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LOCALLY CONTRACTIVE ITERATED FUNCTION SYSTEMS

BY DAVID STEINSALTZ

University of California, Berkeley

An iterated function system on 2° C R¢ is defined by successively ap-
plying an i.i.d. sequence of random Lipschitz functions from 2" to 2°. This
paper shows how F, = f1o0---0 f, may converge even in the absence of
the strong contraction conditions, for instance, Lipschitz constant smaller
than 1 on average, which earlier work has required. Instead, it is posited
that there be a region of contraction which compensates for the noncon-
tractive or even expansive part of the functions. Applications to queues, to
self-modifying random walks and to random logistic maps are given.

1. Introduction. Let (2, p) be a metric space, and -# the set of maps
from 2" to itself. An iterated function system is defined by a probability mea-
sure v on J# with respect to a o-algebra . which makes the map (x, ) — f(x)
measurable. (The space 2" is outfitted with the Borel o-algebra.) This allows
us to speak of an i.i.d. sequence [, fo, ... of #-valued random variables with
distribution v, from which arise two distinct compositions,

Fo(x)=f10fyo--ofy(x) and F(x)=f,0f, 10 0fi(x).

An important observation is that when X is an 2"-valued random variable

independent of the sequence (f;), the sequence of iterates X, = ﬁn(X 0)is a
Markov chain. The system F, (X)), though, is a very different sort of object.

The distinction is not seen for any fixed n, of course: F,(x) and ﬁn(x) have
the same distribution for any x and any n. But the process F,(x) is not a
Markov chain and in many circumstances tends to converge pointwise. This
coupling between two dissimilar processes which nonetheless have the same
marginal distributions has proved fruitful in several contexts. In particular,
since most Markov chains may be represented as iterated function systems
(cf. Chapter 1 of [10]), the reverse sequence gives an alternative window into
the Markov chain. Applied to finite state spaces 27, this is the crux of the
exciting new method known as “coupling from the past,” introduced by Propp
and Wilson, for simulating the stationary distribution of a Markov chain (see
[14] and references therein).

The fundamental idea there is to follow the sequence F, (x) until it reaches
its limit point; when £ is finite, this means that the sequence becomes fixed.
The inference then is thatNthe distribution of this limit point is exactly the
stationary distribution for F',,. Intuitively, this is clear: if X = lim,_,  F',(x),
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and f is chosen independent of F, from the distribution v, then

[(Xoo) =a F(F1(Fal---(x)--)) =a [1(F2(F5(---(2)--)))s

simply by renumbering. The following theorem is due to Letac [11].

If the distribution v is concentrated on continuous functions, and if F (x) =
lim,_, . F,(x) almost surely exists and is independent of x, then the distribu-
tion of X, = F . (x) is the unique stationary distribution for the Markov chain

F L(x), and it is attractive, in the sense that any compactly supported initial
distribution converges to it under the action of the Markov operator.

It is also straightforward to see that the pointwise rate of convergence of the
sequence F',(x) is an upper bound for the rate of convergence in distribution of
the Markov chain ﬁn(x). Here I use the Wasserstein metric, which is defined
for pq, uy probability measures on X as (cf. [19])

W(u1, ) = sup X 11(F) = pa(£)] = inf {E(p(Y, Z))}

Lip(f)= s

where Lip(f) is the Lipschitz constant

W)
L) = S )

b

and the infimum is taken over random variables Y and Z defined on any com-
mon probability space such that Y has marginal law p; and Z has marginal
law wq.

This fact motivates the following definition.

DEFINITION 1. The random variable F(x) is defined to be lim,_, . F,(x)
if this exists. On the event where the limit is independent of x, it will be
denoted X, and it will be said that X  exists. An iterated function system
is attractive if X, almost surely exists and is finite.

(The substance of this definition is due to G. Letac, though he called the prop-
erty contractive.) The problem then offers itself, how to determine whether
a given system is attractive. A simple but significant lemma which is often
applied to this end (cf. [4]) is the following.

LEMMA 1. A sufficient condition for F_(x) to exist and be finite almost
surely is that

[ee]

> P(F (), Fpya(x))

n=1

be almost surely finite.
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Most immediate is the case, first addressed by Hutchinson [8], in which the
distribution » is concentrated on finitely many contractions, in the sense that
there is a positive constant r < 1 such that for all f in the support of v,

(1) p(f(x), f(9))= rp(x, y)-
This may be generalized without difficulty to the following definition.

DEFINITION 2. An iterated function system is strongly contractive if
E log Lipf < 0.

The following result is then fairly immediate.

PROPOSITION 1. If the system defined by v is strongly contractive and if
there exists 8 > 0 such that

E[log"** p(f(x), x)] < oo,

then the system is attractive.

The proof differs only in minor technical points from the one in Hutchinson’s
paper. Fundamentally, it follows from the observation that strong contractivity
makes Lip(F,) < cr"” almost surely for n sufficiently large, so Y ., Lip(F,,)
is almost surely finite. Because I do not assume here that the random func-
tions are all contractions, I lose Hutchinson’s conclusion that the limit point
is concentrated on a compact set (which is the unique invariant set of the
contractions), but it is still true that the random function induces a strict
contraction on compactly supported measures (in the Wasserstein metric).

Barnsley and Elton [4] have extended these results to cases in which the
functions T'; are not contractions, but in which they are contractive on the
average between any two points.

DEFINITION 3. An iterated function system is average contractive if for
some positive g,

q
@) SupEKM) } -1
xFy p(x7 y)
We have then the following result due to [4].
PROPOSITION 2. If the system defined by v is average contractive, and if for

some positive q,
E[p(f(x), x)"] < oo,
then the system is attractive.
(The definition of average contractivity given by Barnsley and Elton is ap-

parently a weaker condition, involving as it does only the expectation of the
logarithm, rather than any qth power. It should be observed, though, that they
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assume v to be supported on finitely many functions, and then show that this,
together with the logarithmic bound, implies the condition defined here.) As
in Hutchinson’s setting, the convergence in distribution results from a strict
contraction on compactly supported probability measures. Barnsley and El-
ton point out, in addition, that the condition of average contractivity may be
replaced by this slightly weaker condition.

DEFINITION 4. An iterated function system is eventually average contrac-
tive if for some positive g,

® fim sup| (PER D) ] 1

Arnold and Crauel [2] have further extended and varied these results, iden-
tifying the existence of (possibly nonattractive) invariant measures with the
sign of the Lyapunov exponents in the case that v is supported on finitely
many affine maps.

In an earlier paper [16], I analyzed one specific example of an iterated
function system which does not seem to fit into any of the above categories.
In considering the self-modifying random walk which I called “Zeno’s walk,”
I was led to redefine the walk as X, = F,(0), where F,, = f1o0f90...0f,
and (f;) are chosen independently, with probability p and 1 — p, respectively,
from the two piecewise linear functions f* and f~, shown in Figure 1:

x+1, ifx>0,
FH(x) = g+L if0>x>-2,
x+2, if-2>x;

4
) x—1, ifx=<0,
f(x) = g—L ifo<x<2, .

x—2, if2<x

Let P, = %(X,), the law of X, = F,(0). Observe that Lip(f;), hence
Lip(F,) as well, is always 1, so v, cannot be strongly contractive; nor is the
condition for average contractivity satisfied, except in the range [—2, 2]. For

any x,y > 2, fT(x) = f(y)=f"(x) - f(y)=x—y.
The earlier paper included the following results:
12
5) The system defined by v, is attractive iff p € (5, §>,

W(P,, P.)<E|X, — X | <c,r", where c, is a constant and

1/3
S (27p<1—p><pv(1—p>>) :
p 4 >

(7 supp(P,) = R.

(6)
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Fic. 1.

(To be sure, the language and the focus of that paper were rather different.)
I also computed P_, explicitly, and gave its Hausdorff dimension, which is
always smaller than 0.96. As in the case of average and strong contractivity,
the measures still converge at a geometric rate. On the other hand, the action
of the random function is not a contraction on compactly supported probabili-
ties. For instance, 8, (the unit point mass at 2) is mapped to pds + (1 — p)éy,
while 65 is mapped to pdy + (1 — p)d;. The Wasserstein distance is 1 after
the transformation, as before. And yet, while average contractive everywhere,
the system does have a region which contracts. Thus, while the iterated func-
tion F, will always have infinite tails with slope 1, viewed within any finite
window the function really will be seen to flatten out.

A problem of a similar flavor arises in an article by Letac and Chamayou
[5]. Among their multitude of stationary distributions for particular iterated
function systems appear several whose attractivity seems doubtful; they are
certainly not strongly, or even average contractive. They may, however, be
locally contractive, and in Section 7.4 I address one of these examples, the
randomized logistic mappings

£y(x) = 4yx(1 - x)

for x € 2° = [0,1] and y chosen from a B,/ 4_1/2 distribution on [0, 1].
There I show that the system is indeed attractive, at least for a > 2.
This motivates the following definition:

DEFINITION 5. An iterated function system is locally contractive if there
exists a drift function ¢: 2" — [1,00) and r € (0, 1) such that

where D, f = limsup,_,, p(f(x), f(y))/p(x, y) is the local Lipschitz constant
at x.
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This definition is valuable because, on the one hand it can easily be shown
to imply attractivity (Theorem 1), while on the other hand there are sufficient
conditions for local contractivity which are themselves often readily verified
(Theorem 2).

The three conditions for attractivity, Propositions 1 and 2 and Theorem 1,
in a sense trade globality against the strength of the moment conditions. To
make this clear, I will crudely interpret the conditions of strong and average
contractivity as

E[logsup Dxfi| <0
xe2’

and

supE[(D,f)?] <1 for some q > 0,

xeZ’
respectively. Average contractivity is a weaker condition because it moves the
supremum outside the expectation, but this seems to demand the compensa-
tion of a stronger moment condition: gth power instead of the logarithm. The
distance between x and f(x) also requires correspondingly stronger moments.

Moving on to local contractivity, the globality is weaker still. The slightly

stronger condition of Theorem 2 requires only that for some function ¢,

E[¢(/(x))D.f]
e TN

This allows considerably more local variation in the average behavior of D, f,
but this time at the cost of placing the condition on ¢! norms, instead of ¥4
for arbitrary positive q.

The drift function might be compared to a Lyapunov function, which serves
to prove the stability of deterministic and stochastic dynamical systems (cf.
[9]). In the context of Markov processes, a Lyapunov function is a function
¢ such that Z¢(x) < —cd(x), where L is the generator of the Markov pro-
cess and —c is a negative constant. For chains, the corresponding property
is E[¢(X 1) X,] < r¢(X,) where r < 1. This would be the same as 8 if
the factor D, f were removed. Similar drift conditions are used to prove the
geometric ergodicity of Markov chains (cf. [13]).

(8) 1.

2. Notation. In what follows, 2" will be a convex subset of R” and v a
probability concentrated on the set of Lipschitz functions from 2~ to itself.
Let 1, f9, ... be i.i.d. samples from the distribution », and define

Fo(x)i=fa(fal (Fu(®))):

Fo@)i=fFu(faca (- (1)),
Also define
(9) G, (x) =E[D,F,].
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When f; is invertible, let 7;(x) := f;(x) — .
For ¢: 2" — R* any measurable function I define, for x, y € 2,

(10) D(x;y) := sup {p(x +t(y — x))}.

0<t<1
I also define the growth rate of ¢ at x with respect to v to be
SN ]
d(x)
and the growth rate of ¢ with respect to v,

(11) r.i= E[

(12) ri=supr,.
xeZ’
Finally,
(13) C(d,v) = E[[If(x) — xl|P(x; f(x))]-

Where there is no risk of confusion, C,(¢, v) will simply be written as C,.
For real numbers x and y, (x; ) or [x; y] will represent the open or closed
interval with endpoints x and y, without regard for their order.

3. Local contractivity. I can now state the elementary results on local
contractivity. First, local contractivity plus a bound on the tails of f(x) (ex-
pressed in terms of C,) suffice to establish attractivity.

THEOREM 1. Ifvis locally contractive with drift function ¢, and if C (¢, v)
is finite for all x € &, then v is attractive. Furthermore, there is a bound on
the rate of convergence

C
(14 BIF,(0) - Pl = (12 4 - vl ) )™

—r
Second, a simple (sufficient) test for local contractivity is the following.

THEOREM 2. If ¢: 2" — [1, o0) is a continuous function whose growth rate
r with respect to v is smaller than 1, then the iterated function system defined
by v is locally contractive with drift function ¢.
PrOOF. Since Fy(x) = x, the relation
(15) G.(x) = (x)r"
is satisfied for n = 0 and any x € 2°. Now, by the chain rule
Gy1(2)=E[D(F, 0 fri1)]
<E[Dy,  yFuDsfni1]
<E[G,(fn11(2)) Defninl,
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where the last line makes use of independence. Given (15),
Gni1(x) < "E[¢(f(x))D.f]
S ]

é(x)
< r"+1q,'>(x).

Dxf]

By induction, the bound (15) holds for all natural numbers n and all x € 2".

PrOOF OF THEOREM 1. Local contractivity implies that for every natural
number i,

E|F;(x) = Fia(0)| =E|F;(x) = Fi(fi1(2)l
1
<8 [ = Fis)] ] Do P
< OSSI;ISIE[I|x ~ fina ()] Dx+t(fi+1(x)fx)Fii|
::,;:gE[”x ~ Fra®]Gi(x + HFia(x) - 2)]

< E[,«id)(x; fio(x)]x— f,.ﬂ(x)”]
=C.($)r'.
Then
o |rio) - Fato] = S

By assumption, this is finite for all x, which proves the almost-sure conver-
gence, by Lemma 1. Thus F(x) exists almost surely and
C
B|F,(x) — Fuul)] < Cu(d)
1-r
Similarly,
E|F,(x) = F,(y)| = "z = y[P(x; y).
from which attractivity and the conclusion (14) follow.
A case of special interest is the “parabolic” setting, where the Lipschitz

constant of f is equal to 1. (If it is strictly smaller, then strong contraction
applies.)

PROPOSITION 3. Suppose that Lip f < 1 almost surely, and that ||f(x) — x||
has subexponential tails uniformly in x, in the sense that there are positive
constants ky and ky such that for all x € 2" and all positive t,

(16) P{[|f(x) — x| > t} < by exp(—kst).
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Suppose too that there exists a critical radius R such that

a7 sup E[D,f] <1
flxl<R

and

(18) sup E|f(x)| < R.
[x|=R

Then the system is locally contractive, and

lim (E|F,(x) - X..J}) " < inf sup > E[exp(A(Jx] = 1)) ]

O x|=R

Proor. Iwill apply Theorem 2 with ¢(x) = exp{A| x|}, for A slightly larger
than 0. Then ®(x; ) = exp{A([lx] v [lyI))}-

Let p = R — sup|, g E|f(x)|. Observe that Lip f < 1 implies that for all
x such that | x|| > R,

IF@I =Nl < |£ ()| - B

|| "
By assumption (18),

sup E[|[f(x)| - |x[[] = sup E[[|f(x)| - R] < -p <0.

l=l=R lxl|l=R

Define
ro()) = E[exp (M| £ (0)]| = %) D ]

The object is to show that there exists some positive A such that sup,., 7,.(A)
< 1. Since D,f < 1, it is certainly true that r,(0) < 1 for all x in 2°. By
condition (17), r,(A) is uniformly less than 1 for |x| < R and A sufficiently
small. I need then only to show that the stated conditions make the derivative
of r,(A) at A = 0 negative for |x| > R and provide as well the necessary
uniformity in x.

The assumption of subexponential tails implies that r () is finite and
smooth for |A| < ky. Let A be the interval [—£k,/2, ky/2]. For A € A, the kth
derivative of r () (with respect to A) is

) = B[ (1l = 1) * exp(A( £ ()] = 1)) Dof .
Because of the subexponential tails,

¢y = sup [ri(A)]

xez”
AeA
and

¢ == supE[ (17 ()] — 21)*]

xeZ’
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are both finite. For all x,

7.0) — E[IF (o))l — I=1)| <E[11 = D1 [1F o)l - 1]
<¢(1-E[D,f])"*

by an application of the Cauchy—Schwarz inequality. For A € A,

(19) r.(A) < E[D, f]" E[exp{2A(| £ ()] - [lx])}]"*.

Alternatively, if | x|| > R, by Taylor’s formula,
Fe(D) = 14 7, (0 + ;27
<1+ (=p+cy(1 —E[D,f])*)A + 122,
Then for A > 0 sufficiently small,
sup{r,(A):|x| > R and E[D.f]>1-p?/2c5} <1.

On the other hand, where E[D, f] is smaller than 1 — p?/2c3, the right-hand
side of (19) is bounded away from 1. Putting these together with the earlier
bound for ||x| < R tells us that sup,., r,(A) < 1 for positive A sufficiently
small.

4. Inverse functions. In this and the following section it will be assumed
that 2° = R and that v is concentrated on nondecreasing functions. This will
be denoted the monotone context. For real-valued functions f, f’ will be taken
for definiteness to be the right-hand derivative, and the inverse will be de-
fined as f~1(x) = sup{y: f(y) < x}, where the supremum of the empty set is
assigned the value —co. [Extended real-valued functions will be composed by
the convention that f(co) =1lim,_, . f(x) and f(—o0) =lim, , o f(x). In the
monotone context these are well defined.]

In this setting it is possible to formulate an alternative condition for at-
tractivity which is slightly weaker than local contractivity and which has the
additional advantage of being necessary and sufficient.

LEMMA 2. Let F,:R — R be a sequence of monotone nondecreasing
functions. Then the statement that, for a given extended real number x.,
lim, . F,(x)= x4 for all x € R is equivalent to

20) tim Pl = {0 T

(The limit simply does not exist in general for y = x.,.)

Proor. I will give the proof for x, real; for x,, = +o00, only trivial modifi-
cations are required.
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Suppose lim,,_, ., F,(x) = x,, for all x € R. Then for any y > x., and any
real number x,, there exists N such that F,(x,) < y for all n > N. That
means that

F M (y) = sup{x: F,(x) < y} > x

for all n > N, so liminf, ., F,(y) > x,. Since x, was arbitrary, it follows
that lim,_, ., F;,1(y) = +oc. Similarly, lim,,_, ., F,1(y) = —oo for y < x..

Conversely, suppose that the limit condition (20) is satisfied for some x .
Then for any real number x, and any y > x, for n sufficiently large,

sup{x: F, (%) < y} = F;(3) > x.
By monotonicity, it follows that F,(x,) < y for n sufficiently large. Since y >

X Was arbitrary, limsup,_, . F,(x¢) < x. Similarly, liminf, F,(xq) >
X Thus the limit exists and is equal to x..

The advantage of this approach is that F;! = f-1o...0 f7! is a Markov
chain. This allows proofs of convergence using conventional transience crite-
ria, without demanding any special moment conditions. A bonus is that the
convergence criteria become necessary as well as sufficient in some special
cases.

DEFINITION 6. The event that lim,_, ., F;!(x) exists and is +o00 or —oo will
be described by saying that x has an infinite inverse limit. The infinite inverse
set is the set of x which have an infinite inverse limit almost surely.

PROPOSITION 4. In the monotone context, X ., exists almost surely if and
only if 27, the complement of the infinite inverse set, is countable. In this case,
the stationary distribution is given by

P{X, <t} = P{ lim F,(t) = +oo},
and 2" = {x:P{X, = x} > 0}.

REMARK. Attractivity includes the additional condition that the limit be
finite almost surely. Here this is equivalent to the condition that

lim P{ lim F;'(¢) = +oo} =1= lim P{ lim F;'(¢) = —oo}.
t—00 n— 00 t——00 n—o00

PrOOF. Choose any x in 2". By Lemma 2, the event that X exists and
is less than x is contained in the event that lim,_, ., F;(x) = +oo, and the
event that X exists and is greater than x is contained in the event that
lim,_, ., F,!(x) = —oc. This means that

{x does not have an iil.} c {X = x}U{X, does not exist}.

Suppose that X, exists almost surely. Then 27 is contained in the set of x
such that P{X = x} > 0, which must be countable.
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Suppose now that 27 is countable, and let 2’ be a countable subset of R\ 2"
which is dense in R. Except on a null event, y has an infinite inverse limit for
all y € %/; from here on we may pretend that this null event does not exist.
By monotonicity of F;!, the two random variables

inf{y € # s.t. lim F,’(y) = +oo} and sup{ye # st. lim F,'(y) = —o0}

are equal. Call this Y . If ¢ is any positive number, there exist y; and y, in
the infinite inverse set such that y; <Y _ < yy and |y; — y5| < &.

Choose any x € R. For n sufficiently large, F,1(y,) > x, which is equivalent
to saying that F,(x) < y,. Using the same argument for y;, and letting ¢ go
to 0, it follows that lim,_, ., F,(x) = Y .. Thus the limit of F',(x) exists almost
surely, and is equal to Y, independent of x.

COROLLARY 1. Suppose that Lip f < 1 almost surely, and v has no almost-
sure fixed points, that is, points x such that v{ f(x)= x} = 1. Then the monotone
system defined by v is attractive if and only if

(21) lim E[f Mx)—x]>0 and xliIPwE[f’l(x) —x] <0.

PROOF. Suppose condition (21) is satisfied and there are no almost-sure
fixed points. Define 7(x) = f~1(x) — x. The random function 7(x) is almost
surely cadlag and nondecreasing. The jump made by the Markov process FN’n(s)
at step n is precisely Tn(ﬁn,l(x)). The expectations Er(R) and —E7(—R) exist
and are positive for R sufficiently large.

We would like to see that for any starting point x, F,(x) eventually leaves
the interval [— R, R] almost surely. For each x in this interval, let

et(x):=supfe:v{r(x) = &} > &},
e (x):=sup{e:v{r(x) < —&} > &}.

Note that £ (x) is decreasing in x, while £ (x) is increasing. This means that
if for a given x & := max{e~(x), e (x)} is not zero, the probability that f;l(x)
leaves [— R, R] by time 2R /s + 1 is at least £2/¢*1, Consequently, the process
escapes almost surely if inf |, max{e~(x), "(x)} is positive. Suppose then
that this infimum is 0. Since ' and &~ cannot be simultaneously zero (on pain
of violating the no-fixed-points requirement), there must be a unique point x
such that lim,;, & (x) =0 and &"(x) =0 for x < x,. If F~;1(x) is ever below
Xo, then it moves only downward ever after, so it leaves [— R, R] eventually.
Escaping from [—R, R] is thus identical with escaping from [x,, R]. As long
as F;1(x) € [xo, R], there is a probability at least s(xq)25/*" (01 of escape
within the next 2R /e (x,)+ 1 steps, so the process does escape almost surely.

Let ny = min{n: |F;!(x)| > R}, and suppose without loss of generality that
F,jol(x) > R. Define random variables T, := > ; 7;(R). This is a sum of
i.i.d. random variables with positive expectation. By the strong law of large



1964 D. STEINSALTZ

numbers, lim, ., T, = +oco almost surely, and there is a positive probabil-
ity p that T, > 0 for all n. On the latter event, F;01+n(x) >R+T,, so
lim,_, ., F;'(x) = +oo. Thus, every time the Markov chain F;!(x) leaves
[—R, R], there is a probability at least p that it never returns, and that
lim,_, ., F,;(x) is 400 or —oo. It follows that x has an infinite inverse limit
almost surely. Since x was arbitrary, it follows by Proposition 4 that X  exists
almost surely.

It remains only to show that X is finite. However, in the above notation,

lim P{min T, < —t} =0,

t—o0 n>1

which implies that

hmp{mnF;%R+¢y=—w}=0
t—o0 n—o0o
Along with the corresponding statement for ¢ — —oo, this completes the “if”
part of the proof.

Suppose now that lim, ,  E7(x) < 0, which is the same as to say that
E7(x) < 0 for all x. The limit 7(c0) := lim,_, ., 7(x) exists, and by the monotone
convergence theorem it has finite, nonpositive expectation. Given a realization

of (f;),
F,‘ll(x) <x+ Xn: 7;(00).
i=1

Since the 7;(c0) are i.i.d. random variables with expectation less than or equal
to zero, this tells us that liminf,_,, F,1(x) = —oo for all x almost surely. But
this means that the system cannot be attractive, since this would require that
lim,_ ., F;(x) = +oo for x > X_. An identical argument covers the case
lim, , . E7(x)>0.

5. Convergence rate. Theorem 1 gives an upper bound on the conver-
gence of F,(x) to X, = F(x). In some cases this may in fact be the correct
rate of convergence. As in Section 4, I assume the “monotone context” on R
here. I will also use the following special definition: for real numbers ¢ and R,

per=inf P{f(x) = x > t},

P p=inf P{If(x) - x| > t}.

THEOREM 3. Let v be a strictly monotone system, with 1 > f'(x) > 0 for all
x almost surely. Suppose:

(i) There exists R > 0 such that f'(x) =1 for |x| < R.
(i) f(R) — R and —f(—R) — R have negative expectation as well as fi-
nite exponential moments of some positive order. Also, f(R) > 0 and

f(-R) =<0.
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(iii) E f'(x) < 1 for |x| < R.
(iv) The system has no almost-sure fixed points.

Let

r= IAEE max{E exp{A(f(R) — R)},E exp{A(—f(—R) — R)}}.

Then the system is attractive, and for all x € R,

lim (E|F,(x) — Xo|) "= r,
as long as r > sup, g E[f'(x) exp{A(|f(x)] — |x])}].

This result is a simple combination of the upper bounds from Section 3 with
the following general lower bound.

PROPOSITION 5. Suppose

(22) limsup ¢! log pir<0

t—00

for some positive R. Suppose, too, that for some c € (0, 1], and v-almost every

f,

inf £’ .
inf f/(x) = ¢

Then if x € R is such that P{F,,(x) > R} is nonzero for some m,

lim inf (E|F, (x) - Xo|)""= cinf [ Ae"p, gt

PROOF. Let &, &, ... be i.i.d. random variables with P{¢; > ¢} = p, ,
and let S, = £, + -+ + &,. Also define r* = inf,_, E[e*¢]. The condition (22)
implies that r* is finite. The set of x such that P{F, (x) > R} is nonzero for
some m is an open interval of the form (y,, 00). Define G, (y) = E[F,(y)].
(This is the same as the old definition of G,, except that the right-derivative
is substituted for the local Lipschitz constant.)

I show first that

liminf inf (G,(y))""> cr*.

n—oo y>Yyy

Begin with the relation

Gr1(9) =E[G, (1 (D)) f i1 (¥)]

z CE[Gn(fn+l(y))]1{yzR}
Suppose that y > R. Iterating (23) yields

(23)

G,(y) > c¢"P{F,(y)> Rfori=0,...,n—1}.
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(Essentially, the bound here is the probability that F () stays outside of the
central region of contraction until time n.) If y > R, then we can couple the

sequences (F~n) and (S,) so that ﬁn(y) > S,,+ R, as long as S,, stays positive.
The problem becomes then one of showing that

1/n
(24) lim inf P{min S; > O} > r*.

n—oo 1<n

For the endpoint S,, in place of the minimum this would be simply the Cramér
large deviation theorem (cf. [18]). To extend this to the minimum requires the
theorem of Varadhan and Mogulskii for the large deviations of random-walk
paths (Theorem 5.1.2 of [6]).
It remains only to consider the case y, < y < R. Use the relation
Grim(¥) =E[Go(Frn(9))F ()]
=P{F,(¥) > R, F,,(5) = y}yinf G,(2).

Since y > y,, the probability in the last line above is nonzero for some given
m and positive vy,

liminf G, (y)"/"
n—oo
= Tim G, ()Y
n—oo

(P{F,.(y) > R, F,(y) > v}y)’""liminf inf G, (z)"/+™

n—-oo z>R

v

= liminf inf G, (2)"",
n—-oo z>R
which proves the claim.
Now, for every positive &,

E|F,(x) — F.o(x)| =E|F,(x) - F(X,.)]

Xx ~/
=E[ "F,(»ady
X
>eP{| X, — x| > s}l inlf G,(y),
y—x|<e
where X is taken to be an alternative realization independent of F,. (It
is here that the monotonicity of the functions f is essential.) If X _ were

concentrated at a single point, this would be a fixed point for f almost surely,
violating the assumptions. Since x > y,, for ¢ sufficiently small,

1/n
liminf (E| F,(x) — Foo(x))"" zliminf(sP{|Xoo — x| > s}) ™ inf G, ()"
n—oo n—oo Y=>Yo

>cr*.
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6. Stationary systems. In every one of my specific examples of locally
contractive systems, presented in Section 7, the random functions f; are in-
dependent. At the same time, it has long been recognized that contractive
iterated function systems reside comfortably in the context of stationary se-
quences. No new problems arise for locally contractive systems. The purpose
of this section is to explain briefly how stationary iterated function systems
behave, following the account in, and to restate the main results on local con-
tractivity in this new setting.

We begin now with a two-sided stationary sequence of random Lipschitz
functions from 2" to itself (f,,, —o0 < n < 00). Define for nonnegative integers
k and n,

Fipn(®)=frofp1o---of _n(x)

We say the system is attractive now if Y, = lim, ,, F; ,(x) exists and is
independent of x. As is standard for random dynamical systems, when seeking
random point attractors (the existence of which is equivalent to the system
being attractive) it is necessary to push the starting time back to —oo, rather
than push the end time forward to +oo. Elton [7] proved that attractivity
follows from the condition that I have here called strong contractivity and
showed that the following results hold for attractive stationary systems.

1. The sequence (Y}) is stationary. Thus Y is a random variable of starting
values that makes the iteration chain stationary.

2. For any x € 27, the random sequence (F, o(x), Fj,1 o(x), ...) converges in
distribution as % goes to oo, to (Y, Y4, ...).

3. If (f,,) is ergodic, then so is (Y ,,).

Other results of that paper seem to depend directly upon the strong con-
tractivity.

In the stationary setting, we may define local contractivity as before, sub-
stituting F, ,, for F',. The growth rate must be slightly redefined, by taking
now the expectations conditional on the whole past of the sequence,

$(fo(x)) .
WDxfo ‘ /—1},

C, :=ess sup E[|fo(x) — x| P(x; fo(x)) | 7-1],
G,(x):=ess sup E[DF, |7, 4],

r, =ess supE|:

where 7, is the o-algebra generated by {f,,, f,_1, - - -}, the infinite past of [,
and the essential supremum is taken with respect to the given probabilities
on the set of possible pasts. With these definitions in place, the preceding
results remain valid for stationary sequences. For example, if under this new
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definition r := sup r, is smaller than 1 and G, (x) < r"¢(x), then
Dan+1 |‘6/-r—n—2]
Df,n,l(x)Fanf—n—l 'Zn—2]

Gn(ffnfl(x))Dxffnfl } zn72]
r"¢(fo(x))F,D.fo| 1] (by stationarity)

G, 1(x)=esssup E

<esssup E

<ess sup E

— — —. —

<esssup E
< ¢(x)r"*,

which proves the stationary analogue to Theorem 2. The other results follow
from similar computations. Whether this extends the range of applications in
any interesting way is uncertain.

7. Applications.

7.1. Queueing. The first example is more an illustration than an applica-
tion, since the problem is simple enough to dispatch by other means. This is
the “stability theorem” of Loynes [12], which demonstrates the existence of
a “remaining work” process for general single service queues. A single-server
queueing system is defined by an i.i.d. sequence of pairs of positive real-valued
random variables (o, 7,), which are to be thought of as the service time and
the interarrival time, respectively, of customer number n; that is, 7, is the
time between the arrival of customer n — 1 and the arrival of customer n,
while o, is the time between customer n’s arrival at the head of the queue
and her departure. Independence of the different pairs is assumed purely for
convenience; stationary sequences may be handled as well, as discussed in
Section 6. In such a case we would assume that the sequence is ergodic.

An essential scaffolding for the queueing system is the process of “remaining
work” when customer n arrives, W,,. In the case of a first-in-first-out service
protocol, this is the time between customer n’s first arrival and her departure.
Loynes proved that Eo, < E7, is a sufficient condition for the existence of a
unique, almost-surely finite stationary distribution for this workload process.

Baccelli and Brémaud [3] rederive this result essentially by representing
it as an iterated function system, and proving that the reversed system W,
is attractive. It is clear that Wn = (VT’n_l + o, — 7,)". Defining the random
function f,(x) = (x + o, — 7,)7, it follows that Wn = ﬁn(O)

In fact, it is elementary to show that this system is attractive, with

n

Woo = max Z(O-L — Ti)’
l<n<oo =1

The purpose here is simply to point out how this result fits naturally into the

context of locally contractive systems, which also offers a free estimate on the

rate of convergence.
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PROPOSITION 6. The waiting-time process W, is attractive if and only if
E[o] < E[7]. If 0 — 7 also has subexponential tails, then

limsup (E|F,(x) — X,.|)""< inf E exp(A(c - 7).

PROOF. The first part is a direct application of Corollary 1. The definition
gives

x—o,+71, ifx=>0,

frl(x)= {

—00, if x < 0.

If E7 > Eo, it follows that F;1(x) will eventually run off to +oo, unless it
falls off below 0 and then to —oco first; the probability of this latter event is
smaller than 1 for x > 0. The second part applies Proposition 3 to the same
fact.

7.2. Zeno’s walk in dimension 1. In [16] I considered the iterated function
system where v is concentrated on {f*, f~}, given in (4), with »(f*) = 1 —
v(f~) = p. I showed there that F,(0) converges almost surely for : < p < 2
and computed the rate

27p(1 - p)max{p,1— p})1/3
- .

rt = lim (E|F,(0) — X..|)"= (

In addition I gave an explicit description of the distribution of X _ and com-
puted its Hausdorff dimension, which is smaller than 1.

By the present methods this rate may be derived more simply. First, the sys-
tem is locally contractive, hence also attractive, for % <p< % by Theorem 2.
|F,(x) — x| is bounded, and

l—g, if —2<p<0,
/ —

2 b
which is always smaller than 1, while

E|f(~2)|=3(1—p) <2 for p> 1,

E|f(2)=3p <2 for p< %

if0<p<2,

The necessity supplement of Corollary 1 shows furthermore that F, (x) does
not converge for p > % and p < %

The rate of convergence, by Theorem 3, is

1/n

lim (E|F,(x) — X.|) =maxhng pe* +(1— p)e ), inf(1 - p)e* + pe%}

1/3 1/3
:max{<p2(14—p)> ’<p(1;p)2> }
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More generally, define for positive parameters r, b,
x+b-r, ifx<-b-r,
fo,0)=1%4b,  if —b.-r<x<o0,
r
x+b, if 0 < «x,

and f, (x)=—f Z’ +(—x). Then define an iterated function system by a distri-
bution on (&, b, r). The system is attractive whenever E[1/r] < 1, and

E[o[+]P{+} < E[b- r|-]P{-}
and
E[b|-]1P{-} < E[b - r|+]P{+}.

In particular, if £+, b and r are independent, with P{+} = p = 1 — P{-}, the
system is attractive if E[1/r] < 1, and

E[r]>max{1fp, 1;])]

Conversely, if

E[r] < max{ -~ ,1%5},

then there is no convergence. In the former case, if b is deterministic we can
compute that

lim (E|F,(x) — Xoo|)1/n: (1— p,)E[(1+ r)exp(—brix)],
where p, = max{p, 1 — p} and A, is defined to satisfy

p*

exp(bA )= r exp(—bri,)],
as long as E[exp(—brA,)] = E[1]exp(bA,). (If r is deterministic, this last con-
dition is automatically satisfied.)

Now take r to be deterministic, and b = 1. Then the system is attractive
precisely when r > 1. The methods of [16] will also describe the distribution
of X, explicitly when r is an integer.

7.3. Zeno’s walk in higher dimensions. Given a positive constant p, and
{ € R4, we define a function /”¢:R? — R¢ by

1 P p
P ¢ I = L
(25) i) = 5e+ (e + 20)o, (I + £21).
where
1, ﬁtsg,
t)y=4{"P
$ol0 1Pl e P
2t "’ 2
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Note that f1¢(x) = x + {. For p > 1, f¢ may be understood as a two-stage
process: first, there is a translation by ¢, then the disk whose diameter is (0, ¢)
is shrunk by a factor of p from its center. That is, in the inverse map, from
the point of view of the walker, all distances within the disk are increased by
a factor of p: f(0) = ¢ and f(—p¢) = 0.

I define now an iterated function system by fixing p > 1, and choosing ¢
according to some given distribution on the unit sphere. For d = 1, this is
just Zeno’s walk. Since |D,f?¢| < 1, Theorem 2 tells us that the system is
attractive if

(26) E|f7¢(x)] < p
for ||x|| = p. Call this quantity E(p, 6), a function of p and of the angle 6
between ¢ and x. By an application of the law of cosines,
1/2
1
cosf — 3 1

E(p, 0) = a(p, 0)2 + a(p, 6): + -
\/g —cos 0

where

5 -1
a(p,@):z\/z—cose—pT.

Let us choose ¢ uniformly on the unit sphere. The criterion for local contrac-
tivity then becomes

21
(27) /0 (E(p, 0) — p)| sin 0]“~2d6 < 0.

(The derivative actually goes to 1 at the boundary of the || x|| < p disc, but we
can take the critical radius R to be p — ¢ for ¢ arbitrarily small.)

This integrand is decreasing in p > 1, so there is attractivity for all p larger
than a critical value p;. One may compute that p, ~ 1.60, p; ~ 1.76, and it is
easy to see that lim;_, . pg ~ 2.025. For d = 1 the system is attractive for all
p > 1. In higher dimensions it is unclear what happens for p between 1 and

Pd-

7.4. Random logistic maps. In [5] it was shown that if y; are chosen i.i.d.
from a B, 19 412 distribution, for a > 1/2, and f;:[0, 1] — [0, 1] is defined
by f; = f,., where
then B, , is a stationary distribution for the resulting iterated function system
F,(x). It was not determined there whether there was any convergence.

PROPOSITION 7. With the above definitions, the Markov chain F L (x) con-
verges in distribution to a unique stationary distribution for all a. If a > 2, the
system is locally contractive, hence also attractive.

PrOOF. For x # 0, almost surely ﬁn(x) is never 0 or 1, so we may view
the process as occurring on the open interval (0,1). (This makes the chain
irreducible.)
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By Theorem 9.2.2 in [13], the chain is Harris recurrent if there is a compact
subset of (0,1) to which the chain returns infinitely often with probability 1;
that is, for x outside the subset, there is almost surely some n such that ﬁn(x)
is inside. I will show that this is the case for the interval .# = [0.1, 0.9]. Given
x€(0,0.1), 0.36 > 4yx(1 — x) > 3.6 yx. Writing f,(x) = 4y,x(1 — x), it must
be that either ﬁn(x) > 0.1 for some n < N, or

log Fy(x) > 10g(3.6y,) + 10g(3.6y5) + - - - + 10g(3.6y ).

Thus ﬁn(x) < 0.1 for all n only if 7 ;log(3.6y;) < 0.1 for all n. But this
happens with probability 0, since log(3.6y;) are i.i.d. random variables with
positive expectation. [Letting ¢ be the digamma function, the derivative of
logl', Elog y; = ¢(a + 1/2) — ¥(2a), which is always larger than —log 3.6.]
Thus there almost surely exists n such that ﬁn(x) > 1, and this value must
lie in the interval [0.1,0.36]. If x € (0.9, 1), then ﬁl(x) € (0,0.36); if it is
smaller than 0.1, continue as before.

Since the Markov chain F,(x) is Harris recurrent it has a unique invariant
measure, by Theorem 10.4.4 of Meyn and Tweedie [13]. Since the stationary
distribution is finite, the chain converges in distribution. (The idea of using a
recurrence argument here was suggested by R. Durrett.)

Now consider the issue of local contractivity. Define for r > 0,

Go(x) = (x — a2)".
This ¢, is differentiable on (0,1), and

sup | b,(8) = &,(x) + ¢,(f (%)),

te[x, fy(x

SO

1
E[ sup ¢r(t)}§¢r(x)+3(a—l,a+%)f Y A1 — ) (y— y*) " dy
e, £ ()] 0

1
<¢.(x)+Bla—3,a+ %)/0 ya V2T (1  yya 32T gy

which is finite for r < a — 3. [Here B(e, B) = (I'(a + B)/I'(«)I'(8)).] Thus,
C, < oo. For the other condition in Theorem 1, we have
E[¢(fy (DI, ()] _ E[(4Yx(1 — 2))"(1 — 4V (1 — x)) "4Y |1 — 2«]]
b(x) (x(1 = %))~
=471 - 2x[E[Y' (1 -4Yx(1 - x)) ']
1, P@a(a+3-r)
7 T+ Hr@e+1-r)

x|1 —2x|2F1(§ +a-r,r;2a+1—r;4x(1 - x))
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It follows that for any given a, the system is attractive if there exists r < a — %
such that this expression is smaller than 1 for all x. It remains then only to
show that this is the case if a > 2. (Actually, this can be pushed down to about
a=1.98)

The details of this computation, while offering a grand tour of hypergeo-
metric arcana, are hardly interesting or germane to the central topic of this
paper. I will only sketch them here.

By a change of variables, the problem becomes one of showing for all a > 2

and some r < a — 0.5, that sup,.(o 1j pq, (2) < 1, where

IF2a)l(a+ 3 —r)
T(a+Hl2a+1-r)"

Pa, r(2) =41 -2 Fl(g—l—a—r,r;Za—i—l—r;z).

It will suffice to take the value r = 1.35 for all a. We are considering then the
function

035 I'2a)I'(a + 0.15) ) ]

pa(2) :=479°V1 - ZI‘(a 05 (2a 0'35)2F1(0.15 + a, 1.35;2a — 0.35; z).

For fixed a and z, of course, this is merely a numerical calculation. The
problem is to prove that the bound holds uniformly. If a is fixed, it is still
no problem to demonstrate that p,(z) < 1 for all z. Given two monotone
increasing real-valued functions f and g, with f(1) < g(1), to show that
f(2) < g(2) for all z € [0, 1] is equivalent to showing that successive iterates of
the function p(z) = g7!(f(z)), eventually become negative. Here the functions
are g(z) = (1 - 2)"Y2? and

I'(2a)I(a + 0.15)
I'(a + 0.5)['(2a — 0.35)

-2
plz)=1- (40-35 oF1(a+ 0.15, 1.35;2a — 0.35; z)> )

It is then straightforward to iterate this on a computer and find that 53 (1) <
0 for a = 2.

We could similarly test any particular value of a, and in fact, as a gets
larger, the maximum of p only seems to get smaller. On the other hand, p itself
is not decreasing in a, and showing that the bound holds for all a requires
more effort. The second step is then to show that the bound holds for all @ > 2
when z is sufficiently small.

In the power-series representation of the hypergeometric function ,F,
(which may be found, for example in Chapter 15 of [1]), the coefficient of 2" is
decreasing in n, so the whole sum is smaller than the first coefficient, which
is 1, multiplied by (1 — z)~!. Thus

035 I'(2a)['(a+0.15)
I'(a+0.5)I'(2a — 0.35)

s T(20)[(a +0.15)
1 4 0.35
=0%%  T(a +05)(2a - 0.35)

— 2—0.35(1 _ 2)—1/2’

pa(2) =4 (1212

(1—2)"Y2




1974 D. STEINSALTZ

and p,(z) <1forall z<1—2797~0.384.
The final step will then be to show that p,(z) is decreasing in a for each
fixed z > 0.38. To do this, write

pa(2) = €(2) Y gn(@)2",
n=0

where
I'2a)l'(a + 0.15 + n)I'(1.35 + n)

I'(a+0.5)I'(2a —0.35+n)'(n+1)
It will suffice to show now that

go(a) >0,

gi(a) <-2g¢(a),

go(a) < —2g4(a),

g, (a) <0 for n > 3,

gn(a) =

(28)

since that will then imply that

Zare(?)=e@) X gifa)?

< o(2)gh(a)(1 — 2z — 22%)
<0 for z > 0.37.

The relations (28) may be established by using known properties of the
digamma function, again, found in [2]. O

8. Open questions.

8.1. Necessary conditions for convergence. There is a wide gap between
the sufficient conditions for attractivity given in Theorem 2 and any known
necessary conditions. The problem is twofold: first, failure of the conditions of
Theorem 2 does not necessarily imply that the system is not locally contractive;
second, even if the system is not locally contractive, it does not follow that the
system is not attractive. For instance, in the d-dimensional Zeno’s walk with
expansion factor p below the critical p,, there is a ball in which the random
function f is average contractive (Df < 1), an unbounded outer region in
which E[||f(x)| — [|x]|]] < 0 and a band in between where neither condition
holds. Does this prevent convergence?

For the random logistic functions, the situation is perhaps even more inter-
esting. There it does seem that attractivity should fail when the parameter
a is very small, smaller than 1, but there still gapes a chasm between that
realm and the domain in which attractivity is proved. What is more, while it
is indeed possible to show that the system is not locally contractive for a < 1,
this does not immediately rule out the possibility that the system could still
be attractive.
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PROPOSITION 8.  If the iterated function system on 2" C R defined by v is
attractive, then

g )| 5 [ [ Jog|f ()] dutF) du(o)

for w-almost every x, where w is the distribution of X,. (Here —p means
convergence in probability).

ProOF. The almost-sure convergence of F,(x) implies that the pu-
preserving random transformation f is ergodic, from which follows that
the u ® v-preserving skew-product tranformation,

T(x, (f1, fa» ))= (fl(x)’ (o, f35-- ))
is also ergodic (Theorem 2.1 of [10]). Let

5(x, (f1, fas --))=log | F(x)].
Then

log |F),(x)| =log | £}, (F),_1(x))| +log | F,_; ()|
=8(7" N (f1s o fas o)) + 108 | By ()]

:rga(fi(x, (fl,...))).

The result then follows by Birkhoff’s additive ergodic theorem, using the iden-
tity in distribution of F', and F,,.

COROLLARY 2. If wis a stationary distribution for v (where 2" C R), and the

iterated function system defined by v is locally contractive, then the Lyapunov
exponent

[ [ og|f'()|dv(f)dux)

s negative.

Taking 1 = B ., v the image of Bo.1,-1/2(dy) on f,(x) = 4yx(1 - x), it
is straightforward to compute

1,1
[} [ Tog(4y11 —22)dB 10, 0-1/2(5) dBa. o)

1 1
= log4+ [ 10g ydBy 1.0 12(3) + [ log|1—2x|d, u(x)
0 0
1
=log4 + <¢(a + 5) - ¢(2a))

e rp(*(3) (= 3)):
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where (a) is the digamma function. This expression is decreasing in a and
takes on the value 0 at ¢ = 1. It follows then that the system is not locally
contractive for a < 1.

It is still unclear whether the system is locally contractive (or attractive) for
a between 1 and 2, though simulations suggest strongly that it is. I have also
been so far unable to prove that the system is not attractive for a smaller than
1. (This problem is resolved in a new paper [17].) In this range, Proposition 8
says that the derivative of F', increases exponentially with r, at almost every
point. Intuitively, it seems impossible that F, could still be converging under
such conditions to a constant function, uniformly on compact subintervals of
[0,1]; again, simulations support this belief, but it remains unproved.

8.2. Rate of convergence. What is the correct rate of convergence for
the distribution of F,(x)? For locally contractive systems, Theorem 1 gives
an upper bound for E|F,(x) — X |, which is in turn an upper bound for
W(F,(x), X). In the one-dimensional monotone setting, Proposition 5 pro-
vides a lower bound on this expectation, and in some conditions, given in
Theorem 3, the upper and lower bounds are of the same exponential order. In
this case, the Wasserstein distance to the limit is bounded by

lim W(F,(x), Xoo)V" < lim (E|F,(x) — X, |)/"=r*:= inf r*(),

where r*(A) = sup, g E[exp(|f(x)| — |x])f'(x)]. But this is still only an upper
bound. While the expected distance from the limit point is itself an interesting
measure of the rate of convergence, there are reasons to be less than satis-
fied with this answer and to suppose that the real rate of convergence of the
Wasserstein distance may be faster. Remember that the lower bound on the
expectation was essentially just the probability that no contraction had oc-
curred up to time n; that is, that the expectation of the future jumps is still
on the order of 1. The typical case will see quicker convergence, though this is
swamped in the expectation by the contribution of relatively enormous values
on a very small set.

Considering G} (x) := Elog F/,(x) offers a different picture. There the very
small sets for which F",(x) is close to 1 lose their influence, since log F’,(x) is
small as well. There is now the relation

(29) G 1(x) =EG,(f(x)) + Elog f'(x).
If we define
() = inf exp{AE|f(x)| ~ Mx| + Elog f'(x)},
then for all » and x € R,

G (x) < Alx|+r,n.
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By Jensen’s inequality it is easy to see that r (\) < r*(A). For Zeno’s walk
with p = 1, r, :=inf, r (1) ~ 0.89, while r* ~ 0.96.

If we were to look at G} = sup, G} (x), we could apply the subadditive er-
godic theorem to establish that (1/n)G} converges almost surely. Unlike the
strongly contractive setting, though, for locally contractive systems this supre-
mum remains 0, so this does not provide any information. On the other hand,
if (1/n)G}(x) did converge almost surely to log r, for fixed x, this would sug-
gest that r, is a lower bound for lim,, , . W(F,(x), X ). The question remains,
whether r*, r,, or something in between, is the correct rate of convergence of
the distributions.

It should also be noted that r* was computed essentially as the spectral
radius of the operator I' defined by

Lo(x) = E[o(f(x)f'(x)].

It is unclear (and perhaps worth understanding) why the spectral radius of
this operator gives us information about the spectral gap of the Markov oper-
ator (of the reverse process F,,),

To(x) = E[¢(f(x))].

It is obtained here by means of a coupling which seems arbitrary, as well as
peripheral to the Markov chain. For instance, the proof of Theorem 3 shows
that in some cases the same result is obtained by replacing f’ in the definition
of I' by the indicator of {f’(x) = 1}.

Another problem is to describe better the rate of convergence in higher-
dimensional settings.

8.3. The limiting distribution. In the case of Zeno’s walk, with expansion
factor 2 and probabilities of jumping right or left p and 1 — p, respectively,
I described the limiting distribution in [16], and computed its Hausdorff di-
mension to be

p 1-p
<1+ﬁ §p>|1og4a1_p|+<1+ > af,)|1og4ap|,

where

1 1/ 4p
=——=4-/[—+41
a, 2+2\/1—p+

The same method would work for any integral expansion factor. It may be that,
for processes on the real line, the distribution of X  is singular with respect
to Lebesgue measure and has Hausdorff dimension smaller than 1 if and only
if for every x and n the support of the random variable F,(x) generates a
discrete subgroup of R. For Zeno’s walk, this would mean that the limiting
measure is singular if the expansion factor is rational. On the other hand,
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this problem is at least superficially similar to the famous Erdés problem, of

determining when the distribution of }_3°; £A! is absolutely continuous with

respect to Lebesgue measure (where A is a fixed constant between % and 1

and the signs are chosen independently with probability %). Although there
has been significant progress on this recently (e.g., [15]), there is still no way
to answer the question for a given choice of A. It would be interesting to try to
determine for which choices of parameters in Zeno’s walk the limit distribution
is singular, and to compute, or at least estimate, the Hausdorff dimensions in
such cases.

It is easy to see that

supp X, = |J f(suppX,),
fesuppv

where the support of v is understood to be taken with respect to the uniform
topology on functions. For Zeno’s walk, this implies that the support of X is
all of R¢. What are more general conditions for this to be the case? And which
sets can arise as supports?
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