ST' HH<pf? O

REMARK. The definition of S}’ is independent of the choice of the basis on H.

In the following, we use the canonical realization of the processes Wlk. They
are defined as coordinate functions on = C(RT, R)N, with the product Wiener
measure P. We denote by 6; the natural shift on £ such that W,"+s —Wk=wkop,.

Recall that an operator on L?(m) is called Markovian if and only if it preserves
positivity and maps 1 into 1 (or, more precisely, if m is not finite, its natural
extension to positive functions maps 1 into 1).
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THEOREM 3.2. The family of random operators S converges in L?(P)
toward a one-parameter family of F;-adapted Markovian operators S; such that
the following hold:

(@) S5 =38:(Ss06), forany s,t >0,

(b) Vf e L?(m), S; f is uniformly continuous with respect to t in L*(m ® P);
(¢) E[(S: f)*1< P f2, for any f € L*(m);

) Sif=Pif + Y4 J§ Ss(Dey Pr—s f)AWE, for any f € L2 (m);

©) Sif=f+k)sSs(De, f)AWE+ [§ So(Af)ds, for any f € D(A).

S; is uniquely characterized by (c) and (d) or by (a), (c) and (). When T = D, we
call it the statistical solution of the SDE [see (3.22) below]

(3.3) Y feD(A)), df(X,):ZDekf(X,)dW,k—i-Af(X,)dt.
k
Note that this SDE does not always have a strong solution in the usual sense.

PROOF. The convergence of S} is immediate since, for any n > 1, J/' f =
Stf — S,”_1 f 1is in the Hilbert tensor product of the nth Wiener chaos of
L*(P) with L*(m), S;f = P f + 352, J/' f and (P f)* + X, E[(J]' [)?]=
lim,, o E[(S}' f)z] <P fz. It is clear that S; is F;-adapted and satisfies (c).
Part (d) is obtained by taking the limit in the recurrence formula of the proposition.

Since

.....

we have J/' =3, J,k(Js" —k 5 6,) (the kth term corresponds to

t+s

/ Psl Dekl Psz—sl e Dekn Pt—}—s—sn f
ky 1 O<s] <o+ <Sk <S <Sgp ] <'++<Sp <t+s
seeesinn

x dWL - dWin).

We deduce (a) from this relation.

The uniqueness of a solution of (d) satisfying (c) follows directly from the
uniqueness of the Wiener chaos decomposition, obtained by iteration of (d): Let
T; designate another solution of (d) and (c). Then, for any f € L?(m) and any
integer n,

.....
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The second term of the right-hand side of the preceding equation is orthogonal
to the first one since its integrands are L. Indeed,

Z E[/() (Tsl Dekl Psz—sl T Dekn Pt—s,, f)2 dsy--- dsni|

<S < <sp<t
kl?"'vkll ! "

2
= Z / Psl(lDekIPsz—sl“‘Dek,,Pt—snfl Ydsy---dsy
Ky )k O<sy<--<sp<t

=< Z / Psz(lDekz PS3—s2 te Dekn Pt—s,,flz) dsy---dsy
O<sp < <sp <t

using (2.3) and (3.2) and by induction is smaller than P; f 2,
This proves that the Wiener chaos decompositions of 7; f and S; f are the same
and therefore T; = S;.

PROOF OF (b). Let us remark that, for any positive €, S;1. — Sy = S:(S¢ o
0; — I). As S; and S; o 6; are independent and m is invariant under P, for any
feLm),

f E[(Srsef — Sif)*1dm < f E[P/(S:00,f — )*1dm

< / EL(Se 06, f — £)*1dm
(3.4)

< [Puf? =21 Pof + £ dm
=2 f 2l f — Pe fllL20m)-
Therefore, limg—0 (| St f — St f I L2gngpy = 0, uniformly inz. [

REMARK 3.3. Note also the convergence in Lz(m ® P) of P.S;f toward

S: f when & — 0. Indeed | PeS: f = S f 123 = EUIPeSif = Si f 1121 and

|P:Si f — S f ||%2 (m) CODVerges toward O when & goes to 0 and is dominated by
2
4” Slf”LZ(m)

PROOF OF (e). Let us remark that, for any ¢ and ¢ positive,
&
Sivef —Sif = s,<ng + Z/O 84 00;(Dg, Ps_ f)dW¥ 06, — f)
k

(3.5)
t+e¢
=S, (P:f — f)+ Z/t Sy(Dey Prie—s f)dWE.
k
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Hence using (3.5) for t = ;l—'t and ¢ = %t, for f € D(A),

Sf—f—Z/tS(D f)dW"—/tS(Af)ds
t - 0 N ey s 0 s

n—1 ((i+1)/n)t .
=3 |:S(z/n)t(Pt/nf )+ Z// t Ss(Dey P(i+1)/myi—s ) AWy
l:() l n
(+1)/m)t (+1) /)t .
- sands-3 [ Sy(Dey ) dW!
i /n)t = Jai/mn
=A1(n) + Az(n) + A3(n),

with

n—1
(3.6) Ai(n) = Z S(i/n)t<Pt/nf - f- %Af>§
i=0

(+1)/nmt
3.7) Az<n>=Z | (S i (Af) — Ss(Af)) ds
(i/n)t

(G+1)/n)t
68 Am=3 Y / Sy(Dey (P 1ymy—s f — £)) dWE.

i=0 & (i/n)t

First, using the fact that m is P;-invariant,

(3.9) AT L2gngpy S || Prynf — =o(1).
L2(m)
After, we remark that
((z+1>/n)z 2
H [ (St mn (AF) = Ss(Af)) ds
@i/n)t L2(m®P)

((i+1)/n)t )
<= /( o ISan AR = SCAD g, 4.

As S;(Af) is uniformly continuous in L?>(m ® P), there exists &(x) such that
lim,o2(r) = 0 and [ /mi(Af) = Ss(AD)22 0 p < €(4) for any 5 € [Lr,

—";1 t]. Hence we get
2 . (t )
< 7 &
LX(m@P) I n

(G+1)/n)t
H /(/ y (S (Af) — Ss(Af)) ds

and |A2(m)|l12ngpy = 0(1).
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At last, as the different terms in the sum in (3.8) are orthogonal,

A3 17 2 )

= Z Z/ [(/(,((iﬂ)/n)t S5 (Dex (P(i+1yfmyt—s f — f))de)z} dm

=0 & i/n)t

(G+1)/n)t )
< E /// y ID(Pi+1y/nyi—sf — )I°dsdm
l n

<n/ " [1Des = pPamas

Sn/()tng(Pf f.Pf — f)ds.

Aslims0&(Ps f — f, Psf — f) =0, ||A3(”)||L2(m®13) =o(1).
Takmg the limit as n goes to oo, this shows that || S, f — f — > fo Ss(Dg, f) X
dWE — [ Sg(Af)ds|l 2epy =0. O

PROOF THAT (a), (c) AND (e) IMPLY (d). Take f € L?(m) and ¢ positive,
assuming (e),

t
SPf—PP.f=Y /O Sy (Do, Pr—y Pe f) dW¥
k

n—1
= Z |:S((i+1)/n)z(Pz—((i+1)/n)tPsf) = Syt (Pr—ijny Pe f)
i=0
(G+1)/n)t K
-/ Se(Dey (Pr_ P f)) dW!
(i /n)t
= B1(n) + B2(n) + B3(n),
with
(G+1)/n)t «
(3.10)  By(n) = Z 3 / oy S PPty Pef = BB )W
l 0 k 1/n)t
n—1
By(n) = — Z S(i/n)t<Pt—(i/n)tP8f — Pr—(i+1)mi Pe f
i=0
3.11) ’
t
- ;APZ—((H-I)/n)tPSf);
((l+1)/ﬂ)l
(3.12)  B3(n) = Z// ) = S /m) (AP —((i+1)/m)t Pe f) ds,
l n)t
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since

S+ /myt (Pr—i+1)/my Pe )

(G+1)/n)t
= S(i/mt(Pr—i+1)/m Pe f) + i Ss(APr—((i+1)/nyt Pe ) ds
1/n)t

(G+1)/n)t X
/ SsDey Pr—((i+1yny Pe f AW .

= Gy

Since the different terms in the sum in (3.10) are orthogonal,

5 n—1 ((i+1)/n)t 5

| B1(n)l72 < ‘ ID(Pi—i+1)/my Pe f — Pr—s Pe f)|"dsdm

L*(m®P) G /n)t
i=0

n—bl o (i+1)/n)t
= Z / E(Pr—((i+1)/n)t Pe f
i=0 @/nyt

(3.13)
— PP f, Py Pe f — Pr—s Pef)ds

t/n

<n E(PsPof — P f, PsPo f — P f)ds
0

as (P, f, P; f) < &(f, f) for any positive ¢ and any f € L*(m).
Equation (3.13) implies that ||Bl(n)||L2(m®P) =o(1) [as limg_ o E(Ps P f —
Pof, PP f — P f) =0];

||Bz(”)||L2(m®P)

n—1

<)

i=0

SGi/nye (Pl—(i/n)tPef — P+ Pe f

t
- _API—((i+1)/n)tP8f>
n L2(m&P)

2

n—1 12
¢
<> (/ (P((H—l)/n)tPsf — Py Pe f — ;AP(i/n)tP€f> dm)
i=0

<n

’

L%(m)

t
Pz/nPSf_Psf_;APsf

hence, ||Bz(n)||L2(m®p) =o(1).
Note that if Q; f = E[S; f], (e) implies that, for any f € D(A),

0/ f=1 +f0 0,(Af) ds.
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Then (%Qs P_sf=0forany f € L?(m) and 0 < s < ¢ [then P_sfeD(A)]and
we have Q; f = P, f. With this remark and the fact that (a) and (c) are satisfied,
we see that (b) and (3.4) are satisfied [see the proof of (b)]. Using (3.4), we have

1CSs = Sti/m) (AP~ (i1 e Pe P17 2 py
<20 AP —i+1)/myt Pe S L2y
X NAP—(i+1)/nyt Pe f — Ps—(imyt APr—(i+1)/mye Pe S | L2m)
<20 AP fll 2y IAPe f — Ps—(ijnyt APe fll L2y
< 4NAP:f 172
Hence,

1B3 )17 2 )

n—l o s+ /e 5
< ; " /(i/n)l 1(Ss = Sai /my ) (APr—(i+1)/myt Pe 2 p)y 45

412 )
< YIIAPstILz(m)-

Taking the limit as n goes to oo, this shows that (d) is satisfied for P, f, with
f € L*>(m) and ¢ positive.
At last, since ||S; Pe f — St fll 12mepy < 1Pef — fllL2(m) [because (c) is satis-

fied], || Prye f — sz||L2(m®p) <|Pef — f||L2(m) and || 3¢ fé Ss(Dey Pr—s (Pe f —

f))dW!‘ll%z(m@)P) <t&(P.f — f, P.f — f). Taking the limit as ¢ goes to 0, we

prove that (d) is satisfied for any f € L?(m). O

PROOF THAT S§; 1S MARKOVIAN. A more concise proof of this fact has
been given in [21], relying on Wiener exponentials and Girsanov formula. The
advantage of the following proof is to be more explanatory, to give a relation with
weak solutions and to yield a construction of the process law associated with the
statistical solution S;.

Let (2, 4, G, X;, Py) be a Hunt process associated with (&, ) (see [11]); we
take a canonical version with Q' = C(R™, X). Let W, = 3", Wtkek be a cylindrical
Brownian motion on H, independent of the Markov process X;.

Let M be the space of the martingales additive functionals, §,-adapted such
that if M € M, Ex[Mtz] <00, Ex[M;] =0 g.e. and e(M) < oo, where e(M) =
sup;~o %Em[M,Z] [with P, = [ Pydm(x)]. (M, e) is a Hilbert space (see [11]).

For f € F, M/ € M denotes the martingale part of the semimartingale f(X;)—
f(Xo). For g e Cx(X) C Lz(l"(f, f)dm) [Ck (X) designates the space of func-
tions continuous with compact support], we denote by g.M/ € M the martingale
fé g(XS)dMsf. Then Mo ={>_]_,; gi.MTi: neN, g € Cx(X), fi € F}isdense
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in M (see [11], Lemma 5.6.3), and e(}; g;.M/)) = %Zi’jfgigjf‘(fi, fi)dm
(see [11], Theorem 5.2.3 and 5.6.1).

LEMMA 3.4. For every (M, N) € M x M, there exists I'(M,N) € Ll(m)
such that

(3.14) (M,N),z/OtF(M, N)(Xy)ds,

where (-,-); is the usual martingale bracket. For (f,g) € F, r(Mf, M8 =
I'(f, 8)-

Note that Lemma 3.4 implies that e(M, N) = % JT(M,N)dm.

In Fundamental example 2.1, X; is the Brownian motion on X, M,f is the
Itd integral fé (df(Xs),dXs), ' is the inverse Riemannian metric and M can be
identified with the space of 1-forms equipped with the L?-norm associated with
the metric.

PROOF OF LEMMA 3.4. When f € F, it follows from Theorem 5.2.3 in [11]
that

t
<Mf,Mf>f=f0 T(f, )(Xs)ds.

For M =Y, hj.M/i, N = >_jkj.M8i, two martingales of Mo,
t t
615 (M.N) =Y [ k()Xo ds = [ 01 N)(Xo)ds,
i,j

with I'(M, N) = Zi’j hik;T'(f;, g;). I' is a bilinear mapping from Mo x M in
L'(m). T is continuous since, for any (M, N) € Mo x Mo,

/|F(M, N)|dm§/F(M, Mm'2r(N, M2 dm

<2e(M)'%e(N)'/2.

It follows that I" can be extended to M x M.

Take M € M and an approximating sequence M, € My. Then e(M, — M)
converges toward 0, M,, converges toward M in LZ(PX) and (M, M,;); converge
in L'(P,) toward (M, M), for almost every x (see [11], Section 5-2). This proves
that (M, M), = [{T(M, M)(X,)ds. O

LEMMA 3.5.  Suppose m is bounded. Then for any h € H, there exists a
unique continuous martingale in M, N" such that, for any f € F, e(N", M) =
Y[ Dyfdm and &(N", M), = Dy f(X,). In addition, e(N") < im(X)||h|?
and (N"); < ||h]t.
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In the Riemannian manifold case (Fundamental example 2.1), Nth = fé (h(Xy),
dX;) whenT' = D.

PROOF OF LEMMA 3.5. For h =), Arex € H, let us define a linear form oy,
on My such that, forany M = "7, gi-MTi e Moy, ap(M) = %Zl’-’zl [ gDy fi dm;

n 2
(ap(M))* = (Zxk% > / gi D, f; dm)
k i=1
< JnPmCO Y [ gigi DCfiofi) dm < S1HIPm(X)e ().
i,j

This proves that «y, is continuous on Mg and can be extended to a continuous linear
form on M such that o, (M) < % |h||v/m(X)e(M). With this form is associated
a unique N € M such that o, (M) = e(N", M).

Note that, for any g € Cx(X) and f € F, we have [gDj,fdm = [T(N",
g.Mf)dm = ng(Nh, M7)dm. This is satisfied for every g € Ck (X); therefore,
forany f € F, C(N', My = Dyf.

Note that we also have, for M € My,

T(N", M) <||h|| T(M, M)'/2,
which implies that (N"), < ||h|*t. O
REMARK 3.6. When m is not bounded, N can be defined as a local

martingale such that, for any compact K and any f € %, 1x.N" € M,
e(lg.N", M7) =1 [ Dy f dm. In addition, e(1x.N") < Im(K)I||h|>.

Let y; be a function on X such that %(N”, N°); = yr(X;). Lemma 3.5
implies that the matrix A = ((§ — yw)) is positive (as 4 (N"), < ||h|?).
Therefore, it is possible to find a matrix R such that R? = A.

REMARK 3.7. Ifforany f € , T'(f,f)=|Df|?3, then for any f € %,

t
(3.16) M/ :Z/ Do, f(Xs)dN,
X 0

Do f = > De; fyr(X;) and the positive symmetric matrix P = ((yx)) is
a projector. In this case, R=1 — P.

PROOF. Set Q) = Y [ D, f(Xs)dN&*, Qf € M. Then, for any M=
S gi-MTi e Mo,
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(0 M), = Z /0 Do, f(Xs)d (N, M),

= ZZ/ Do f (X,)8i(X;) Dy fi(X) ds

k i=1
=Z lgi(Xs)D(fvfi)(Xs)dS=<Mf»M>t-
0
i=1

This implies that, for any M € M, e(Qf,M)y=e(M',M)and Qf =M/ .

Since, by Lemma 3.5, E(Mf N°); = D, f(X;), we get that

d
Dekf(Xz)=E(Qf,N€" ZDe,ﬂxl)— (N, N), <2De,f)/k1>(Xr)

This relation implies that N,e =3 fé vii(Xs)dNs' (this is easy to check,
considering %(N"", M), with M € Mp). From this, we see that yx; = >; vki Vil
Ge., P2=P). O

Set Wk = N* 4+ 3, [ Riy(X;) dW! and W, = Y, Wkey.
In the Riemannian manifold case, when I'(f, f) = | Df ||%{ for any f € F,
denoting C¢ by Cx ) whenu € T, X and § = (x, u) we have

dW; =dW, + C(x,.ax,) — C(x,.awi(x,))
and

AW} = dWf + (en(Xp). dX,) = Y (ex(Xp). e/(X)) dW,.
l

In this case, R is a projector (see the remark above).
LEMMA 3.8. (Wl")k is a sequence of independent Brownian motion.

PROOF. Since W," is a continuous martingale, we just have to compute
d vk Tl .
E<Wt ) W[ )l‘-

d ~
dt<W,",W>t—ykl+Rkl—akz

This implies the lemma. [J

Let p be an initial distribution of the form hm, with & a positive function in
L?(m) N L'(m) and for fe L?(m) define S; f by the conditional expectation

(3.17) Sif(X0) = Eu[f (X))o (Xo, WK, keN; s <1)].
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(One can check easily that this definition does not depend on /.) Remark that, as
X; is Markovian and W; has independent increments,

(3.18) S f(Xo) = Eu[f (X))o (Xo, WK, keN; s >0)].

In the same way, we see that S, satisfies the multiplicative cocycle property (a).

LEMMA 3.9. For any f € D(A) and p an initial distribution absolutely
continuous with respect to m,

~ t . — t
Szf=f+;/0 Ss<Dekf)dWs"+/0 Sy(Af)ds, P,-a.s.

PROOF. Forany f € D(A), we have
t
(3.19) 1) = £ (Xo)+ ] + [ Arcx)ds.

It is clear that E[[j Af(Xs)dslo(WE ke N; s <0l = [§ SsAf(X,)ds,
as (3.17) is satisfied. Let Z, =) fé HSdesk € Lz(a(WSk; keN; s <t)),

- N
ElzzM1=YE /OHSkd(Wk,Mf)s}
=L

=S [ [ 1 s as]
B

=Y E _/Ot HYS (D, f) ds]

k

_ '3 ik
—E.[zf;/o Ss<Dekf>dWS}.

This proves that E.[M{hla(ka; keN; s<tl=>x fé §;Dekf de O

Now, using uniqueness in Theorem 3.2 and the isomorphism ;j between
Lz(a(Wlk; t>0; keN))and Lz(a(Wlk; t > 0; keN)), we see that jS, = 5,
which implies that S; is Markovian. [J

PROPOSITION 3.10. Forany f € ¥, the martingale

: : t ~
(3.20) P/ =/ =% [ Do X0 d !
k

is orthogonal to the family of martingales {Wlk ; k € N}, in the sense of the
martingale bracket (i.e., for any k, (Pf, WKy =0). For any (f,g) € ?bZ,

t
(321 (P/, P8), =/0 (T (f. 9 (Xy) — D(f, &)(Xy)) ds.
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PROOF. We just have to show that (P/, W*), =0 for every f € ¥, and every
k € N, which is true as

—_ t
M7, Wy, = (M, Ny, = / Do, f(Xs) ds.
0
Let (f, g) € 2. Then
(P1,P8), =(P), M8),

=M/, M), =" / l Do, f(Xs)d(W*, M#),
X 0
t t
- f C(f ) (Xo)ds — Y / D, f(X;) Doy g(Xs) ds
0 X 0
t t
- / I(f, g)(Xy) ds — / D(f. §)(Xy)ds. 0
0 0

REMARK 3.11. In the case I'(f, f) = ||Df||%{ for any f € F, Proposi-
tion 3.10 implies that P/ = 0 and that

. t —_
m! =3 [ Doy xodit,
k
From this, we see that the diffusion X, satisfies the SDE

' " '
(22 FX) - fXo) =X [ DafXOdWE+ [ A ds
/ 0 0

for every f € D(A). Therefore (X,, W,) appears as a weak solution of this SDE
and §; is defined by filtering X; with respect to W;.

Let P, z(dw') be the conditional law of the diffusion X;, given X( and {W,;
t € R} (it is independent of the choice of the initial distribution). Using the
identity in law between W and W, we get a family of conditional probabilities
Py »(dw') on C(RT, X) defined m ® P-a.e.

Remark that [with X, (o) = &' (¢)]

(3.23) S f(x,w) = / f (X (@) Py w(do), m® P-as.
Under Py ,(dw)P(dw), X;(o') satisfies the SDE (3.3). It is a canonical weak

solution of the SDE (3.3) on a canonical extension of the probability space on
which W is defined. S; is obtained by filtering X; with respect to W.
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4. The n-point motion. Let Pt(”) be the family of operators on L (m®")
such that, for any (f;)1<i<n € L*(m),

(4.1) PYAi® @ fi=E[Sifi® ®S ful.

Pt(n) is a Markovian semigroup on L®(m®") as S, is Markovian and satisfies
Theorem 3.2. It is easy to check that Pt(z) maps tensor products of L2(m) functions
into L2(m®?).

PROPOSITION 4.1. For any family of probability laws on X absolutely
continuous with respect to m, (u;; 1 <i <n),

2) 1ﬁg@mmq“”@@)=épme§wa@)
i=1

defines a Markov process on X" (with initial distribution @Q7_, ;) associated
with Pt(n). We call this Markov process on X" the n-point motion.

PROOF.  For every family of functions in L®(m), (f;) 1<i<n, m®" ® P-a.e.
[with X} (w]) = w/(1)],

Sl(‘gnfl®"'®fn(-x1""’-xnvw):l_[Sl‘ﬁ(-xi’w)
4.3) =

n n
= [ T AX} @) @ Puo(da).
i=1 i=1
We get the result by integrating both members of (4.3) with respectto P(dw). [

Let D™ be the linear map from H x F®" in L?(m®") such that, for any
(fi)i<i<n € F andh € H,

(4.4) DVA® @ fu=3 [i® - ®Dufi® @ fu.

i=1
PROPOSITION 4.2.  For any (fi)1<i<n € D(A) N L>(m),

t
S,®”f1®---®fn=f1®~-®fn+Z/0 SEUDD [ @ - ® fr)dWE
k

t
+f SEAN i @ ... @ f,)ds,
0
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where

n
AVA® @ fi=) fi® - ®A® @ fy
i=1

+ > Y fi® - ®Dyfi® @Dy fi® & fu

I<i<j<n k

REMARK 4.3. (a) For n = 2, the formula extends to functions in D(A) and
AP fRg=Af Qg+ f®Ag+ C(f,g), where (f, g) € (D(A))%.

(b) Taking the expectation, we see that A is the infintesimal generator of Pt(”)
on (D(A) N L®(m))®".

(c) The formula extends to C%( (X") in the Riemannian manifold case (using
for example the uniform density of sums of product functions and the regularizing
effect of P2™).

PROOF OF PROPOSITION 4.2. This is just a straightforward application of
1t6’s formula applied to S;f1 ® --- ® S; f, using the differential form of the
equation satisfied by S;, Theorem 3.2(e). Taking the expectation and differentiating
with respect to ¢, we get

d
(n)
dt =0 t fl f dt i

=AY Q- ® fp. ]

0E[S,®"f1 Q- ® ful

REMARK 4.4. In general, m®" is not invariant under Pt(”).

5. Measure-preserving case. We say that the statistical solution S; is mea-
sure preserving if and only if mS; = m a.s. for all ¢ (i.e., m is invariant for S;).
When m(X) = 0o, we use the natural extension of S, to L'(m) or to positive
functions defined m-a.e.

Let us denote by Fk the set of functions of & which have compact support.

PROPOSITION 5.1. S, is measure preserving if and only if [ C(f, g) dm®?
vanishes for all f, g in Fx. Moreover, define r; on L*(F;) by Wf or; =
W,"_s — W,k. Then the adjoint of S; in L*(m) is Sf=S8;0r;.

REMARK 5.2. (a) When f € Fx, C(f, f) € L'(m®?).

(b) In the Riemannian manifold case, the condition that [ C(f, g)dm®?
vanishes for all f, g in £k is equivalent to assuming that W; is divergence free in
the weak sense, that is, that for any f € Fg, [(W;, Vf)dm = 0. (It follows from
the identity E[([(W;, Vf)dm)*| =t [ C(f, f)dm®?))
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LEMMA 5.3.  Assume that [ C(f, g) dm®? vanishes for all f, g in Fi. Then,
foreveryhe H, f,gin F,

5.1) /gthdm=—/thgdm.

PROOF. Forevery h € H, (g, f)+ [ gDy f dm is a continuous bilinear form
on F x F since | Dy f 125, < ECf AIRIZ .

Take f, g in Fx N L°(m). Then fg € Fkx (as the bounded functions of
a Dirichlet space form an algebra) and, since D,, is a derivation, D, (fg) =
gD,, f + f D g. Using this property, we get

Xk: (/(gDekf + fDe8) dm)2 = Xk: (/ D, (fg) dm)2

= [ cse. fram® =o.

This implies that, for every k, [ gD, fdm = — [ fD,,gdm. To conclude we
observe that both members of (5.1) are continuous in f and g and that Fx N
L%(m) is dense in ¥ (since the Dirichlet form is regular; see [11], Sec-
tion 1.1). O

PROOF OF PROPOSITION 5.1. Assume [ C(f, g) dm®? = 0 holds for every
f and g in Fk.

Let us remark that the expression of the nth chaos of S;f is given by the
expression

Jznf = Z Ps1 Dekl Psz—sl Dek2 cee Dekn Pt—s,,f
ki,....k

(5.2)

x AW dWin.
From this expression, using Lemma 5.3 and the fact that P; is self-adjoint in
L?(m), we get that, for f and g in L?(m),

[ gt dm

(5.3) = // f Z (_l)n Pt—Sn D@ky, Pm_sn—l e PYQ—SI Dekl PY]g
0<sy--<sp<t ki,..., kn

x AW - dWi dm.

Making the change of variable u,_;11 =t —s;, we get that the adjoint of J;* is
given by

JNig= Py Dey Pyy—y,Dey -+ De, Pr—

( );g 0<ut <ity <<ty <t klzkn uy Mepy L up—uy e, [ ung

5.4)
><dW,f1l ors-- -dWi‘;’ or;.



BROWNIAN VECTOR FIELDS 847

From this it is easy to see that S;g = (S; o r;)g (as they have the same chaos
expansion).

Notice that Sf1 = 1. A priori the constant functions are not in L?(m), but there
exists an increasing sequence in L>(m), g, such that g, converges toward 1. For
any nonnegative function f € L*(m),

(5.5) /Stfg,,dm=/fS;“gndm.

This equation implies, taking the limit as n goes to oo, that

(5.6) mSi(f)= [ £s7tdm=m(f),

and we get that mS; = m a.s., which ends the first part of the proof.
Conversely, it follows from Proposition 4.2 that, for all f, g in D(A),

t
S@f®g—&f®g—f®&g+f®g—ﬁS?CU£MS

is a square integrable martingale. This result extends to f, g in . Taking f, g
in Fx, integrating with respect to m®? and taking expectation, we get that
[ C(f, g) dm®? vanishes. [

REMARK 5.4. When S; is measure preserving, P,(") is self-adjoint in

L2(m®") and in particular m®" is invariant under P"”. The associated local
Dirichlet form €@ is such that

ED(f@g fO®=EL g0 +E@DNSI72
+2/C(f,g)f®gdm®2
for any (f, g) € 7 and a similar expression can be given for &,
6. Existence of a flow of maps. Let (S;);>0 denote the statistical solution.
DEFINITION 6.1. We say that (S;);>0 is a flow of maps if and only if there
exists a family of measurable mappings (¢;);>0 from X x €2 in X such that, for

any f € L?(m) and any positive ¢, S; f = f o ¢;.

Note that if (S;);>0 is a flow of maps, Py, is the Dirac measure on the path
{or(x); 1 >0}

DEFINITION 6.2. We say that (S;);>0 is a coalescent flow of maps if and only
if (Sy)r=0 is a flow of maps and, for every (x,y) € X 2, with positive probability
there exists 7 such that ¢;(x) = ¢,(y) forallr > T.
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Let ((X;, Y1)):>0 designate the two-point motion associated with the statistical
solution.

DEFINITION 6.3. We say that (S;);>0 is diffusive without hitting if and only
if (Sy)s>0 is not a flow of maps and starting from (x, x), for all positive 7, X; # Y;.

DEFINITION 6.4. We say that (S;);>0 is diffusive with hitting if and only
if (S;)s>0 1s not a flow of maps and (X;, ¥;);>0 hits the diagonal with positive
probability.

In this section, we give conditions under which the statistical solution is a flow
of maps or not.

LEMMA 6.5.  (S;);>0 is a flow of maps if and only if, for any f € L*>(m) and
any positive t, E[(S,f)z] = P,fz.

PROOF. It is clear that there exist Markovian kernels on X, s,(x, w, dy), such
that S, f(x) = [ f(y)si(x, w,dy). Also, s;(x, ,dy) is the law of X;(«’) under
Py o(dw). Asm ® P-a.e,

2

O A0 -G P = [ (f(y) - [ ros w,dz>) 51(v, @, dy),

if E[(S:)?] = Pf2 [(f) — [ f@si(x,0,d2))%s(x,0,dy) = 0 and
s¢(x, w, dz) is a Dirac measure dy, (x,w), Where ¢, (x, ) is defined m ® P-a.e. [

Let h € L'(m) be a positive function such that Jhdm = 1. For any positive ¢,
let u; be a probability on the Borel sets of X x X such that, for any (f, g) €
L*(m) x L*(m), ui(f @ g) = [ E[S: fSiglhdm.

REMARK 6.6. (S;);>0 is a flow of maps if and only if, for all positive ¢,
i (A) =1, where A = {(x, x); x € X}.

PROOF. If (S;);>0 is a flow of maps, there exists ¢; such that S; f = f o ¢;.
If A and B are disjoint Borel sets of finite measure,

a4 x B) = [ E[La(00 ()18 0) () dm () =00,

This implies that (X x X — A) =0 and as u, is a probability that u;(A) = 1.
If 1 (A) =1, for f € L2(m), u(f2@1—2fQ f+1® f%) = 0. This implies
that

(6.2) / P, f2hdm = / E(S: ) 1hdm
X X
and that E[(S,f)z] = P,fz. Hence (S;);>0 is a flow of maps. [

Recall that we denoted by P((.%)) the law of the two-point motion ((X;, ¥;)):>0.
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PROPOSITION 6.7. (S¢);=0 is a flow of maps if, for any positive r and any
positive t,

lim P Id(X, Y) =r1=0,  m(dx)-a.e.

PROOF. For ¢ > 0, let v, be the measure on X x X such that, for any (f, g) €
L*(m) x L*(m), ve(f ® g) = [ f Peghdm.For any (f,g) € L*(m) x L*(m),

6.3) vP(f ® ) = [ ELS.fP.Sglhdm.
As P.S;g converges in L2(m ® P) toward S;g (see Remark 3.3),

(6.4) lim v PP (fog) = / E[S, fSiglhdm.

Therefore, the family of measure (v, P,(z))g>0 converges weakly toward u; as ¢
goes to 0.

Assume that, for any positive 7 and any ¢, limy_, . P((f,)y)[d(Xt, Y;) >r]=0.
Let A and B be two disjoint Borel sets such that d(A, B) > r. Then

e P2 (A x B) = f (O dm (),
X
with
foty = [ PO, X: € A and ¥, € B pux. dy),

where p.(x,dy) is the kernel given by P;.
Asd(A,B)>r,

fo) = [ PO Y) 1 petx.ay).

For any positive g, for m-almost every x, there exists a(x) such that d(x, y) <
a(x) implies that P(&Z’)y)[d(X,, Y;) > r] < B. Note that

2
peCx,dy) + f{d( iy PG Y 2 1] petr.ap).
x,y)<a(x

folx) < /

{d(x,y)>a(x)}
It is clear that

lim pe(x,dy) =0, m(dx)-a.e.
e=>0J{d(x,y)>a(x)}

Hence, limsup f; (x) < B m(dx)-a.e. and this holds for any positive 8. Therefore,
limg_,¢ fe(x) =0 m(dx)-a.e. and, by dominated convergence (| fz (x)| < 1),

lim v, 2% (A x B) =0.
e—>0

This implies that p;(X x X — A) =0 and that (S;);>0 is a flow of maps. [



850 Y. LE JAN AND O. RAIMOND

PROPOSITION 6.8. If there exist a positive t, a positive r and p €]0, 1] such
that, for m®2-almost every (x,y), Px y)[d(X,, Y:) > r] > p, then (S)s>0 is not
a flow of maps.

PROOF. Suppose there exist a positive ¢, a positive r and p €]0, 1] such that
for m®2-almost every (x, y), P(x )[d(Xt, Y;) >r]l>p.

Let (B;)icn be a partition of X such that the diameter of B; is lower than r.

Let us suppose that u;(A) =1 [or that (S}); is a flow of maps]. Then we have
> i m:(Bi x Bi) =1, and for any positive «, there exists N such that

N

> 1i(Bi x B) = 1—a.
i=1

Since v, Pt(z) converges weakly toward u;,

N
> 1 (B; x By)

i=1

= lim vy PP (B; x By)
8—)

= lim Z/ (x y)[(x,, Y;) € B; x B;] pe(x,dy)h(x)dm(x)

e—0

< hmZ/ P2 IX, € Bis d(X,, Y) < rlpe(x, dy)h(x) dm(x)
xxx Y

e—0

< lim P(Z)

30 eonld (X1, Yy) <rlpe(x, dy)h(x)dm(x) <1 —p

Choosing o < p, we get a contradiction. Hence u;(A) < 1 and (S;);>0 is not a flow
of maps. [J

7. A one-dimensional example. Let X =R, let P; be the semigroup of the
Brownian motion on R and let the covariance function C(x, y) = sgn(x) sgn(y)
[where sgn(x) denotes the sign of x with the convention sgn(0) = 1]. Here, we
have W;(x) = sgn(x)W;, where W; is a Brownian motion starting from 0. Set
L} = sup;,{—sgn(x)(x + W)} VO and R} = x+ W;+sgn(x)L; (itis a Brownian
motion starting from x, reflected at 0).

PROPOSITION 7.1. The statistical solution S; can be written as

(7.1) Sif(x) = fF(ROLpi—o + 3[f(R) + F(—ROL1x-0.
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PROOF. On an extension of the probability space, it is possible to build a
Brownian motion starting from x, X;, such that W; = fé sgn(Xy) d X [then X; is
a weak solution of the SDE d X; = sgn(X;) dW;]. Then S; f(x) = E[f(X,)L’FB],
with #8 = o (W,; u > 0). Let us remark that L7 is the local time of X at 0 and that
R} =sgn(x)|X,|. Set T =inf{t; L} > 0} =inf{¢; X; = 0}. Formula (7.1) follows
simply from the fact that

E[f(X)L=7 [ 1X] = 3 (F(XD)+ f(—=X))LisT. O

8. The Lipschitz case. Assume X is a Riemannian manifold with injectivity
radius p > 0. Let P; be the semigroup of a symmetric diffusion on X with
generator A. Let C be a covariance inducing the metric [i.e., with equality in (1.7)].

We will say that C is Lipschitz if and only if there exist a positive constant k
and 0 < € < p such that, for any (x, y) € X2, with d(x, y) <e,

(8.1) AP & (x,y) <kd*(x,y).
REMARK. (a)d?(x, y) is smooth on {(x, y) € X2, d(x, y) < p} since p is the

injectivity radius.
(b) On R4, the condition (8.1) will be checked as soon as

IR .
A=— Y CY(x,x)30; + Y b (%),
21§i,j§d i

d
y y y k
(82) 2 (€00 + C(y, ) =207 () < 5d(x, )
i=1

and b' is a Lipschitz function for all i.

Equation (8.2) is satisfied when C is C? orwhen C = Yoo—1 Xoa ®Xqo, Where X,
are Lipschitz vector fields. In the latest case, the flow of maps can be constructed
by the usual fixed point method for solutions of SDEs based on Gronwall’s lemma.

Let (X;, Y;) be the two-point motion associated with the statistical solution. Set
T =inf{t, d(X;,Y;) > ¢} and H; = dZ(Xz/\r, Yine).

LEMMA 8.1. E(z)

Gy (H) < e d*(x, y).

PROOF. By It6’s formula,
INT
H—Ho=M+ [ APdx,.v)ds.
0
where M; is a martingale. Hence

AT
H, — Hy<M, +/ kd?(X,,Y,)ds
0

t
fM[‘i‘/ kHSdS.
0
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This iglplies that Eg?y)(H,) — dz(x,y) < kfé E((i)y)(Hv)ds. Hence the lem-
ma.

THEOREM 8.2. Assume (8.1) is satisfied. Then the statistical solution
associated with P, and C is a flow of maps.
PROOF. Indeed, for any r < ¢,

2
P

2 1
eld(Xe Y0) = r] < P IA(X, V) = rort = 1] < EC (Hy)

ekt
< —d(x,y),
r

which goes to 0 as d(x, y) goes to 0. We conclude using Theorem 6.7. [J
9. Isotropic statistical solution on S¢.

9.1. Isotropic covariance function on S4. On S? with d > 2, isotropic
covariance functions are given by the formula (see [25])

O.D) C((x,u), (v, v)) = a(t){u, v) + BO)(u, y) (v, x),

with (x, y) € §d % 54 ¢t = (x,y)=cosg and (u,v) € T, 8% x TySd. o and B are
given by

s i 1—12
©.2) at) =Y an) +3 b (m 0 - —r®),
=1 I=1
o0 o t
©.3) B =Y a0+ L b(-n - T v )
=1 I=1
where y;(t) = Cl(i]q)/z(t)/Cl(iirl)/z(l), Clp is a Gegenbauer polynomial, and ¢;

and b; are nonnegative such that > ;a; < oo and ) ; b; < oo. Using the integral
form of the Gegenbauer polynomials (see [27], page 496),

o 11 o d 40
9:4) nicosy) = [ lz(p. 001" sin 0,
0 Cd
with ¢y = [J sin 0 d@ and z(p, 6) = cos¢ — i sing cos .

In [12], it is proved that the spectrum of the Laplacian A acting on the
L?-vector fields is {—I(l +d — 1), [ > 1} U{—=(+ DI +d—-2), | >1}.
Let §; and D; be respectively the eigenspaces corresponding to the eigenvalues
—Il(l+d—1) and —( + 1)(! +d — 2). §; is constituted of gradient vector
fields and £y of divergence-free vector fields. These spaces can be isometrically
identified with the spaces #;41,; and ;417 used in [25] and can be used as carrier
spaces of the irreducible representations of SO (d + 1), T and Q'.
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Let (oefw) m and (a)ﬂw) um be orthonormal bases of §; and ;. Then, if (zéw’ DM

and (zﬁ,[ s)i,m are independent families of independent normalized centered
Gaussian variables,

da I db; I
9.5 W=

is an isotropic Gaussian vector field of covariance C given by (9.1), (9.2) and (9.3).

SKETCH OF PROOF. The covariance of W is

da I I db ! I
Z - Z(xM®aM+Z - Za)M@)a)M.
= dim §, 7 =1 dim Dy i

Let us choose ((xfw)M such that osz =ci1(,d) VE?W (where (Eé‘,,)M is the basis of
Ha+1, givenin [25]). Then, using the fact that Eéw(p) =0if M #0,forx=g1p
and y = gop [with p=(0,...,0, 1],

Y EMMENM = Y Tyn @D Tiyx (@) EN(p)ER(p)
M M,N,K

= T2y e (Eh(m)”.

In [27, 25], T(fo(g) is computed and it is easy from this to give the covariance
of the gradient part of W. We can calculate the covariance of the divergence-
free part similarly. We choose the orthonormal basis (a)ﬁ,l) m of O; such that, for
Mé¢{l,...,d}, a)éw(p) =0 and such that, for 1 <i <d, a)f(p) =cy(l,d)e; (this
basis corresponds to the basis of 441 ; given in [25]). Then one has, for x = gp
and g € SO(d),

d
9.6) ol () =Y Ohi(9)g(wl(p) = c2(l, d) Qi (8)g (eD).
i=1
Then, for every (x, u) and (y, v) in TS4,
> (el (), u) (@hy (1), v)

9.7) M

= (c2(l,d))* 3 Olyi(gD) @y (82) (g1 (€D, ) g2 (e, v)
M

9.8) = (2. d))* Q% () (g1, u) (g2(e). v),

with g = g5 ! g1- In [25], the matrix elements Qlji(g) are calculated and it is easy
from this to give the covariance of the divergence-free part of W. [J
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Let us now introduce Sobolev spaces and related covariances.

Let H>S be the Sobolev space obtained by completion of the smooth
vector fields with respect to the norm ((—A + m2)sV, V), [with (V, V), =
f IV (x)||?dx], where m is positive. Note that the definition of H 25 does not
depend on m.

Let a and b be nonnegative reals. Take a; = (l_fm and b = —2

WforlZI

and a; = by =0.Fora > 0,set G(¢) = ;> Wy;(cos ¢). The function G is

well defined on [0, ] as |y < 1.
Let F; and F;s be real functions such that, for all / > 2,

9.9) (I — D dim gy Fy(—=I(+d — 1)) =d,
(9.10) (- D dim Dy Fs(—(+ D +d —2))=d

and Fy(—d) = Fs(—2(d — 1)) = 0. Note that, when d =2, F; = F}.
Let IT be the orthonormal projection on the space of the L2-gradient vector
fields.

PROPOSITION 9.1.  The covariance function defined by the sequences (a;) and
(by) is given by (9.1) with the functions

9.11)  a(cosp) =aG(p) + b(cosgo G(p) + % G’((p)),

a , cos ¢ ,
(9.12)  B(cosgp) =———G'(p) + b(—G(fp) + "G ((p))-
sin ¢ (d —1)sing

When a and b are positive, the associated self-reproducing space is H>©@+4/2
equipped with a different (but equivalent) norm, namely

2 1 2 1 2
IV =—ITVig + 3 1¢ = THVIS,
where |V |2 = (Fa(A)7'V, V) and |V |3 = (Fs(A) 7'V, V).

PROOF. It is not difficult to see that the norm || - ||z given in the proposition
is the norm on the self-reproducing space associated with C.
Now since (see [12])

, (d+1-73)!
d = " d+2-3)d+1),
M= o=y @t Yd+1)
. (d+1-73)! dd+1)
dmD=——— " (d+2—3)—=,
mD =T @t )73
for A — oo, A@TD2F,()) = O(1) and A @tD/2F5(n) = O(1). This implies
that || - ||z and the norm used to define H*@+4)/2 are equivalent (when a

and b are positive). We get that the self-reproducing space associated with C is
H2@+d)/2
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REMARK 9.2. If a or b vanishes, the self-reproducing space is H>@+d/2
restricted to divergence-free vector fields or gradient vector fields.

9.2. Phase transitions for the Sobolev statistical solution. Let P; be the
semigroup of the Brownian motion of variance (a +b)G(0) and S; be the statistical
solution associated with P; and C.

Let (X;,Y;) be the two-point motion. Let ¢, = d(X;, ¥;). Since h(x,y) =
d%(x, y)isaC 2_function, h belongs to D(AD) and since X, and Y, are solutions
of an SDE like (3.3), wtz is a diffusion on [0, 72] and is a solution of an SDE; v, is
also a diffusion on [0, 7] [note that d(x, y) a priori does not belong to i)(A(Z))].
This diffusion is eventually reflected (or absorbed) in 0 and 7. Its generator is

2 .
L =0%(¢) o5 +b(9) fi; (see [25]), with

(9.13) o2(¢) = a(1) — a(cos ) cos ¢ + B(cos ) sin® @,
d-1)

sin @

(9.14) b(p) = (a(1)cosp — a(cos@)).

The generator of wf is L' = ~2(x)‘;"—;2 + l;(x)dix, with
(9.15) 52(x) = 4xa>(Jx),
(9.16) b(x) =20%(V/x) + 24/xb(/%).

LEMMA 9.3. Ifa > 2, the statistical solution is a flow of maps.

PROOF. We have APd?(x, y) =20%(d(x,y)) + 2b(d(x, y))d(x,y). When
o > 2, then G is CZ; this implies that « is C? and B is continuous. Hence (8.1) can
be checked. [

b

Suppose a +b > 0 and let n = 7.

THEOREM 9.4. For any « €]0, 2[, the following hold:

(@) Ford=2or3andn<1— i, the statistical solution is a coalescent flow
o?
of maps.
(b) Ford =2 or3 and 1 — 5—2 <n< % - %, the statistical solution is
diffusive with hitting.
(¢c) Ford=2or3 andn > % — (d2—a2) or for d > 4, the statistical solution is
diffusive without hitting.

REMARK. The same phase transition appears in the R¢ case (see Theo-
rem 10.1 below). It has been independently observed, in the context of the ad-
vection of a passive scalar, by Gawedzky and Vergassola [14].
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LEMMA 9.5. For a €]0,2[, we have the following:

(a) G is differentiable on 10, 7 [;
(b) 11m¢ 0+ G(O) G((ﬂ) f() /‘0 COS 9 t(x 1S1nd9 dtdf :KG(O),

12+00520 I'(a+1)cq
(¢) lim ) = g [T [0 080 _ja—lgindg _dido_ _ g G(Q)
<P—>0+ 0 JO 12ycos?o INCES) i :

The proof of Lemma 9.5 is in Appendix A. From this lemma, we get, as ¢ goes
to 0,

9.17)  a(cosp) =(a+b)G(0) — (a + (1 + %)b)KG(O)(p“ + o(p%),

(9.18) B(cosg) = a(a — %)KG(OW‘Z + 0(p*7?).

1
Hence,

(9.19) o*(@) = (@ +b)KGO)(a+ 1 —aneg®(1+o(1)),
(9.20) b(g) = (a+b)KGO)(d — 1 +ane® ' (1+o(1)).

To prove Theorem 9.4, we need to study the two-point motion. Because of
isotropy, it is enough to study the diffusion . This diffusion satisfies an SDE
until it exits 0, 7 [.

Let s be the scale function of the diffusion v,

X
s(x) =/ exp[ / bz(@ d(p] dy with (xg, x) €]0, n[2.
X0 o(p)

Let x € {0,7} and Ty = inf{tr > 0; ¥ = x}. Using Breiman’s terminology
(see [4], pages 368-369), x is an open boundary point if 7, = oo and is a closed
boundary point if 7 < oco. Note that x is an open boundary point if |s(x)| = oo

First we are going to show that 7 is an open boundary point. Then:

1. whend =2or3andn<1— 2, we prove that 0 is an exit boundary point (this
implies that the statistical solutlon is a coalescent flow of maps);

2. when d =2 or 3 and 1 — ; <n < % — (d22), we prove that O is
an instantaneously reflecting regular boundary point (this implies that the
statistical solution is diffusive with hitting);

3. when 5 > % — (dzj), we prove that 0 is an open entrance boundary point (this

implies that the statistical solution is diffusive without hitting).

LEMMA 9.6. 1 is an open boundary point.
PROOF. It is easy to check that s(m—) = oo using the fact that «(1)+
a(—1)>0:
a()+a(—1)=(@+b)GO)+ (a —b)G(m)
> (a+b)G(m)+ (a—b)G(w) = 0. ]
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Since 7 is an open boundary point, we now study the behavior of ¥, at and
near 0.

LEMMA 9.7. If n > 1 — L2 5(04) = —00 and if n < & —
s(04+) > —o0.

d-2)
20

PROOF.  Letus note pu = {701 = %(1 +o0(1)) and
for any positive ¢ there exist positive constants C; and C2 such that, for y < xo,

(9.21) Cly_“+€fexp[ /y bz(zlz) dfﬂ] Coy M5,

From this, we see that s(04+) = —oco if u > 1 (orif n > % — (d2—0t2)) and s(0+) is
é (d— 2)) ]

Lemmas 9.6 and 9.7 imply that (see [16], Theorem VI-3.1) if n < % — (dz—az), we
have Ty < oo, T, = o0 a.s. and if n > % — %, 0 is an open boundary point and

we have liminfy; = 0 and lim sup ¥; = 7 a.s. (1 is recurrent).

REMARK 9.8. When d >4 and @ €]0,2[, 3 — (-2 < 0. This implies that
liminfy; = 0 and limsup ¢y = a.s.

Since 7 is an open boundary point, ¥, € [0, [ for every positive ¢ and ¥ is
a solution of the SDE

(9.22) dy? =25 (Y2 dB, 4+ b(y?) dt.

Note that 0 is a solution of this SDE [since & (0) = Z;(O) = 0]. The solutions of this
SDE might be not unique.
Let m(dx) be the speed measure of the diffusion

x b
m(dx) = 1j0.7((x) exp[ / 62(?2)

d
dp | 5o + (103 = g() dx + m((0)do
o (x)
with x¢ €10, [.

LEMMA 9.9. Ifn> 5 1 (d 2) , 0 is an entrance open boundary point.

PROOF. When 5 > % — %, 0 is an open boundary point. From [4, Proposi-
tion 16.45], 0 is an entrance boundary point if and only if |, 4 [s(x)Im(dx) < oo.
For any positive ¢, there exists a positive constant D such that, for any x € 0, x|,

Is(x)g(x)| < D x(@/cma=en0y—e/e—etl o py \l—a=2e

This shows that [ 4 s(x)m(dx) < oo (choose ¢ such that 2¢ <2 —«). [
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This lemma implies that, when 1 > % — %, there exist a positive ¢, a positive

a and p €]0, 1[ such that, for any x €]0, w[, Py[¥; > «] > p. Proposition 6.8
implies that S; is not a flow of maps and since 0 is open, S; is diffusive without
hitting.

Now let d € {2, 3} (when d > 4 we always have n > % — %).

LEMMA 9.10. Ifn< % — %, 0 is a closed boundary point.

PROOF. From Proposition 16.43 in [4], page 366, Tj is finite or the boundary
point O is closed if, and only if, for any b € ]0, [, f(f |s(x) — s(0)|m(dx) is finite.
We have

x Y b(p) 1 Y b(p)
ls(x) — s(0)[g(x) /0 CXP[— /xo o2(0) dfp]az(x) eXp[/xo o2(0) dw} dy.

Hence [s(x) — s(0)|g(x) = O (x'=9). This implies that fé’ [s(x) — s(0)|m(dx) is
finite. This proves that 7y is finite a.s. [

LEMMA 9.11. Ifn<1-— 5—2, 0 is an exit boundary point.

PROOF. In [4], 0is an exit boundary point if and only if m (]0, x[) = oo for all
x €10, w[. Thisis the case if u —a < —1 (orif n <1 — %). Note that, ford =2

or 3 and « 6]0,2[,1_% <%_ (dz_of)‘ D

Lemma 9.11 implies that, when n < 1 — %, the diffusion ¥, is absorbed at 0,
and, for any positive r,

lim P2

d(x,y)—0 (x’y)[d(Xl’ Y >rl= (}i_)mo Pyl >r]=0.

Now, applying Proposition 6.7, we prove that the statistical solution is a flow of
maps and this is a coalescent flow of maps (since O is an exit boundary point).

LEMMA 9.12. Ifne]l — 5—2, % — %[, 0 is a regular boundary point.
PROOF. In [4], we see that O is regular if m(]0, x[) < oo for all x €]0, [,

cp d 1 __d=2
whlchlsthecasewhenne]l——Z,Q—T[. O

When n €]l — %, % — (dz_a [, the two-point motion hits the diagonal. However,
there is no uniqueness of the solution of the SDE satisfied by ¢, since 0 might
be absorbing or (slowly or instantaneously) reflecting. To finish the proof of
Theorem 9.4, we prove that 0 is instantaneously reflecting.

To prove this, for ¢ €]0, 1[, let us introduce the covariance C, = (1 — e)2C

[then, if W; is the cylindrical Brownian motion associated with C, (1 — &) W; is
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the cylindrical Brownian motion associated with C,], and let S} be the statistical
solution associated with P; and C,.

For f € L*(dx), SEf = Y ,-0Ji"" f, where J"® f is the nth chaos in the
chaos expansion of S7 f. [Note that S? = Qlog(1—¢)St, where Q, is the Ornstein—
Uhlenbeck operator on the Wiener space (used in Malliavin calculus; see [24]).] It
is easy to see that J," f = (1 — &)"J/" f, where J" f is the nth chaos in the chaos
expansion of S; f; hence

9.23) ELS;f = S$i0)71= ) (1= (1= )ELU[ ).
n>1
Hence it is clear that the L2(P)-limit of S7 f ase goestoOis S; f.

Let (X7,Y/) be the Markov process associated with P,(z)’g = E[S} ®2] and
let ¥/ =d(X7,Y}). ¥/ is a diffusion with generator L. It is easy to see that
Le=(—(1—&))L1+(1—¢)?Lnotethat A” = AQI+ 1@ A+ (1 —¢)’C =

2 .
AP + (1> (A® — AP)], and Ly = 02(9) L + be(9) 2L, with

(9.24) o (@) = (1= (1 =)?)oi () + (1 —e)’’ (),

9.25) be(@) = (1= (1 =&)*)b1(9) + (1 — £)’b(9).

Let us remark that L; is the generator of the diffusion distance between two
independent Brownian motions on S¢. Note that, as ¢ goes to 0,

2 ) 2(d —1)
(9.26) o2(9) ~ 02(0) =2(a + H)KG(0) and by(p) ~ T(a +b)KG(0)

and o () = (1= (1 =£)*) 07 (p) (1 + 0 (¢*)) and b (¢) = (1 — (1 —&))b1(p) (1 +
O(¢%)). Studying the scale function s, of v/, we get that s, (0+) = 51(0+) = —00
(as two independent Brownian motions cannot meet each other on §9). We still
have s, (7 —) = 0o. Hence v € ]0, [ for all positive ¢.

Let m, be the speed measure of ;. Let g.(x) = mg(dx)/dx. As m.(]0, 7[)
< 00, mg is an invariant finite measure for the diffusion ¥;. As limg_,¢ %2 =02
and limg_, ¢ b, = b, we get that lim,_, g-(x) = g(x). Letusnote &' =1— (1 — €)?
and let

e'b1(p) + (1 —&)b(p)

9.27 o) = ‘
( ) f(E,9) 8’612((P) + (1 —¢)o2(p)

; on i s o if b1(@) o ble) bl _ b@ g_1_,)1
This function increases with &’ if 20) e TR As ) ) d—-1—p) 7

as ¢ goes to 0 and as (d — 1 — p) is positive, there exists ¢g such that, for any
@ < g0, f(&,9) =29 — £(0,¢) and, for ¢’ < 1/2,

a2(p)
2 90 b(p) )
- ——do |Cy,,
a%x)e"p( / o2(p) 7))

8e(x) <
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where Cy, = sup,¢o.1)€Xp (f;(‘))f(s’,(p) dy) < oo. The Lebesgue dominated

convergence theorem implies that g, converges in LY([0, 7]) toward g.

Let f and g be continuous functions. Then E[f(X?)g(Y{)] = EL[S; f(x) x
S7g(y)]. Since S7 f and S7g converge respectively toward S; f and S;g when
& goesto 0in L?(P),we getthat (X7, Y/°) converges in distribution toward (X;, ¥;)
when & goes to 0. This also implies that v, converges in distribution toward
when ¢ goes to 0.

Since m, is an invariant measure, for any continuous function f on [0, ], we
have

9.28) / ELf (WO WE = x] me(dx) = / Fdme.

Since

] / ELF (W) IWE = xlme (dx) — / ELf (W) lvo = x]g(x) dx
< ||f||oof0 180 (x) — g()] dx

’

+ ‘ [ " ELF GO WE = x1— ELF () o = x])g () dx

we get that (because g, converges in L'([0, 7]) toward g and Yy converges in
distribution toward ;)

[ B =xim@x) = tim [ ELF@DIWG = xIme ()

= fim fdmg=/fdm.
e—0

This implies that g(x)dx is an invariant measure for v, and m(dx) = g(x)dx.
Since m(]0, x[) < oo for all x € ]0, [, the diffusion 1, is not absorbed in 0 and is
reflected in 0.

In this case, O is a closed regular boundary point. This point is instantaneously
reflecting since m ({0}) = 0. This implies the existence of a positive ¢, a positive r
and p €]0, 1] such that, for any x €]0, [, Py[Y; > r] > p. Then, applying
Proposition 6.8, the statistical solution is not a flow of maps. This completes the
proof of Theorem 9.4. [

For o > 2, the statistical solution is an isotropic Brownian flow of diffeomor-
phisms. In [25], the Lyapunov exponents of this flow are computed. The sign of the
first Lyapunov exponent A1 («, d) describes the stability of the flow. It is unstable
if A1 > 0 and stable if A1 < 0. The computation of A («, d) gives
_(d—4%a—+db
o d+2

B d(Z(d —Da+db

d+2

Al

d—1
Cla—1)+ (d——|—2>[(d —4)a +dbl¢(a)

(9.29)
)C(Ot + 1),
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where ¢ (o) =3 5 1% is the zeta function. Therefore, we have A («, d) = 0 if and
only if
n=n(a,d)
(9.30) _—d=Hia@—1)—(d—-1D(d—-4(@)+2dd— 1)@+ 1)
N 4@ —1)+4d — (o) +d(d —2)¢(@+1) '

It is easy to see that, for fixed n, limy_ o4 Aj(er,d) = 400 if d > 4 or if

n > % — % = % and that limy_, o4 A (e, d) = —o0 if n < #. Note that
limy_p_ 1— % =limy_o_ % — (d2;2) = %. This shows that coalescence appears

when A goes to —oo and splitting appears when A| goes to +00.
The results of this section are given by phase diagrams in Appendix B.

10. Isotropic statistical solution on R¢.

10.1. Stationary and isotropic covariance functions on R?.  OnR? with d > 2,
the stationary isotropic covariance functions C are (see [20]) such that C" (x, y) =
Cli(x —y), for (x,y) e R x R?, with

g . i,

(10.1) Cii (z) = 8 By (JzIl) + ﬁZZHZ(Bunzn) — By(lzID).
with

BL() = [ [ costpurrdes du)(FL(dp) - Fy(dp)
(10.2)

+ / / cos(pu1r)o (du) Fy(dp).,

B () = [ [ costpuiriude @) (FL(dp) - Fy (dp)

(10.3)

+// cos(puir)w(du) Fy(dp),

F; and Fy being finite positive measures on RT. w(du) is the normalized
Lebesgue measure on S~ F; and Fy represent respectively the gradient part
and the zero-divergence part of the associated Gaussian vector field.

For « and m positive reals, let

pd—l

(pZ i m2)(d+a)/2

F(dp) = dp,

b
Fp(dp) =aF(dp) and FN(dp)=ﬁF(dp),
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where a and b are nonnegative. In the Fourier representation (¢ is a positive
constant),

i k'k/ b k'k/
(10.4) CY(k) =c(|lk|*> + m2)—<d+“)/2<a— +— <5~ - —))
IkI2 - d =1\ kg2
Notice that, in the Fourier representation, the Laplace operator on vector fields
is given by the multiplication by —|lk||* and the projection 7 on gradient vector

fields (in the L2-space) by % [i.e., if V is a vector field and V' (k) its Fourier

transform, (nAV)l k) =23 ﬁ Vi k).]

Therefore, given an L? vector field, U/(y) = > Ci(x — y)Vi(x)dx can
be expressed as c(—A + m2) =@+ 2z v + %(1 —m)V). Since (U,U)yg =
(U, V), = [(U(x), V(x))dx, the self-reproducing space appears to be the
L2-Sobolev space of order s = d% (defined the same way as in Section 9.1)
equipped with the norm

1 d—1
2 2 2
IVIF= 7 VIS + = =1 =DVIS,
where
1
V2 = S(=a +m?)SV, V),

Note that if @ or b vanishes, the self-reproducing space is H>©@+t4)/2 restricted to
divergence-free vector fields or gradient vector fields.

10.2. Phase transitions for the Sobolev statistical solution. Let P; be the
semigroup of a Brownian motion on R? with variance (a + b) F(R1). Let S, be
the statistical solution associated with P; and C. If « > 2, C is C2. Hence (8.2) is
satisfied and the statistical solution S; is a flow of maps.

Suppose a + b > 0 and let n = ﬁ Then we have the following theorem.

THEOREM 10.1. For any « €0, 2, the following hold:

(@) Ford=2o0r3andn<1— %, the statistical solution is a coalescent flow
of maps.

(b) Ford =2 or 3 and 1 — % <n< % — (dz—az), the statistical solution is
diffusive with hitting.

(¢c) Ford=2or3andn > % — (d2;2) or for d > 4, the statistical solution is
diffusive without hitting.

REMARK. The results of this theorem are exactly the same as for the sphere.
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PROOF OF THEOREM 10.1. Let us study the two-point motion (X, Y;)
starting from (x,y) (with x % y). Then r; = d(X;, Y,) is a diffusion in RT
(eventually reflected in 0), with generator L = 0’2(7‘) prois b(r) jr (see [20]), with
(10.5) o2(r)=B — BL(r),

(10.6) mm:m—nil?ﬁl

where B = By (0) = By (0) = “F2 F(RY).

LEMMA 10.2. Fora €]0,2[, as r goes to 0, the following hold:

(i) [[cos(puir)w(du)F(dp) = F(RT) —ajr® +o(r%);
G [f cos(pulr)u%a)(du)F(dp) = %ﬁ) —ar® 4+ o(r%);

(i) [/ cos(ouyryudo(du)F(dp) = FED _ a3 4 o(r2);
dia oy and

00 /2
o] = cd(/o 1- cosx)xi)il)(/o (cos )% (sin)?~ 2d9>

PROOF. For r > 0, making the change of variable x = pur,

// (1 —cos(puir))w(du) F(dp)

with oy = %al, o3 =

b e 2\ (d—2)/2 p~dp
= [ [ (0= costoun) (1 bR duy LT

! o x4V dx
=r? — @] _ 2 d-2/2 4
' cd/(.) (./0 S COSX)(XZ_,_rzu%mz)(dw)/z)”l(l uy) up.

xdl

l I d—/wl A
rg%/ ( —cosx)( ) X = A ( cosx)xmr1 < 00,

we get that

As

lim —/ (1 = cos(puir))w(du) F(dp)

r—0r%
o dx
=cd</ (l—cosx) )I(d 2,a) =qaj,
0

with I (n,t) = fg/ (cos) (sin6)"* dO = éB(”Jrl t“) for t > 0 and n € N, and

B(x,y) = l}%)i(yy)) This shows (i). Statements (ii) and (iii) can be obtained the
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same way with

0 dx
a2=cd'/0 (1 —cosx)xa+11(d—2,a+2)
and o] = ap + (d — 1)z [note thatfu%a)(du) = 3] It is easy to see that, fora > 0
andd > 1,

Id-2,0+2)= %ll(d 2,a).

atl
— d+ao
op. O

Therefore oy = a1. With the relation o = g + (d — Dz, we get that

o3 = d+Ot

REMARK 10.3. As z goesto 0,

€)= B8 = ] (@~ Da+ @+ a= b)Y

7'zt

Izl

Let us note that the dependence on m only appears in B.

—a((d—1)a—0b) ]||z||“(1 +o(1)).

From this lemma, it is easy to see that, as r goes to 0,

(10.7) o2(r) = (adiﬂ(wr 1 —an)r®(1+o(1)),
(10.8) b(r) = %(d — 1+ anr® (1 +o(1)).

Note that we get the same behavior of o and b around 0 as in Section 9.2.

As in Section 9.2, let us study s, the scale function of the diffusion 7;.

Since By (r) and By (r) converge toward 0 as r goes to oo (as Fourier transforms
of finite measures), we get that, as r goes to oo, log(s'(r)) ~ (1 — d)log(r).
Therefore s(+00) is finite if and only if d > 3.

We also see that s(04) = —oco if n > 1 (d 2)
d=2

2
(iet m be the speed measure of the diffusion. Let us study the boundary point 0.
As m(]0, x[) < —oo for any positive x if n > 1 — %, as in Section 9.2, with

a similar proof, we can prove that if n €]1 — %, % e 2)[ the diffusion r; is

instantaneously reflecting at 0. The only thing there is to Change in the proof is
to take the test function f in (9.28) with compact support and to remark that g,
converges toward gin Ll (R™).

Ifn<l- ; (note that 1 — % < % — %), 0 is an exit boundary point and the
diffusion is absorbed by 0.

Therefore, we get that the following hold:
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(1) ifd >3 and n €]l — %, % — (d2—a2)[, r; is instantaneously reflecting at O
and is transient. In this case, as in Section 9.2, (S;);>0 is diffusive with hitting;

(i) ifd=2and n €]l — %, % — (d2;2) [, 7; is instantaneously reflecting at O
and is recurrent. In this case, as in Section 9.2, (S;);>¢ is diffusive with hitting;
(i) ifd >3 andn <1 — %, r; is absorbed at 0 with probability 5(00)=sra) 54

s(00)—s(0)
converges toward +oo with probability %. In this case, as in Section 9.2,
(S¢)s=>0 is a coalescent flow of maps;
v) ifd=2and n <1 — %, r; 1s absorbed at O a.s. In this case, as in

Section 9.2, (S;):>0 is a coalescent flow of maps.

Ifn> % — %, then we have that s(0) = —o0. In this case, 0 is an entrance
boundary point as | L Is(x)|dm(x) < 00. r; is recurrent if d = 2 and transient if
d > 3. As in Section 9.2, we prove that (S;);>¢ is diffusive without hitting. [

For o > 2, the statistical solution is a stationary isotropic Brownian flow of
diffeomorphisms. In [20], the Lyapunov exponents of this flow are computed. The
sign of the first Lyapunov exponent A1 («, d) describes the stability of the flow.
It is unstable if A; > 0 and stable if A; < 0. The computation of A{(«,d) gives
(see [20])

1

10.9 M= ((d—4 db/ 2F(dp).

(10.9) 1 2(d+2)(( Ya +db) | p”F(dp)
Therefore, we have A1 («, d) = 0 if and only if d <4 and

4—d

(10.10) nzr](d):T.
As in Section 9.2, we see that, for fixed n, limy_24+ A1(a,d) =400 if d > 4 or
if n > % — % = % and that limy 24 A1 (e, d) = —oc0 if n < %. This shows

that coalescence appears when 1| goes to —oo and splitting appears when A goes

to 4-00.
Note that limy_5_ 1 — & =limg_,,_ § — 42 =44,

The results of this section are given by phase diagrams in Appendix B.

11. Reflecting flows. Let D be an open convex domain in R? with C!
boundary 8 D. Let d be the Euclidean metric in R?. For any x € 3 D, we denote by
n(x) the directed inward unit normal vector to 9 D.

Let P; be the semigroup of the Brownian motion in D reflected on 9D.
P, is associated with the Dirichlet form (&, ), where ¥ = H'(D) = { f e
L*(D,dx), |V f| € L*(D,dx)} equipped with the form 1 [,, |V f|>dx (see [11],
1.3.2). Let C(x, y) be a covariance function in D x D such that C¥ (x, x) = §'/
and satisfying (8.1).
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‘We can construct a statistical solution associated with P; and C. Let P,(z) be the

semigroup of the two-point motion (X, ;). Let P((.Z.)) be the law of the two-point

motion.
We know that X, and Y; are two diffusions in D reflected on d D. Let ¢, and v,
denote the local times of X; and Y; on 9 D.

LEMMA 11.1. Forh(x,y) =d2(x,y), PPh(x,y) <h(x, y)eC".

PROOF. Let us note that

LPO=A, +A,+ ZCU(X, ¥)0x; Ox; -
i,j

From (8.1) and the Lipschitz conditions, we get that
L®h(x,y) <C h(x,y).

Using Tanaka’s formula, there exists a martingale M; such that

t
(LD (X, Y) —h(x,y) = M, +/ LOn(X,, Y,)ds
0

+ /l(vxh(xs, Y5), n(Xs)) des
0
(11.2)

t
2T SRR
As Vyih(x,y) =2(x — y), using the fact that D is convex, we get that, for x € 0D,
<Vxh(x’ y)’ n(x)> < 0‘

This implies that
t
h(X,, Ys) — h(x,y) < M, + Cf h(X,,Y,)ds.
0

Taking the expectation, we get that Pt(z)h(x, y)—h(x,y)<C f(; Ps(z)h(x, y)ds.
Hence we have the lemma. [

THEOREM 11.2. The statistical solution is a flow of maps.

PROOF. This is the same proof as the proof of Theorem 8.2. [J
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APPENDIX A

Proof of Lemma 9.5. Take ¢ €]0, w[. At first, we are going to prove that
00 ,—Is ga—1 ds

1(p) =212 W|%y;(cos<p)|is finite. As%,: 0 XCIL

. 20,0 | dsdo
(A1) 1(¢)<f/ Y le el O s sin 6 o C

>1

T o0 /2 poo
(A.2) < / / fpo(s)dsdo =2 / / fpo(s)dsd,
0 0 0 0
with
e Lz(p,0) so-1
foo(s) = — :
1 —e ¥|z(p,0)| I'(a)cq
It is easy to see that
1 00 e—ss(x—l
A3 d d .
A-3) ./ Joo () S_F(oz)cd,/ (1—e%) S =
On the other hand,
(Ad) ff (s)ds < — fl ds e
S s < .
PO = Tayea Jo T—e=12(p,0)] ~ T(@ea *
X0 (0)+1
Let x,(6) = —log |z(¢, 0)], then Fy(0) = [ " 4. As Timy o4 x,(6) = 0,

we have F,(0) ~ —logx,(0) as € goes to 0. From this, we see that F,(0) =
O (log#) as 0 goes to 0. This implies that I () is finite.

Now, applying the derivation under the integral theorem, we prove that G is
differentiable on ]0, 7 [ and that, for ¢ € ]0, 7|,

(2 0) 1,40

[2(p, 0)1'~
A5 G@=Y /

=1 [« Ccd
_ ldq,z(tp, ) 1.4 dsdo
(A6) - f / ;[e <l OF s int g
t20.0) . dsdo
A7) _/ ./ l—e Sz(e, Q)S sin” 0 T'(a)eg

AS Z(gov T — 9) == Z(gov 9)’

G,((p>:_/”/2 % a(s, @) — sin® 0 COSP w1 g d92dsd9
0 b(s,p)+cos?6 sing T(a)ey’
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. —_ - 2 . .
with a(s, 9) = = COW and b(s, @) = %. Changing variables (s = t¢),
(A8) G'(p) _/”/2 © g(tg, ) —sin® 6 <pcos<pta Lind g 2dtdo
' =1 Jo 0 b(tg,p) +cos?O sing NG,
/2
(A9) =/ / I(t,p,0)dtdo.
0 0
Let ¢ > 0. There exists a positive constant C, such that, for any ¢ € [0, €],
(A.10) 0<I(t,9,0)<Cet* .
Note also that
2.2 —tg
1“p~e a—3
(A.11) 1.:9.0) = Coa gy =g 1

. .. 2,—x
where C o is a positive constant. Let C = Cy o SUp,- (1)6—:%—02 < 00. Then, for
any positive ,

(A.12) 0<I1(t,9,0)<C1* 3.
As F(t) = Cet* Moy<¢ + Ct* 731, belongs to L' (d6 ® dt) for a €]0, 2],

limy_,oa(tg,¢) =1 and limy o b(tp, ¢) = 12, by the Lebesgue dominated
convergence theorem,

/2 29 2d0dt
(A.13) lim ((,0) / / cos 1 sin o =—uakK
9—0 @~ 2 +cos20 9 cql'(@0)

We have proved the second limit. The first limit is easy to obtain as

¢ /
G(0) — G(p) = —/0 G'(x)dx
=—K ¢% +0(¢").

This finishes the proof of the lemma. [J
APPENDIX B

Phase diagrams for the Sobolev statistical solutions. Figures 1-7 give
results of Sections 9 and 10.

Let us remark that, when o < 2, the diagrams are exactly the same for the sphere
and for the plane. For the sphere, we see that, for « > 2 and n <2 — z (‘;(‘1)1), the
flow becomes stable when d goes to co: (9.30) implies that limg_, - (e, d) =
2 — {(‘;(‘1)1) for o > 2. We see that, for any d and n € [0, 1[, the flow becomes
stable when o goes to co: (9.30) implies that limy—, o0 (e, d) = 1.
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35F 4
3F stable flow -
25F 9
unstable flow
3 2
coalescent flow
1.5F b
1k i
diffusive with hitting diffusive without hitting
0.5F i
O 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
n
F1G. 1. Phase diagram on s2.
Plane d=2
4 T T T T T T T T
35
3 stable flow unstable flow
25
3 2
coalescent flow
1.5
1
diffusive with hitting diffusive without hitting
0.5
0 1 1 1 1 1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
n

FIG. 2. Phase diagram on RZ.
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35F

3r stable flow

unstable flow

coalescent
f?ow

diffusive with
hitting

diffusive without hitting

0.5F
0 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
n
FI1G. 3. Phase diagram on s3.
4 T T T T T T T T T
3.5F
3+ stable flow unstable flow
25F
3
coalescent
flow
| diffusive with
151 hitting
1 e . -
diffusive without hitting
0.5
0 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

n

FIG. 4. Phase diagram on R3.
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FIG. 5. Phase diagram on 54,
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5 T T T T T T
45
4k
3.5F stable flow
3 3
25F
2
15k diffusive without hitting 4
1 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

n

F1G. 7. Phase diagram on §50.
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