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A BERRY–ESSEEN BOUND FOR FINITE POPULATION
STUDENT’S STATISTIC1

By M. Bloznelis

Vilnius University and Institute of Mathematics and Informatics

A general and precise Berry–Esseen bound is proved for the Studen-
tized mean based on N random observations drawn without replacement
from a finite population. The bound yields the optimal rateO�N−1/2� under
minimal conditions. If the Erdős–Rényi condition holds this bound implies
the asymptotic normality of Student’s statistic and the self-normalized
sum.

1. Introduction and results. Let �x� denote a sequence of real numbers
x1� � � � � xn and let X1� � � � �XN, N < n, denote random variables with values
in �x� such that � = �X1� � � � �XN� represents a simple random sample of
size N drawn without replacement from �x�. We shall assume that EX1 = 0
and σ2 = EX2

1 > 0.
Let

t = t��� =X/σ̂
denote the Student statistic, where

X =N−1�X1 + · · · +XN� and σ̂2 =N−1
N∑
i=1

�Xi −X�2�

Put t = 0 if σ̂ = 0. By the finite population central limit theorem (CLT)
[see Erdős and Rényi (1959)] for large N, the distribution of

√
N t can be

approximated by a normal distribution. In this paper we estimate the rate of
the normal approximation. We construct a bound for

δN = sup
x

∣∣∣P{√
N/q t��� < x}−��x�∣∣∣�

where ��x� denotes the standard normal distribution function,

p =N/n and q = 1− p�

Theorem 1.1. There exists an absolute constant c > 0 such that

δN ≤
c√
q

β3√
Nσ3

� β3 �= E X13�(1.1)
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A similar Berry–Esseen bound but for the finite population sample mean
was proved by Höglund (1978). The estimate of Theorem 1.1 holds for any fixed
sample size N and population size n. If β3/σ

3 is bounded and q is bounded
away from 0 as N → ∞ and n → ∞, then (1.1) establishes a Berry–Esseen
bound O�N−1/2�. Note that the factor 1/

√
q in the right-hand side of (1.1)

cannot be removed or replaced by qα with α > −1/2 [cf. one-term Edgeworth
expansion for P

{√
N/q t��� < x} given in Babu and Singh (1985)].

Write w = √npq.

Theorem 1.2. There exists an absolute constant c > 0 such that

δN ≤
c

σ2
EX2

1 �X1>σw +
c

wσ3
E X13 �X1≤σw�(1.2)

Theorems 1.1 and 1.2 can be considered as a particular extension to the case
of simple random sampling of Berry–Esseen bounds for Student’s statistic
based on i.i.d. observations, proved recently by Bentkus and Götze (1996).
Indeed, the case where n→∞ andN is fixed corresponds to the i.i.d. situation
and in this way we obtain Theorems 1.1 and 1.2 of Bentkus and Götze (1996) as
corollaries of Theorems 1.1 and 1.2. It could be mentioned that our techniques
are related to those of Bentkus and Götze (1996), Bloznelis and Götze (1997)
and Höglund (1978).

Next we apply Theorem 1.2 to prove the CLT for the Studentized mean.
Consider a sequence of populations �x�n = �xn1� � � � � xnn� such that

∑
i xn i =

0, for every n = 2�3� � � � � Let �nN = �Xn1� � � � �XnN� denote a sample of
size N = Nn drawn without replacement from �x�n. Write σ2

n = EX2
n1 and

assume that σ2
n > 0, for every n = 2�3� � � � � Write pn =Nn/n and qn = 1−pn.

Erdős and Rényi (1959) proved that if

∀ε > 0� lim
n→∞σ

−2
n EX2

n1�Xn1≥εσnwn = 0� w2
n = npn qn�(1.3)

then the sequence Sn = S��x�n� = �Xn1 + � � � +XnNn
�/�σnwn� converges in

distribution to the standard normal distribution as n → ∞. Note that (1.3)
implies Nn →∞ as n→∞. Hajek (1960) showed that the Erdős–Rényi con-
dition (1.3) is also necessary for the asymptotic normality of Sn. One conse-
quence of Theorem 1.2 is that this condition is sufficient also for the asymptotic
normality of the Studentized mean.

Corollary 1.3. Assume that �1�3� holds. Then √
Nn/qn t

(
�nNn

)
converges

in distribution to the standard normal distribution.

Maybe more interesting is the fact that it may happen that
√
Nn/qnt��nNn

�
is asymptotically standard normal when Sn does not. Such a situation is ex-
hibited in the following example.

Example. Let �x�n be a sequence of populations as above. Assume that
this sequence satisfies (1.3) and that σn = 1. Construct a new sequence of
populations �x̃�n+2 by putting �x̃�n+2 = �x�n ∪ �−n� n�. Choose the sequence
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Nn so that Nnpn → 0 and let �̃nNn
denote a simple random sample of size

Nn drawn from the population �x̃�n. It is easy to see that in this case (1.3)
fails and S��x̃�n� converges to a degenerate distribution. Furthermore, since

P��−n� n� ⊂ �̃n+2Nn+2
� ≤ 2Nn+2pn+2 → 0�

the limiting behavior (as n→∞) of distributions of t��nNn
� and t��̃n+2Nn+2

�
is the same, that is, both are asymptotically standard normal.

Remark. All the results stated above remain valid if instead of the stan-
dardized Student statistic

√
Nt one considers the self-normalized sums

X1 + · · · +XN√
X2

1 + · · · +X2
N

�

In particular, Theorems 1.1 and 1.2 hold with δN replaced by δ′N, where

δ′N �= sup
x

∣∣∣∣∣P
{
X1 + · · · +XN√
X2

1 + · · · +X2
N

<
√
qx

}
−��x�

∣∣∣∣∣�

In contrast to the case of independent and identically distributed observa-
tions, where the normal approximation of the Studentized mean and related
statistics was studied by a number of authors [see, e.g. Chung (1946), Efron
(1969), Logan, Mallows, Rice and Shepp (1973), Chibisov (1980), Helmers and
van Zwet (1982), van Zwet (1984), Slavova (1985), Bhattacharya and Ghosh
(1978), Hall (1988), Griffin and Mason (1991), Sharakhmetov (1995), Bentkus
and Götze (1996), Bentkus, Bloznelis and Götze (1996), Gine, Götze and
Mason (1997), Bentkus, Götze and van Zwet (1997), Putter and van Zwet
(1998) and so on] there are only a few results concerned with the rate of the
normal approximation of finite population Student’s statistic. Praškova (1989)
constructed a Berry–Esseen bound for the Studentized mean based on the ob-
servations drawn without replacement from a finite set of random variables,
assuming that each of them is of zero mean. Rao and Zhao (1994) proved the
Berry–Esseen bound,

δN ≤
c√
q

E X14√
N σ4

�

which establishes the rate O�N−1/2� but involves the fourth moment. Babu
and Singh (1985) studied a higher order asymptotics of the distribution func-
tion of

√
N t. Berry–Esseen bounds for some other nonlinear finite population

statistics were obtained by Zhao and Chen (1990), Kokic and Weber (1990)
and, as a particular case of the rate of convergence of general multivariate
sampling statistics, by Bolthausen and Götze (1993).
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2. Proofs. This section is organized as follows. In the beginning we for-
mulate a general result; see Theorem 2.1 below. Then we give proofs of The-
orems 1.1 and 1.2 and Corollary 1.3, which are simple consequences of Theo-
rem 2.1. The proof of Theorem 2.1, is postponed to the end of the section.

Define the number a ≥ 0 by the truncated second moment equation,

a2 = sup
{
b: EX2

1�X2
1≤bw2 ≥ b}�

It is easy to check that a ≤ σ and a is the largest solution of the equation

a2 = EX2
1�X1≤aw�

In the case where a is positive we write

γ = a−2σ2 − 1� α = w2EY1� µ = w2EY13� Y1 = a−1w−1X1�X1≤aw

and note that Y1 ≤ 1, EY2
1 = w−2 and N−1/2 ≤ w−1 ≤ µ, by Lyapunov’s

inequality �EY2
1�3 ≤ �EY13�2.

Theorem 2.1. There exists an absolute constant c > 0 such that

δN ≤ cw2P�X1 > aw� + c�� + γ �p>q�� � = α+ µ�(2.1)

whenever a > 0.

Theorem 1.1 is an immediate consequence of Theorem 1.2.

Proof of Theorem 1.2. We may and shall assume without loss of gener-
ality that σ = 1. This implies a ≤ 1.

In the case where a2 ≥ 1/4 we derive (1.2) from (2.1). Introduce the events
�1 = �X1 > aw�, �2 = �aw < X1 ≤ w� and �3 = �X1 > w�. Combining
the identity ��1

= ��2
+ ��3

(here �� denotes the indicator function of the event
�) and Chebyshev’s inequality, we get

P�X1 > aw� = E��2
+E��3

≤ 1
a3w3

EX13��2
+ 1
w2

EX2
1��3

�

a2γ = σ2 − a2 = EX2
1��1

= EX2
1��2

+EX2
1��3

≤ 1
aw

EX13��2
+EX2

1��3
�

awEY1 = EX1��1
 ≤ EX1��2

+EX1��3

≤ 1
a2w2

EX13��2
+ 1
w

EX2
1��3

�

In the last step we used EX1 = 0. Using these inequalities we obtain bounds
for P�X1 > aw�, α, γ and µ. Substitution of these bounds in the right-hand
side of (2.1) yields (1.2).

In the case where a2 < 1/4 we have EX2
1�X1≤w/2 < 1/4 and, therefore,

EX2
1�X1>w/2 ≥ 3/4. Furthermore,

3/4 ≤ EX2
1�X1>w/2 ≤ 2w−1E X13�w/2<X1≤w +EX2

1�X1>w�
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Since δN ≤ 1, we obtain

δN ≤ 1 ≤ 8
3w

−1E X13�w/2<X1≤w + 4
3EX2

1�X1>w�

thus completing the proof of Theorem 1.2. ✷

Proof of Corollary 1.3. We may and shall assume without loss of gen-
erality that σn = 1, for n = 2�3� � � � �

Introduce the events �n1 = �Xn1 > wn� and �n2 = �Xn1 ≤ wn�. In view
of Theorem 1.2 it suffices to show that for every ε > 0,

lim sup
n

(
EX2

n1��n1
+w−1

n EXn13��n2

) ≤ ε�(2.2)

Let us show (2.2). Given ε > 0, introduce the events �n3 = �Xn1 > εwn� and
�n4 = �Xn1 ≤ εwn�. We have

EX2
n1��n1

+w−1
n EXn13��n2

≤ EX2
n1��n3

+ εEX2
n1��n4

≤ EX2
n1��n3

+ ε�
Now (2.2) follows from (1.3). ✷

It remains to prove Theorem 2.1. We shall assume that a > 0 in what
follows. Before the proof we introduce some notation. In what follows c� c1� � � �
denote generic absolute constants. By c�α1� α2� � � �� we denote constants which
may depend only on the parameters α1� α2� � � � � We write A � B if A ≤ cB.
The expression exp�ix� is abbreviated by e�x�.

For k = 1�2� � � �, write  k = �1� � � � � k�. Given a sum S = s1+· · ·+sk, denote
S�i� = S− si. Given A ⊂  k, write SA =

∑
j∈A sj.

Let θ1� θ2� � � � denote independent random variables uniformly distributed in
�0�1� and independent of all other random variables considered. For a complex
valued smooth function h we use the Taylor expansion

h�x� = h�0� + h′�0�x+ · · · + h�n��0�x
n

n!
+Eθ1

h�n+1��θ1x��1− θ1�n
xn+1

n!
�

Here Eθ1
denotes the conditional expectation given all the random variables

but θ1. In particular, we have the mean value formula, h�x� − h�0� =
Eθ1
h′�θ1x�x.
Let g be a three-times differentiable real function with bounded derivatives

such that

g�x� = x−1/2 for x− 1 ≤ c1 and g�x� − 1 ≤ c1 for x ∈ ��

The (small) constant 0 < c1 < 1 will be specified later.
Let �∗ = �X1� � � � �Xn� denote a random permutation uniformly distributed

over permutations of the sequence �x1� � � � � xn�. In particular, X1� � � � �XN

represents a simple random sample of size N drawn without replacement
from �x�. Let ν = �ν1� � � � � νn� denote a sequence of independent Bernoulli
random variables independent of �∗ and having probabilities

P�νi = 1� = p� P�νi = 0� = q� 1 ≤ i ≤ n�
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Given A = �i1� � � � � ik� ⊂  n, let E�i1�����ik� = EA (respectively, E�i1�����ik�) denote
the conditional expectation given all the random variables, but νi1� � � � � νik (re-
spectively, Xi1

� � � � �Xik
).

Write

Yi=
1
aw
Xi�Xi≤aw� Zi = Y2

i −EY2
i � 1 ≤ i ≤ n�

Y=
N∑
i=1

Yi� Z =
N∑
i=1

Zi� Y′ =
n∑

i=N+1

Yi� Z′ =
n∑

i=N+1

Zi�

S=�Y−EY�g�1+ qZ�� S′ = −�Y′ −EY′�g�1− qZ′��

(2.3)

and note that

EZ2
i � EZi3/2 � EYi3 = w−2µ�

EYi −EYi3 ≤ 8EYi3 = 8w−2µ�
(2.4)

Below we shall use the following simple inequality. Given �i1� � � � � ik� ⊂  n
and j ∈  n \ �i1� � � � � ik� let X∗

j be a measurable function of Xj. We have

E�i1�����ik�X∗
jα ≤

n

n− kEX∗
jα� for α > 0�(2.5)

We shall apply this inequality to random variables Yj�Zj�Yj −EYj, and so
on.

Given a random variable W, write �W = supx P�W ≤ x� − ��x�. Let W′

be a random variable defined on the same probability space as W. Then

�W ≤ �W′ + εmax
x
�′�x� +P�W−W′ > ε� ∀ε > 0�(2.6)

�W − �W′  ≤ P�W �=W′��(2.7)

The proof of Theorem 2.1 consists of two steps. In the first step (see Lemma
2.1) we replaceX1� � � � �XN by truncated random variablesY1� � � � �YN and re-
place the statistic

√
N/qt by S (respectively, by S′) in the case where p ≤ q (re-

spectively, p > q); see (2.3). Furthermore, the Berry–Esseen smoothing lemma
reduces the problem of estimation P�S ≤ x�−��x� to that of the estimation
the difference E exp�itS� − exp�−t2/2�. In the second step we estimate this
difference by means of expansions. For p > q, we estimate P�S′ ≤ x�−��x�
in much the same way.

Lemma 2.1. Assume that a > 0 and N ≥ 2. Then

δN ≤ �S�p≤q + �S′ �p>q + c�1�

�1 = w2P�X1 > aw� + α+ µ+ γ �p>q�
(2.8)

Proof. We may and shall assume that α < 1 and µ < 1. Otherwise (2.8)
follows from the inequality δN ≤ 1.

Let us prove (2.8) in the case where p ≤ q, that is, 1/2 ≤ q. Introduce the
statistic S̃ = Yg�1 + qZ − qY2/N� based on the sample � = �Y1� � � � �YN�.
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Since
√
N/qt���=√

N/qt��� on the event A1=��=aw�� and
√
N/qt��� =

S̃ on A2 = �qZ−Y2/N ≤ c1�, we have

P�
√
N/qt��� �= S̃� ≤ 1−P�A1 ∩A2�

≤ 1−P�A1� + 1−P�A2� ��1�
(2.9)

Indeed, 1−P�A1� ≤NP�X1 > aw� ≤ 2w2P�X1 > aw� and

1−P
{
A2

} ≤ P
{
Z > c1

2

}
+P

{
Y2

N
>
c1
2

}
≤ cEZ3/2 + c

N
EY2 � µ�

In the last step we used the inequalities

EY2 ≤ c� EZ3/2 ≤ cµ(2.10)

and N−1/2 ≤ w−1 ≤ µ. To prove (2.10) we combine Hoeffding’s (1963) Theo-
rem 4 and the Marcinkiewicz–Zygmund inequality. It follows from (2.9) and
(2.7) that

δN − �S̃ ��1�(2.11)

Decompose S̃ = S + R1 + R2, where R1 = g�1 + qZ�EY and R2 = S̃ −
Yg�1+ qZ� satisfy

R1 ≤NEY1�1+ c1� ≤ 4α and R2 ≤ cY3N−1�

by the mean value theorem. Fix ε = 5α+N−1/2 and note that

P�S− S̃ ≥ ε� ≤ P�R2 ≥N−1/2� ≤N−1/2EY3 �N−1/2 ≤ µ�(2.12)

Here we used the inequality EY3 ≤ c, which is proved in much the same
way as (2.10). Finally, (2.6) applied to S̃ and S in combination with (2.12) and
the simple bound maxx �′�x� ≤ c implies �S̃ ≤ �S + cα+ cµ. This inequality
together with (2.11) yields (2.8), for p ≤ q.

Let us prove (2.8) in the case where p > q. We may and shall assume that
2γ < c1/2. Otherwise, (2.8) follows from the inequalities δN ≤ 1� γ.

It follows from the identities
∑n
i=1Xi = 0 and

∑n
i=1X

2
i = nσ2 that

X = −X′

N
� σ̂2 = σ2

p
− 1
N

n∑
i=N+1

X2
i −

�X′�2
N2

where X′ =
n∑

i=N+1

Xi�

Therefore, on the event A3 = ��XN+1� � � � �Xn� = aw�YN+1� � � � �Yn�� we have√
N/qt��� = −Y′�1− qZ′ +R3�−1/2 where R3 = γ/p− qN−1�Y′�2�

Furthermore, on the event A4 = �qZ′ + �Y′�2/N ≤ c1/2� we have −Y′�1 −
qZ′ −R3�−1/2 = S̃′, where S̃′ = −Y′g�1 − qZ′ +R3�. Hence,

√
N/qt��� = S̃′

on the event A3 ∩A4. It is easy to show [cf. (2.9)] that 1−P�A3 ∩A4� ��1.
Therefore, by (2.7), δN − �S̃′  ��1. The remaining part of the proof is much
the same as that of the case where p ≤ q. ✷
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Proof of Theorem 2.1. By Lemma 2.1, it suffices to show �S�p≤q � �
and �S′ �p>q � �. We give the proof of the first inequality only. The proof of
the second inequality is much the same.

We shall assume that p ≤ 1/2 ≤ q in what follows and show that �S ��.
We may and shall assume that for a small constant c2,

α < c2� µ < c2�(2.13)

Indeed, if at least one of these inequalities fails we obtain �S ≤ 1��.
Denote

ϕ�t� = E e�tS�� ψ�t� = E e�t�Y−EY���
φr�t� = exp�−t2r2/2�� r > 0�

Given two complex valued functions f and h, write

I�d� e��f�h� =
∫
t∈�d� e�

t−1f�t� − h�t�dt� e > d ≥ 0�

The Berry–Esseen smoothing inequality [see Feller (1971), page 538] yields

�S � I�0�H��ϕ�φ1� +H−1� H = c3b2µ−1
0 �(2.14)

Here we denote

b2 = w2E�Y1 −EY1�2 = 1− α2w−2� µ0 = w2EY1 −EY13�
The (small) constant c3 will be specified later. Since µ0 � µ and, by (2.13),
b−2 ≤ c, we have H−1 ��. It remains to show I�0�H��ϕ�φ1� ��. Write

I�0�H��ϕ�φ1� ≤ I�0�H��ϕ�ψ� + I�0�H��ψ�φb� + I�0�H��φb�φ1��

Clearly, I�0�H��φb�φ1� � �1 − b2� � �, by (2.13). It follows from Höglund
[(1978), formula (8)] that I�0�H��ψ�φb� � b−3µ0, provided that c3 is sufficiently
small. By (2.13), b−3µ0 � µ0 � µ. Therefore, it remains to bound I�0�H��ϕ�ψ�.
We split I�0�H��ϕ�ψ� = I�0� c4��ϕ�ψ�+I�c4�H��ϕ�ψ� and estimate the summands
separately.

Let us show

I�c4�H��ϕ�ψ� ���(2.15)

To this aim we represent the characteristic functions ϕ and ψ in Erdős–
Rényi (1959) form; see (2.16) below. Write

T=
n∑
i=1

Ti� Q =
n∑
i=1

Qi� S =
n∑
i=1

Si�

Ti=�Yi −EYi��νi − p�� Qi = qZi�νi − p�� Si = w−1�νi − p��
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We have

ϕ = λ
∫ πw
−πw

E e�tTg�1+Q� + sS�ds�

ψ = λ
∫ πw
−πw

E e�tT+ sS�ds�
(2.16)

with λ−1 = 2πwP�S = 0�. Höglund (1978) showed that 2−1/2π ≤ λ−1 ≤
�2π�1/2. Given a number L > 0 and a complex valued bivariate function f,
write f ≺ L if∫

�
t−1f�s� t�dsdt� L where � = ��s� t�: c4 ≤ t ≤H� s ≤ πw��

Given two complex valued functions f, h, write f ∼ h if f− h ≺�.
Introduce the integer valued function

m =m�s� t� ≈ 2−1c4nu
−1 lnu� u = t2 + s2� �s� t� ∈ ��(2.17)

A simple calculation shows that 10 ≤ m�s� t� ≤ n/2, for �s� t� ∈ �, provided
that c4 is sufficiently large. Write z �= mpqw−2 = m/n � u−1 lnu. We shall
often use the following fact. For α1� α2� α3� α4 ≥ 0 satisfying α3 + α4 > α1 +
α2 + 1/2,

�t2�α1�s2�α2zα3u−α4 ≺ c�α1� α2� α3� α4��
Denote

A =  m� B =  n \ m� g0 = g�1+QB�� g1 = g′�1+QB��
Split

T = TA +TB� Q = QA +QB�

TAQA = DA +UA� TBQB = DB +UB�
(2.18)

where we denote

DG =
∑
j∈G

TjQj� UG =
∑

i� j∈G� i�=j
TiQj� G ⊂  n�(2.19)

Introduce the random variables

vj=v∗j − 2−1tTjQj� v∗j = tTjg0 + sSj�
vAj= tTj + sSj� ṽj = tTj + sSj� 1 ≤ j ≤ n�

V=
n∑
j=1

vj� V∗ =
n∑
j=1

v∗j� VA =
n∑
j=1

vAj�

HG= EG e�VG�� H∗
G = EG e�V∗

G��
HA
G= EG e�VA

G�� G ⊂  n�
Several useful inequalities to be used below are collected in the next two
lemmas.
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Lemma 2.2. Assume that (2.13) holds. We have

Hµ� 1� H2E�Y1 −EY1�2 ≤ c23�(2.20)

EU2
A � z2µ� EUAQA � z3/2µ�(2.21)

ETBQ2
A3/4 � zµ� ETBQA3/2 � zµ�(2.22)

E
∣∣∣∣∑
j∈A

TjQ
2
j

∣∣∣∣
3/4

� zµ� E
∣∣∣∣∑
j∈A

TjQjQ
�j�
A

∣∣∣∣� z3/2µ3/2�(2.23)

For any G ⊂  n and i1� i2� i3 ∈  n \G, we have
E�i1� i2� i3�TGr � c� 0 < r ≤ 6�(2.24)

Lemma 2.3. Let G ⊂  n and G ≥ m/4. There exists a small constant
c∗ > 0 such that the inequality c1� c2� c3� c

−1
4 < c∗ implies

E�i� j�H2
G < u

−10� E�i� j��H∗
G�2 < u−10� E�i� j��HA

G�2 < u−10�(2.25)

E�i� j�HG < u
−5� E�i� j�H∗

G < u
−5� E�i� j�HA

G < u
−5�(2.26)

for any i� j ∈  \G. Furthermore,H∗
G ≤ ζ1/2

G � ζG =
∏
k∈G ζk, where ζk are given

by (3.7).

These lemmas are proved in Section 3. We shall assume that c1, c2, c3 and
c−1

4 are choosen small enough so that (2.25) and (2.26) hold.
In view of the inequality λ ≤ 21/2π−1, (2.15) follows from

f ∼ f∗ where f = E e�tTg�1+Q� + sS�� f∗ = E e�tT+ sS��(2.27)

Let us prove (2.27). The proof consists of the following steps:

f ∼ f1� f1 = E e�W1�� W1 = V∗ + tTQAg1�(2.28)

f1 ∼ f2� f2 = E e�W2 + tTBQAg1�� W2 = VA +V∗
B�(2.29)

f2 ∼ f3� f3 = E e�VA +V∗
B��(2.30)

f3 ∼ f4� f4 = E e�V∗��(2.31)

f4 ∼ f5� f5 = E e�VA
A +V∗

B��(2.32)

f5 ∼ f∗�(2.33)

Proof of (2.28). Expanding in powers of QA, we get g�1 + Q� = g0 +
QAg1 + Q2

Ar, where r is a bounded function of QA, QB. Substituting this
expansion we obtain tTg�1+Q� + sS =W1 + tTQ2

Ar and therefore,

f− f1 ≤ E e�tTQ2
Ar� − 1�(2.34)

By (2.18), TQ2
A = R1 +R2 +R3, where R1 = TBQ2

A, R2 = UAQA and R3 =
DAQA. Split

R3 = R3�1 +R3�2� R3�1 =
∑
j∈A

TjQjQ
�j�
A � R3�2 =

∑
j∈A

TjQ
2
j�



BERRY–ESSEEN BOUND 2099

Now, applying the inequality

 e�x� − 1 ≤ 2xτ� 0 ≤ τ ≤ 1� x ∈ ��(2.35)

several times, with τ = 1 and τ = 3/4, we get from (2.34),

f− f1� t�ER2 +ER3�1� + t3/4�ER13/4 +ER3�23/4�
� t�z3/2µ+ z3/2µ3/2� + t3/4zµ�

by Lemma 2.2. We obtain f− f1 ≺�, thus proving (2.28). ✷

Proof of (2.29). Write TQA = TBQA +DA +UA [see (2.18)] and expand
g1 = g′�1+QB� = −2−1 +QBr to get DAg1 = −2−1DA +DAQBr, where r is
a bounded function of QB. Now we have

W1 =W2 + tTBQAg1 +w1 +w2� w1 = tUAg1� w2 = tDAQBr�

First, we shall show f1 ∼ f6, where f6 = E e�W2+ tTBQAg1+w1�. By (2.35),
f1 − f6 � Ew2. Let us show Ew2 ≺�. By the symmetry,

Ew2 ≤mtET1Q1QB =mtET1Q1E�1�QB�(2.36)

Since νj −p, 1 ≤ j ≤ n, are independent centered random variables, we have

E�1�Q2
B =

∑
j∈B

E�1�Q2
j = BpqE�1�Z2

n�

by the symmetry. Furthermore, combining (2.5) and (2.4) we obtain E�1�Q2
B �

µ and, therefore, E�1�QB � µ1/2. Substituting this bound in (2.36) and es-
timating ET1Q1 � pqEY13 we obtain Ew2 � tzµ3/2 � t1/2zµ ≺ �.
In the last step we used the inequality tµ � 1, which holds for t ≤ H;
see (2.20).

Let us show f6 ∼ f2. Expanding the exponent in powers of iw1, we get

f6 = f2 + f7 +R� f7 = E e�W2 + tTBQAg1�iw1 with R � t2EU2
A�

By (2.21), R � t2z2µ ≺�. Therefore, f1 ∼ f2 + f7. Next we show

f7 ∼ f8� f8 = E e�W2�iw1�(2.37)

An application of (2.35) with τ = 3/4 gives

f7 − f8 � t7/4ETBQA3/4UA ≤ t7/4�ETBQA3/2�1/2�EU2
A�1/2�

by Cauchy–Schwarz. Invoking inequalities of Lemma 2.2, we obtain f7−f8 �
t7/4z3/2µ ≺� and thus (2.37) follows.

We complete the proof of (2.29) by showing f8 ≺�. By the symmetry,

f8 = it�m2 −m�f9� f9 = E e�W2�T1Q2g1�(2.38)

Recall that W2 = VA +V∗
B and write

f9 = E e�VA′′ +V∗
B� e�v1 + v2�T1Q2g1� A′′ = A \ �1�2��
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Expanding

e�v1 + v2�= �1+ v1r1� e�v2�
= e�v2� + v1r1�1+ v2r2�� rj = iEθj e�θjvj��

and using the fact that the conditional expectation of T1(respectively, Q2)
given all the random variables, but ν1(respectively, ν2) is zero, we obtain

f9 = E e�VA′′ +V∗
B�Rg1� R = T1Q2v1v2r1r2�

Since g1 ≤ c we can write

f9 � ERHA′′ � ER̃E�1�2�HA′′� R̃ = T1Q2ṽ1ṽ2�

Combining the inequality E�1�2�HA′′ < u−5 (see Lemma 2.3) and the sim-
ple bound ER̃ � p2q2w−4uµ, we obtain f9 � n−2u−4µ. Substituting this
inequality in (2.38) we get f8 ≺�, thus completing the proof of (2.29). ✷

Proof of (2.30). Split A = A1 ∪A2 ∪A3 so that Ai ∩Aj = �, for i �= j,
and Aj ≈m/3 and j ∈ Aj, for j = 1�2�3. Write

tTBQAg1 = w1 +w2 +w3� wj = tTBQAj
g1� j = 1�2�3

and denote W3 =W2 +w2 +w3. First, we show

f2 ∼ f10 + f11� f10 = E e�W3�� f11 = E e�W3�iw1�(2.39)

Expanding the exponent in f2 = E e�W3 +w1� in powers of iw1, we obtain

f2 = f10 + f11 + f12� f12 = E e�W3�w2
1r1�

where r1 is a bounded function of w1.
Let us show f12 ≺�. Expanding

e�w2 +w3� = �1+w2r2� e�w3� = e�w3� +w2r2�1+w3r3��
where rj is a bounded function of wj, for j = 2�3, we obtain

f12=f12�1 + f12�2 + f12�3� f12�1 = E e�W2 +w3�w2
1r1�

f12�2=E e�W2�w2
1w2r1r2� f12�3 = E e�W2�w2

1w2w3r1r2r3�

We shall show that f12�j ≺�, for j = 1�2�3. Clearly,

f12�1 � EHA2
w2

1� f12�2 � EHA3
w2

1w2� f12�3 � Ew2
1w2w3�

Using the symmetry and the fact that conditionally, given �∗, the random
variables Qj, j ∈  n are uncorrelated, we construct bounds for f12�j, j =
1�2�3. We have

f12�3 ≤ t4ET4
BQ

2
A1
QA2

QA3
 = t4A1ET4

BQ
2
1QA2

QA3
 ≤ t4m3ET4

BQ
2
1Q2Q3�
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Combining the bound E�1�2�3�T4
B ≤ c [see (2.24)] and the inequalities

EQ2
1Q2Q3 � p3q3EZ2

1Z2Z3 � p3q3�EZ13/2��EZ2��EZ3� � p3q3w−6µ

[here we use (2.4) and (2.5)] we obtain f12�3 � t4z3µ ≺�. Similarly,

f12�2 � t3m2EHA3
TB3Q2

1Q2
� t3m2p2q2EZ2

1Z2E�1�2�HA3
TB3�

(2.40)

By Hölder’s inequality, (2.25) and (2.24),

E�1�2�HA3
TB3 ≤ �E�1�2�H2

A3
�1/2�E�1�2�T6

B�1/2 � u−5�(2.41)

Substituting (2.41) in (2.40) and then using the inequalities

EZ2
1Z2 � EZ2

1EZ2 � w−4µ�

[here we apply (2.5) and (2.4)] we obtain f12�2 � t3u−5µ ≺�. Finally,

f12�1 � t2A1EHA3
T2
BQ

2
1 � t2mpqEZ2

1E
�1�HA3

T2
B�

Combining the inequalities E�1�HA3
T2
B � u−5 [cf. (2.41)] and EZ2

1 � w−2µ

[see (2.4)] we obtain f12�1 � t2u−5zµ ≺�, thus completing the proof of (2.39).
Let us show

f11 ≺ � where

f11 = E e�W3�iw1�

W3 = VA +V∗
B +w2 +w3�

(2.42)

By the symmetry, f11 = itA1E e�W3�TBg1Q1. Expanding the exponent in
powers iv1 and using the fact that the conditional expectation of Q1 given all
the random variables but ν1 is zero, we get

f11 = i2tA1E e�VA′ +V∗
B +w2 +w3�TBg1Q1v1r1� A′ = A \ �1��

where r1 is a bounded function of v1. Clearly,

f11 � tmEQ1v1TBHA′1 � tmEQ1ṽ1E�1�TBHA′1� A′1 = A1 \ �1��

Combining the inequality E�1�HA′1 TB � u−5 [cf. (2.41)] and the simple bound
EQ1ṽ1 � pq�t + s�w−2µ we obtain f11 � �t + s�u−5µ ≺ µ, thus prov-
ing (2.42).

Let us show f10 ∼ f3. Write w4 �= w2 +w3. We have W3 = VA +V∗
B +w4.

Expanding the exponent in f10 in powers of iw4, we obtain

f10 = f3+f13+f14� f13 = E e�VA+V∗
B�iw4� f14 = E e�VA+V∗

B�w2
4r�

where r is a bounded function of w4.The proof of f13 ≺� (respectively, f14 ≺
�) is much the same as that of f11 ≺ � (respectively, f12�1 ≺ �) above.
Therefore, f10 ∼ f3. Now, invoking (2.39) and (2.42), we obtain (2.30). ✷
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Proof of (2.31). Split A = A1 ∪A2 so that

A1 ∩A2 = � and Aj ≈m/2 and j ∈ Aj for j = 1�2�(2.43)

Write DA = DA1
+DA2

[see (2.19)] and denote wj = −tDAj
2−1, for j = 1�2.

We have f3 = E e�V∗ + w1 + w2�. Expanding the exponent in powers of iw1
and iw2 we get

f3 = f4 + f15 + f16� f15 = E e�V∗�w1r1� f16 = E e�V∗ +w1�w2r2�

where rj is a bounded function of wj, j = 1�2. By the symmetry,

f15 � tEDA1
H∗

A2
≤ tA1ET1Q1H∗

A2
�

Similarly, f16 ≤ tA2ET2Q2HA1
. Combining the inequalities E�1�H∗

A2
�

u−5 and E�2�HA1
� u−5 [see Lemma 2.3] and the simple bound ETiQi �

pqw−2µ, we obtain f15 ≺�, and f16 ≺�, thus proving (2.31). ✷

Proof of (2.32). Split V∗ = V∗
A +V∗

B and V∗
A = V∗

A1
+V∗

A2
, where A1 ∪

A2 = A satisfy (2.43). In order to prove (2.32) we shall show

f4 ∼ f17� f17 = E e�W4�� W4 = VA
A1
+V∗

A2∪B(2.44)

and f17 ∼ f5.
Let us prove (2.44). Expanding g0 = g�1+QB� = 1−QB/2+Q2

Br we get

V∗
A1
= VA

A1
+w1 +w2 with w1 = −tTA1

QB/2� w2 = tTA1
Q2
Br�

where r is a bounded function of QB. Furthermore, expanding the exponent
in f4 = E e�W4 +w1 +w2� and in powers of iw2 and iw1 to obtain

f4=f17 + f18 + f19 + f20� f18 = E e�W4�iw1�

f19=E e�W4�iw2
1r1� f20 = E e�W4 +w1�iw2r2�

where rj is a bounded function of wj, j = 1�2.
To show f19 ≺ � we use symmetry, and the fact that conditionally, given

all the random variables but νi, i ∈ B, the random variables Qi, i ∈ B are
uncorrelated,

f19 � t2EQ2
BT

2
A1
H∗
A2
≤ t2BpqEZ2

nT
2
A1
ζ

1/2
A2
�

Combining the bounds EZ2
n � w−2µ and E�n�T2

A1
ζ

1/2
A2
� u−5 [cf. (2.41), (3.8),

(3.9)] we obtain f19 ≺�.The proof of f20 ≺� is much the same.
Let us show f18 ≺�. By the symmetry,

f18 = −2−1itA1BE e�W4�T1Qn�

Write VA
A1
= VA

A′1
+ vA1, where A′1 = A1 \ �1� and V∗

A2∪B = V∗
A2∪B′ + v∗n, where

B′ = B \ �n�. Expanding g0 = g�1 +QB′ +Qn� = g�1 +QB′ � +Qnrn, we get
V∗
A2∪B′ =W5 +w3, where

W5 = tTA2∪B′g�1+QB′ � + sSA2∪B′ and w3 = v∗n + tTA2∪B′Qnrn�
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Here rn is a bounded function of Qn. We have W4 = VA
A′1
+W5 + vA1 +w3 and

therefore,

f18 = −2−1itA1BE e�VA
A′1
+W5 + vA1 +w3�T1Qn�

Expanding the exponent in powers of ivA1 and then in powers of iw3 and using
the fact that the conditional expectation of T1 (respectively, Qn) given all the
random variables, but ν1 (respectively, νn) is zero, we get

f18 = 2−1itA1BE e�VA
A′1
+W5�T1v

A
1Qnw3r3�

where r3 is a bounded function of vA1 and w3. Clearly,

f18 � tA1BET1v
A
1QnHA

A′1
�1+ TA2UB

′ ��ṽn + tQn��
Combining the bound E�1� n��1 + TA2UB

′ �HA
A′1
� u−5 [see (2.41)] and the

simple inequality

ET1v
A
1Qn �ṽn + tQn� � p2q2uw−4µ

we obtain f18 ≺ �, thus completing the proof of (2.44). The proof of f17 ∼ f5
is much the same. We arrive at (2.32). ✷

Proof of (2.33). Expanding

g0 = g�1+QB� = 1+QBg2�QB�� g2�QB� = Eθ1
g′�1+ θ1QB��

we obtain V∗
B = VA

B + tTBQBg2�QB�. Split TBQB = UB +DB and write

V∗
B = VA

B +w1 +w2� w1 = tUBg2�QB�� w2 = tDBg2�QB��
We have f5 = E e�VA +w1 +w2�. Expanding in powers of iw1 and iw2 we get

f5=f∗ + f21 + f22 + f23� f21 = E e�VA�iw1�

f22=E e�VA�w2
1r1� f23 = E e�VA +w1�w2r2�

where rj is a bounded function of wj, j = 1�2.
Let us show f22 ≺ � and f23 ≺ �. Using the fact that given �∗, the

random variables Ti1Qj1
and Ti2Qj2

, for i1 �= j1, i2 �= j2, are conditionally
uncorrelated unless the sets �i1� j1� and �i2� j2� coincide, we get

EBU
2
B =

∑
i� j∈B� i�=j

EBZ̃i� j� Z̃i� j = T2
iQ

2
j +TiQjTjQi�(2.45)

Therefore, by the symmetry,

f22 � t2EU2
BH

A
A = t2�B2 − B�EZ̃n�n−1H

A
A�

Furthermore,

f23 � tEDBHA
A ≤ tBETnQnHA

A�

Combining the bound E�1�2�HA
A < u−5 [see (2.26)] and the inequalities

ETnQn � pqw−2µ and EZ̃ � p2q2w−4µ, we obtain f22 � tu−5µ ≺ �
and f23 � t2u−5µ ≺�.
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We complete the proof of (2.33) by showing f21 ≺�. By the symmetry,

f21 = �B2 − B�itf24� f24 = E e�VA�TnQn−1g2�QB��(2.46)

Write QB = QB′ +Qn, B′ = B \ �n�. Expanding g2 in powers of Qn we get

f24 = f25 +R1� f25 = E e�VA�TnQn−1g2�QB′ ��
R1 � ETnQnQn−1HA

A�

Combining (2.26) and the simple bound ETnQnQn−1 � p2q2w−4µ, we obtain
R1 � n−2u−5µ.

Expanding the exponent in powers of vAn and using the fact that the con-
ditional expectation of Tn given all the random variables, but νn is zero, we
obtain

f25 = f26� f26 = E e�VA
 n−1

�TnQn−1g2�QB′ �vAnrAn�
where rAn is a bounded function of vAn.

Write B′′ = B′ \ �n− 1�. Expanding g2 in powers of Qn−1 we obtain f26 =
f27 + R2, where f27 is defined in the same way as f26, but with g2�QB′ �
replaced by g2�QB′′ � and

R2 � ETnvAnQ2
n−1H

A
A � u−5�t + s�n−2µ�

In the last inequality we apply (2.26) and the simple bound ETnvAnQ2
n−1 �

�t + s�p2q2w−4µ.
Finally, expanding the exponent in f27 in powers of vAn−1 and using the fact

that the conditional expectation of Qn−1 given all the random variables but
νn−1 is zero, we obtain

f27 � ETnvAnQn−1v
A
n−1HA

A � �t + s�2u−5n−2µ�(2.47)

by (2.26) and the simple bound ETnvAnQn−1v
A
n−1 � �t + s�2p2q2w−4µ.

It follows from (2.47) and the bounds for R1, R2 that f24 � u−4n−2µ. Now,
by (2.46), f21 ≺�, we obtain (2.33) and thus complete the proof of (2.27).

We arrive at (2.15). The proof of the inequality I�0� c4� �� is similar to the
proof of (2.15), but simpler. We have I�0�H� � � and this completes the proof
of the theorem. ✷

3. Auxiliary inequalities. Denote, for brevity, YAj = Yj − EYj, 1 ≤
j ≤ n.

Proof of Lemma 2.2. Let us prove (2.20). It follows from the inequalities
EY13 ≤ 4EYA13 + 4EY13 and EYA13 ≥ �EYA12�3/2 = w−3b3 that µ ≤ 4µ0 +
4w−4α3 and µ0 ≥ w−1b3. Therefore, µ−1

0 µ ≤ 4 + 4w−3b−3α3 and µ−2
0 EYA12 ≤

b−4. Finally, by (2.13),

Hµ = c3b2µ−1
0 µ ≤ c and H2EYA12 = c23b4µ−2

0 EYA12 ≤ c23�
Let us prove (2.21). We have [see (2.45)]

EU2
A = �A2 − A�E�T2

1Q
2
2 +T1Q2T2Q1��(3.1)
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Combining the bounds

E�YAi�2 � w−2� EZ2
i � EZi3/2 � w−2µ� EYAiZi � w−2µ(3.2)

and (2.5) we obtain

ET2
1Q

2
2 = p2q4E�YA1�2Z2

2 � n−2µ�

ET1Q2T2Q1 = p2q4EYA1Z1Y
A
2Z2 � n−2µ2�

These inequalities in combination with (3.1) and (2.13) give EU2
A � z2µ.

The second inequality in (2.21) follows from EU2
A � z2µ and EQ2

A � zµ,
by Cauchy–Schwarz. To prove EQ2

A � zµ we use the identity EAQ
2
A =∑

i∈AEAQ
2
i , the symmetry and (3.2),

EQ2
A = E�EAQ2

A� = AEQ2
1 =mpq3EZ2

1 �mpqw−2µ = zµ�(3.3)

Let us prove (2.22). An application of Marcinkiewicz–Zygmund inequality con-
ditionally given all the random variables, but νi, i ∈ A, gives EAQA3/2 �∑
i∈AEAQi3/2. Therefore, by the symmetry,

ETB3/4QA3/2 � AEQ13/2TB3/4 �mpqEZ13/2E�1�TB3/4�
Finally, combining (2.24) and (3.2), we obtain the first inequality of (2.22). The
proof of the second one is much the same.

Let us prove (2.23). By the symmetry and (3.2),

E
∣∣∣∣∑
j∈A

TjQ
2
j

∣∣∣∣
3/4

≤mET1Q
2
1

∣∣3/4�mpqEZ1

∣∣3/2 � zµ�

E
∣∣∣∣∑
j∈A

TjQjQ
�j�
A

∣∣∣∣ ≤mET1Q1Q�1�
A  =mpq2EYA1Z1E�1�Q�1�

A  � z3/2µ3/2�

In the last step we used the bound E�1�Q�1�
A  � z1/2µ1/2, which follows from

E�1��Q�1�
A �2 � zµ [cf. (3.3)] by Cauchy–Schwarz.

It remains to prove (2.24). The proof for r = 6 is straightforward. Us-
ing (2.24), with r = 6 and Lyapunov’s inequality, we obtain (2.24) for 0 <
r < 6. ✷

Proof of Lemma 2.3. Inequalities (2.26) follow from (2.25), by
Cauchy–Schwarz. Let us prove (2.25). We shall prove the first inequality only.
The proof of the remaining two inequalities is similar, but simpler. Write

H2
G ≤

∏
k∈G

ξk� ξk = E�k� e�vk�2�(3.4)

We shall majorize ξk by a random variable, say ζk, which is a function of Xk,
and apply Hoeffding [(1963), Theorem 4] to the expectation of the product of
ζk, k ∈ G.
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Since ν2
k = νk, we can write �νk − p�2 = νk − 2νkp+ p2. Therefore,

TkQk = �νk−p�2YAkqZk = �νk−p��1−2p�YAkqZk+r� r = �p−p2�YAkqZk�
and we write

vk = �νk−p�bk− 2−1tr� bk = takYAk+ sw−1 ak = g0− 2−1�1− 2p�qZk�
Since r does not depend on νk, we have

ξk ≤ β�bk�2 where β�x� = E e�x�ν1 − p��� x ∈ ��

Höglund (1978) showed that, for any z0 ∈ �0� π� and z satisfying z ≤ π + z0,

β�z�2 ≤ 1− pq�z�2F�z0�� F�z0� =
(

2
π

π − z0

π + z0

)2

�

We apply this inequality to those bk satisfying akYAk ≤H−1. We have bk ≤
π + 1 and therefore ξk ≤ 1 − pqb2

kF�1�. Combining this inequality with the
obvious bound ξk ≤ 1, k = 1�2� � � � � n, we obtain

ξk ≤ 1− pqb2
kF�1��k� �k = �HakYAk≤1� 1 ≤ k ≤ n�(3.5)

Write bAk = tYAk + sw−1. The simple inequality �x+ y�2 ≥ x2/2− y2 gives

b2
k ≥ �bAk�2/2− �bk − bAk�2 ≥ �bAk�2/2− d2

k� dk = tYAk�c1 + Zk��(3.6)

Here we estimated bk − bAk ≤ dk, using g0 − 1 ≤ c1. Furthermore, since
Zk ≤ 2 and g0 ≤ 1 + c1 ≤ 2, we have ak ≤ 3, and therefore �k ≥ �Ak �=
�3HYAk≤1. This inequality in combination with (3.6) and (3.5) gives

ξk ≤ ζk� ζk = 1− 2−1pq
(�bAk�2 − 2d2

k

)
F�1��Ak� 1 ≤ j ≤ n�(3.7)

Assume without loss of generality that 1 ∈ G. By Hoeffding [(1963), Theo-
rem 4],

E�i� j�
∏
k∈G

ζk ≤
∏
k∈G

E�i� j�ζk =
(
E�i� j�ζ1

)G
�(3.8)

In the last step we used the symmetry. Next we show that, for some c5 > 0,

E�i� j�ζ1 < 1− c5n−1u� u = t2 + s2�(3.9)

Note that by (3.9) and (2.17), the right-hand side of (3.8) is less than

�1− c5n−1u�m/4 ≤ exp
{
− c5

4
m

n
u

}
≤ exp

{
− 1

8
c5c4 lnu

}
< u−10�

provided that the constant c4 in the definition of m is sufficiently large. This
bound in combination with (3.7) and (3.4) implies E�i� j�H2

G < u
−10.

In order to prove (3.9) we show that

I1 �= E�i� j��bA1�2�A1 ≥ 2−1uw−2 and E�i� j�d2
1 ≤ t28−1w−2�(3.10)
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The second inequality follows from the crude bound Ed2
1 ≤ 32t2w−2�c21 + µ�

and (2.13), provided that c1 and c2 are sufficiently small. To prove the first
inequality, write

I1=
n

n− 2
I2 −

1
n− 2

I3� I2 = E�bA1�2�A1� I3 = �bAi�2�Ai + �bAj�2�Aj�

I2=I4 − I5� I4 = E�bA1�2 = uw−2 − t2w−4α2� I5 = E�bA1�2�3HYA1>1�

Now it is easy so see that the first inequality of (3.10) follows from

I3 ≤ 20−1u�pq�−1� I5 ≤ 20−1uw−2(3.11)

and the inequality t2w−4α2 ≤ t2w−4c22, provided that c2 is sufficiently small.
Let us prove the bound for I3. It follows from the inequalities

�bAk�2 ≤ 2t2�YAk�2 + 2s2w−2�

�YAi�2 + �YAj�2 ≤ 21/3(YAi 3 + YAj3)2/3
≤ 21/3�nEYA13�2/3 ≤ 8

(
µ

pq

)2/3
(3.12)

that I3 ≤ 16u�µ2/3�pq�−2/3 + w−2�. This bound in combination with (2.13)
yields the first inequality of (3.11) provided that c2 is sufficiently small.

To prove the bound (3.11) for I5, we combine (3.12) and Chebyshev’s in-
equality,

I5 ≤ 2
t2

w2
I6 + 2

s2

w2
I7� I6 = w2E�YA1�23HYA1� I7 = E3HYA12�

By the definition of H [see (2.14)] I6 = 3c3b2 ≤ 3c3. By (2.20), I7 ≤ 9c23.
Choosing c3 small enough, we obtain the second inequality of (3.11), thus
completing the proof of the lemma. ✷
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