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INTERSECTION EXPONENTS FOR
PLANAR BROWNIAN MOTION

BY GREGORY F. LAWLER1 AND WENDELIN WERNER

Duke University and Universite Paris�Sud´
We derive properties concerning all intersection exponents for planar

Brownian motion and we define generalized exponents that, loosely speak-
ing, correspond to noninteger numbers of Brownian paths. Some of these
properties lead to general conjectures concerning the exact value of these
exponents.

1. Introduction. The main goal of this paper is to derive some proper-
ties of intersection exponents for two-dimensional Brownian motions. These
new properties improve our understanding of these exponents and lead to
general conjectures concerning their exact values.

Suppose that n � p independent planar Brownian motion � 1, . . . , � n and
1 p 1 n Ž . 1 p� , . . . , � are started from points � � ��� � � � 1, 1 and � � ��� � �0 0 0 0
Ž .� 2, 1 in the complex plane, and consider the probability that for all j � n

and l � p, the paths of � j up to time t and of � l up to time t do not
intersect; more precisely,

pn
j l� � � �f t � P � 0, t � � 0, t � � .Ž . � �n , p ž /

j�1 l�1

ŽIt is easy to see that this probability decays as t � � roughly i.e., logarithmi-
. Ž . Ž .cally speaking like a power of t. The n, p -intersection exponent � n, p is

defined as being twice this power, that is,

f t � t�� Žn , p.	2 , t � �Ž .n , p

� Ž . Ž . Ž Ž .. Ž Ž ..� Ž .we write a t � b t for log a t � log b t . We say that � n, p is the
intersection exponent between one packet of n Brownian motions and one
packet of p Brownian motions.

Similarly, one can define more general intersection exponents between
k 
 2 packets of Brownian motions containing, respectively, p , p , . . . , p1 2 k

Ž .paths. Each path of the jth packet starts from j, 1 and has to avoid all paths
Ž .of all other packets. We denote by � p , p , . . . , p the corresponding expo-1 2 k

nent.
� �As shown by the first author in 17, 19, 21 , several of these exponents

correspond to Hausdorff dimensions of exceptional subsets of the planar
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Ž � �.Brownian curve. For instance see 17 , the Hausdorff dimension of the set of
Ž .cut points of a planar Brownian path is 2 � � 1, 1 .

A crucial role in this paper will be played by intersection exponents in a
half-space. Those are defined exactly as the intersection exponents above

Žexcept that one adds the condition that all Brownian motion paths up to time
. �Ž . 4 Žt remain in the upper half-plane H � x, y : y � 0 this is the reason why

˜. Ž .we chose the starting points in H . We call these exponents � p , . . . , p .1 k
Ž̃ .For instance, � 1, 1 is defined by

˜1 1 1 1 �� Ž1 , 1.	2� � � � � � � �P � 0, t � � 0, t � �, � 0, t � � 0, t � H � t , t � �.Ž .
Ž � �.Physicists see 10 have made the striking conjecture that many of these

Žexponents are rational numbers just as in many other two-dimensional
. Ž . Ž � �.statistical physics models . Except for the special value � 2, 1 � 2 see 15 ,
˜exact values of � ’s and � ’s are not known rigorously. For conjectures, see

� � � � � � � � � �10 , 11 ; for some rigorous bounds, see 5 , 33 , 34 ; for some simulations,
� � � � � � � �see 6 , 10 , 26 , 30 . Note that analogous exponents can be defined for

simple planar random walks; it can be shown that the exponents for Brown-
� � � � � � � �ian motion and random walks are the same; see 4 , 8 , 24 , 25 .

ŽThe main results of the present paper can be summed up as follows even
.though they are not being derived in that order .

Ž .1. We give a precise natural meaning to the exponents � � , . . . , � and1 k
Ž̃ .� � , . . . , � for all positive real numbers � , . . . , � , � , . . . , � with1 k 1 k 1 k

� 
 1 and � 
 1 for some i � i	i i	

Ž .i.e., two of the � ’s are not smaller than one . These definitions generalizei
the above definitions in the case where the �’s are integers. Hence, the
exponents can be seen as values of real functions at integer points.

2. We show that these functions satisfy certain functional relations. First, for
all 2 � j � k and for all positive � , . . . , � one has the following relation:1 k

˜ ˜ ˜1 � � , . . . , � , � � , . . . , � � � � , . . . , �Ž . Ž .Ž .ž /1 j�1 j k 1 k

For instance,
˜ ˜ ˜� 1, 1, 1 � � 1, � 1, 1 .Ž . Ž .Ž .

Similarly, for all � , . . . , � such that � 
 1 and � 
 1 for some i � i	1 k i i	

and i � j:

˜2 � � , . . . , � , � � , . . . , � � � � , . . . , � .Ž . Ž . Ž .ž /1 j�1 j k 1 k

˜We call these relations ‘‘cascade relations.’’ Second, � and � satisfy ‘‘com-
mutation relations,’’ that is, they are symmetric functions of their argu-

Žments this is not straightforward because our definition of the generalized
.exponents is not symmetric .

3. One can define a positive, strictly increasing continuous function U on
� .0, � by

˜ N� �Ž .
23 U � � lim ,Ž . Ž . 2NN��
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N Ž . � .Nwhere � � �, �, �, . . . , � � 0, � . Then, we derive the following func-
tional relation: for all positive � , . . . , � ,1 k

˜4 U � � , . . . , � � U � � ��� �U � .Ž . Ž . Ž . Ž .Ž .1 k 1 k

˜This shows in particular that the exact values of all half-plane exponents �
are encoded in the function U.

4. Using the previous results, one can then also show that the full-plane
exponents � can be represented as a function which depends on � ’s onlyj

˜through � ; more precisely, there exists a continuous increasing function 

Ž .such that for all � , . . . , � such that � 
 1 and � 
 1 for some i � i	1 k i i	

˜5 � � , . . . , � � 
 � � , . . . , � .Ž . Ž . Ž .Ž .1 k 1 k

Ž .This function 
 � can be interpreted as a generalized disconnection expo-
Ž � � .nent see, for instance, 33 for a definition of disconnection exponents .

� �5. Combining these rigorous results with Duplantier�Kwon’s 10 conjectures
˜ N NŽ . Ž .for � 1 and � 1 leads to a general conjecture for the functions U

˜Ž .and 
 and therefore for all exponents � and � that we state in Section 7.
These conjectures seem to be confirmed by several cross-checks. It is

Ž .interesting to remark that certain values of the exponents for integer �’s
� Ž .�turn out to be irrational numbers for instance � 1, 3 . The conjecture for

Ž .the exponents � 2, � corresponds to a conjecture for the multifractal
Žspectrum of the Brownian frontier using the correspondence derived

� �.in 21 .
6. Some of the ideas used for Brownian motions lead to conjectures for

nonintersection exponents for loop-erased random walks that we state in
Section 8.

ŽDuplantier�Kwon’s conjectures were derived using nonrigorous from the
.mathematician’s point of view considerations using ideas from conformal

Ž .field theory. One key idea is to admit for some reasons that the exponents
Ž N .� 1 for integer N ’s belong to Kac’s table corresponding to some highest-´

Ž � �weight representations of the Virasoro algebra see, e.g., 12 for references
.about Virasoro algebra . This is a purely discrete argument: a discrete set of

numbers has to contain another discrete sequence of numbers. Our results
and conjectures show that one could look for a continuous function rather
than for a discrete sequence.

The results are derived as follows. In Section 2, we first give a precise
Ž .tractable definition of the families of exponents � p , . . . , p and1 k

Ž̃ . Ž .� p , . . . , p where p , . . . , p are integers . We then construct exponents1 k 1 k

�̃ � , p , � , p , . . . , p , � and � p , � , p , � , . . . , p , � ,Ž . Ž .1 1 2 2 k k�1 1 1 2 2 k k

where p’s are positive integers and �’s are nonnegative reals. In the con-
struction we use conditioned Brownian motions rather than Brownian mo-
tions; this leads us in the next section to define a measure on paths restricted
to a finite domain.

In Section 3, we first recall some general facts concerning conformal
invariance and then use these to construct a conformally invariant measure
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on paths in certain domains. We then use this measure to derive a first
Ž . Ž .version of the cascade relations 1 and 2 for the exponents defined so far. In

Section 4, we derive the commutation relation that enables us to define all
˜Ž . Ž .exponents � � , . . . , � and � � , . . . , � in such a way that the commuta-1 k 1 k

tion and cascade relations still hold for these generalized exponents. In
˜ NŽ . Ž . Ž .Section 5, we study the asymptotic behavior of � � and show 3 and 4 .

In Section 6, we use an alternative approach using a rate function to derive
˜asymptotics of the functions � and � . Sections 7 and 8 are devoted to

conjectures concerning the precise values of intersection exponents for Brow-
Ž . Ž .nian motion in Section 7 and loop-erased random walks in Section 8 .

2. Intersection exponents.

2.1. Preliminaries. In order to simplify the reading of the following con-
struction, we first review a few standard facts concerning Brownian motion
hitting times and three-dimensional Bessel processes. The reader acquainted
with those may as well skip this subsection.

Ž .Suppose that X and Y denote two independent one-dimensional Brown-
Ž .ian motions started from 0, and define for any stochastic process Z , t 
 0 ,t

� 4T Z � inf t � 0: Z � nŽ .n t

Ž . �Ž .with inf � � � . Then, we have the following well-known estimates 6 is a
consequence of the decomposition of the Dirichlet Laplacian in an interval;

� � Ž . � � �see, e.g., 29 , page 52; 7 can be found in 31 , Proposition II.3.7 : for all
a � 0,

2 x 4 x
� �6 exp � � P T Y � x � exp �Ž . Ž .Ž .a� 	2½ 5 ½ 52 2� �2 a 2 a

and
2 � 47 E exp �� T X 	2 � exp ��n .Ž . Ž .� 4n

Hence, if B � X � iY denotes the complex Brownian motion started from 0
� Ž . Ž .4and if I � z � �: � z � �a�	2, a�	2 denotes the horizontal strip ofa

width a,
2 4

�n 	 a �n 	 a� �8 e �P B 0, T X � I �P T Y �T X � e .Ž . Ž . Ž . Ž .Ž . Ž .n a a� 	2 n� �

It will sometimes be more convenient to work with Brownian motion
ˆ� Ž . 4conditioned to remain in the half-space � z � 0 . Let X be a three-dimen-

Ž � �.sional Bessel process. It is well known see, e.g., 31 that three-dimensional
Ž .Bessel processes can be viewed as one-dimensional Brownian motions ‘‘con-

ditioned to stay forever positive.’’ More precisely, let

ˆ ˆ ˆT � T X � inf t � 0: X � n .Ž . � 4n n t

ˆ Ž .Assume for the moment that X � a � 0, n . Then, the rigorous version of0
the previous statement is that the distribution of

ˆ ˆX , 0 � t � T ,t n



INTERSECTION EXPONENTS 1605

is the same as the conditional distribution of a Brownian motion starting
at a,

X , 0 � t � T X ,Ž .t n

given the event

0 � X 0, T X .� 4Ž .n

Note that this last event has probability a	n. From now on, we assume that
X̂ � 0.0

There is another well-known feature concerning three-dimensional Bessel
Ž � �.processes see, e.g., again 31 that will be useful: suppose that n � m � 0

and define

ˆ ˆ� � sup t � 0, T : X � m and � � sup t � 0, T : X � m .� 4Ž .ˆ Ž .½ 5m , n n t m , n n t

ˆŽ . Ž Ž .In plain words, � resp., � is the last time X resp., X crosses theˆm , n m , n
level m before it hits n for the first time. Then, the laws of

ˆ ˆ � �X � m, t � � , T , X � m , t � � , T andŽ .ˆž /t m , n n t m , n n
9Ž .

ˆ ˆX , t � 0, Tž /t n�m

are identical.
Moreover, the three ‘‘parts’’ of the path

ˆ ˆ ˆ ˆ ˆ ˆ10 X , t � 0, T , X , t � T , � and X , t � � , TŽ . ˆ ˆž / ž /t m t m m , n t m , n nž /
Ž .are independent the analogous statement for X holds as well .

We will make an extensive use of two-dimensional ‘‘conditioned Brownian
ˆmotion’’ defined by W � X � iY where Y is one-dimensional Brownian mo-

ˆtion independent of X.
Finally, let us recall that planar Brownian motion is invariant under

Ž .conformal transformations in the following sense. Suppose that � , t 
 0 ist
Ž .a planar Brownian motion started from x � D D is an open subset of �

Ž Ž .and that D is mapped onto D	 by a conformal map . Then the law of  � ,t
. Ž .t 
 0 is that of a time-changed Brownian motion started from  x and

� Ž . 4killed when it exits D	. In particular, the law of the trace  � , t 
 0 ist
Ž .exactly that of the trace of a planar Brownian motion started from  x and

Ž .killed when it exits  D .
Ž .Suppose for instance that B , t 
 0 is a planar Brownian motion startedt

on the imaginary line from the point z � i� and stopped at the time

T � inf t � 0: � B � n .� 4Ž .n t

Then the law of

exp B , 0 � t � T� 4Ž .t n

z Žis that of the trace of a planar Brownian motion started from e on the unit
. Ž .circle and killed at the first time it hits the circle of radius exp n . We will

often implicitly use such facts.
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2.2. Exponents for unconditioned Brownian motions. In this section we
Ž .define and review some facts about the intersection exponent s in two

dimensions. Actually, at this stage, it will not be clear whether the exponents
that we will define in this section are indeed the same as those briefly defined
in the introduction. This will be in fact an easy consequence of the commuta-
tion relations stated in Section 4.

Let B1, B2, . . . be independent �-valued Brownian motions started, respec-t t
tively, from z , z , . . . under the probability measure P z1, z2 , . . . . We write1 2

B j � X j � iY j,t t t

where X j, Y j are independent, one-dimensional Brownian motions. We alsot t
jŽ . jŽ . jŽ . j j jsometimes write B t , X t , Y t for B , X , Y . We lett t t

T j � T X j � inf t � 0: X j � n .Ž . � 4n n t

Ž . Ž .Suppose p � p , . . . , p is a k-tuple k 
 2 of positive integers and let1 k

K � K p � p � ��� �p .Ž . 1 k

Ž .We group the Brownian motions into ‘‘packets’’ of size p , . . . , p . Let h j �1 k
jŽ .h j, p be the packet in which B is included, that is,

h j � l if and only if p � ��� �p � 1 � j � p � ��� �p .Ž . 1 l�1 1 l

Let
l j j� � B 0, T ,�n n

� Ž . 4j : h j �l

where we write
j � � jB t , t � B : t � t � t ,� 41 2 t 1 2

and let
l i z l� � e : z � � .� 4n n

Ž .Let D � D p be the eventn n

l mD � � � � � �, 1 � l � m � k .� 4n n n

Ž . � �Let F � F p be the event that for any m � 0, n , there exists � , . . . , �n n 1 K
such that:

jŽ j .1. � � Y T � 2� �.j m
Ž . Ž .2. For all j , j such that h j � h j , one has � � � � � � 2� .1 2 1 2 j j j1 2 1

The event F in some sense implies that the packets of Brownian motionsn
remain in a prescribed order. Let

i y , . . . , i y1 Kq � q p � sup P D � F ,Ž . Ž .n n n n

where the supremum is over all

11 0 � y , . . . , y � 2�Ž . 1 K

satisfying
12 y � y if h j � h j .Ž . Ž . Ž .j j 1 21 2
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Ž .Note that if we replace 11 by the condition

� � � 4y � y � 2� , j , j � 1, . . . , K ,j j 1 22 1

we get the same q . From this and the strong Markov property, we get thatn
the q are submultiplicative, that is,n

q � q q ,n�m n m

and hence by standard arguments, if we define

�log qn
� � � p � supŽ .

nn�0

Ž Ž . � �.it is easy to check that � � � using 8 ; see, e.g., 35 , we get that

q � e�n � , n � �.n

�n � Ž .Moreover, the definition of � implies that q 
 e . We call � p �n
Ž . Ž .� p , . . . , p the p , . . . , p intersection exponent.1 k 1 k

Ž � �. Ž .In fact, it can be shown see, e.g., 19 , that there is a C � C K � � such
that for all n 
 1,

q � Ce�� n ,n

but we will not need this stronger result.
Let

� �q � q p � P* D � F ,Ž . Ž .n n n n

Ž .where the law P* means that the initial distribution on iy , . . . , iy is the1 K
� � K � Ž j.uniform distribution on 0, 2� i so that exp B are started uniformly on

�the unit circle . We will use this notation throughout the paper.
Clearly,

13 q� � qŽ . n n

as q corresponds to the sup over all possible starting points. Define for anyn
j � K,

u � B j T j � 1.Ž .j 1

Ž . ŽIt is easy to check that the density of the law of exp u with respect to thej
� � � 4.Lebesgue measure on the circle z � 1 is uniformly bounded. Define for any

t 
 0,
B j , * t � B j T j � t � 1.Ž . Ž .1

B j, * is a Brownian motion started on the imaginary line and the density of
Ž j, Ž .. Žexp B * 0 is uniformly bounded with respect to the Lebesgue measure on

. Ž .the unit circle . This leads readily to the fact that there exists C � C K such
that

q � Cq� .n n�1

Ž .Combining this with 13 shows that

14 q� � e�n � , n � �.Ž . n
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2.3. Intersection exponents in strips and half spaces. We will also need to
consider the intersection exponent for Brownian motions restricted to stay in
the strip

� 4TT � � � 0, � � x � iy : 0 � y � � , x � � .Ž .
Ž .Let J � J K be the eventn n

j jJ � B 0, T � TT , j � 1, . . . , K .� 4n n

lŽ . Ž .Let p � p , . . . , p and � be as above, and let D � D p be the event1 k n n n

D � �l � �m � �, 1 � l � m � k .� 4n n n

Note that J � D � J � D . Let F be as above. Note that in this casen n n n n
Ž .D � J � F � D � J � � H wheren n n n n m��0, n � m

H � � j , j such that h j � h j , one has Y j1 T j1 � Y j2 T j2 .Ž . Ž .� 4Ž . Ž .m 1 2 1 2 m m

Let
i y , . . . , i y1 Kq � q p � sup P J � D � F ,Ž . Ž .˜ ˜n n n n n

where the supremum is over all

15 0 � y , . . . , y � �Ž . 1 K

satisfying
16 y � y if h j � h j .Ž . Ž . Ž .j j 1 21 2

˜ Ž̃ .Again, submultiplicativity shows that there exists a � � � p such that
˜�n �q � e , n � �.ñ

˜ ˜�n � �n�Ž .Moreover, q 
 e . Again, we could show that q � C K e , but we will˜ ˜n n
˜ Ž .not need this. We call � the p , . . . , p intersection exponent for Brownian1 k

˜motions restricted to a strip. We will also refer to � as the intersection
exponent for Brownian motions restricted to a half space, since that is what
the paths look like under conformal transformation by the exponential map.
If k � 1, we set

�̃ p � p.Ž .
Ž .This is the natural definition, since in this case J � D � F � J , and 8n n n n

gives

sup P i y J � P i� 	2 J � e�p n , n � �.Ž . Ž .n n
� �y� 0, �

We define
� �q � q p � P* J � D � F ,Ž . Ž .˜ ˜n n n n n

Ž � � K .the initial distribution is the uniform distribution on 0, 2� i . Note that
Ž .the event in the last formula can hold only if the initial points satisfy 15 and

Ž . Ž .16 . As before, we can see that for some C � C K � �,

q� � q � Cq� .˜ ˜ ˜n n n�1
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In particular,
˜� �n�q � e , n � �.ñ

It is sometimes more convenient to use the ‘‘conditioned half-space’’ expo-
nent

ˆ ˜� p � � p � p � ��� �p .Ž . Ž . Ž .1 k

We shall see that this is the exponent for Brownian motions conditioned to be
in the strip, that is,

ˆ�P* J � D � F J � exp �n� p , n � �.Ž .Ž . Ž .n n n n

ˆ1 ˆ22.4. Conditioned Brownian motions and exponents. Let X , X , . . . bet t
independent three-dimensional Bessel processes and let

ˆ j ˆ j ˆ jT � T X � inf t � 0: X � n .Ž . � 4n n t

Let Y 1, Y 2, . . . be independent one-dimensional Brownian motions, indepen-
ˆ1 ˆ2 1 2dent of X , X , . . . , and define the processes W , W , . . . byt t

j ˆ j jW � X � iY .t t t

The processes W 1, W 2, . . . can be viewed as independent two-dimensional
� Ž .Brownian motions conditioned to remain forever in the half-plane z: � z �

40 . In the rest of this paper we will simply refer to such processes as
Ž .‘‘conditioned Brownian motions’’ or CBMs in short .

Ž .Let p � p , . . . , p be a k-tuple of positive integers and define K and1 k
Ž .h j as above. Let

l j jˆ� � W 0, T�n n
Ž .j : h j �l

and
l l� � exp z : z � � .Ž .� 4n n

Ž .Let E � E p be the event,n n

l mE � � � � � �, 1 � l � m � k� 4n n n

ˆ ˆ Ž . Žand F � F p the event defined analogously to F replacing the Browniann n n
j j .motions B ’s by the CBM W ’s . Note that by topological considerations,

ˆ ˆE � F � E � F .n n n 0

Let
� � ˆr � r p � P* E � F ,Ž . Ž .n n n n

KŽ � � .the initial distribution of z is again the uniform distribution on 0, 2 i� .
� �Ž . Ž .We can bound q p in terms of r p because the path of a conditionedn n

Brownian motion can be viewed as a subpath of the path of a Brownian
motion: Suppose that B j is a planar Brownian motion started with the
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� �uniform distribution on 0, 2� i . Define

� j � sup t � T j : X j � 0� 40, n n t

and for all t 
 0,

B j , � t � B j � j � t .Ž . Ž .0, n

Ž . Ž j, �.It follows from 9 that the law of exp B up to its hitting time of the circle
Ž jŽ ..of radius log n is exactly that of exp W t up to its hitting time of the circle

Žof radius log n in both cases, the starting points are chosen uniformly on the
.unit circle . Hence we immediately get that for any n � 0,

� �q p � r p .Ž . Ž .n n

The intersection exponent for conditioned Brownian motions can be de-
fined in a similar way as the intersection exponent for Brownian motion, but
as the next proposition shows, the exponents are the same.

PROPOSITION 1.
�r p � exp �n� p , n � �.Ž . Ž .Ž .n

� � �Ž . Ž . Ž .PROOF. Since r p 
 q p , we need only find an upper bound on r p .n n n
zChoose z, and write P and P . Let

	 j j j j j j1 1 1 2 2 2ˆ ˆ ˆ ˆE � exp W T , T � exp W T , T � �,½n 1 n 1 nž / ž /
1 � j , j � K , h j � h j .Ž . Ž . 51 2 1 2

Then
	ˆ ˆF � E � F � E ,n n n n

and hence
	 	ˆ ˆ ˆ ˆ�P F � E � P F � E � P F � E F .ž / ž / ž /n n n n n n 1

The probability on the right is with respect to CBMs and depends only on
Ž .their values after they first hit the line � z � 1, but this is the same as the

� Ž . 4probability for Brownian motions conditioned so that they stay in � z � 0 .
Since the probability that K independent Brownian motions starting at
� Ž . 4 � Ž . 4 � Ž . 4 �K� z � 1 reach � z � n without hitting � z � 0 is n , we get easily
that

	 K �n� Ž p.ˆ ˆ�P F � E F � n q p � e , n � �Ž .ž /n n 1 n�1

and this concludes the proof of the proposition. �
ˆ ˆ Ž .We can do similarly for exponents in strips. Let J � J K be the eventn n

j jˆ ˆJ � W 0, T � TT , j � 1, . . . , K ,½ 5n n

Ž .let E � E p be the eventn n

E � � l � �m � �, 1 � l � m � k� 4n n n
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and put

ˆ ˆE � E � J .n n n

Let
� � ˆ ˆ ˆ ˆr � r p � P* E � F � P* E � F .Ž .˜ ˜ ž / ž /n n n 0 n n

Then we can prove the following in the same way as Proposition 1.

PROPOSITION 2.
� ˜r p � exp �n� p , n � �.Ž . Ž .˜ Ž .n

Ž .Note that in particular, when p � 1 , this shows that

1 1 �nˆ17 P* W 0, T � TT � eŽ . ž /n

Ž̃ . Ž .as � 1 � 1 actually, this could have been easily derived directly .

2.5. Generalized exponents I. We are now going to define exponents

�̃ � , p , � , . . . , p , �Ž .1 1 2 k k�1

and
� � , p , . . . , � , pŽ .1 1 k k

when � ’s are nonnegative real numbers and p ’s are positive integers.j j
We start by defining for every � 
 0,

�̃ � � �.Ž .
This agrees with our previous definition if � is a positive integer.

Ž .Now, fix k 
 1, p � p , . . . , p , and keep the same notation as in Section1 k
Ž .2.4. We let � � � , � , . . . , � . Recall that for 1 � l � k,1 2 k�1

l j jˆ� � W 0, T .�n n
Ž .j : h j �l

For ease, we set
0 � 4� � x : 0 � x � n ,n

k�1 � 4� � x � i� : 0 � x � n .n

ˆlFor 2 � l � k, let F be the eventm

l j j j	 j	ˆ ˆ ˆF � � j, j	, JJ W T � JJ W T if h j � l � 1, h j	 � l ,Ž . Ž .Ž . Ž .½ 5m m m

and let
1 j jˆ ˆF � JJ W T � 0 if h j � 1 ,Ž .Ž .½ 5m m

k�1 j jˆ ˆF � JJ W T � � if h j � k .Ž .Ž .½ 5m m

ˆlNote that F depends only on the positions of the starting points.0
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Let Ol , l � 1, . . . , k � 1, be the open domain bounded above by � l , belown n
l�1 � Ž . 4by � , on the left by a subinterval of � z � 0 and on the right by an

ˆl� Ž . 4subinterval of � z � n . This domain is well defined if the event F holds0
l l�1 ˆl l l�1 land � � � � �. If F does not hold or � � � � �, we set O � �.n n 0 n n n

Ž .Note that at least up to a null event ,

ˆ ˆ lF � E � O � �, l � 1, . . . , k � 1 .� 40 n n

˘Let W be another independent conditioned Brownian motion started witht
˘� �the uniform distribution on 0, 2� i under the probability measure P and

˘ ˘T � inf t � 0: � W � n .Ž .½ 5n t

Let
l l l ˘ ˘ ˘ lZ � Z O � P W 0, T � O .Ž . Ž .ž /n n n n n

Note that Zl is a deterministic function of Ol . Clearly, Zl � 0 if Ll � �.n n n n
Let

k�1
�l� � ls � s p , � � E* Z .Ž . Ž .Łn n n

l�1

0 Ž l .0If � � 0, we use the convention 0 � 0, that is, Z is the indicator functionl n
� l 4of the event Z � 0 . Using the decomposition of conditioned Browniann

� Ž .�motions see 10 , it is not difficult to check that there is a constant c such
that

s� � cs� s� ,m� n�1 m n

and therefore u � cs� is submultiplicative. We definen n�1

�log un˜ ˜� � � � , p , . . . , p , � � sup .Ž .1 1 k k�1 nn�0

˜Ž . Ž .It is easy using 17 to see that � � �. For instance, when k � 1, p � 1
Ž .and � � 0, � , we get that

s� 1 , �, 0Ž . Ž .Ž .n

�˘ ˘ ˘ � �1 1� E* 1 P W 0, T � 0, n � � 1 � 
 , �Ž .Ž .ˆ ž /�W �0, T � ��0, n ��Ž0 , � Ž1�
 ..4 nn

n n�
� exp � exp � when n � �,ž / ž /1 � 
 


' '� Ž .�so that this corresponds to the choice 
 � � 	 1 � �

2˜ '18 � 0, 1, � � 1 � � .Ž . Ž . Ž .
˜ ˜Ž . Ž .In the rest of the paper, we will use the notation � 1, � � � 0, 1, � .

Similarly, one can see that
2k k�1

˜19 � � , p , . . . , p , � � p � �Ž . Ž . ' 'Ý Ý1 1 k k�1 j jž /j�1 j�1
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� � � �by dividing the rectangle 0, n � 0, � into 2k � 1 well-chosen rectangles
Ž � �.see, e.g., 35 .

Hence,
� ˜s � u � exp �n�Ž .n n

when n � �.
It is easy to check that if � , . . . , � are positive integers, then this1 k�1

˜extends our previous definition of � .
Ž̃ .We now briefly focus on some simple properties of the mapping � � � p, � .

Ž .Suppose now that p is fixed and that � and � � � , . . . , � are in1 k�1
� k�1. Schwarz’s inequality yields�

k�1� � � Ž .� �� 	2� l lls p , � E* ZŽ .Łn nž /2 l�1

1	2 1	2k�1 k�1
�� lll l� E* Z E* ZŽ . Ž .Ł Łn n

l�1 l�1

1	2� �� s p , � s p , � .Ž .Ž .Ž .n n

� Ž .This shows that the function � � �log s p, � is concave so thatn

˜� � � � , p , � , p , . . . , p , �Ž .1 1 2 2 k k�1

Ž .k�1is also concave. In particular, it is continuous on 0, � .
As almost surely,

j ˘ ˘ ˘Z � P W 0, T � TT � exp �n when n � �,Ž .Ž .ž /n n

one immediately sees that

˜� � � � , p , . . . , p , �Ž .j 1 1 k k�1

is strictly increasing and that for any �, �	 
 0,

˜ ˜20 � �	, 1, � 
 � � � �	, 1 .Ž . Ž . Ž .
� Ž .�In particular, we see that combining this with 18

˜21 � 1, � � �, � � �.Ž . Ž .
Define for all � 
 0,

˜� � � � 1, � .Ž . Ž .˜
We have just seen that � is strictly increasing, that lim � � �� and that˜ ˜��

Ž . Ž .it is continuous on 0, � . Continuity at 0 follows from 18 . Hence, � is˜
� . � .bijective from 0, � into 1, � .

Ž .An argument similar to that used to derive 18 shows that for any
�, �	 
 0,

2
˜ ˜ ''� �	, 1, � � � �	, 1 � � .Ž . Ž .ž /



G. F. LAWLER AND W. WERNER1614

Ž .This implies easily that the concave function

˜�, �	 � � �	, 1, �Ž . Ž .
� .2is in fact continuous on 0, � .

Note that symmetry implies

˜ ˜� � , p , . . . , p , � � � � , p , . . . , p , � .Ž . Ž .1 1 k k�1 k�1 k 1 1

We also define

�̃ � , p , . . . , � , p , p , � , . . . , p , �Ž .1 1 l�1 l l�1 l�1 k k�1

˜� � � , p , . . . , p , 0, p , . . . , p , � .Ž .1 1 l l�1 k k�1

˜By continuing we can define � for any k-tuple of nonnegative real numbers
Ž .such that any pair of consecutive numbers in the k-tuple contains at least

one positive integer. We also extend the definition of the conditioned half-space
exponents in the natural way,

ˆ ˜� �, p , . . . , p , � � � � , p , . . . , p , �Ž . Ž .1 k k�1 1 1 k k�1

� � � p � ��� �p � � .Ž .1 1 k k�1

Ž .The exponents � � , p , . . . , � , p are defined similarly. Suppose first1 1 k k
1 k 0 k ˆthat k 
 2. Let � , . . . , � be as above. Define � � � . When E � F isn n n n n n

l � � �satisfied, let U , l � 1, . . . , k denote the subset of the annulus z: 1 � z �n
4 � � � 4 Ž l�1. � � � 4 Ž l . Žexp n bounded by z � 1 , exp � , z � exp n and exp � note thatn n

1 k .there are only k domains U , . . . , U here .n n
The definition of the random variables Zl are modified as follows:n

l ˘ ˘ ˘ lZ � P exp W 0, T � U .Ž .ž /ž /n n n

We set
k

�	 	 lls � s p , � � E* 1 Z .Ž . Ž .ˆ Łn n �E � F 4 nn n
l�1

Again it is easy to check that this extends our previous definition when all of
the � ’s are positive integers.l

We will also write

� � , p , . . . , � , p � � p , � , . . . , p , � .Ž . Ž .1 1 k k k k 1 1

Note that by symmetry, for each 2 � l � k,

� � , p , . . . , � , p , � , p , . . . , � , p � � � , p , . . . , � , p .Ž . Ž .l l k k 1 1 l�1 l�1 1 1 k k

When k � 1, one has to clarify the definition of U 1. There could be severaln
Žchoices of connected components if some of the p conditioned Brownian1

. 1motions do not intersect . If such is the case, then define U as the connectedn
component that maximizes

˘ ˘ ˘ 1P exp W 0, T � U � � .Ž .ž /ž /n n
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Ž .One can then check that this leads to the definition of � � , n with1 1
�11E* Z � exp �n� � , n .Ž .Ž .n 1 1

Ž .We safely leave this to the reader. Note that � p, 0 is the so-called discon-
Ž � �.nection exponent for p planar Brownian paths see, e.g. 33 that measures

the decay of the probability that the union of p independent Brownian paths
do not disconnect a point that is close to their starting points. More precisely,
with the previous notations,

1P* exp � does not disconnect 0 from infinity � exp �n� p , 0 .Ž .Ž .Ž .n

Ž .Again, Schwarz’s inequality shows that � � � p, � is a concave function.
Ž . Ž .In particular, � � � 1, � is continuous on 0, � .

3. Conformal invariance.

3.1. Extremal distance. We first recall some well-known facts concerning
conformal invariance. Let DD be a bounded, simply connected domain in �

whose boundary � DD is a closed Jordan curve. Let � , � � � DD be disjoint,1 2
connected, closed sets that are not singletons and let � and � denote the3 4

Ž .two connected components of � DD � � � � defined in such a way that � ,1 2 1
� , � and � are ordered counterclockwise. The domains we will need to3 2 4
consider in this paper are particularly simple; these domains will satisfy

� 4� � iy : s � y � t ,1 1 1

� 4� � n � iy : s � y � t ,2 2 2

� DD � � � � � 0 � � z � n ,� 4Ž . Ž .1 2
where

n � 0,
0 � s � t � 2� ,1 1

0 � t � s � 2� .2 2

Moreover, for every m, the cross section
DD � � z � m ,� 4Ž .

will be contained in an interval of length 2� . We will call such domains path
domains of length n. In this case � is the ‘‘lower’’ boundary and � is3 4
the ‘‘upper’’ boundary. Examples of such domains are the sets Ol from Sec-n
tion 2.5.

Let TT be the n � � rectanglen

TT � z � �: 0 � � z � n , 0 � � z � � ,� 4Ž . Ž .n

whose boundary is the union of
	 � 4� � iy : 0 � y � � ,1
	 	 � 4� � � � n � iy : 0 � y � � ,2 2, n
	 	 � 4� � � � x : 0 � x � n ,3 3, n
	 	 � 4� � � � x � i� : 0 � x � n .4 4, n
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Ž . Ž .There exist a unique L � L DD � L DD, � , � and a unique conformal1 2
transformation

f : DD � TT ,L

such that f can be extended to a continuous function

f : DD � TT ,L

with

f � � � 	 , j � 1, 2, 3, 4.Ž .j j

L	� is called the extremal distance between � and � in DD. As we will1 2
Žmake an extensive use of this notion, let us first recall some basic facts see,

� � .e.g., 1 for more information .
Ž � �The extremal distance can be defined alternatively as follows see 1 ,

.Definition 4.1 :

2
inf length �Ž .Ž .�L DDŽ . �� sup ,

� area DDŽ .� �

where the sup is over all C� metrics on DD, and the infimum is over all
Žsmooth paths � joining � to � in DD length and area denote respectively1 2 � �

.the length and the area with respect to the metric � .
In particular, when DD is a path domain of length n as above, the

Euclidean distance between any path joining � to � is at least n, so that1 2

L DD n2Ž .

 ,

� area DDŽ .

where ‘‘area’’ from now on denotes the Euclidean area. Suppose now that
DD1, . . . , DDk are k disjoint path domains of length n that are subsets of TT , andn

Ž j. Ž .that L DD for each j � 1, . . . , k denotes � times the extremal distance
j �between two parts of the boundary of DD that are respectively subsets of z:

Ž . 4 � Ž . 4� z � 0 and z: � z � n . Then the previous remark shows that for all
positive numbers � , . . . , � ,1 k

k k � jj 222 � L DD 
 � n .Ž . Ž .Ý Ýj jarea DDŽ .j�1 j�1

However, as the sets DD j are disjoint subsets of TT ,n

k
j23 area DD � n� .Ž . Ž .Ý

j�1

Ž . Ž .By maximizing the right-hand side of 22 subject to the constraint 23 yields
the lower bound in the following lemma.
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LEMMA 3. Suppose DD1, . . . , DDk are disjoint path domains of length n that
are subsets of TT . Then for all nonnegative � , . . . , � ,n 1 k

2k k
j� L DD 
 n � .Ž . 'Ý Ýj jž /j�1 j�1

If DD is a path domain of length n as above, define its symmetrization s DD

by

� � � 4� 4s DD � x � iy : x � iy � DD � iy : s � y � t .1 1

˜Note that there exists a unique L	 � 0 and a unique conformal map f that
maps s DD onto sTT in such a way that the images of the four ‘‘corners’’L	

n � is , n � it , �n � it and �n � is are the four corners L	, L	 � i� ,2 2 2 2
˜�L	 � i� and �L	. Because of the uniqueness of this conformal map f , it is

˜ ˜ ˜Ž . Ž .clear f is ‘‘symmetric’’ and in particular that f � � 0, i� . Hence, f maps1
˜conformally DD onto TT so that in fact L � L	 and f � f on DD. In particular,L	

Ž .this shows that f is in fact analytic on is , it and that for all z �1 1
Ž . Ž .is , it , f 	 z is a nonnegative real number. For s � y � t , let1 1 1 1

g y � f 	 iy .Ž . Ž .
Then

� � f � JJfŽ . Ž .
g y � � .Ž .

� � z � JJ zŽ . Ž .Ž . Ž .z� i y z�i y

3.2. Conformally invariant path measure. In this section we describe a
conformally invariant measure on paths in a path domain DD. Let us stress
that this will be a positive measure but not necessarily a probability measure.

Suppose that DD denotes a path domain of length n as in the previous
Ž . 	section and define � , � , f, g, L � L DD , TT , � � � , and so on, as in the1 2 L 1 1, L

previous section. Suppose that B and W denote respectively a Brownian
motion and a CBM started from z � � under the probability measure P z. Let

Ž . Ž .� � � DD and � 	 � � TT be the exit times of B from the respective domains.L
Then, if g is as defined in the previous section,

i y ˆ i y�� ˆP W 0, T � DD � lim P W 0, T � DDŽ . Ž .ž / ž /n n
��0

� lim n	� P i y�� B � � �Ž . Ž .Ž .2
��0

� lim n	� P f Ž i y�� . B � 	 � � 	Ž . Ž .Ž .2
��0

� lim n	� P f Ž i y .�� g Ž y . B � 	 � � 	Ž . Ž .Ž .2
��0

f Ž i y . ˆ� ng y 	L P W 0, T � TT .Ž .Ž . Ž .ž /L L
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In particular, for all s � s � t � t ,1 1

1 1t ti y f Ž i y .ˆ ˆP W 0, T � DD dy � P W 0, T � TT g y dyŽ .Ž . Ž .H Hž / ž /n L Ln Ls s

1 Ž .f it 	i i y ˆ� P W 0, T � TT dy.Ž .H ž /l LL Ž .f is 	i

24Ž .

ˆŽ .We therefore define the measure � on processes W , t � T as follows:DD t n
i y ˆŽ .Define first the probability measure P on CBM W , t � T started from iy.t n

If dy denotes the Lebesgue measure on �,
1

i y� � � dyE � 1 .Ž . Ž .Ž .ˆHDD W Ž0 , T .� DDn2� n �

In other words, n� is the same measure as that obtained by starting aDD

ˆ� � � �CBM W with the uniform measure on 0, 2� i ; taking the path W 0, T andn
ˆŽ .killing all paths with W 0, T � DD.n

It is obvious from our definition that the measure � have the followingDD

properties:

1. Suppose that DD	 � DD and that DD	 and DD are two path domains of same
length n. Then,

� � � � � 1 .Ž . Ž .Ž .ˆDD	 DD W Ž0 , T .� DD	n

2. The measure � is conformally invariant in the following sense: if DD andDD

DD	 are two path domains of length n and n	 such that there exists a
Ž . 	 Ž . 	conformal mapping f from DD onto DD	 with f � � � and f � � � ,1 1 2 2

then the law of the trace

ˆf W , t � TŽ .� 4t n

under the measure � is identical to the law ofDD

ˆW , t � T� 4t n	

under the measure � .DD	

It suffices to prove this in the case where DD	�TT and this is just a con-l
Ž .sequence of conformal invariance of planar Brownian motion and of 24 .

There are more universal definitions of this conformal invariant measure
on Brownian excursions in any simply connected domain, but we will not
need them here.

We are now going to derive a first useful consequence of this conformal
ˆŽ .invariance: the total mass of n� is the probability that W 0, T � DD whereDD n

Ž . � � l lW 0 is chosen uniformly on 0, 2� i . In particular, if Z and O are definedn n
l � �las in Section 2.5, then Z � n � .n O n

� � � �But conformal invariance shows that � � � . On the other hand,DD TT Ž DD.L

we know that

ˆ �mP W 0, T � TT � e , m � �Ž .ž /m m

Ž . � �when W 0 is chosen uniformly on 0, 2� i .
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Ž l . ŽAs L O 
 n	2, this implies that uniformly with respect to the possiblen
l .shapes of O ,n

l � � l
lZ � n � � exp �L O , n � �.Ž .Ž .n LŽO . nn

Therefore, for any � � 0 and any large enough n,
k�1

� ls p , 1 � � � 
 E* exp � � L OŽ .Ž . Ž .Ýn l n½ 5
l�1

�
 s p , 1 � � � .Ž .Ž .n

Ž̃ .Combining this with the continuity of � � � � , p , . . . , p , � implies1 1 k k�1
that

k�1
lE* exp � � L OŽ .Ý l n½ 5ž /25Ž . l�1

˜� exp �n� � , p , . . . , p , � , n � �.Ž .Ž .1 1 k k�1

ˆAs we shall see, this is a very useful characterization of � .

3.3. A first cascade relation. We are now going to use the results collected
so far to show the following relation:

LEMMA 4. For all positive integers p , . . . , p and nonnegative reals1 k
� , . . . , � ,1 k�1

˜ ˜ ˜� � , p , . . . , p , � � � � , p , . . . , p , � � , p , � .Ž . Ž .Ž .1 1 k k�1 1 1 k�1 k k k�1

Ž .PROOF. Throughout this proof, we fix p � p , . . . , p and � �1 k
Ž .� , . . . , � and assume k 
 2. For convenience, we define1 k�1

p	 � p , . . . , p ,Ž .1 k�1

K 	 � p � ��� �p ,1 k�1

˜ ˜� � � � , p , . . . , p , � ,Ž .1 1 k k�1

˜ ˜� � � � � , p , � .Ž .k k k�1

We define the domains O1, . . . , Ok�1 using the paths W 1, . . . , W K as inn n
previous sections. We also define O� � TT as being the path domain of lengthn n

k�1 � � Ž kn bounded below by � and above by i� , n � i� it is what O would ben n
� �. Ž .if we were working with p	 instead of p . Let L � L O .n n

In order to use conformal invariance efficiently, let us define the integrals

 Ž .E	 and EE when DD is a path domain as follows:DD

Ž .i E	 is the integral with respect to the probability measure for which
1 2 K 	 � �W ,W , . . . , W are independent CBMs started uniformly on 0, 2� i .
Ž . 
 K 	�1 Kii EE is the integral with respect to the measure for which W , . . . , WDD

are independent processes each defined using the measure � .DD
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Ž .The definition of � and 25 show immediately thatTTn

k�1

 l˜exp �n� � E	 EE exp � � L O , n � �.Ž .Ž . ÝTT l nn ½ 5ž /ž /l�1

Hence, when n � �,
k�1


l k k�1˜exp �n� �E	 exp � � L O EE exp �� L O �� L O .� 4Ž . Ž . Ž .Ž . Ž .Ý l n TT k n k�1 nn½ 5ž /
l�1

Ž k . Ž k�1. � 4But L O and L O are not infinite only if for all j � K 	 � 1, . . . , K ,n n

j ˆ j �W 0, T � O ,Ž .n n

so that we can replace EE

 in the last expression by EE



� . Conformal invari-TT On n

ance implies that

EE



� exp �� L Ok � � L O k�1� 4Ž . Ž .Ž .O k n k�1 nn

� EE

 exp �� L O� � � L O�� 4Ž . Ž .Ž .�TT k k�1L n

where O� and O� are the two subpath domains of TT � of length L� that are,L nn

respectively, under and above all the paths W K 	�1, . . . , W K. On the other
hand


 � � � ˜ �
EE exp �� L O � � L O � exp �L � � , L � �.� 4Ž . Ž .Ž . Ž .�TT k k�1 n nL n

Finally, this shows that
k�1

�L˜ ˜exp �n� � E	 exp � � L O exp �L � �� 4Ž .Ž . Ý l n n½ 5ž /
l�1

˜ ˜� exp �n� � , p , . . . , p , � � , n � �.Ž .ž /1 1 k�1

This implies Lemma 4. �

3.4. Corresponding results for � . We have focused in the previous section
˜on the exponents � . Similar arguments lead to the following first cascade

relation for � . As this proof contains no new ideas, we simply leave it to the
reader.

LEMMA 5. For all positive integers p , . . . , p and nonnegative reals1 k
� , . . . , � ,1 k

˜� p , � , p , . . . , � � � p , � , . . . , p , � � , p , � .Ž . Ž .Ž .1 1 2 k 1 1 k�1 k�1 k k

4. Relations between exponents. We will now put some results of
Sections 2 and 3 together to obtain relations between exponents.

4.1. Cascade relations. We have already done most of the derivation of
what we call the ‘‘cascade’’ relations. However, they are of sufficient impor-
tance that we restate them here.
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THEOREM 6. For any integers 1 � j � k, for all positive integers p , . . . , p1 k
and nonnegative real numbers � , . . . , � ,1 k�1

�̃ � , p , � , . . . , p , �Ž .1 1 2 k k�1

˜ ˜� � � , p , . . . , p , � � , p , . . . , p , �Ž .ž /1 1 j j�1 j�1 k k�1

26Ž .

and

˜27 � p , � , p , . . . , p , � � � p , � , . . . , p , � � , p , . . . , p , � .Ž . Ž . Ž .ž /1 1 2 k k 1 1 j j j�1 k k

Ž .PROOF. Identity 26 in the case where j � k � 1 has already been estab-
lished; see Lemma 4.

One then gets that

�̃ � , p , . . . , p , �Ž .1 1 k k�1

˜ ˜� � � , p , . . . , p , � � , p , �Ž .Ž .1 1 k�1 k k k�1

˜ ˜ ˜� � � , p , . . . , p , � � , p , � � , p , �Ž .Ž .ž /1 1 k�2 k�1 k�1 k k k�1

˜ ˜� � � , p , . . . , p , � � , p , � , p , �Ž .Ž .1 1 k�2 k�1 k�1 k k k�1

Ž .and this proves 4 when j � k � 2.
The general case is proved by induction.

Ž . Ž .Similarly, identity 27 follows from Lemma 5 and 26 . �

4.2. Commutation relations. The main result in this section is the follow-
ing proposition.

PROPOSITION 7. For all k 
 1, for all positive integers p , . . . , p and1 k
�for all nonnegative reals � , . . . , � , for all permutations � and � of 1, . . . ,1 k�1

4 � 4k � 1 and 1, . . . , k , respectively,

˜ ˜28 � � , p , . . . , p , � � � � , p , � , . . . , p , � .Ž . Ž . Ž .1 1 k k�1 � Ž1. � Ž1. � Ž2. � Žk . � Žk�1.

� 4Similarly, for all permutations � and � of 1, . . . , k ,

29 � p , � , . . . , p , � � � p , � , . . . , � , p , � .Ž . Ž . Ž .1 1 k k � Ž1. � Ž1. � Žk�1. � Žk . � Žk .

PROOF. It is clear that for symmetry reasons

˜ ˜� � , p , . . . , p , � � � � , p , � , . . . , � , p , � .Ž . Ž .1 1 k k�1 k�1 k k 2 1 1

Hence, for all 1 � l � k, using the cascade relation,

�̃ � , p , . . . , p , �Ž .1 1 k k�1

˜ ˜� � � , . . . , p , � � , p , . . . , �Ž .Ž .1 l�1 l l k�1

˜ ˜� � � , . . . , p , � � , p , . . . , p , �Ž .Ž .1 l�1 k�1 k l l

˜ ˜ ˜� � � , . . . , p , � � , p , . . . , p , � � , p , �Ž .Ž .ž /1 l�1 k�1 k l�1 l�1 l l

˜ ˜ ˜� � � , . . . , p , � � , p , . . . , p , � � , p , �Ž .Ž .ž /1 l�1 k�1 k l�1 l l l�1
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� ���

˜� � � , . . . , p , � , p , � , p , . . . , p , �Ž .1 l�1 l�1 l l l�1 k k�1

Ž .so that 28 is true when � � Identity and � is the transposition that swaps l
Ž .and l � 1; this implies that 28 is true when � � Identity and � is any

� 4permutation of 1, . . . , k .
In particular, for all l � k � 1,

˜ ˜� � , p , � , p , � � � � , p , � , p , �Ž . Ž .l l l�1 l�1 l�2 l�2 l�1 l�1 l l

˜� � � , p , � , p , �Ž .l l�1 l�1 l l�2

Ž .so that the same method as before easily shows that 28 is true when
� � Identity and � is the transposition that swaps l and l � 1. This implies

Ž .that 28 holds for all permutations � and �.
Ž .To prove 29 we first recall that by symmetry, for all 2 � l � k,

� p , � , . . . , � , p , � � � p , � , . . . , p , � , p , � , . . . , p , � .Ž . Ž .1 1 k�1 k k l l k k 1 1 l�1 l�1

Ž . Ž . Ž .Combining this with 28 and 27 easily implies 29 . �

4.3. Generalized exponents II. We are now going to give a precise mean-
ing to

�̃ � , . . . , �Ž .1 k

Ž . kfor all � , . . . , � � � and to1 k �

� � , . . . , �Ž .1 k

Ž .for all � , . . . , � � � such that1 k �

30 � 
 1, � 
 1 for some i � i	.Ž . i i	

Ž̃ .THEOREM 8. There exists a unique extension of the function � � , . . . , �1 k
for any k 
 1 and � , . . . , � 
 0 such that:1 k

Ž . � 4i For any permutation � of 1, . . . , k ,

˜ ˜� � , . . . , � � � � , . . . , � .Ž . Ž .1 k � Ž1. � Žk .

Ž .ii For any 2 � j � k,

˜ ˜ ˜� � , . . . , � � � � , . . . , � , � � , . . . , � .Ž . Ž .ž /1 k 1 j�1 j k

Ž .Moreover, there exists also a unique extension of � � , . . . , � for any k 
 21 k
Ž .and � , . . . , � 
 0 satisfying 30 such that:1 k

Ž . � 4i For any permutation � of 1, . . . , k ,

� � , . . . , � � � � , . . . , � .Ž . Ž .1 k � Ž1. � Žk .

Ž .ii For any 2 � j � k such that � 
 1 for some i � j,i

˜� � , . . . , � � � � , . . . , � , � � , . . . , � .Ž . Ž .ž /1 k 1 j�1 j k
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˜Ž . Ž . � . � .PROOF. Recall that � � � � 1, � is bijective from 0, � onto 1, � . For˜
Ž̃ .any nonnegative reals � and � 	, � � , 1, � 	 
 1, so that there exists a unique

� 
 0 such that
˜ ˜� 1, � � � � , 1, � 	 .Ž . Ž .

We now define

˜ �1 ˜� � , � 	 � � � � � � , 1, � 	 .Ž . Ž .˜ Ž .
˜ 2 �1Ž . � . �Note that this function � � , � 	 is continuous on 0, � because both �̃

˜Ž . Ž . �and � , � 	 � � � , 1, � 	 are continuous .
In the case where one of the two values � or � 	 is an integer, then the

commutation and cascade relations imply that this new definition is consis-
tent with our previous definitions.

Suppose now that � , . . . , � are nonnegative reals. We define inductively1 k

˜ ˜ ˜� � , . . . , � � � � , � � , . . . , � .Ž . Ž .Ž .1 k 1 2 k

˜ k� . Ž .By induction, we see that � is continuous on 0, � for all k 
 2 . Again, the
cascade and commutation relations ensure that this new definition is consis-

Ž .tent. The generalized cascade relation

˜ ˜ ˜� � , . . . , � � � � , . . . , � , � � , . . . , �Ž . Ž .ž /1 k 1 j�1 j k

Ž .is immediate from the definition. The generalized commutation relation

˜ ˜� � , . . . , � � � � , . . . , �Ž . Ž .1 k � Ž1. � Žk .

Ž .for any permutation � holds since repeated application of

˜ ˜ ˜ ˜� 1, � � , . . . , � � � � , 1, � � , . . . , � ,Ž . Ž .Ž . Ž .1 k 1 2 k

gives

˜ ˜ ˜� 1, 1, . . . , 1, � � , . . . , � � � � , 1, � , . . . , 1, �Ž . Ž .Ž .1 k 1 2 k

˜� � � , 1, � , . . . , 1, �Ž .� Ž1. � Ž2. � Žk .

˜ ˜� � 1, . . . , 1, � � , . . . , � .Ž .ž /� Ž1. � Žk .

Ž .We now define the exponents � � , . . . , � . We will define � only when1 k
two of the � ’s is greater or equal to 1. If � 
 1, we define � byi i i

˜� � � 1, � .Ž .i i

We then define

˜� � , . . . , � � � 1, � � , . . . , � , � , � , . . . , �Ž . Ž .Ž .1 k 1 i�1 i i�1 k

˜� � 1, � � , � , . . . , � , � , . . . , � .Ž .Ž .i 1 i�1 i�1 k

˜The second identity follows from the commutation relation for � . To see that
this is well defined, note that if � 
 1 and � 
 1 for i � i	, then the cascadei i	

˜ Ž .and commutation relations for � imply that � � , . . . , � equals1 k

˜� 1, � 1, � , � , � , . . . , � , � , . . . , � , � , . . . , � .Ž .Ž .i i	 1 i�1 i�1 i	�1 i	�1 k
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˜The generalized commutation relation for � imply the generalized commuta-
tion relation for � ,

� � , . . . , � � � � , . . . , � .Ž . Ž .1 k � Ž1. � Žk .

Also, we get the generalized cascade relation for � . For instance, if � 
 1,1
and 2 � j � k,

˜� � , . . . , � � � 1, � � , � , . . . , �Ž . Ž .Ž .1 k 1 2 k

˜ ˜� � 1, � � , � , . . . , � , � � , . . . , �Ž .ž /ž /1 2 j�1 j k

˜� � � , . . . , � , � � , . . . , � .Ž .ž /1 j�1 j k

Ž Ž .Finally, it is easy to check using 27 , that this definition of � indeed
Ž .generalizes our previous definitions of � p , � , . . . , p , � . This is where the1 1 k k

Ž .assumption 30 is needed: Suppose for instance that p 
 1 and � 
 1 and let
Ž̃ .� � � 1, � , then using our initial definition of � and the cascade relation

Ž .27 , we indeed get that

˜ ˜� p , � � � p , � 1, � � � p , � , 1 � � 1, � p , � . �Ž . Ž . Ž . Ž .Ž . Ž .
˜Note that all the exponents � can be derived from the values

�̃ � , 1, � , � 
 0, � 
 0,Ž .
˜and all the exponents � can be derived from � and the values

� 1, � , � 
 1.Ž .
We also define, as before,

ˆ ˜� � , . . . , � � � � , . . . , � � � � ��� �� .Ž . Ž . Ž .1 k 1 k 1 k

4.4. Generalized disconnection exponents.

˜� Ž . .THEOREM 9. There exists an increasing function 
: � 1, 1 , � � � such�
k Ž .that for any integer k 
 2 and for all � , . . . , � � � such that 30 ,1 k �

˜31 � � , . . . , � � 
 � � , . . . , � .Ž . Ž . Ž .Ž .1 k 1 k

Ž . � .PROOF. Recall that � � � 1, � is concave and increasing on 0, � . In
Ž .particular, it is continuous on 0, � . Define for any � 
 0,
� � � � 1, �Ž . Ž .

˜Ž . Ž .and recall that � � � � 1, � is bijective.˜
�1 ˜Ž . Ž .Assume for instance that � 
 1 and define � � � � so that � 1, �˜1 1 1 1

� � .1

˜� � , . . . , � � � 1, � � , � , . . . , �Ž . Ž .Ž .1 k 1 2 k

�1 ˜� � 1, � � 1, � , � , . . . , �Ž .˜ Ž .ž /1 2 k

�1 ˜� � 1, � � � , . . . , �Ž .˜ Ž .ž /1 k

�1 ˜� � �� � � , . . . , � .Ž .˜ Ž .1 k
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� � ŽRecall that � is continuous on 1, � , and that we have seen see the end of˜
. Ž . �1Section 2.5 that � is continuous on 0, � . Hence, the function 
 � � �� is˜

˜� Ž . .continuous on � 1, 1 , � . �

5. Asymptotic behavior.

˜5.1. A lower bound for � .

LEMMA 10. For any nonnegative reals � , . . . , � ,1 k�1

2k˜ ˜� � , 1, � , 1, � , . . . , 1, � 
 � 1 � � � � � ��� � � .Ž . Ž . ' ' 'ž /1 2 3 k�1 1 2 k�1

k 1 kPROOF. Take p � 1 , let W , . . . , W denote k independent CBMs and
define the subsets O1, O2, . . . , Ok�1 the k � 1 subsets of TT between then n n n
CBMs as in the previous section. From our previous results, it suffices to get
an upper bound for

1 2 k�1E* 1 exp �� L O � � L O � ��� �� L OŽ . Ž . Ž .� 4ˆ ˆF � E 1 2 k�10 n

Ž̃ .in order to find a lower bound for � � , 1, . . . , 1, � . But Lemma 3 shows1 k�1
that

k�1 2
l� L O 
 n � � ��� � �Ž . ' 'Ý ž /l 1 k�1

l�1

and this readily implies the lemma. �

5.2. Asymptotic behavior: first approach. In the present section, we are
going to study the asymptotic behavior of the intersection exponents when
the number of packets tends to infinity. When N � 0 and � 
 0, we define

�N � � , . . . , � � � N.Ž . �
kAlso, if a � � , we define�

N k Na � a, . . . , a � � .Ž . �

˜The cascade relations for � imply that
NN˜ ˜ ˜32 � a � � � a .Ž . Ž . Ž .Ž .

NŽ̃ .We are going to study the asymptotic behavior of � a when N � �. This
type of approach is reminiscent of what physicists call ‘‘replica method.’’ We
shall prove the following result:

kTHEOREM 11. There exists a function U: � � � such that for all a � � ,� � �

1
N 2˜ ˜33 lim � a � U � a .Ž . Ž . Ž .Ž .2NN��

� �Note that this result is of a different type than that derived in 35 , which
we will recall and use in the next subsection, where the number of packets is
constant and the number of Brownian motions per packet tends to infinity.
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Ž .PROOF. Because of 32 , it suffices to consider the case where a � � �
� .0, � .

�1Ž .We are first going to prove suppose that � 
 1. Define � � � � so that˜
Ž̃ .� � � 1, � . Let

N˜� � � � � � 1, � .Ž . Ž .Ž .N N

Then, using Lemma 10, we get that for any positive integers k, l,

2˜ ˜� 
 � � , 1, � , � 
 � � , 1, � 
 � � � .Ž . Ž . ' 'ž /k� l�1 l k l k l k

Now, define for all k � 1, b � � . Then, for all k � 1 and l � 1,'k k�1

b � � 
 � � � � b � b .' ''k� l Žk�1.�Ž l�1.�1 k�1 l�1 k l

Define
bn

U � � sup .Ž .
nn�1

This quantity is finite as
22 '� � n 1 � �Ž .n

� Ž .�see 19 . Finally,

� b2
n n 2lim � lim � U � .Ž .2 2n nn�� n��

Ž . � Ž . �We now suppose that � � 0, 1 the case U 0 � 0 is trivial . It follows
Ž .from 20 that

˜ k ˜ ˜ k�1� � , 1 
 � � � , 1, �Ž . Ž .Ž .
˜ k�1
 � � , 1 � �Ž .


 ���


 1 � k�

so that

˜ ˜ klim � 1, � � � �Ž .Ž .
k��

Ž . Ž .and as lim � � �� , there exists k � k � such that˜�� 0 0

˜ k 0� � 
 1.Ž .
However,

1 1 1 Nk N k0 0˜ ˜ � �lim � � � lim � �Ž . ž /2 2 2k NN�� N��k NŽ . 00

1
2 k 0˜� U � � .Ž .Ž .2k0
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We then define
1

k 0˜U � � U � �Ž . Ž .Ž .
k0

so that
1

N 2˜lim � � � U � . �Ž . Ž .2NN��

We will derive some properties of the function U in Section 5.4.

5.3. A functional relation. We are now going to derive the following
result.

Ž . kTHEOREM 12. For all � , . . . , � � � ,1 k �

˜34 U � � , . . . , � � U � � ��� �U � .Ž . Ž . Ž . Ž .Ž .1 k 1 k

This will be an easy consequence of the results that we have derived so far
and of another asymptotic result that we now state and prove.

PROPOSITION 13. For any positive reals u , . . . , u ,1 k

�̃ Mu , . . . , MuŽ . 21 k
35 lim � u � ��� � u .Ž . ' 'ž /1 kMM��

� �This result was already derived in 35 .

Ž .PROOF. Fix k 
 2 and u , . . . , u � 0. Lemma 10 and 19 show that1 k

2 ˜k � Mu � ��� � Mu 
 � Mu , 1, Mu , 1, . . . , Mu , 1, 0Ž .' 'ž /1 k 1 2 k

2

 Mu � ��� � Mu' 'ž /1 k

so that
2

�̃ Mu , 1, Mu , 1, . . . , Mu , 1 � M u � u � ��� � uŽ . ' ' 'ž /1 2 k 1 2 k

Ž .when M � �. But 21 and the cascade relations imply that

˜ k ˜ k�1� 1 , � � � 1 , � � ��� � �Ž . Ž .
when � � �. Hence,

2k˜ ˜ ˜� Mu , . . . , Mu � � 1 , � Mu , . . . , Mu � M u � ��� � uŽ . Ž . ' 'Ž . ž /1 k 1 k 1 k

when M � �. �

Ž̃ .PROOF OF THEOREM 12. Let us fix � , . . . , � and define � � � � , . . . , � .1 k 1 k
We have seen that

˜ N� �Ž .
2lim � U � .Ž .2NN��
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But the commutation and cascade relations show that

˜ N ˜ ˜ N ˜ N� � � � � � , . . . , � � ,Ž . Ž . Ž .Ž .1 k

Ž .and 33 then implies that for all � � 0, there exists N such that for all0
� 4N � N and all j � 1, . . . , k ,0

2 22 N 2˜N U � � � � � � � N U � � � .Ž . Ž .Ž . Ž .Ž .j j j

Ž .Hence, combining this with 35 shows that

˜ N� �Ž . 2lim inf 
 U � � � � U � � � � ��� �U � � �Ž . Ž . Ž .Ž .1 2 k2NN��

and

˜ N� �Ž . 2lim sup � U � � � � U � � � � ��� �U � � �Ž . Ž . Ž .Ž .1 2 k2NN��

so that finally,

˜ N� �Ž . 22U � � lim � U � � ��� �U �Ž . Ž . Ž .Ž .1 k2NN��

and this proves the theorem. �

5.4. Simple properties of U. Let us now make a list of some simple
properties of the function U.

PROPOSITION 14.

Ž . � .i U is continuous and strictly increasing on 0, � .
Ž . Ž Ž . Ž ..2ii The function � � U 1 � U � is concave.
Ž .iii The function U is strictly concave.

'Ž . Ž .iv When x � �, U x � x .

PROOF. Theorem 12 immediately implies that U is strictly increasing as
˜Ž .U � � 0 for all � � 0 and � is continuous and strictly increasing in all

variables.
Let us now show that U is continuous. First, note that for any � 
 0,

N
�̃ 1, �Ž .Ž .2 2 ˜U 1 � U � � U � 1, � � lim .Ž . Ž . Ž .Ž . Ž . 2NN��

˜ NŽŽ . .We know that for any fixed N, � � � 1, � is a concave function, so that
Ž Ž . Ž ..2 ŽU 1 � U � is also a concave function of � as a limit of concave func-

. Ž . Ž .tions . Hence, � � U � is continuous on 0, � .
On the other hand,

˜U � � U � 1, � � U 1Ž . Ž . Ž .Ž .
Ž .so that U is continuous at 1, and � is continuous at 0 U is also continuous˜

at 0.
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Ž Ž . Ž ..2Note the fact that U 1 � U � is a concave function of � implies that U
is also a concave function. As U is strictly increasing, it actually implies that
U is strictly concave.

'Ž .Let us now prove that U x � x . Recall that
2N 2˜ '� 1, � � N 1 � � .Ž .Ž . Ž .

This implies that
22 ˜ 'U � 1, � � 1 � � .Ž .Ž . Ž .

Ž̃ . � Ž .�Since � 1, � � � see 21 ,

U 2 �Ž .
36 lim sup � 1.Ž .

����

˜ kŽ . Ž .On the other hand, fix a large integer k, and define � � 1	k, x � � 1 .0
Then, for any x 
 x , and for any N � kN	 � 0,0

˜ N Ž1�� . ˜ N N 	� x 
 � x , xŽ . Ž .0

˜ N N� � x , 1Ž .
˜ N 2
 � 1 � N xŽ .


 N 2 x
Ž . 2Ž .we used Lemma 10 in the third line so that for all x 
 x , U x 
0

Ž .2 Ž .x	 1 � � . Combining this with 36 concludes the proof of the proposition.
�

As U is a bijection from � onto � , we can define U�1 on �� and we can� �
Ž . Ž .rewrite 34 and 31 as

˜ �1� � , . . . , � � U U � � ��� �U �Ž . Ž . Ž .Ž .1 k 1 k

and
� � , . . . , � � 
�U�1 U � � ��� �U � .Ž . Ž . Ž .Ž .1 k 1 k

6. Asymptotic behavior via the rate function.

6.1. Rate functions. In this section we discuss some general basic facts
about rate functions and Legendre transforms that we will use in Section 6.3.

� �Suppose U , V are sequences of random variables taking values in 0, 1 .n n
Ž . Ž .Suppose that there exists a function �: 0, � � 0, � such that

�37 E V U � exp �n� � , n � �.Ž . Ž .Ž .n n

Ž . � �Define the rate function b: 0, � � 0, � by
�a n�log E U ; V 
 en n

b a � lim inf .Ž .
nn��

Ž .It is standard and easy to show that if 37 holds, then

38 � � � inf a� � b a .� 4Ž . Ž . Ž .
a�0
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Ž .LEMMA 15. Let U , V , �, b be as above and assume that 37 holds.n n
Suppose for some a 
 0 and some C � 0,0

lim a � a b a � C.Ž . Ž .0
a� a0

Then as � � �,
' ' '� � � a � � 2 C � � o � .Ž . Ž .0

Ž . Ž .PROOF. Since b a � � as a� a , it follows from 38 that for all � � 0, if0
� is sufficiently large,

C � � C � �
inf a � a � � � � � � a � � inf a � a � � .Ž . Ž . Ž .0 0 0½ 5 ½ 5a � a a � aa�a a�a0 00 0

By taking the infimums of the two sides of this inequality, we get

' ' ' '2 C � � � � � � � a � � 2 C � � � . �Ž . 0

LEMMA 16. Suppose the conditions of Lemma 15 hold with a � 1. Sup-0
pose � is a sequence of real numbers going to infinity withn

� � � � .Ž .n�1 n

Then, as n � �,

� � Cn2 and � � � � 2Cn.n n�1 n

PROOF. Lemma 15 implies that

'� � � � 2 C � � o � .' 'ž /n�1 n n n

The lemma follows easily from this difference inequality. �

Ž .The Legendre transform is a way to ‘‘invert’’ the relation 38 to obtain a
formula for b in terms of �. This cannot always be done. However, assume

Ž . 2that � � exists and is a C function of � with

�� � � 0, � � 0.Ž .
Ž .In particular �	 � is a continuous, strictly decreasing function whose range

Ž Ž . Ž .. Ž Ž . Ž ..is �	 � , �	 0 . In this case, it is not difficult to see that for a � �	 � , �	 0 ,

39 b a � sup � � � a� .� 4Ž . Ž . Ž .
�

Ž .In fact, the supremum is taken on at the � that satisfies �	 � � a.a a

Ž .6.2. Rate function for � p, � . We now recall some results derived in
� �22 . Let p be a positive integer, and let

� � � � p , � ,Ž . Ž .p

� � Ž . 2and consider this as a function of �. In 22 , it was shown that � � is a Cp
function of � for � � 0 with

� 
 � � 0, � � 0.Ž .p
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Also,

lim � � � � 0 .Ž . Ž .p p
��0

With the strict concavity of � , we can define two other important func-p
tions. Let

a � � � 	 � .Ž . Ž .p p

Ž . 1Note that a � is a continuous, strictly decreasing function. Also, if Z � Zp n n
Ž .is as in Section 2.5, we define b a by the relationsp

P* Z 
 e�a n � exp �nb a .� 4 Ž .Ž .n p

Then,

� � � inf �a � b a � �a � � b a � .Ž . Ž . Ž . Ž .� 4 Ž .p p p p p
a

˜6.3. Rate function for � . For this section, we fix � 
 1, we choose � 
 01
Ž̃ .such that � � , 1 � � and we consider the function1

˜ ˜� � � � � , � � � � , 1, � .Ž . Ž . Ž .1

� �We expect that the methods of 22 can be used to show that this is a strictly
concave function of �; however, since we will not need this result we will not
bother to prove it. Instead we use the weaker ‘‘lim inf’’ definition of the rate
function which will suffice for our purposes.

We will use the notation of previous sections which we review here. We let
W be a conditioned Brownian motion starting at a point chosen uniformly on

� �the interval 0, 2 i� and let

1 1 1ˆ� � � � W 0, T .n n n

ˆLet J be the eventn

ˆ � 4J � � � TT .n n n

ˆ 1 2On the event J we let O , O be the ‘‘lower’’ and ‘‘upper’’ connectedn n n
Ž 2 . 1 Ž 1.components, respectively, on TT � � and we put L � L O and L � L O .n n n n n n

Then, as we have seen,

1E* exp � � L exp ��L � exp �� � n , n � �.Ž . Ž .Ž .Ž .1 n n

To match the notation of Section 6.1, let

U � exp �� L1 , V � exp �L ,Ž .Ž .n 1 n n n

so that
�E* V U � exp �� � n , n � �.Ž .Ž .n n

Here the expectation is with respect to the measure on W assuming that the
� �initial point is chosen uniformly on 0, 2� i .
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˜ Ž .As in Section 6.1, we define the rate function b a by�

�n a � ��log E* U ; V 
 e �log E* U ; L � nan n n n
b̃ a � lim inf � lim inf .Ž .� n nn�� n��

We expect that we could prove this limit exists, but since we do not need this
Ž .fact, we will not go through the effort. By 38 ,

˜ ˜� � , � � � � � inf a� � b a .Ž . Ž . Ž .½ 5�
a

˜ Ž .It is easy to check that b a � � for a � 1 and�

˜lim b a � �.Ž .�
a�1

Define the function
a ˜g a � b a � 1Ž . Ž .� �a � 1

for all a � 0.

PROPOSITION 17. For every � 
 1, g is an increasing function for a � 0.�

Moreover,
lim g a � 0.Ž .�
a�0

˜ ˜PROOF. Fix � 
 1 and define b � b and g � g . Estimates for rectangles� �

can be used to show that
lim inf g a � 0,Ž .

a�0

so the second conclusion follows once we show that g is an increasing
function.

For 0 � � � 1, let TT denote the n � �� rectanglen, �

� 4TT � x � iy : 0 � x � n and 0 � y � �� .n , �

Let J be the eventn, �

� 4J � � � TT ,n , � n n , �

so that J � J . On the event J , let L� be � times the extremaln n, 1 n, � n, �

distance of the subdomain TT
� of TT bounded below by the Brownian path,n, � n, �

� Ž . 4above by a subinterval of � z � �� , on the left by a subinterval of
� Ž . 4 � Ž . 4� z � 0 and on the right by a subinterval of � z � n . By standard

Ž � � .composition laws for extremal distances see 1 , Theorem 4.2 , if the event
J is satisfied, then,n�

�11 � ��1�L � L �Ž .n n , � ž /n

Ž � � � �i.e., a consequence of the fact that the rectangle 0, n � �� , � is ‘‘above’’
� 2 .the set TT and that O is the union of these two sets . But by conformaln, � n

invariance, if we multiply by ��1,
�E* U ; L � 1 � a n; J � � E* U ; L � 1 � a n; J .Ž . Ž .� n � n , � � n , � n n n
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� Ž .From above, if L � 1 � a n, then� n, �

�a
L � � n 1 � .� n 1 � a 1 � �Ž .

Hence,

� a
E* U ; L � � n 1 � 
 � E* U ; L � 1 � a n; J .Ž .� n � n n n nž /1 � a 1 � �Ž .

Taking the appropriate lim inf on both sides we get

�a
�1˜ ˜b 1 � � � b 1 � a .Ž .ž /1 � a 1 � �Ž .

Ž .Since any a	 � 0, a can be written as
� a

a	 � ,
1 � a 1 � �Ž .

Ž .for some � � 0, 1 , we see that

a	 �a˜ ˜g a	 � b 1 � a	 � b 1 � a � g aŽ . Ž . Ž . Ž .
1 � a	 1 � a

and the proposition is proved. �

As a corollary to Proposition 17, we give another proof of the existence of
Ž .the limit 33 and of the slightly stronger statement

˜ n�1 ˜ n� � � � �Ž . Ž .
240 lim � 2U � .Ž . Ž .

nn��

˜ n ˜ nŽ . ŽŽ . .Let � � � � � � 1, � . Clearly � � �, and the cascade relationn 1 n
implies

� � � � .Ž .n�1 n

But Lemmas 15 and 16 then imply

� � � �n n�1 n
lim � C and lim � 2C ,2 nnn�� n��

where
a � 1 ˜C � C � lim g a � lim b a .Ž . Ž .� � �aa�0 a�1

2Ž .Recall that we denote this limit as U � . Note that as g is increasing,
a

2˜41 b a 
 U � .Ž . Ž . Ž .� a � 1

REMARK. Using the same ideas, it is easy to define b for all � � 1 that�

Ž .corresponds to the rate function for � �, � . This generalizes the function bp
described in Section 6.2.
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7. Conjectures. In this section, we will show that Duplantier�Kwon’s
N ˜ N� � Ž . Ž .conjectures 10 on the values of � 1 and � 1 in fact lead to more

general conjectures for all exponents.

Ž � �.7.1. Intersection exponents in half-space. Duplantier�Kwon see 10, 11
studied the intersection exponents in the half-space and made the conjecture

2 N 2 � NŽ .N�̂ 1 � ,Ž .
3

which is equivalent to the conjecture
N 2 N � 1Ž .N˜42 � 1 � .Ž . Ž .

3
Hence, if we put

2x 2 x � 1 4 x � 1 � 1Ž . Ž .
f x � �Ž .

3 24
then, for all n 
 0, p 
 0,

˜ ˜ n p ˜ n�p� f n , f p � � 1 , 1 � � 1 � f n � p .Ž . Ž . Ž . Ž . Ž .Ž .
If we now assume that this equation also holds for noninteger p’s, comparing

Ž .this with the functional relation 34 shows that for some constant c � 0,
Ž . �1Ž . Ž . 2Ž .U y � cf y . But Duplantier’s conjecture 42 shows that U 1 � 2	3, so

that
'24 x � 1 � 1''U x � x � 1	24 � 1	24 �Ž . Ž . '24

and
2'1 24 y � 1 � 1Ž .2�1 'U y � y � 1	24 � �Ž . Ž . 24 24

and therefore, for all � , . . . , � ,1 k
2

24� �1 � 24� �1 ����� 24� �1 � k�1 �1Ž .' ' 'ž /1 2 k
�̃ � , . . . , � � .Ž .1 k 24

Ž .When � � ��� � � � 1, we of course recover 42 . Note that some exponents1 k
Ž .are not rational numbers see the remark in Section 7.3 .

Let us choose � 
 1 and use the notation of Section 6.3. Then a particular
case of the conjecture is

21 1
�̃ � , � � U � � U � � � .Ž . Ž . Ž . ' 2424

Ž .Note that for fixed �, this is a strictly concave function of �. Hence, by 39 ,
the conjecture implies a conjecture for the rate function,

a a � 1
2˜ ˜b a � sup � � , � � a� � U � � .Ž . Ž . Ž .� 4� a � 1 24�

Ž .One might wish to compare this with the rigorous estimate 41 .
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Note that the conjecture gives the following intriguing conjecture for the
conditioned exponent:

�̂ � , � � 2U � U � .Ž . Ž . Ž .1 2 1 2

7.2. Intersection exponents. We have seen that for all � , . . . , � , such1 k
� �that 30

� � , . . . , � � V U � � ��� �U �Ž . Ž . Ž .Ž .1 k 1 k

�1 Ž N .for some increasing function V � 
�U . Again, the conjectures for � 1
will be sufficient to derive the general conjecture for V. Indeed, from the
conjecture

4N 2 � 1
N43 � 1 �Ž . Ž .

12

we get that for all N 
 1,
24N � 1'V N 2	3 � V NU 1 � .Ž .Ž .Ž . 12

Assuming that this is true also for noninteger N ’s, we get that

6u2 � 1
V u �Ž .

12

and therefore that for all � , . . . , � ,1 k

2
24� � 1 � ��� � 24� � 1 � k � 4' 'ž /1 k

� � , . . . , � � .Ž .1 k 48
Ž N . Ž 2 .This is of course consistent with � 1 � 4N � 1 	12. It is a nice cross-

Ž .check that this fits in nicely with the only rigorously proved value � 2, 1 � 2.
Again, this is equivalent to the following formula for the rate function bp

as defined in Section 6.2:

a 2 a � 1 12'b a � U p � 1	 24 � � .Ž . Ž . Ž .Ž .p 2 a � 1 48 16

7.3. Disconnection exponents. Recall that 
 � V �U. This leads to the
following conjecture: for all � 
 1,

2'24� � 1 � 1 � 4Ž .

 � � .Ž .

48
Ž . Ž .This is of course consistent with Duplantier’s conjecture � 1, 0 � 
 1 � 1	4.

Ž .It is also consistent with the conjecture 
 2 � 2	3 which has been shown
� � � �19 to be equivalent to Mandelbrot’s conjecture 28 that the Hausdorff
dimension of the ‘‘Brownian frontier’’ is 4	3. Note again that the exponent
Ž .
 n is rational only for some integer values of n. More precisely, it is very

easy to see that for any odd integer p that is not a multiple of 3, the number
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Ž . Ž 2 .n p � p � 1 	24 is an integer and then
2p � 1 � 4Ž .


 n p �Ž .Ž .
48

Ž .is a rational number. For all other values of n, 
 n is not a rational number.
˜The same remark applies also to the intersection exponents � and � .

Note that these conjectures indicate that some conjectures made by the
� �second author in 30 are false.

Ž . Ž .Note also that the conjecture for 
 5 is 
 5 � 2. This implies that the
Žproblem of existence of exceptional times t � 0 if B is a planar Brownian

.motion such that:

� � Ž1. B is a triple point of B 0, t i.e., there exist 0 � t � t � t such thatt 1 2
.B � B � B ;t t t1 2

2. B belongs to the boundary of the unbounded connected component of thet
� � Ž � �.complement of B 0, t i.e., B belongs to the ‘‘frontier’’ of B 0, tt

Ž . Ž � �.is a critical difficult problem see 7 .

8. Conjectures for loop-erased walks. Planar loop-erased random
walk is a process derived from simple random walk by erasing loops in

� � 2chronological order. If x � x , . . . , x is any finite sequence of points in � ,0 n
Ž .we define its loop erasure L x in the following way. Let

s � sup j: x � x .� 40 j 0

We define s inductively by stating that if s � n,k k�1

s � sup j: x � x .� 4k j s �1k� 1

If we let m be the smallest index with s � n, thenm

� �44 L x � x , . . . , x .Ž . Ž . s s0 m

Ž .Note that L x is a self-avoiding subpath of x with the same endpoints.
One might hope to define loop-erased Brownian motion in �. For example,

consider a grid of points in � of side � ,

� 4� j � i� k : j, k � � .

For each fixed grid we can consider simple random walk taking values in the
� Ž . 4 � Ž . 4grid, started, say, on � z � 0 and allowed to run until it reaches � z 
 n .

If we let � � 0, and scale time appropriately, it is well known that the
measure on simple random walk paths approaches the measure of Brownian

Ž .motion. We could also consider conditioned random walks CRW , conditioned
� Ž . 4to stay in the set � z � 0 after time 0, in which case the measure

Ž .approaches the measure of conditioned Brownian motions CBM .
For each CRW, we can take the loop erasure of the path. To simplify the

statements of this section, we conjecture, but is has not been proved, that
there is a limiting measure on paths which we could call conditioned loop-

Ž .erased Brownian motion CLEBM . Proving existence of this measure is an
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� �open question; in 2, 3 , it was shown that subsequential limits do exist, but
the question of uniqueness is still open. Only in order to simplify the
statements of the conjectures in this section, we will assume that this
measure exists; in fact, we will even assume that there is an algorithm
Ž . � �possibly a random algorithm that will take the path of a CBM, B 0, T , andn

Ž � �.produce a subpath L B 0, T which has the measure of CLEBM. For ourn
purposes we will not need to consider the parameterization of the loop-erased

Ž � �.path; only the set of points visited by L B 0, T will be relevant.n
Assuming the CLEBM exists, there is good reason to believe that it should

Ž � �be conformally invariant see also Kenyon 13 for a rigorous statement in
. � �that direction . Note that if f is a one-to-one function, and x � x , . . . , x as0 n

Ž .in 44 ,

L f x , . . . , f x � f x , . . . , f x .Ž . Ž . Ž . Ž .Ž .0 n s s0 m

Hence, even though a conformal mapping can bend and dilate a grid, this
change does not affect which points remain in the loop-erased path. We know
that Brownian motion is invariant under conformal transformation, and this
argument gives reason to believe that the loop-erasing procedure should also

Ž � �.be invariant. We will assume that the measure on L B 0, T is conformallyn
� �invariant. Schramm 32 has recently constructed a random set that should

Ž � �.have the same law as L B 0, T .n
Note that one could state the forthcoming conjectures without making

explicit reference to the existence of the scaling limit of loop-erased random
walk, and only considering limits of probabilities of nonintersection for
loop-erased random walks. We believe that it is more transparent to state the
conjectures directly in the continuum.

Let B1, . . . , B k be independent CBMs starting at z � iy wherej j

0 � y � y � ��� � y � � .1 2 k

If z � �, we write

� 4A � z � �: z � 2� im � A for some m � � .

Also we will write
j j j j� � � � B 0, T ,n n

j j j jL � � L � � L B 0, T .Ž . Ž . Ž .n n

The k-point exponent for loop-erased walks, which we will denote as � , isk
defined by saying that the probability of the event

j l45 L � � � � �, 1 � j � l � kŽ . Ž .
Ž .is about exp �n� . We can think of this recursively. Each time we want tok

add a path to the configuration, we require that the whole path of the new
CBM path not intersect the configuration at that point. If there is no
intersection, then we add only the loop erasure of the CBM to the configura-

Ž .tion. Note that these exponents correspond in the discrete setting to excep-
tional events for the uniform spanning tree, because this recursive procedure



G. F. LAWLER AND W. WERNER1638

is precisely that used by Wilson’s algorithm to construct a uniform spanning
Ž � �.tree see 36 .

There is a similar exponent for CBMs restricted to stay in the strip,

� 4TT � x � iy : 0 � y � � .
˜We define � , the k-point exponent for the strip, by saying that the probabil-k

˜Ž . Ž .ity is about exp �n� that 45 occurs andk

46 � j � TT , j � 1, . . . , k .Ž .
Note that we require the entire CBM to lie in TT, not just the loop erasure.

jAlso, once we restrict to CBMs that lie in the strip, we can replace L � inŽ .
Ž . Ž j. � �45 with L � . Duplantier 9 , using methods similar to those developed to

Ž . Ž .conjectures 42 and 43 , conjectured that

k 2 � 1
47 � � ,Ž . k 4

k 2 � k˜48 � � .Ž . k 2
One value can be made rigorous, at least for the random walk analogue of the

Ž � �.exponent see, e.g., 23 ,
� � 2.3

The exponent � is related to the growth exponent for loop-erased walks2
which in turn is related to the dimension of the paths of loop-erased walks.
The dimension should be 2 � � , and the conjecture2

3� �2 4

� �says that the dimension is 5	4. In fact, very recently, Kenyon 14 proved a
version of this result for loop-erased walks.

˜ ˜Ž . Ž . Ž . Ž .We can also define the exponents � � � � 1, � and � � � � 1, �LERW LERW
for the loop-erased walks by considering the random variables

1 1 2 1 1�Z � � Z � � P � � L � � � � ,Ž . Ž . Ž .� 4n

˜ 1 ˜ 1 2 1 2 1�Z � � Z � � P � � L � � �, � � TT � ,� 4Ž . Ž . Ž .n

and letting
� �� Ž�n� Ž�..E Z � exp ,

� 1˜ ˜E Z ; � � TT � exp �n� � .Ž .Ž .
˜ ˜Ž . Ž .Note that � 1 � � , � 1 � � . The behavior at 0 and infinity can be deter-2 2

mined easily,
˜� 0 � 0, � 0 � 1,Ž . Ž .

�
� � � , � � �,Ž .

2

�̃ � � �, � � �.Ž .
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Ž � �.One value is known rigorously see 23 , at least for the random walk case,

� 3 � 2Ž .
Žthere seems to be a trend that if the exponent equals 2, then there is a way

˜ ˜. Ž . Ž .to prove it rigorously . The relation between the � � , � � and � , � comesk k
from the following equations that can be derived in a way similar to the
cascade relations for the Brownian motion intersection exponent,

˜49 � � � � ,Ž . Ž .k�1 k

˜ ˜ ˜50 � � � � .Ž . Ž .k�1 k

Ž . Ž . Ž .Hence, combining 47 , 48 and 49 leads to the conjecture
� 1 '� � � � 8� � 1 � 1 .Ž .
2 8

We also let
1 1

a � � a � � � 	 � � � ,Ž . Ž . Ž .LERW '2 2 8� � 1
Ž . Ž .and we define the rate function b a � b a by the relationLERW

P Z � e�n a � exp �nb a� 4 Ž .Ž .n

Žwe are not being rigorous in this section, so we will only use this informal
.definition . If a is in the image of � 	 and � is defined bya

� 	 � � a,Ž .a

then
b a � sup � � � �a� 4Ž . Ž .

�

� � � � � aŽ .a a

2a � 1Ž .
� .

4 2 a � 1Ž .
This last formula may well be equally valid for all a � 1	2.

Ž . Ž .Similarly, 48 and 50 lead to the conjecture
1˜ '� � � � � 1 � 8� � 1 � 1 .Ž . 2

Ž . Ž .Note that this is consistent with 48 and 50 . The � � 1 term comes from
Ž .the probability that 46 holds. We define the exponent,

ˆ ˆ ˜� � � � 1, � � � � � � � 1,Ž . Ž . Ž .LERW

to be the corresponding exponent for paths that are conditioned to satisfy
Ž .46 . Then the conjecture becomes

1ˆ '� � � 8� � 1 � 1 .Ž . 2

We then get
2ˆa � � a � � � 	 � � ,Ž . Ž . Ž .ˆ ˆLERW '8� � 1
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ˆand if we define b similarly, we get the conjecture
22 � aŽ .

b̂ a � .Ž .
a

Let us now write

˜ ˜� 1, � � � � , � 1, � � � �Ž . Ž . Ž . Ž .
and

k ˜ k ˜� 1 � � , � 1 � � .Ž . Ž .k k

It is not difficult to define
k ˜ k� 1 , � , � 1 , � ,Ž . Ž .

but at the moment we have no interpretation for

˜� p , . . . , p , � p , . . . , p ,Ž . Ž .1 k 1 k

even for positive integer p , . . . , p . A conformal invariance argument sug-1 k
gests the cascade relation

k�l k ˜ l� 1 , � � � 1 , � 1 , �Ž . Ž .Ž .
holds. This cascade relation gives us an interesting consistency check for our
conjectures which we only sketch here. The triple point equality,

� 1, 1, 1 � 2,Ž .
is derived by considering the first hitting of a loop-erased walk by a simple
random walk. As part of the proof, one sees that for a typical configuration

Ž .satisfying 45 ,
L �1 � L � 2Ž . Ž .

looks like the ‘‘middle’’ of a single loop-erased walk and � 3 is required to
miss the walk. By the relation between escape probabilities and harmonic
measure, the conditional distribution of

L �1 � L � 2 ,Ž . Ž .
under this conditioning should be approximately the harmonic measure of

� � � �this single loop-erased walk. By Makarov’s theorem 16 , 27 , the harmonic
measure should be carried on a set of dimension 1; here that translates to the

Ž 1 2 3.fact that in a typical configuration of � , � , � , the probability that a
4 Ž 1. Ž 2 . �nfourth walker � will miss L � � L � should look like e . This trans-

lates to
�� 1, 1, �Ž .

� 1.
�� ��1

˜Ž . Ž Ž ..Using the relation � 1, 1, � � � 1, � 1, � , we can check that the conjectured
˜values for � and � satisfy this. This is analogous to the rigorous argument for

the Brownian motion exponent to show that the derivative with respect to �
Ž .of � 2, � , evaluated at � � 1, is 1.2
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