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RANDOM WALKS AND HYPERPLANE ARRANGEMENTS

By Kenneth S. Brown and Persi Diaconis

Cornell University

Let � be the set of chambers of a real hyperplane arrangement. We
study a random walk on � introduced by Bidigare, Hanlon and Rockmore.
This includes various shuffling schemes used in computer science, biology
and card games. It also includes random walks on zonotopes and zonotopal
tilings. We find the stationary distributions of these Markov chains, give
good bounds on the rate of convergence to stationarity, and prove that the
transition matrices are diagonalizable. The results are extended to oriented
matroids.

1. Introduction. Let � be a finite set of affine hyperplanes in V = R
n.

Then � cuts V into regions called chambers. For example, there are six cham-
bers (which are sectors) in Figure 1a, and there are seven chambers in Fig-
ure 1b. The chambers are polyhedra (finite intersections of half-spaces) and
hence have faces. For example, each chamber C in Figure 1a has four faces:
C itself, two rays and one point. We denote by � the collection of all faces of
the chambers. In Figure 1a, for example, � has 13 elements: six chambers,
six rays and one point. The arrangement � is called central if

⋂
H∈� H �= �,

as in Figure 1a.
� admits a semigroup structure, whose definition will be recalled in Sec-

tion 2 below. Of particular importance is the product FC for F ∈ � and
C ∈ � . This product is again a chamber, called the projection of C on F. It
can be characterized as the nearest chamber to C having F as a face. Here
“nearest” is defined in terms of the number of hyperplanes in � separating
C from FC. The projection operator C �→ FC will be called the action of F on
� . See Figure 2 for a simple example (here F is a ray).

Bidigare, Hanlon and Rockmore [6], referred to hereafter as BHR, used the
action of faces on chambers to define a random walk on � . (They only treated
the central case; but, as we will see, their results extend to general � .) Start
with a probability measure w on � . Then a step in the walk is given by

�1�1� From C ∈ � , choose F from the measure w and move to FC.

Thus the random walk started at a chamber C0 is the process �Cl�l≥0 with

�1�2� Cl = Fl · · ·F1C0	
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(a) (b)
Fig. 1. (a) A central arrangement of three hyperplanes in R

2. (b) A noncentral arrangement of
three hyperplanes in R

2.

where F1	F2	 � � � are i.i.d. picks from w. This is simply random walk on the
semigroup � in the usual sense, with the starting state (and hence all future
states) in the ideal � ⊆ � .

One can also describe the walk on � by giving its transition matrix K:

�1�3� K�C	C′� = ∑
FC=C′

w�F��

Remarkably, BHR found all the eigenvalues of K, which turn out to be real,
nonnegative and linear in the entries of K. The multiplicities of the eigen-
values are given in terms of the Möbius function of the intersection poset �
(also called the intersection lattice in the central case). This is the set of all
nonempty affine subspaces W ⊆ V of the form W = ⋂

H∈� ′ H, where � ′ ⊆ �

Fig. 2. The projection of C on F.
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is an arbitrary subset (possibly empty). We order � by inclusion. (Warning:
BHR and many other authors order � by reverse inclusion.)

One of our main results is a new proof of the BHR result, showing addi-
tionally that K is diagonalizable. Our proof is conceptual; it makes use of the
algebraic topology of a regular cell complex � “dual” to � . (In case � is cen-
tral, � is a convex polytope, called the zonotope associated to � .) Here is the
BHR result, combined with our improvement of it:

Theorem 1. Let � be a hyperplane arrangement in V, let � be the set of
faces, let � be the intersection poset and let w be a probability measure on � .
Then the matrix K defined at (1.3) is diagonalizable. For each W ∈ � , there
is an eigenvalue

λW = ∑
F∈�
F⊆W

w�F�	

with multiplicity

mW = �µ�W	V�� = �−1�codim�W	V�µ�W	V�	
where µ is the Möbius function of � and codim�W	V� is the codimension of
W in V.

A second set of results proved here gives a description of the stationary
distribution of the chain (1.1), together with a good estimate for the rate of
convergence to stationarity. The estimate involves some of the eigenvalues
(namely, the λH, H ∈ � ) and is surprisingly useful given that the chain is
generally nonreversible.

We will say that the measure w separates the hyperplanes in � , or simply
that w is separating, if it is not concentrated on the faces in any one of them;
that is, for each H ∈ � there is a face F with F �⊆H and w�F� > 0.

Theorem 2. Let � be a hyperplane arrangement, let w be a probability
measure on the set � of faces and let K be as in (1.3).

(a) K has a unique stationary distribution π if and only if the measure w
is separating.

(b) Assume that w is separating. Sample without replacement from w,
thereby getting an ordering F1	 � � � 	Fm of �F ∈ � � w�F� > 0�. Then the
product C = F1 · · ·Fm in the semigroup � is a chamber distributed from π.

(c) Still assuming that w is separating, let Kl
C be the distribution of the

chain started from C after l steps; then its total variation distance from π
satisfies

�1�4� �Kl
C − π�TV ≤

∑
H∈�

λl
H�

We remark that BHR give an estimate similar to (1.4), but involving all
the eigenvalues λW and an alternating sum. We will discuss the connection
between the two estimates in Section 4.
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The remainder of the paper is organized as follows. In Section 2 we review
definitions and facts about hyperplane arrangements. In Section 3 we discuss
a number of examples. This section may be read first, for motivation. The
examples include some previously studied card-shuffling schemes, the clas-
sical Ehrenfests’ urn, random tiling, threshold graphs and other examples.
Section 4 contains the proof of Theorem 2, in a more general setting; in par-
ticular, we consider walks driven by a stationary sequence on � , not just a
sequence of i.i.d. picks from � . We prove Theorem 1 in Section 5. In Section 6
we explain how to extend all of the results to oriented matroids. Finally, there
is an appendix which complements Section 2.

Some of the results of this paper extend to random walk on the chambers
of a building. We will treat these in a separate paper. See also the forthcoming
paper of Billera, Brown and Diaconis [7], where the theory is specialized to the
three-dimensional case; here one is able to use geometry to obtain an explicit
and surprising formula for the stationary distribution π.

2. Review of hyperplane arrangements. The standard reference for
this section is the book by Orlik and Terao [27]. Many of the results stated
here can also be found in one or more of [10], [11], [12] and [39]. Throughout
this section, � denotes a finite set of affine hyperplanes in a finite-dimensional
real vector space V. It will be convenient to write � = �Hi�i∈I and to denote
by H+

i and H−
i the two open half-spaces determined by Hi. The choice of

which one to call H+
i is arbitrary.

2A. Chambers and faces. “Face” in this paper will mean “relatively open
face.” By definition, then, a face is a nonempty set F ⊆ V of the form

F = ⋂
i∈I

H
σi

i 	

where σi ∈ �+	−	0� and H0
i = Hi. Equivalently, if we choose for each i an

affine function fi� V → R such that Hi is defined by fi = 0, then a face is a
nonempty set defined by equalities and inequalities of the form fi > 0, fi < 0
or fi = 0, one for each i ∈ I. The sequence σ = �σi�i∈I which encodes the
definition of F is called the sign sequence of F and is denoted σ�F�.

The faces such that σi �= 0 for all i are called chambers. They are convex
open sets that partition the complement V−⋃

i∈I Hi. In general, a face F is
open relative to its support, which is defined to be the affine subspace

suppF = ⋂
σi�F�=0

Hi�

In fact, the faces F with a given support W form the chambers of the hyper-
plane arrangement �W in W consisting of the intersections Hi∩W for those i
such that σi�F� �= 0. The arrangement �W is called the restriction of � to W.

2B. Partial order. The face poset of � is the set � of faces, ordered as
follows: Given F	G∈� , we say that F is a face of G and write F≤G if for
each i∈I either σi�F� = 0 or σi�F� = σi�G�. In other words, the description of
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F by linear equalities and inequalities is obtained from that of G by changing
zero or more inequalities to equalities. See, for instance, [12] for other char-
acterizations of the face relation. (Warning: Orlik and Terao use the reverse
ordering on � ; i.e., they write F ≥ G if F is a face of G.)

Two chambers are said to be adjacent if they have a common codimension
1 face. The chamber graph of � has � as vertex set, with edges defined by
the adjacency relation. We write d�C	C′� for the distance between C and C′

in this graph; it is the minimal length l of a “gallery”

C = C0	 � � � 	 Cl = C′	

where Ci−1 and Ci are adjacent for 1 ≤ i ≤ l. It is also equal to the number
of hyperplanes in � separating C from C′ (cf. [12], Section I.4E).

2C. Product. The set of faces also admits a semigroup structure: Given
F	G ∈ � , their product FG is the face with sign sequence

σi�FG� =
{
σi�F�	 if σi�F� �= 0	

σi�G�	 if σi�F� = 0�

(Geometric interpretation: If we move on a straight line from a point of F
toward a point of G, then FG is the face we are in after moving a small
positive distance.) This product is the one referred to in Section 1 and used to
define the action of faces on chambers. One can check that FC is a chamber
if C is, and that it is the unique chamber having F as a face that is closest to
C in the metric d defined above. (To see this, use the characterization of d in
terms of separating hyperplanes.)

2D. Cell decomposition of the sphere. Assume throughout this section that
� is central, in which case each Hi can be taken to pass through the origin.
We may further assume that � is essential, that is, that

⋂
i∈I Hi = �0�. (Oth-

erwise we can replace V by the quotient space V/
⋂

i∈I Hi without affecting
any of the combinatorial objects of interest to us.) There is then a regular cell
complex � = �� , homeomorphic to the sphere Sn−1 �n = dimV�, whose cells
correspond to the faces F �= �0� in � .

Recall first that a (finite) regular cell complex is a compact Hausdorff space
X, together with a finite collection �eα� of subsets of X, such that:

(i) Each eα is homeomorphic to a closed ball.
(ii) The relative interiors

◦
e α partition X.

(iii) For each α, the boundary ėα = eα−
◦
e α is a union of cells (necessarily of

lower dimension).

The eα are called the closed cells of X, and the
◦
e α are called the open cells.

See [10], Section 4.7, for further information about regular cell complexes.
The simplest way to construct the complex � associated to � is to put a

metric on V and intersect the cells F �= �0� (which are cones) with the unit
sphere in V. See Figure 3a. It is also possible to realize � as the boundary of a
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(a) (b)
Fig. 3. (a) Cell decomposition of the unit sphere. (b) A polytope version of Figure 3a.

convex polytope �̂; see Figure 3b. We give a construction of �̂ in the Appendix
to this paper. Alternatively, one can first define the zonotope Z = Z� (see
below) and define �̂ to be the polar of Z. This is the approach taken in [10],
Example 4.1.7, and [39], Corollary 7.18.

Note that the hyperplane chamber walk can be viewed as as a walk on the
chambers (maximal cells) of �. Each step consists of choosing a cell e (possibly
empty—this corresponds to the face F = �0� ∈ � ) from some distribution
on the cells, and then moving from the current chamber c to the nearest
chamber having e as a face. “Nearest” here refers to gallery distance, which
can be defined for the chambers of � exactly as in Section 2B above.

2E. The zonotope dual to � . A zonotope in a real vector space V is a
Minkowski sum Z=L1 + · · · +Lk of line segments, usually taken to be cen-
tered at the origin: Li = �−vi	 vi�. We may assume that the Li are nondegener-
ate and that no two are parallel, that is, that the vi are nonzero and pairwise
independent. The Li are then uniquely determined by Z; in fact, there is one
for each parallelism class of edges of Z. The set of faces of the boundary of Z
having an edge parallel to Li is called the ith zone of Z.

Note that Z is the image of the cube �−1	1�k under the linear map R
k → V

taking the k standard basis vectors e1	 � � � 	 ek to v1	 � � � 	 vk. Thus Z is the con-
vex hull of the 2k vectors

∑
1≤i≤k±vi, where the signs can be chosen arbitrarily.

A simple example of a zonotope is a hexagon, obtained by projecting a cube
in R

3 onto a plane. See [10] or [39] for further information about zonotopes.
Returning to our central hyperplane arrangement � in V, there is a zono-

tope Z = Z� in the dual space V∗, with one zone for each hyperplane in � ,
defined as follows: Choose fi ∈ V∗ such that Hi = kerfi and set

Z =∑
i∈I
�−fi	 fi��

Equivalently, Z is the convex hull of the 2�I� elements
∑

i∈I±fi.
The poset of nonempty faces of Z is anti-isomorphic to the face poset � of

� . This is proved in [10], Proposition 2.2.2, and [39], Section 7.3. It also follows
by polarity theory ([39], Section 2.3) from the results about � stated above and
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Fig. 4. The zonotope Z.

proved in the Appendix, since Z is, in fact, the polar of the polytope �̂ defined
in the Appendix. Thus Z has one vertex for each chamber C [that vertex being∑

σifi, where σ = σ�C�], one edge for each pair of adjacent chambers, etc. In
particular, the 1-skeleton of Z is the chamber graph of � . Figure 4 shows a
simple example, in which V = R

2 and V∗ is identified with V.
Note that the hyperplane chamber walk can be viewed as a walk on the

vertices of Z. Each step consists of choosing a random face e of Z from some
measure on the faces, and then moving from a vertex v to the unique vertex
of e closest to v (in the usual edge-path metric on the 1-skeleton of Z).

Remark. In some of the literature there is a slightly different definition
of the zonotope associated to � . Namely, one considers

Z′ =∑
i∈I
�0	 fi�	

or, equivalently, Z′ is the convex hull of the 2�I� elements
∑

i∈s fi, where s ⊆ I
is an arbitrary subset. Note that Z′ is obtained from Z by translating by∑

i∈I fi and then multiplying by 1/2. In particular, Z and Z′ are combinato-
rially equivalent.

2F. The noncentral case. For arbitrary � , there is still a regular cell com-
plex � dual to the arrangement. It is again a topological ball (though not
necessarily a polytope), and its poset of cells is anti-isomorphic to the face
poset � of � . See Figure 5 for a simple example.

We briefly recall the construction of �, which can be found in Ziegler [37],
since it involves ideas that we will need later anyway. Let V = V × R. For
each i ∈ I let Hi be the linear hyperplane in V spanned by Hi × 1. Then the
Hi, together with the hyperplane H0 = V×0, form a central arrangement �
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Fig. 5. The cell complex dual to an affine arrangement.

in V, said to be obtained from � by coning. See Figure 6. Let � be the face
poset of � . Then the face poset � of � is isomorphic to the subset �

+
of �

consisting of the faces in the upper half space V × �0	∞� of V. In terms of
sign sequences, we go from � to �

+
by adjoining + as the H0-component.

Let Z be the zonotope associated to � , with cell poset �
op

. Then the cells
corresponding to �

+
give a subcomplex of Z, and this is the desired �. We

remark that �, though not a zonotope in the noncentral case, can always be
realized as the set of faces of a “zonotopal tiling.” (We will say more about
zonotopal tilings in Section 3E.) For example, the complex � in Figure 5 is
combinatorially equivalent to the zonotopal tiling called Z3 in Section 3E.

2G. Reflection arrangements. Finally, we briefly mention an important
family of examples of central hyperplane arrangements. Assume that V is

Fig. 6. A central arrangement of three hyperplanes in R
2 obtained by coning a noncentral ar-

rangement of two hyperplanes in R
1.
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equipped with an inner product. Then every linear hyperplane H in V gives
rise to a reflection sH that fixes H pointwise and acts as −1 on the orthogonal
complement. A finite reflection group in V is a finite group G of linear trans-
formations such that G is generated by reflections sH. The set of all H such
that sH ∈ G is the reflection arrangement associated to G.

Reflection arrangements have a number of special properties; see, for in-
stance, [12], Chapter I. For example, the chambers are always simplicial cones
if the arrangement is essential, which we may assume without loss of gener-
ality. (A chamber of a reflection arrangement in R

3 cannot, for instance, be the
cone over a square.) It follows that the spherical cell-complex � of Section 2D
is a simplicial complex. Moreover, the group G acts simply-transitively on � ,
so that � can be identified with G once a “fundamental chamber” is chosen.
Thus the hyperplane chamber walk can be interpreted as a Markov chain on
a group in the case of a reflection arrangement.

Remark. The group G acts on the face poset � . If the measure w on �
is separating and G-invariant, then the stationary distribution π is uniform.
Moreover, the chamber walk in this case is a random walk on G in the usual
sense; that is, it consists of repeated multiplication by random elements of G,
chosen from the measure

Q�g� = ∑
F· id=g

w�F��

We thus have a reasonable collection of natural measures on groups, with
explicitly analyzable random walks.

2H. Möbius function. Finally, we recall the definition of the function µ =
µ� that occurs in the statement of Theorem 1 (cf. [34], Section 3.7, or [27],
Section 2.2). This is defined inductively by µ�V	V� = 1 and, for W � V,

�2�1� µ�W	V� = − ∑
W⊆U�V

µ�W	U��

For example, if � consists of three lines Li through the origin in R
2, then the

intersection lattice is

In this case the Möbius numbers appearing in Theorem 1 are µ�R2	R
2� = 1,

µ�Li	R
2� = −1 and µ��0�	R

2� = 2.
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3. Examples. This section collects examples of hyperplane walks which
have a natural alternative interpretation. We also make explicit the results
of Theorems 1 and 2. In Section 3A we treat the dihedral arrangement, in
Section 3B the Boolean arrangement and in Section 3C the braid arrangement,
with its many shuffling and computer science interpretations. In Section 3D
we discuss an arrangement related to threshold graphs. In Section 3E we treat
zonotopal tilings and introduce random walks on oriented matroids. Finally,
we briefly mention some further examples in Section 3F.

Before beginning the examples, we make two remarks which sometimes
simplify the computation of the stationary distribution π given in Theorem 2.
First, instead of sampling without replacement, we could sample with replace-
ment, stopping as soon as the product F1 · · ·Fm is a chamber. This gives the
same distribution π, because we can strike out any factors in F1 · · ·Fm which
have occurred earlier without affecting the value of the product. But sam-
pling with replacement and then deleting repetitions is the same as sampling
without replacement.

At the other extreme, we could remove from the pot even more than just
the faces that are picked. Namely, if F1	 � � � 	Fk have been picked and W is the
support of the product F1 · · ·Fk, then we can remove all faces F contained in
W before picking the next face Fk+1. This follows from the same striking-out
argument as above, the point being that a later factor contained in W will
have no effect on the product.

3A. Dihedral arrangement. Let � consist of m lines through the origin
in R

2. (If the lines are equally spaced, this is an example of a reflection ar-
rangement, the associated reflection group being dihedral of order 2m.) There
are 4m + 1 faces: 2m chambers, 2m rays and the origin. Suppose, for this
exposition, that the measure w is supported on the set of rays. One can then
picture the walk as follows: There are 2m rooms in a circular house. A mouse
lives in the walls R (the rays), occupying these with propensity w�R�. At each
step of the walk, a cat is in one of the rooms and the mouse picks a wall; the
cat then moves to the nearest room adjacent to that wall.

Note that the (one-dimensional) spherical complex � of Section 2D is a 2m-
gon in this example. The chambers of the hyperplane arrangement correspond
to the edges of �, and the rays correspond to the vertices. So we can visualize
the walk as taking place on the edges of a 2m-gon, driven by a probability
measure on the vertices. One can imagine here a queuing system with 2m
service points arranged in a ring, corresponding to the vertices of a 2m-gon. A
single server moves around the edges. Service requests come in with different
propensities w1	 � � � 	w2m, and the server moves to the closest adjacent edge.

If the rays are chosen uniformly, w�R� = 1/2m for all R, then the stationary
distribution π is of course uniform. For general weights, w is separating unless
it is supported on a pair ±R of opposite rays. If w is separating, Theorem 2
yields the following formula for π: Let C be a chamber bounded by rays R	R′,
whose supports are the lines L	L′. Let � be the set of rays that are strictly on
the same side of L as C, and define � ′ similarly in terms of L′. See Figure 7.
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Fig. 7.

Then we have

π�C� = w�R� w���
1−w�R� −w�−R� +w�R′� w�� ′�

1−w�R′� −w�−R′� �

(To see this, use the second variant of the sampling procedure described above.
The sampling stops as soon as two rays have been picked, and we get C as
the product F1F2 if F1 = R and F2 ∈ � or if F1 = R′ and F2 ∈ � ′.)

The eigenvalues given by Theorem 1 are as follows (see the example in
Section 2H above): Each of the m lines L contributes an eigenvalue λL =
w�R� + w�−R� of multiplicity 1 = −µ�L	V�, where ±R are the rays in L.
The whole plane V = R

2 contributes the eigenvalue λV = 1 with multiplicity
µ�V	V� = 1. Finally, the trivial subspace �0� contributes the eigenvalue λ�0� =
0 with multiplicity µ��0�	V� =m− 1.

Consider now the bound of Theorem 2 in three simple cases. Suppose first
that w�R� = 1/2m for each R, so that π is uniform, π�C� = 1/2m for all C.
Here λL = 1/m so the bound becomes∥∥Kl

C − π
∥∥

TV ≤
∑
L

λl
L =

1
ml−1

�

It follows that for large m the distance to stationarity is small after two or
three steps.

As a second example, suppose one weight is large and the others are small,
for example, w�R1� = 1/2, w�R� = 1/2�2m − 1� for R �= R1. Then the bound
becomes

�Kl
C − π�TV ≤

(
1
2
+ 1

2�2m− 1�
)l

+ �m− 1�
(

1
2m− 1

)l

�
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Again, a few steps suffice for convergence to stationarity, but the result is not
quite as quick as in the uniform case.

As a third example, suppose the weights are proportional to 1	1/2	 � � � 	
1/2m, that is,

w�Ri� =
1

iH2m
	 1 ≤ i ≤ 2m	 H2m = 1+ 1

2
+ · · · + 1

2m
∼ log m�

Assume here that the rays are enumerated so that Ri+m = −Ri for i =
1	 � � � 	m. Then the bound becomes∥∥Kl

C − π
∥∥

TV ≤
m∑
i=1

(
1

H2m

(
1
i
+ 1

i+m

))l

≤
(

c

log m

)l

for a universal constant c. Again, a few steps suffice to reach stationarity.

3B. Boolean arrangement. Let Hi be the coordinate hyperplane xi = 0
in R

n, 1 ≤ i ≤ n. (The Hi again form a reflection arrangement, the group
being �±1�n.) There are 3n faces, one for each possible sign sequence, and
2n of these are chambers; they are the orthants in R

n and may be identified
with the elements of �±1�n (or with binary n-tuples). The polytope �̂ is a
hyperoctahedron, and the dual zonotope Z is the cube �−1	1�n.

To picture the chamber walk, think of an element x ∈ �±�n as a landscape
with n sites, each of which can be in one of two states. The action of a face F can
be thought of as a ruler who conquers territory at sites in s = �i� σi�F� �= 0�
and changes the territory in his own image. One may ask how the landscape
evolves over time as territory is conquered by successive rulers F, chosen from
some probability distribution on � .

To make this more explicit, we pick the random face F as follows: First pick
the subset s ⊆ �n� from a probability distribution ws. Then pick the nonzero
components of σ�F� from a probability distribution Ps�·� on �±1��s�. We briefly
discuss three examples.

Example 1 (Ehrenfests’ urn). Suppose w is uniform on the singletons,
w�i� = 1/n, ws = 0 otherwise. Suppose further that P�i��±1� = 1/2. In other
words, our measure on � is concentrated on the 2n coordinate rays and is
uniform on these. The walk then evolves as, “Pick a coordinate of x at random,
and half the time replace it by +1, half the time by −1.” This is the same as
the usual nearest-neighbor random walk on the hypercube, with holding 1/2.
It has been extensively studied since its introduction by the Ehrenfests [23].
Here π is uniform, π�x� = 1/2n, and the bound given by Theorem 2 is∥∥Kl

x − π
∥∥ ≤ n

(
1− 1

n

)l

�

This shows that n log n + cn steps make the variation distance smaller than
e−c. In fact, it is known that �1/2�n log n+cn steps are necessary and sufficient
for convergence [19]. Thus the bound is good but not perfect.
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The eigenvalues for this example were determined by Kac [25] to be j/n
with multiplicity

(
n
j

)
, 0 ≤ j ≤ n. To see this from Theorem 1, observe that the

intersection lattice � here is isomorphic to the lattice � of subsets s ⊆ �n�,
with W ∈ � corresponding to s = �i� xi �≡ 0 on W�. One deduces

λW = ∑
F⊆W

w�F� = 2�s� · 1
2n

= �s�
n

and

mW = �µ� �W	V�� = �µ� �s	 �n��� = ��−1�n−�s�� = 1�

This agrees with Kac’s result since there are
(
n
j

)
subspaces W with λW = j/n.

Example 2. Consider the chain based on the same set of faces (the coordi-
nate rays) but with general weights. Write w�i� = wi and Pi�1� = θi, Pi�−1� =
1 − θi. The resulting measure on � is separating if wi > 0 for all i, and the
stationary distribution is π�x� = ∏

Pi�xi� =
∏

θ
εi
i �1 − θi�1−εi , where εi =

�xi + 1�/2. The bound for convergence is∥∥Kl
x − π

∥∥ ≤ n∑
i=1

�1−wi�l�

The rate of convergence depends on the shape of the weights. See [16] for
many specific examples. Arguing as in Example 1, we obtain an eigenvalue

λs =
∑
i∈s

wi	

of multiplicity 1, for each subset s ⊆ �n�.

Example 3 (Changing landscape). Consider the 2n sets li = �1	2	 � � � 	 i�,
ri = �n	n−1	 � � � 	 n− i+1�, 1 ≤ i ≤ n. Let w�li� = w�ri� = 1/2n. Suppose Pli
puts all +1’s in li with probability 1 and Pri

puts all −1’s in ri with probability
1. This is a crude model of territory exchange: A force attacks from the left
taking a uniform amount of territory and labeling it with +1. Attacks from
the right label with −1. The stationary distribution is supported on patterns
of the form

x�j� = ( j︷ ︸︸ ︷
+ · · · +

n−j︷ ︸︸ ︷
− · · · −)

	 0 ≤ j ≤ n�
moreover, π is uniform on these, π�x�j�� = 1/�n+ 1�.

[Sketch of proof: It suffices to show that π�N ≤ j� = �j+ 1�/�n+ 1�, where
N�x� is the number of +1’s in x. Now π�N ≤ j� is the probability p that, in
sampling from the uniform distribution on X = �l1	 � � � 	 ln	 r1	 � � � 	 rn�, an el-
ement of R = �rn−j	 � � � 	 rn� is chosen before an element of L = �lj+1	 � � � 	 ln�.
This probability is unchanged if we replace X by R ∪ L, so it is simply the
probability that a uniform pick from R∪L is in R, that is, p = �R�/��R�+�L�� =
�j+ 1�/�n+ 1�.]
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Theorem 2 gives ∥∥Kl
x − π

∥∥ ≤ n

(
n− 1

2n

)l

≤ n

(
1
2

)l

�

Thus log2 n + c steps suffice to reach stationarity. In fact, it is easy to see
that K2�x	 x�j�� ≥ 1/4n for all x and j. A Doeblin argument then shows that
�Kl

x−π� ≤ �3/4�!l/2". (See, for instance, [30], Section 1.2.3.) So the bound from
Theorem 2 is slightly off in this example.

Finally, Theorem 1 gives an eigenvalue �i + j�/2n for each subset s ⊆ �n�,
where i is the size of the largest subset �1	 � � � 	 i� in s and j is the size of the
largest subset �n−j+1	 � � � 	 n� of s, 0 ≤ i	 j ≤ n. Combining these according to
the value of k = i+j, we obtain the following eigenvalues λ and multiplicities
m�λ�:

λ m�λ�
1 1

n− 1
2n

n

k

2n
�k+ 1�2n−k−2 0 ≤ k ≤ n− 2

3C. Braid arrangement. One of the discoveries of BHR [6] (see also [5]) is
that for the well-studied braid arrangement the action of faces on chambers
captures a wide variety of shuffling schemes. The braid arrangement in R

n

consists of the
(
n
2

)
hyperplanes Hij given by xi − xj = 0, 1 ≤ i < j ≤ n. (This

is again a reflection arrangement, the group being the symmetric group Sn

on n letters.) The chambers can be identified with the n! permutations, with
τ ∈ Sn corresponding to the chamber

xτ�1� > xτ�2� > · · · > xτ�n��

The faces can be identified with ordered partitions B = �B1	 � � � 	Bk� of �n�.
Here �B1	 � � � 	Bk� is a set partition in the usual sense, but the order matters.
(We recover the chambers by taking k = n, so that each Bi is a singleton.) The
spherical cell complex � is the barycentric subdivision of the boundary of an
�n−1�-simplex, and the zonotope Z is isomorphic to the permutohedron, which
is the convex hull of the n! permutations τ, viewed as vectors �τ�1�	 � � � 	 τ�n��.

The action of faces on chambers is most easily pictured by thinking of a
permutation τ as the set of labels on a deck of n cards, with the card labeled
τ�1� on top, and so on. The ordered partition B operates on τ by removing cards
with labels in B1 and placing them on top (keeping them in the same relative
order), then removing cards with labels in B2 and placing them next, and
so on. Suppose, for example, that n = 10, τ = �1	7	3	9	10	4	5	2	6	8� and
B = ��2	5�	 �3	4	6	10�	 �7�	 �1	8	9��; then B acting on τ gives �5	2	3	10	4	
6	7	1	9	8�.

We briefly describe two examples which have received much attention in
other settings.
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Example 1 (Random to top). Suppose the only ordered partitions that get
positive mass are ��i�	 �n� − �i�� with mass wi, 1 ≤ i ≤ n. The walk corre-
sponds to repeatedly choosing i from wi and then moving the card labeled i
to the top. This is a well-studied model for dynamic rearrangement of files
in computer science. Think of file folders being used with propensity wi. One
wants the frequently used files near the top. A simple self-organizing scheme
for achieving this if the wi are not known is to replace a folder on top after it
is used. This scheme is called the Tsetlin library; see Dies [20] or Fill [24] for
extensive reviews.

Assuming wi > 0 for all i (or even all but one i), there is a unique stationary
distribution π. It is given by Theorem 2 as sampling without replacement from
the weights wi:

π�τ� = wτ�1�wτ�2� · · ·wτ�n−1�
�1−wτ�1���1−wτ�1� −wτ�2�� · · · �1−wτ�1� − · · · −wτ�n−2��

�

This generally nonuniform distribution is easier to describe than to work with:
Try to compute π�τ�n� = 1�. Even the distribution π has its own literature;
see [15], page 174.

The bound from Theorem 2 is∥∥Kl
τ − π

∥∥ ≤ ∑
1≤i<j≤n

�1−wi −wj�l�

A variety of special cases are analyzed in [16]. Suppose, for instance, that
wi = 1/n, 1 ≤ i ≤ n. Then π is uniform, and the convergence rate is the same
as for the top-to-random shuffle, in which the top card is repeatedly inserted
at a random position. The bound from Theorem 2 becomes∥∥Kl

τ − π
∥∥ ≤ (

n

2

)(
1− 2

n

)l

	

so that n�log n+ c� shuffles suffice to make the distance at most e−c/2. More
refined estimates are derived in [17], showing that this bound is sharp.

For this example with general weights wi the eigenvalues were determined
by Phatarfod [28]. Each subset s ⊆ �n� contributes an eigenvalue

λs =
∑
i∈s

wi	

of multiplicity ms equal to the number of permutations τ ∈ Sn with s as fixed-
point set. In other words, ms is the derangement number dk, k = n−�s�, where
dk is the number of permutations in Sk with no fixed points. Note that d1 = 0,
so λs does not actually occur as an eigenvalue if �s� = n− 1.

It is shown in [6] and [5], by two different methods, how Theorem 1 gives
Phatarfod’s result. We briefly sketch a third method, since the ideas will be
needed in a more difficult example below (Section 3D). This third method
has the advantage that it can be used in cases where the Möbius numbers
µ� �W	V� are not known.

A subspace W ∈ � is defined by zero or more equations of the form xi = xj.
Let sW be the set of k ∈ �n� which do not occur in any of these equations. (If



1828 K. S. BROWN AND P. DIACONIS

we identify the elements of � with set partitions of �n� in the usual way,
then sW is the union of the singleton blocks.) A straightforward application of
Theorem 1 now gives eigenvalues λs, s ⊆ �n�, with multiplicity

ns =
∑
sW=s

mW	

where mW = �µ� �W	V��. In particular, mW depends only on the interval
�W	V� in the lattice � . Now consider

�3�1� Ns
def= ∑

t⊇s

nt =
∑
sW⊇s

mW�

The W’s that occur here form a lattice isomorphic to the intersection lattice for
the braid arrangement in R

n−�s�. (Use the projection R
n → R

n−�s� which picks
out the coordinates not in s.) It follows that the second sum in (3.1) is the
sum of all multiplicities for the latter arrangement; hence it equals the total
number of chambers. (One could also get this from Zaslavsky’s formula [36];
cf. formula (5.6) in Section 5C below.) Thus Ns is the number of permutations
of �n� − s or, equivalently, the number of permutations of �n� that fix s. If we
now define ms to be the number of permutations with s as fixed-point set, and
if we set Ms =

∑
t⊇s mt, we see that Ns =Ms and hence ns =ms, as claimed.

Example 1 (Riffle shuffle). Consider next the two-block ordered partitions
�s	 �n�−s�, � � s � �n�, together with the one-block partition ��n��. We assign
weight 1/2n to each of the 2n − 2 two-block ordered partitions, and we assign
weight 2/2n = 1/2n−1 to the one-block partition. The corresponding shuffling
mechanism consists of inverse riffle shuffles. In an ordinary riffle shuffle a
deck of cards is divided into two piles which are riffled together. The inverse
chooses a set s of cards which are removed (“unriffled”) and placed on top.
Here s can be � or �n�, in which case the deck is unchanged; these cases
both correspond to the action of the one-block partition. Thus the effect of our
choice of weights is that the 2n subsets s ⊆ �n� are all equally likely to be
unriffled. This corresponds to the Gilbert–Shannon–Reeds measure, in which
the subset to be riffled is chosen uniformly (see [2], where reference to earlier
work is given).

The stationary distribution π is uniform. The convergence rate is the same
for ordinary and inverse shuffles. The bound from Theorem 2 gives∥∥Kl

τ − π
∥∥ ≤ (

n

2

)(
1
2

)l

�

Thus the distance to uniformity is less than 2−c after 2 log2 n+ c− 1 steps. A
more exact analysis is available [2] showing that the variation distance rapidly
cuts down from 1 to 0 at about l = �3/2� log2 n. Thus the general bound from
Theorem 2 again gives a quite good result in this case, though not the best
possible. When n = 52, for example, 2 log2 n

�= 11�4, but in fact about seven
shuffles suffice to mix up the deck.

See [6] and [5] for many other examples, including the a-shuffles of [2],
together with a detailed description of the eigenvalues. The a-shuffles were
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shown in [2] to give the celebrated descent algebra of Solomon [31]. Connec-
tions between the chamber walk and the descent algebra for general reflection
groups are developed in Bidigare [5] and Bergeron, Bergeron, Howlett and
Taylor [4].

3D. Threshold arrangement. Our next example is a random walk on an
interesting family of graphs, called threshold graphs. (Graphs here will always
be assumed to be finite and to have no loops or multiple edges.) These can be
characterized in many different ways (see [26]), of which we mention three.
Let G be a graph with vertex set V.

1. G is a threshold graph if and only if there exist real numbers wv ≥ 0 �v ∈ V�
and t ≥ 0 such that the edges of G are the pairs uv with wu +wv > t.

2. Let d = �dv�v∈V be the degree sequence of G; that is, dv is the number of
edges having v as a vertex. Then G is a threshold graph if and only if it is
the unique graph on V with degree sequence d.

3. G is a threshold graph if and only if it can be constructed from the empty
graph by repeatedly adjoining either an isolated vertex or a dominating
vertex. (Recall that a vertex of a graph is called dominating if it is connected
by an edge to all other vertices.)

For example, the graph shown in Figure 8 is a threshold graph, being the
unique graph on �1	2	3	4	5� with degree sequence d = �1	4	2	2	3�. The
condition in (1) holds with weights w = �1	5	2	2	4� and t = 5. And G can be
constructed from the empty graph by adjoining 3 and 4 as isolated vertices,
then adjoining 5 as a dominating vertex, then 1 as an isolated vertex, and
finally 2 as a dominating vertex.

Notice that, by (3), a threshold graph can be represented (usually in more
than one way) by a signed permutation τ�1�ε�1�τ�2�ε�2� · · · τ�n�ε�n�. Here τ is a
permutation and ε�i� = ±1. The corresponding graph is obtained by adjoining
the vertices in the order τ�n�	 τ�n−1�	 � � � 	 τ�1�, and making τ�i� dominating if
ε�i� = +1 and isolated if ε�i� = −1. For example, the graph in Figure 8 is rep-
resented by each of the four signed permutations 2+1−5+3−4±	2+1−5+4−3±.
And the complete graph on �n� can be represented by n! signed permutations,
as can its complement, the discrete graph. (By the complement of a graph G

Fig. 8. A threshold graph.
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we mean the graph G′ with the same vertex set but the complementary edge
set.) These examples suggest that the number tn of threshold graphs on �n�
is much less than 2nn!. In fact, it is known [3] that

tn
n!

∼
(

1
log 2

− 1
)(

1
log 2

)n

	

with an absolute error that tends to 0 exponentially fast as n→∞.
Consider now the hyperplane arrangement in R

n consisting of the
(
n
2

)
hy-

perplanes xi+xj = 0, one for each two-element subset ij of �n�. The zonotope
Z dual to this arrangement has been studied extensively; see [26], [32] and
further references cited there. It is convenient here to take Z to be the zono-
tope called Z′ in Section 2E. Identifying R

n with its dual, we see that Z is
the convex hull of vectors dE, where E is an arbitrary collection of 2-element
subsets ij of �n� and

dE = ∑
ij∈E

�ei + ej��

(Here e1	 � � � 	 en denotes the standard basis of R
n.) Now E may be viewed as

the set of edges of a graph G on �n�, and dE = �d1	 � � � 	 dn� is the degree
sequence of G. Thus Z is the convex hull of the set of degree sequences of
graphs on �n�.

The first major result about Z is that its vertices are the degree sequences
of the threshold graphs on �n�. Hence the chambers of our hyperplane arrange-
ment can be identified with threshold graphs. Explicitly, a chamber with sign
sequence �σij� corresponds to the graph with edge set �ij� σij = +�. The face
poset � seems quite complicated, but we can single out a subset of � whose
action generates an interesting random walk:

Assume n ≥ 4. Then each of the 2n coordinate rays R±
i is a face. For exam-

ple, R+
1 is defined by

x1 + xj > 0 for 2 ≤ j ≤ n	

xi + xj = 0 for 2 ≤ i	 j ≤ n	 i �= j�

The action of Rε
i on chambers is easily pictured: Given a threshold graph, R+

i

adds edges to make the vertex i dominating, and R−
i deletes edges to make i

isolated.
As in Example 2 of Section 3B, we can describe a probability measure on

these 2n coordinate rays by giving weights wi ≥ 0, 1 ≤ i ≤ n	 �wi = 1, and
“coin-tossing parameters” θi, 0 ≤ θi ≤ 1. The resulting walk then evolves as
follows: At each stage there is a threshold graph. Pick a vertex i according to
the weights wi. Then flip a coin with probability θi of heads. If heads comes
up, add edges to make i dominating; otherwise delete all edges involving i.

If wi > 0 for all i (or even all but one i), then our measure on � is sep-
arating and there is a unique stationary distribution π. It can be described
as follows: Sample without replacement from the weights wi to get an order-
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ing i1	 � � � 	 in of �n�. Pick signs ε�i� = ±1, where ε�i� = +1 with probability
θi. Then i

ε�i1�
1 i

ε�i2�
2 · · · iε�in�n is a random signed permutation whose associated

graph G is distributed from π.
If wi = 1/n and θi = 1/2 for all i, then π is simply the measure on threshold

graphs induced by the uniform distribution on signed permutations. In other
words,

π�G� = s�G�
2nn!

	

where s�G� is the number of signed permutations representing G. For exam-
ple, π�G� = 1/2n if G is the complete graph or the discrete graph. Note, in
particular, that π is not uniform.

The convergence bound given by Theorem 2 is exactly the same as in Ex-
ample 1 of Section 3C (weighted random-to-top shuffle):∥∥Kl

G − π
∥∥ ≤∑

ij

�1−wi −wj�l	

where the sum is taken over all two-element subsets ij of �n�. In particular,
n log n+ cn steps suffice to reach stationarity if wi = 1/n for all i.

Finally, one can work out the eigenvalues and multiplicities by a slight vari-
ation on the method used in the random-to-top example. We omit the details
and simply state the result: For each subset s ⊆ �n� there is an eigenvalue

λs =
∑
i∈s

wi	

with multiplicity ms equal to the number of threshold graphs on �n� with s as
the set of isolated vertices. Equivalently, if n − �s� = k, then ms = τk, where
τk is the number of threshold graphs on �k� with no isolated vertices. Thus τk
is an analogue of the derangement number dk.

We have τ0 = 1, τ1 = 0 (so that ms = 0 if �s� = n−1, and λs does not actually
occur) and τk = tk/2 for k ≥ 2 where, as above, tk is the number of threshold
graphs on �k�. This follows from the fact that, by the characterization (3) of
threshold graphs, G has no isolated vertices if and only if its complement G′

has at least one isolated vertex.
It is remarkable that the multiplicities ms can be obtained, as in the

random-to-top example, with virtually no knowledge about the intersection
lattice � . For completeness, however, we give a brief description of the ele-
ments of � . A subspace W ∈ � of dimension r is determined by the following
data:

(i) A subset s0 ⊆ �n� which is either empty or else has at least three ele-
ments.

(ii) A set partition �B1	 � � � 	Br� of the complement �n� − s0.
(iii) For each block Bi with �Bi� ≥ 2, a set partition of Bi into two parts.

Write i 8 j if i and j are in the same part of some block Bk with �Bk� ≥ 2
and i 9 j if they are in different parts of some Bk. Then the subspace W
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corresponding to (i)–(iii) is given by the (redundant) system of equations

xi = 0	 if i ∈ s0	

xi = xj	 if i 8 j	

xi = −xj	 if i 9 j�

To prove that elements of � correspond to data as in (i)–(iii), let W ∈ �
be defined by equations of the form xi + xj = 0. Let : be the graph on �n�
whose edges are the ij such that xi+xj = 0 on W. Then xi = xj on W (resp.,
xi = −xj on W) if i and j can be joined by a path in : of even (resp., odd)
length. If : contains a cycle of odd length, it follows that xi = 0 on W for
all vertices i in the connected component :0 containing that cycle. Moreover,
:0 is the complete graph on s0 = �i� xi = 0 on W�, and all other connected
components are bipartite. The remaining details are left to the reader.

Remark. Although the face poset � is complicated, its atoms (i.e., the
faces that are rays) are easy to describe: Each W ∈ � of dimension r = 1
contributes two rays. So we get one ray for each ordered pair �s	 t� of disjoint
nonempty subsets of �n� which either cover �n� or omit at least three elements.
In addition, we get the 2n coordinate rays if n ≥ 4; these correspond to the
case �s0� = n−1. This description of the rays in � , or, equivalently, the vertices
of the polytope �̂ (Section 2D), is equivalent to the description of the facets of
the zonotope Z given in [26], Theorem 3.3.17.

3E. Zonotopes, tilings and oriented matroids. As explained in Section 2E,
the dual of a central hyperplane arrangement is a convex polyhedron called a
zonotope. The hyperplane chamber walks become walks on the vertices of the
zonotope. In this section we show how to analyze random walk on the vertices
of a tiling of a zonotope. Given a zonotope Z =∑n

i=1�−vi	 vi�, a zonotopal tiling
of Z is a polyhedral subdivision of Z in which all of the faces are translates of
zonotopes of the form

∑
i∈s�−vi	 vi�, where s ⊆ �1	 � � � 	 n�. Figure 9 shows two

examples. See [39], Section 7.5, or [10], Section 2.2, for further information
about zonotopal tilings.

A walk on the vertices of a zonotopal tiling is driven by a probability distri-
bution w�·� on the faces making up the tiling. From a given vertex x, choose a

Fig. 9. Two zonotopal tilings of a 12-gon.
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face F from w�·� and move to the vertex of F closest to x. If the zonotopal tiling
is a projection of a higher-dimensional zonotope (Figure 9a), the walk is just
projected and no new theory is needed. As Figure 9b suggests, not all zono-
topal tilings are projections. However, there is a very similar combinatorial
structure called an oriented matroid which covers general zonotopal tilings.
As we show in Section 6, Theorems 1 and 2 carry over to oriented matroids.
The present example may thus motivate the extra work.

Recall that a face of a hyperplane arrangement �Hi�ni=1 can be coded as a
sequence of �0	±� symbols of length n. These are the signs σ in F = ∩Hσi

i .
An oriented matroid is a set � ⊆ �0	±�n satisfying:

1. 0 ∈ � .
2. If x ∈ � , then −x ∈ � .
3. If x	y ∈ � , then x · y ∈ � , where

x · y =
{
xi	 xi �= 0	
yi	 xi = 0�

4. Given x	y ∈ � , let S�x	y� = �i� xi = −yi �= 0�. For every j ∈ S�x	y�
there is a z ∈ � with zj = 0 and zi = �x · y�i = �y · x�i for i /∈ S�x	y�.

It is not hard to check that the sign sequences of a central hyperplane ar-
rangement form an oriented matroid. There is also a concept of affine oriented
matroid, generalizing affine hyperplane arrangements, cf. [10], Section 4.5.

A chamber of an oriented matroid � is an element y ∈ � with no zero
coordinates. (We may assume without loss of generality that such elements
exist.) Note that if y is a chamber and x ∈ � then x · y is a chamber. Thus if
w�·� is a probability distribution on � we may define a Markov chain K�x	y�
on the chambers of � via

�3�2� K�x	y� = ∑
z·x=y

w�z��

Section 6 shows that Theorems 1 and 2 hold for this chain.
Return now to zonotopal tilings. According to the Bohne–Dress theorem (see

[39], 7.32), a zonotopal tiling of a fixed zonotope corresponds to a certain affine
oriented matroid. The correspondence is such that the walk on the matroid
yields the walk described above on the vertices of the tiling. We are thus in a
position to find the eigenvalues and rates of convergence.

We conclude this section with an example of a family of tilings of a 2n-gon
where all the details can be carried through. This example was suggested by
Louis Billera. The family is built up by repeatedly adding a new layer of tiles
as in the following pictures.
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n 2 3 4 5
tn 1 3 6 10
vn 4 7 11 16
en 4 9 16 25

At stage n, a new family of n − 1 rhombus tiles is added on the top and left
of the previous Zn−1. This results in a rhombic tiling Zn of a 2n-gon with
tn =

(
n
2

)
tiles, vn =

(
n+1

2

) + 1 vertices and en = n2 edges. These formulae are
easily proved by induction.

These tilings are all projections of a three-dimensional zonotope. Neverthe-
less, we will present the associated affine oriented matroid, which is here real-
ized by an affine hyperplane arrangement, and use it to analyze the walk. The
hyperplane arrangement �n associated to the tiling Zn may be represented
as n lines in R

2 in general position. Thus the examples above correspond to

Here the chambers of �n correspond to vertices of the tiling Zn; the segments
of lines in �n correspond to edges of Zn, with the half infinite line segments
corresponding to the 2n bounding edges of Zn; and the vertices of �n corre-
spond to the two-dimensional tiles of Zn.

The correspondence may be seen here directly (without the Bohne–Dress
theorem) by drawing the lines on top of the picture of Zn as follows:
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The dotted segments (pseudo-lines) can be straightened out to be the lines
shown. See [39], Section 7.5, for further details.

We will analyze the walk on the vertices of Zn driven by
(
n
2

)
weights on

the two-dimensional tiles. This corresponds to a walk on the chambers of �n

driven by weights on the
(
n
2

)
vertices. Each vertex corresponds to the inter-

section of two lines. Labeling the lines L1	 � � � 	Ln, let wij be the associated
weights. Suppose for simplicity that all wij > 0. Then the weights are separat-
ing and so the walk has a unique stationary distribution described in Theorem
2. Here, it can be shown that the stationary distribution is supported on cham-
bers of �n that meet the convex hull of the vertices of �n.

Theorem 1 shows that the eigenvalues and their multiplicities are

λ m�λ�
1 1
λLi

1 1 ≤ i ≤ n

wij 1 i �= j

with λLi
=∑

j �=i wij. This gives

1+ n+
(
n

2

)
=

(
n+ 1

2

)
+ 1

eigenvalues.
Theorem 2 shows ∥∥Kl

x − π
∥∥ ≤ n∑

i=1

λl
Li
�

For example, if wij ≡ 1/
(
n
2

)
, then λLi

= 2/n and the bound becomes

∥∥Kl
x − π

∥∥ ≤ n

(
2
n

)l

�

Thus, for large n, two steps suffice for convergence.
As a second example, let wi	 i+1 = 1/�n − 1� for 1 ≤ i ≤ n − 1, and wij = 0

otherwise. These weights are separating for n ≥ 4 and the bound in Theorem
2 becomes ∥∥Kl

x − π
∥∥ ≤ 2

(
1

n− 1

)l

+ �n− 2�
(

2
n− 1

)l

�

Here, again, the walk converges after l = 2 steps.

3F. Further examples. There are many further examples of hyperplane
arrangements where the chambers can be indexed by a natural class of com-
binatorial objects; cf. Orlik and Terao [27], Stanley [33] and Ziegler [39]. We
briefly mention two: (a) the set of all regular cubical tilings of a fixed zonotope
and (b) the Shi arrangement.
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A walk on tilings. Let Z = �−v1	 v1� + · · · + �−vn	 vn� be a d-dimensional
zonotope in R

d with n zones. A zonotopal tiling of Z is called cubical if every
face of the tiling is a translate of a parallelepiped of the form

∑
i∈s�−vi	 vi�,

where s is a subset of �n� = �1	 � � � 	 n� such that �vi�i∈s is linearly indepen-
dent. A zonotopal tiling is regular if it arises as an appropriate projection of a
�d+ 1�-dimensional zonotope. (See [39] or [10] for the precise definition.) For
example, Figure 9a is regular but not cubical, whereas Figure 9b is cubical but
not regular. Billera and Sturmfels [8] have proved that the set of all regular
cubical tilings of a fixed zonotope Z is itself the set of vertices of a second
zonotope Ẑ. Thus the walk on the vertices of the zonotope Ẑ becomes a walk
on the set of regular cubical tilings of Z.

To define Ẑ, consider the subsets s ⊆ �n� such that �vi� i ∈ s� is a minimal
linearly dependent set. Each such s gives rise to a linear relation

∑n
i=1 αivi =

0, unique up to scalar multiplication. Let αs = �α1	 � � � 	 αn�. Then Ẑ is the
zonotope in R

n defined by

Ẑ =∑
s

�−αs	 αs��

It has one zone for each minimal dependent subset of �vi�. Note that Ẑ is
�n − d�-dimensional, because the linear span of the αs is the kernel of the
linear surjection R

n → R
d given by ei �→ vi.

One can give a more explicit formula for Ẑ by noting that each minimal
dependent subset of �vi� can be extended to a set of d+1 vectors that span R

d.
Writing these as the columns of a matrix, we can find the essentially unique
linear relation among them by forming the cross product of the rows of the
matrix (which form a set of d independent vectors in R

d+1). This leads to the
equivalent definition

Ẑ =∑
s

�−βs	βs�	

where now s ranges over the �d+ 1�-subsets s1 < · · · < sd+1 of �n� and

βs =
d+1∑
i=1

�−1�i det�vs1
	 � � � 	 vsi−1

	 vsi+1
	 � � � 	 vsd+1

�esi �

Note that some of the βs may be 0 and some of the nonzero ones may be scalar
multiples of others. So the number of zones of Ẑ may be less than

(
n

d+1

)
.

As an example, there are eight regular cubical tilings of an octagon (Figure
10). The zonotope Ẑ is then itself an octagon, as shown. More generally, con-
sider all regular cubical tilings of a regular 2n-gon. The bounding zonotope Z

is generated by n vectors in R
2. The zonotope Ẑ is �n − 2�-dimensional, gen-

erated by
(
n
3

)
vectors αs in R

n. To go further, one would have to understand

the geometry of Ẑ, identifying natural families of faces and thus walks on the
regular tilings.

The papers [38] and [22] study all cubical tilings of a 2n-gon and connect
these to the higher Bruhat orders of Manin and Schechtmann. For n ≤ 5 all
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Fig. 10. An octagon of tilings of an octagon.

such tilings are regular, so that Figure 3 of [38] gives a picture of the regular
cubical tilings of a 10-gon.

Shi arrangement. The Shi arrangement in R
n consists of the 2 · (n2 ) hy-

perplanes given by xi − xj = 0 and xi − xj = 1, i < j. This is one of several
“deformations” of the braid arrangement discussed in [33]. It is known that
there are �n+1�n−1 chambers, which may be put into bijective correspondence
with the set of labeled trees on n+1 vertices as well as with the set of “parking
functions” (see [33] and further references cited there). It would be interest-
ing to understand combinatorially the resulting walks on labeled trees and
parking functions.

4. Stationary distribution and bounds. In this section we prove The-
orem 2 and some extensions. The argument handles input from a stationary
process on � , not just i.i.d. input. We begin with some general observations
that use no special properties of the hyperplane situation.

4A. Iteration of random mappings. Let � be an arbitrary finite semigroup
and let � be a finite set on which � operates. Thus we have a function � ×� →
� , denoted �f	 c� �→ fc, such that f�gc� = �fg�c for f	g ∈ � , c ∈ � . Note that
this setup encompasses an arbitrary family of mappings � → � , since we could
simply take � to be the semigroup that they generate under composition.

Let � � � 	F−2	F−1	F0	F1	F2	 � � � be a stationary � -valued process, for ex-
ample, an i.i.d. sequence. (Recall that “stationary” means that the distribution
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of the sequence is shift-invariant.) We can use this to define a process �Cl�l≥0
(not necessarily Markov) on � : Fix a starting point C0 and set

�4�1� Cl = F−l · · ·F−2F−1C0

for l ≥ 1.
Our description of the limiting distribution for Cl will make use of the

infinite product

∞∏
i=1

Fi = lim
l→∞

F1 · · ·Fl	

where, in this discrete setting, a sequence is said to converge if and only if it is
eventually constant. In order for this to make sense, we assume �Fi� satisfies

�IP� The infinite product
∞∏
i=1

Fi exists almost surely�

Example. If � is the face semigroup of a hyperplane arrangement, then
the sequence of partial products F1 · · ·Fl is increasing with respect to the face
relation, so (IP) holds.

Let F∞
1 = ∏∞

i=1 Fi and Fl
1 =

∏l
i=1 Fi. Our proof of Theorem 2 will be based

on the following simple observation:

Theorem 3. Assume the stationary sequence �Fi�i∈Z satisfies (IP). Fix C0 ∈
� , let Cl be defined by (4.1) for l ≥ 1 and let πl be the distribution of Cl, that
is, πl�c� = P�Cl = c�. Let π be the distribution of F∞

1 C0. Then πl → π as
l→∞. More precisely,

�4�2� ∥∥πl − π
∥∥

TV ≤ P
{
Fl

1 �= F∞
1

}
�

Proof. By stationarity, Cl has the same distribution as Fl
1C0. Since

Fl
1C0 → F∞

1 C0 a.s., it follows that πl → π. To prove (4.2), recall that, by the
definition of total variation distance,∥∥πl − π

∥∥ = max
�⊆�

�πl�� � − π�� ���

We have πl�� � = P�Fl
1C0 ∈ �� and π�� � = P�F∞

1 C0 ∈ ��. Break up both
events according to whether or not Fl

1 = F∞
1 :

πl�� � = P
{
Fl

1 = F∞
1 	 Fl

1C0 ∈ �
}+P

{
Fl

1 �= F∞
1 	 Fl

1C0 ∈ �
}
	

π�� � = P
{
Fl

1 = F∞
1 	 F∞

1 C0 ∈ �
}+P

{
Fl

1 �= F∞
1 	 F∞

1 C0 ∈ �
}
�

The two first terms are equal and the two second terms are at most P�Fl
1 �=

F∞
1 �. ✷
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Remark. The infinite product F∞
1 acts on � as an infinite composite

f1 ◦f2 ◦ · · · of random maps. The idea of using such infinite composites to
construct limiting distributions has occurred in a variety of contexts. See
Diaconis and Freedman [18] for a survey. In the setting of the hyperplane
chamber walk, one can even verify that the Propp–Wilson [35] monotonicity
condition holds with respect to the weak Bruhat order [10] on � . This means
that monotone coupling from the past can be used to draw exact samples
from the stationary distribution π.

4B. Proof of Theorem 2. We now specialize to the case where � is the
set of faces and � the set of chambers of a hyperplane arrangement. We still
allow, for the moment, the process on chambers to be driven by a stationary
process on � as above. If we assume that F∞

1 is a.s. a chamber, then Fl
1 = F∞

1
as soon as Fl

1 is a chamber. The bound (4.2) therefore yields

�4�3� ∥∥πl − π
∥∥ ≤ P

{
F1 · · ·Fl /∈ �

}
�

Assume from now on that �Fi�i∈Z consists of i.i.d. picks from a measure w
on � , so that (4.1) is the hyperplane chamber walk. If w is separating, then
F∞

1 is a.s. a chamber and (4.3) holds. Now F1 · · ·Fl /∈ � if and only if there is
a hyperplane H ∈ � such that Fi ⊆ H for 1 ≤ i ≤ l. And P�Fi ⊆ H� = λH.
Hence

�4�4� P�F1 · · ·Fl /∈ � � ≤ ∑
H∈�

P�Fi ⊆H for 1 ≤ i ≤ l� = ∑
H∈�

λl
H�

Combining this with (4.3), we get part (c) of Theorem 2.

Remark. BHR [6] give a more careful analysis of P�F1 · · ·Fl /∈ � �. They
break up the event �F1 · · ·Fl /∈ � � according to the support W of F1 · · ·Fl and
then use Möbius inversion to get

�4�5� P
{
F1 · · ·Fl /∈ �

} = − ∑
W∈�
W �=V

µ� �W	V�λl
W�

Combining (4.3), (4.4) and (4.5), we obtain

�4�6� ∥∥Kl
C − π

∥∥ ≤ − ∑
W �=V

µ�W	V�λl
W ≤ ∑

H∈�
λl
H	

so that (4.5) gives a sharper bound than that of Theorem 2, using all the
eigenvalues. In fact, one can make examples where the BHR bound is better
than the Theorem 2 bound by any desired factor. On the other hand, the right-
hand side of (4.5) seems quite difficult to estimate [without using the second
inequality in (4.6)], and we have not found any naturally occurring examples
where we could use it to get a better bound than that of Theorem 2.

Returning to the proof of Theorem 2, still assuming w is separating, Theo-
rem 3 gives the following description of the limiting distribution of the chain
started at C0: Sample with replacement from w, stopping as soon as F1 · · ·Fm

is a chamber. Then F1 · · ·Fm is distributed from π. As we explained at the
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beginning of Section 3, this is equivalent to the description of π in part (b) of
Theorem 2. Since π is independent of the starting chamber C0, we have also
proven half of (a): There is a unique stationary distribution if w is separating.

Finally, suppose w is not separating, and let H contain the support of w.
Then Theorem 3 gives the limiting distribution πC0

for the chain started at
C0, and we see that πC0

is concentrated on the chambers on the C0-side of
H. Hence there are at least two stationary distributions, and Theorem 2 is
proved.

Remark 1. One can give more precise results for general (nonseparating)
w: Let � ′ be the set of H ∈ � which contain the support of w. Partition
the chambers C according to which � ′-chamber contains C. Then this gives
the decomposition of the hyperplane chamber walk into its components: The
walk started in any � ′-chamber stays there and has a unique stationary
distribution. In particular, the set of all stationary distributions is a simplex
with one vertex for each � ′-chamber.

Remark 2. The weighted random-to-top shuffle with Markovian input is
a standard item of study in the recent literature. Refer to Phatarfod, Pryde
and Dyte [29] and Dobrow and Fill [21] for results in this case. Note that for a
stationary Markov chain as input, the process is driven by the time-reversed
chain according to (4.1). Turning things around, suppose we are interested
in the process C0	F1C0	F2F1C0	 � � � with �Fi�∞i=1 a stationary Markov chain.
Let F̃1	 F̃2	 � � � be the time-reversed process. The bound then becomes∥∥πl − π

∥∥ ≤ P
{
F̃1 · · · F̃l /∈ �

}
�

As before, F̃1 · · · F̃l /∈ � if and only if there is a hyperplane H ∈ � containing
F̃1	 � � � 	 F̃l; the probability of this event can be bounded by the “cover time” of
the chain �F̃i�. See [1] for a review of the literature on cover times.

5. Diagonalization. In this section we prove Theorem 1. After setting up
some notation in Section 5A, we prove that K is diagonalizable in Section 5B,
assuming, for simplicity, that � is central. The proof gives the eigenvalues
but not the multiplicities (which were calculated by BHR [6] in the central
case). In Section 5C we show how the ideas in Section 5B lead naturally to
a new proof of the BHR formula for the multiplicities. Finally, we treat the
non-central case in Section 5D.

5A. Notation. For any finite set S, let RS denote the vector space of all
real linear combinations

∑
s∈S α�s�s of elements of S. In particular, we have

vector spaces R� and R� generated by the chambers and faces of a hyperplane
arrangement. Note that R� is an R-algebra (the semigroup algebra of � ), and
R� is an R� -module via the action of faces on chambers. Given a probability
measure w on � , we have an element

�5�1� T = Tw =
∑
F∈�

w�F�F
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of R� , which therefore acts as an operator on R� . Explicitly, given an element
α =∑

C∈� α�C�C ∈ R� , we have

T�α� = ∑
F∈�
C∈�

w�F�α�C�FC = ∑
C′∈�

β�C′�C′	

where

β�C′� = ∑
F	C�FC=C′

w�F�α�C� = ∑
C∈�

α�C�K�C	C′��

Here K is the transition matrix defined at (1.3). Thus if elements of R� are
viewed as row vectors indexed by � , then T acts as right multiplication by the
matrix K. In particular, the eigenvectors of T on R� are the left eigenvectors
of K.

5B. Diagonalizability. We already have an eigenvector �π�C�C with
eigenvalue 1 (= λV), where π is any stationary distribution for the chamber
walk defined by K. (Alternatively, we could get π from the Perron–Frobenius
theorem instead of probability theory.) Note that this eigenvector maps to
1 ∈ R under the linear map

∂0� R� → R

given by ∂0�C� = 1 for all C ∈ � . Now ∂0 is a homomorphism of R� -modules,
where each F ∈ � acts as the identity on R, so ker ∂0 is an R� -module. In
particular, ker ∂0 is T-invariant, so T (and hence K) will be diagonalizable
provided its restriction to ker ∂0 is diagonalizable.

Note that ker ∂0 is spanned by the differences C−C′ (C	C′ ∈ � ). In fact, by
connectivity of the chamber graph, ker ∂0 is spanned by differences C−C′ such
that C and C′ are adjacent. Let �1 ⊂ � be the set of codimension 1 faces, that
is, the set of faces whose support is a hyperplane. Our first task is to define a
linear surjection ∂1� R�1 → ker ∂0, which sends A ∈ �1 to ∂1�A� = ±�C−C′�,
where C and C′ are the two chambers having A as a face; here we must
specify a rule for determining the ambiguous sign. (For our present purposes,
we could set ∂1�A� = C − C′, where C is on the (arbitrarily chosen) positive
side of H = suppA. But we will give a more complicated rule that will be
needed in Section 5C.) Assume, for simplicity, that � is central, so that �
can be taken to consist of linear hyperplanes. We will return to the general
case in Section 5D.

Choose arbitrarily an orientation for the ambient vector space V. This
means that we have a rule which associates a sign ε = ±1 to each ordered
basis e1	 � � � 	 en of V, in such a way that two ordered bases have the same
(resp., opposite) sign if the matrix relating them has positive (resp., negative)
determinant. Similarly, each hyperplane H ∈ � is itself a vector space and we
choose arbitrarily an orientation for it. Given a chamber C and a codimension
1 face A of C, we use the chosen orientations on V and on H = suppA to
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define a sign �A � C� = ±1, as follows: Choose a positively oriented ordered
basis e1	 � � � 	 en−1 for H, choose v ∈ C and set

�A � C� = ε�e1	 � � � 	 en−1	 v��
This is easily seen to be independent of the choice of e1	 � � � 	 en−1 for fixed
v, and it is independent of v because C is connected. In fact, �A � C� =
ε�e1	 � � � 	 en−1	 v� for any vector v on the same side of H as C.

Note that if A ∈ �1 and C, C′ are the two chambers having A as a face, then
�A � C′� = −�A � C� because C and C′ are on opposite sides of H = suppA.
The desired surjection,

∂1� R�1 → ker ∂0	

is now defined by ∂1�A� = �A � C�C + �A � C′�C′ for A ∈ �1, where C, C′ are
the chambers having A as a face.

Next, we define an action of � on R�1. Given F ∈ � and A ∈ �1, we
wish to define F ∗A ∈ R�1. Consider the product FA in the semigroup � . If
F ⊆H = suppA, then FA is again in �1 (and has the same support H), and
we set F ∗A = FA. If F �⊆ H, then FA is a chamber and we set F ∗A = 0.
This product makes R�1 an R� -module.

Lemma 1. The map ∂1� R�1� ker ∂0 is a homomorphism of R� -modules.
In particular, it commutes with the action of T = �w�F�F.

Proof. Given F ∈ � and A ∈ �1, we must check that ∂1�F∗A� = F∂1�A�.
Let C and C′ be the chambers having A as a face. If F �⊆H, then FA = FC =
FC′, and we have F∂1�A� = ±F�C − C′� = 0. Since F ∗ A = 0, the desired
equation holds. If F ⊆H, then FC and FC′ are the two chambers having FA
as a face, so ∂1�F ∗A� = ±�FC−FC′� and F∂1�A� = ±�FC−FC′�. The two
ambiguous signs agree because FC and C are on the same side of H. ✷

Finally, we lump together the elements of �1 with the same support to
obtain

�5�2� R�1 =
⊕

H∈�
R�H	

where �H is the set of faces having support H. The notation “�H” serves as a
reminder that �H is the set of chambers of the arrangement �H in H obtained
by restriction (see Section 2A). The decomposition (5.2) is a decomposition of
R� -modules, and the action of T on the summand R�H is the same type of
operator, relative to the arrangement �H, as the original action of T on R� .
(The relevant measure here on the faces of �H, which are simply the F ∈ �
such that F ⊆H, is gotten by restricting w. This restriction will not generally
be a probability measure, but a trivial argument shows that the results we
are trying to prove are true for all positive measures if and only if they are
true for probability measures.)
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Arguing by induction on the dimension of the ambient space V, it follows
that T is diagonalizable on R�1, hence also on the homomorphic image ker ∂0,
hence also on R� . The argument also shows that the eigenvalues are contained
in �λW�W∈� .

Remark. The proof gives explicit formulas for a set of eigenvectors span-
ning R� , provided such formulas are already known inductively for T acting
on each R�H. The details have been worked out by Bidigare, Denham and
Hanlon [private communication] and will appear elsewhere.

5C. Multiplicities. We continue to assume, for simplicity of notation, that
� is central. The argument above did not give us multiplicities for T acting
on R� because we ignored ker ∂1. In order to remedy this, we extend the exact
sequence

R�1
∂1→ R�

∂0→ R → 0

to a longer exact sequence

�5�3� · · · → R�p
∂p→ · · · ∂2→ R�1

∂1→ R�
∂0→ R → 0

(which is eventually 0 at the left), where �p is the set of faces of codimension
p in V.

In order to define ∂p� R�p → R�p−1, we need numbers �A � B� = ±1
whenever A is a codimension 1 face of B. To this end we choose an orientation
for each W in the intersection lattice � . Then if we restrict � to the support
of B, the face B becomes a chamber, A becomes a face of codimension 1 and
our chosen orientations give us a number �A � B� = ±1 by Section 5B applied
to the restricted arrangement. We now define a linear map ∂p� R�p → R�p−1,
by

∂p�A� =
∑

B�A

�A � B�B	 A ∈ �p�

Here B �A means that B covers A in the poset � ; that is, A is a codimen-
sion 1 face of B. The following lemma implies that ∂p−1∂p = 0.

Lemma 2. Let A	C ∈ � , with A < C and A of codimension 2 in C. Then
there are exactly two faces B1, B2 in the open interval �A	C�, and we have

�A � B1��B1 � C� = −�A � B2��B2 � C��

Proof. Replacing � by its restriction to the support of C, we reduce to
the case where C is a chamber. Let H1	 � � � 	Hk be the walls of C, that is,
the supports of the codimension 1 faces. Let Hi = kerfi, fi ∈ V∗, where fi

is chosen so that fi > 0 on C. Then C is defined by fi > 0 for 1 ≤ i ≤ k,
and this is a minimal set of inequalities defining C; moreover, the faces of
C are the nonempty sets obtained by replacing some of these inequalities by
equalities; cf. [12], Section I.4B and the last paragraph of Section I.4A. The
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given face A of codimension 2 is contained in exactly two of the walls, say H1,
H2, because any three of the fi are linearly independent and hence define
a face of codimension 3. (A linear relation among three of the fi would give
one fi as a positive linear combination of two others. But then the inequality
fi > 0 would be redundant in the description of C, and Hi would not be a
wall.) It follows that the only faces between A and C are the faces B1	B2 of
C supported by H1	H2.

To prove �A � B1��B1 � C� = −�A � B2��B2 � C�, we may assume that Hi has
been oriented so that �A � Bi� = +1. We may therefore get a positively oriented
ordered basis for Hi, i = 1	2, by choosing a positively oriented ordered basis
e1	 � � � 	 en−2 for H1 ∩H2 and adjoining a vector vi ∈ Bi. Then v1 + v2 ∈ C,
and �Bi � C� = ε�e1	 � � � 	 en−2	 vi	 v1 + v2�. The lemma now follows from the
fact that e1	 � � � 	 en−2	 v1	 v1 + v2 and e1	 � � � 	 en−2	 v2	 v1 + v2 are related by a
matrix of determinant −1. ✷

Next we define an action of � on R�p as in Section 5B: Given F ∈ � and
A ∈ �p, set

F ∗A =
{
FA	 if F ⊆ suppA	

0	 otherwise�

This makes R�p an R� -module, which we may decompose according to sup-
ports:

R�p =
⊕

W∈�p

R�W	

where �p = �W ∈ � � codim�W	V� = p� and �W is the set of faces with
support W. The complex (5.3) now becomes

�5�4� · · · → ⊕
W∈�2

R�W → ⊕
H∈�

R�H → R� → R → 0�

Lemma 3. The complex (5.4) is a chain complex of R� -modules; that is,
each boundary map commutes with the action of � .

Proof. Consider a typical component ∂U	W� R�U → R�W of ∂p, where
U ∈ �p and W ∈ �p−1. We must show that the action of each F ∈ � commutes
with ∂U	W. If U �⊂W, then ∂U	V = 0 and there is nothing to prove. If F �⊆W,
then F acts as 0 on both R�U and R�W, so again there is nothing to prove.
Finally, if F ⊆W, we may replace � by its restriction to W and apply Lemma 1
of Section 5B. ✷

Lemma 4. The sequence (5.4) is exact.

Proof. This follows from the homology theory of regular cell complexes
[13]: Recall that the zonotope Z associated to � (Section 2E) is a contractible
regular cell complex whose face poset is the poset � op opposite to � . The
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facts we have proved about the numbers �A � B� say precisely that they form
a system of “incidence numbers” for Z in the sense of [13] and hence that (5.3)
is the augmented cellular chain complex of Z. The exactness of (5.3) and (5.4)
therefore follows from the fact that Z has trivial homology. ✷

We are now in a position to calculate eigenvalues and multiplicities by the
same sort of induction used in Section 5B. We need the following well-known
special case of the “Euler characteristic principle:”

Lemma 5. Let

0−→Vm
∂m→ · · · −→V1

∂1→ V0 →0

be an exact sequence of finite-dimensional vector spaces. Let Ti be a linear
operator on Vi such that ∂iTi = Ti−1∂i for 1 ≤ i ≤ m, and let ϕi be the
characteristic polynomial of Ti. Then ϕ0ϕ

−1
1 ϕ2ϕ

−1
3 · · · = 1.

Sketch of Proof. For m = 2 this is proved by looking at matrices; the
general case follows by induction on m. ✷

Applying this to the action of T = �w�F�F on (5.4), we may assume induc-
tively that we have a decomposition of the characteristic polynomial ϕU of T
acting on R�U for each U �= V in � , say

ϕU�λ� =
∏

W∈� �W⊆U

�λ− λW�m�W	U�

for some integers m�W	U� ≥ 0. Lemmas 4 and 5 then give the characteristic
polynomial ϕ = ϕV for T acting on R� :

ϕ�λ� = �λ− λV�
∏

W	U�
W⊆U�V

�λ− λW�−�−1�codim�U	V�m�W	U�

= ∏
W∈�

�λ− λW�m�W	V�	

where m�V	V� = 1 and, for W � V,

�5�5� m�W	V� = − ∑
U�W⊆U�V

�−1�codim�U	V�m�W	U��

This recurrence formula is reminiscent of the recurrence (2.1) for the Möbius
function µ = µ� . In fact, if we multiply (5.5) by �−1�codim�W	V� and compare
the result to (2.1), we conclude, inductively, that

m�W	V� = �−1�codim�W	V�µ�W	V� = �µ�W	V��	
where the second equality is the “alternating sign” property of µ� ([34], 3.10.1,
or [27], 2.4.7). Theorem 1 is now completely proved in the central case.
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Remark. As a byproduct, we recover Zaslavsky’s famous formula [36] for
the number of chambers:

�5�6� �� � = ∑
W∈�

m�W	V� = ∑
W∈�

�µ�W	V���

5D. The noncentral case. There are two ways to treat the case where �
is not necessarily central.

Method 1. Go through Sections 5B and 5C, making changes to accommo-
date the general case. This involves minor changes in wording (e.g., one has
to consider orientations of affine subspaces), and, more importantly, one has
to replace the zonotope Z by the cell complex � of Section 2F.

Method 2. Deduce the general case from the central case by coning (Sec-
tion 2F). Namely, let � be the central arrangement obtained from � by con-
ing, and let � , � and � be the associated face poset, set of chambers and
intersection lattice. Recall that � may be identified with a subset �

+ ⊂ � .
We then have R� ⊂ R� , and if we view w as a measure on � supported in
�

+
, we get an operator T on R� extending T and mapping all of R� into R� .

Diagonalizability of T therefore follows from that of T, and we get the same
eigenvalues and multiplicities for T as for T, except that the multiplicity of
0 has to be reduced by �� � − �� � = �� �/2. To complete the proof, we need to
show that this reduction is accomplished by throwing out the eigenvalues of
T corresponding to the W ∈ � such that W ⊆H0 = V× 0. (These W are the
elements of � that do not correspond to anything in � .) Note that if W �⊆H0
in � and W is the corresponding element of � (gotten by intersecting with
V×1), then µ� �W	V� = µ� �W	V� because the corresponding open intervals
are isomorphic. What we need to complete the proof is:

Lemma 6.∑
W∈� �
W⊆H0

�−1�codim�W	V�µ� �W	V� = ∑
U∈� �
U �⊆H0

�−1�codim�U	V�µ� �U	V��

[Recall that the sum of the left- and right-hand sides is �� � by (5.6), so this
shows that the left-hand side equals �� �/2, as desired.]

Proof. Fix W ⊆H0 in � and note that

µ�W	V� = − ∑
U∈� �

U �⊆H0	U∩H0=W

µ�U	V�

by the Crapo complementation formula (see [14], Theorem 3, [9], 6.2, or [27],
2.40). Multiply by �−1�codim�W	V� and sum over W to obtain the lemma. ✷
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6. Generalization to oriented matroids. We introduced oriented ma-
troids in Section 3E, as generalizations of central hyperplane arrangements.
There are also affine oriented matroids, which generalize arbitrary (affine)
hyperplane arrangements. In this section we indicate how to extend Theo-
rems 1 and 2 to the oriented matroid setting. We begin by introducing the
relevant terminology in Section 6A. The extensions of Theorems 1 and 2 are
then treated in Section 6B.

6A. Oriented matroids. Our basic reference here is [10], especially Chap-
ter 4. See also [39]. Our treatment closely follows these sources, with one
exception: We use the same geometric language (chambers, faces, intersection
lattice, � � �) in connection with oriented matroids that we used for hyperplane
arrangements.

Recall from Section 3E that an oriented matroid is a set � of sign sequences
�xi�i∈I satisfying four axioms. Here I is a finite index set. As an aid to the
intuition, let � be a set whose elements F (called faces) are in one-to-one
correspondence with the sign sequences in � . We denote the correspondence
by F �→ σ�F� = �σi�F��i∈I.

The oriented matroids arising from (central) hyperplane arrangements are
said to be realizable. There are nonrealizable oriented matroids, but it can
be shown that all oriented matroids can be realized by “pseudo-hyperplane
arrangements”; these are topological analogues of hyperplane arrange-
ments, in which the “pseudo-hyperplanes” are not necessarily flat. See [10],
Chapter 5.

The set � of faces of an oriented matroid is a poset under the “face relation”
defined in terms of sign sequences as in Section 2B. And axiom (3) for oriented
matroids gives � the semigroup structure that has played such an important
role in the construction and study of the hyperplane chamber walk.

Each face F has a support, determined by the zero set z�F� = �i ∈ I� σi�F� =
0�. The set � of all supports is a lattice in a natural way, which we call the
intersection lattice. For any W ∈ � , we write z�W� for the zero set of any face F
with support W. We denote by V the largest element of � . This is the support
of any maximal element C ∈ � . These maximal elements are called chambers,
and the set of all of them is denoted � . For any W ∈ � , the set of F ∈ � with
support W is again the set of chambers of an oriented method �W, said to be
obtained by restriction to W. Its face poset is �W = �F ∈ � � suppF ≤W�.

The rank of an oriented matroid is the length of the interval �0	V� in � .
(For a realizable oriented matroid associated to an essential central hyper-
plane arrangement, the rank is simply dimV.) The length of the interval
�W	V� is the codimension of W; it is equal to rank� − rank�W. It is also
the rank of an oriented matroid � W whose sign sequences are gotten from
�σ�F�� F ∈ � � by considering only the components σi with i ∈ z�W�. The
face poset of � W is isomorphic to �≥F for any F with support W. (In the
realizable case, � W corresponds to the subarrangement � W ⊆ � given by
the hyperplanes which contain W. This subarrangement corresponds to an
essential arrangement in the quotient space V/W.)
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The face poset � of � can be identified with the poset of cells (including
the empty cell) of a regular cell complex � = �� homeomorphic to the sphere
Sn−1 (n = rank� ) by Theorem 4.3.3 of [10]. There is also a “dual” cell complex
�, which is topologically an n-ball, whose poset of nonempty cells is isomor-
phic to � op ([10], 4.3.4). This plays the role of the zonotope dual to a central
hyperplane arrangement.

Finally, we have already remarked that there is a concept of affine oriented
matroid. We omit the formal definition, which is discussed in [10], Section 4.5.
Suffice it to say that the definition is cooked up so that the analgoue of the
coning construction (Section 2F) remains valid, reducing the affine case to
the case of ordinary oriented matroids. Once again, � op is isomorphic in the
affine case to the poset of cells of a regular cell decomposition of a ball ([10],
4.5.8), generalizing the complex � dual to an affine hyperplane arrangement
(Section 2F).

6B. Extension of Theorems 1 and 2. It is obvious how to formulate ana-
logues of Theorems 1 and 2 for oriented matroids (including the affine case).
The condition that the measure w in Theorem 2 be separating, for example,
becomes: There is no W < V in � such that w is concentrated on �W. It
is also a fairly routine matter to check that our proofs extend to the matroid
setting, except for one technical point: Our definition of the incidence numbers
�A � B� in Sections 5B and 5C made use of orientations of real vector spaces.
In order to carry this over to oriented matroids, we could simply appeal to the
topological representation theorem quoted above; topology provides the appro-
priate concept of orientation for a “pseudo-subspace” W. We prefer, however,
the following approach, which is longer but does not rely on the topological
representation theorem.

We wish to define the notion of orientation for an element W ∈ � . It suffices
to consider W = V, since this then applies to arbitrary W by the restriction
operation described above. By an orientation for V we will mean a rule that
associates to each maximal chain

0 = A0 < · · · < An

in � a sign ε = ±1, in such a way that adjacent maximal chains get opposite
signs. Here two distinct maximal chains are adjacent if they differ in exactly
one position. We will also say in this situation that one maximal chain is
obtained from the other by an elementary move.

Remark. The maximal chains in � are in one-to-one correspondence with
the maximal simplices in the simplicial complex ��>0� associated to the poset
�>0. (Recall that any finite poset P gives rise to a simplicial complex �P�, whose
vertices are the elements of P and whose simplices are the chains in P.) Now
��>0� is the barycentric subdivision of the cell complex � discussed above; in
particular, ��>0� is topologically a sphere. And adjacency of maximal chains,
as defined above, agrees with the usual notion of adjacency for triangulated
manifolds: Two distinct maximal simplices are adjacent if and only if they
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have a common codimension 1 face. It follows that V admits an orientation,
unique up to multiplication by −1.

Underlying our definition of �A � C� in Section 5B was the fact that if a
vector space V and a hyperplane H are both oriented, then there is a canonical
choice of “positive side” of H in V. The following technical lemma, though it
does not mention orientations, will be crucial for generalizing this idea to
oriented matroids.

Lemma 1. Let � be an oriented matroid of rank n ≥ 2. Let W ∈ � have
codimension 1 and choose i ∈ z�W�−z�V�. Let 0 = A0 < · · · < An be a maximal
chain in � with suppAn−1 =W. Let 0 = A′

0 < · · · < A′
n−1 be a maximal chain

in �W adjacent to A0 < · · · < An−1. Let A′
n be a chamber such that A′

n > A′
n−1.

Then the chain A′
0 < · · · < A′

n can be obtained from A0 < · · · < An by an
odd number of elementary moves if σi�A′

n� = σi�An� and by an even number
otherwise.

(Note: In the realizable case, W is the hyperplane Hi, and the issue here is
whether or not the chambers An and A′

n are on the same side of Hi.)

Proof. If A0 < · · · < An−1 and A′
0 < · · · < A′

n−1 differ at position i < n−1,
the lemma is obvious. So assume we are in the situation

with suppX = suppX′ = W. Replacing � by �≥An−2
, which is again the face

poset of an oriented matroid as noted above, we reduce to the case n = 2. Now
every rank 2 oriented matroid is realizable ([10], p. 248). So we may identify
� with the poset of faces (including the empty face) of a 2m-gon � for some
m ≥ 2. Then X and X′ correspond to opposite vertices and Y and Y′ can be
assumed to be opposite edges [this is the case σi�Y� �= σi�Y′�]. The maximal
chains we have been considering correspond to the edges of the barycentric
subdivision of �, and the lemma then states that in a 4m-gon, the gallery
distance betwen opposite edges is even. (In fact, it is 2m.) See Figure 11 for
the case m = 3. ✷

We now proceed to define incidence numbers �A � B� as in Sections 5B and
5C. Choose an orientation for each W ∈ � . This means we can attach a sign
ε = ±1 to any chain in � of the form

0 = A0 �A1 � · · · �Ar	

in such a way that the sign changes if an elementary move is performed. Here
an elementary move changes exactly one Ai, keeping the support the same
if i = r. Note that for each i > 0 there is exactly one candidate for an A′

i to
which Ai can be changed ([10], 4.1.14(ii)).
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Fig. 11.

Given A�B in � , define the incidence number �A � B� by taking a chain
0 = A0 � · · · �Ar = A and setting �A � B� = ±1 depending on whether the
augmented chain 0 = A0 � · · · �Ar �B has the same sign as the original
one or the opposite sign. This is independent of the choice of the chain from
0 to A because any two can be related by a sequence of elementary moves
[Because the simplicial complex ��0	A�� associated to the open interval �0	A�
is a sphere], which affect the signs of the augmented chains in the same way
they affect the signs of the original chains.

Note that if A has codimension 1 and C, C′ are the chambers having A as
a face, then �A � C� = −�A � C′�. More generally, �A � B� = −�A � B′� if both
are defined, B �= B′, and suppB = suppB′. Note also that the “diamond con-
dition” for incidence numbers is satisfied as in Lemma 2 of Section 5C: In the
situation

we have �A � B1��B1 � C� = −�A � B2��B2 � C�. In fact, if we multiply both sides
of this equation by the sign of any chain 0 = A0 � · · · �Ar = A, the resulting
equation follows immediately from the definitions.

Lemma 2. Let W ∈ � have codimension 1, and choose i ∈ z�W� − z�V�.
Then either �A � C� = σi�C� for all A with support W and all chambers C > A,
or else �A � C� = −σi�C� for all such A, C.

Proof. We may assume �A � C� = σi�C� for one pair A, C. Let A′, C′ be
another. If A = A′ and C �= C′, we know �A � C′� = −�A � C� = −σi�C� =
σi�C′�. (For the last equality, recall that �≥A is the face poset of a rank 1
oriented matroid, whose two nonzero faces are opposite one another.) So we
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may assume A �= A′ and hence rank� ≥ 2. Choose maximal chains

0 = A0 < · · · < An−1 = A	

0 = A′
0 < · · · < A′

n−1 = A′

in �W. If d ≥ 1 elementary moves in �W change �Ai� to �A′
i�, then Lemma 1

implies that we can get from A0 < · · · < An−1 < C to A′
0 < · · · < A′

n−1 < C′

in d′ moves, where d ≡ d′ mod 2 if and only if σi�C� = σi�C′�. Suppose, for
instance, that σi�C� = σi�C′�. Then we have

ε�A0 < · · · < An−1��A � C� = �−1�dε�A′
0 < · · · < A′

n−1��A′ � C′�	
ε�A0 < · · · < An−1� = �−1�dε�A′

0 < · · · < A′
n−1��

hence �A′ � C′� = �A � C� = σi�C� = σi�C′�, as required. ✷

Armed with Lemma 2, the interested reader can now carry out for oriented
matroids the arguments in Sections 5B and 5C. Finally, affine oriented ma-
troids can be treated as in Section 5D.

APPENDIX

We construct here the convex polytope �̂ mentioned in Section 2D. Recall
the setup: � is an essential, central hyperplane arrangement in V, whose
hyperplanes Hi, i ∈ I, are defined by homogeneous linear equations fi = 0.
Since � is essential, the fi span the dual space V∗. For any sequence τ =
�τi�i∈I with τi = ±1, set gτ =

∑
i∈I τifi. We then define �̂ ⊂ V by the 2�I�

inequalities gτ ≤ 1, one for each τ.
It will follow from what we do below that these inequalities are redundant

in general, and that �̂ is actually defined by the inequalities gσ ≤ 1 in which
σ is the sign sequence of a chamber. Notice that gσ > 0 on C if σ = σ�C�,
so we can visualize the facets of �̂ (given by gσ = 1) as cutting across the
chambers and matching up correctly along faces. See Figure 12.

Note first that �̂ is indeed a convex polytope; for the inequalities gτ ≤ 1
imply that �fi� ≤ 1 on �̂ and hence that �̂ is bounded (because the fi span V∗).
Note also that 0 is an interior point of �̂. We wish to show that the proper,
nonempty faces of �̂ are in one-to-one correspondence with the faces F �= �0�
in the face poset � of � .

Given F �= �0� in � , let σ = σ�F� and let gσ =
∑

i∈I σifi. (Note that some
of these terms are 0 if F is not a chamber.) Then gσ > 0 on F, and F is the
cone over

F1
def= F ∩ �gσ = 1��

We claim that F1 is a (relatively open) face of �̂. In fact, F1 is the face defined
by

�A�1� gτ = 1 if τ is consistent with σ ,

gτ < 1 otherwise�
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Fig. 12. The facets of �̂ cut across the chambers.

Here τ is consistent with σ if τi = σi for all i such that σi �= 0. (Recall that
τi = ±1 for all i.)

To verify that (A.1) defines F1, suppose τ is consistent with σ , and write
gτ = gσ +

∑
i∈I0

τifi, where I0 = �i ∈ I� σi = 0�. It is then immediate that
the equalities in (A.1) are equivalent to “fi = 0 for i ∈ I0 and gσ = 1.” And
in the presence of these equalities, the inequalities in (A.1) are equivalent to
“σifi > 0 for i /∈ I0.” Thus we have transformed (A.1) to the set of equalities
and inequalities defining F1, whence the claim.

We now have V−�0� partitioned into the cones over some of the (relatively
open) faces F1 of the boundary � of �̂. It follows that the F1 are in fact all of
the faces of �, and we have established the desired one-to-one correspondence
between the (nonempty) faces of � and the elements of � (other than �0�). It
is easy to check that this correspondence is a poset isomorphism; that is, it
preserves the face relation.

Finally, our assertion that �̂ is defined by the inequalities gσ ≤ 1 (one for
each chamber) follows from the fact that a convex polytope with nonempty
interior can always be defined by one inequality for each facet (cf., [39], The-
orem 2.15).
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