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WAVEFRONT PROPAGATION FOR REACTION–DIFFUSION
SYSTEMS AND BACKWARD SDES

BY FREDERIC PRADEILLES´ ´
E.N.S.A.E.

We first show a large deviation principle for degenerate
diffusion�transmutation processes and study the Riemannian metric asso-
ciated with the action functional under a Hormander-type assumption.¨
Then we study the behavior of the solution u� of a system of strongly
coupled scaled KPP equations. Using backward stochastic differential
equations and the theory of Hamilton�Jacobi equations, we show that,
when the parabolic operator satisfies a Hormander-type hypothesis or¨
when the nonlinearity depends on the gradient, the wavefront location is
given by the same formula as that in Freidlin and Lee or Barles, Evans
and Souganidis. We obtain the exact logarithmic rates of convergence to
the unstable equilibrium state in the general case and to the stable
equilibrium state when the equations are uniformly positively coupled.

1. Introduction. Many probabilistic methods have been developed to
Ž .study parabolic partial differential equations PDEs since we know that such

equations are connected to Markov processes. Reaction�diffusion equations
� �and, in particular, KPP equations 18 have been extensively studied in that

� � � � � � � � � � � � � �way during the last few years: 8 , 9 , 12 , 13 , 21 , 22 and 25 for
example. The original KPP equation is

�u 1
t , x � �u t , xŽ . Ž .

� t 2
�c x u t , x 1 � u t , x , t � 0, x � �,Ž . Ž . Ž .Ž .

u 0, x � � , x � �.Ž . x � 0

It is well known that u looks like a running wave when t and x are far from
� �the origin. This type of result was extended by Freidlin 13 , using large

� �deviations, and by Evans and Souganidis 10 , developing an analytical
method, to the nonhomogeneous case of scaled KPP equations

�u�
�t , x � �Lu t , xŽ . Ž .

� t
1

� � d� c x u t , x 1 � u t , x , t � 0, x � � ,Ž . Ž . Ž .Ž .
�

u� 0, x � g x , x � � d ,Ž . Ž .
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Ž .where L is a second-order uniform elliptic operator, 0 � c � c x � c � � and
g is a bounded positive function.

� � � �Barles, Evans and Souganidis 5 on one side and Freidlin and Lee 14, 16
on the other one gave generalizations of their results for systems of strongly
coupled KPP equations, typically:

��u 1l � � �� �L u � c x u e � uŽ . Ž .l l u l l l� t �

� � d� c x u � u , t � 0, x � � ,Ž . Ž .Ý l i i l
i�l

1Ž .

u� 0, x � g x , 1 � l � k , x � � d ,Ž . Ž .l l

Ž .where L is an elliptic operator, 0 � c � c x � c � �, g is a boundedl l i l
� �positive function and e � 0. One can also cite the work of Zhao 29 .l

There is wavefront propagation with the same speed on each component of
u� and the exponential rate of convergence to the unstable equilibrium state
is computed. In fact, for all components of u�, � ln u� converges uniformly onl

� 4 � 4 �compact sets to V *. Moreover, if EE � V * � 0 and MM � V * � 0 , u con-
verges uniformly to 0 on compact subsets of EE, and lim inf u� � 0 uniformlyl

˚on compact subsets of MM for all 1 � l � k which means that the wavefront is
located on � MM � �EE.

� �In 23 Pardoux and Peng show that backward stochastic differential
Ž .equations BSDEs driven by a Brownian motion provide a representation of

� �the viscosity solution of semilinear parabolic PDEs. We show in 25 that it
� Ž � .�allows us to consider the hypoelliptic and gradient dependent i.e., c x,�u

� �cases. More recently, with Pardoux and Rao 24 , we give a link between
BSDEs driven by a Brownian motion and Poisson processes and the viscosity
solution of a system of semilinear parabolic PDEs. Let W be a Brownian

Ž .motion and let N l , 1 � l � k � 1, be independent Poisson processes and
Ž n x, n t, x, n t, x, n t, x, n.independent of W. Let � , X , Y , H , Z be the solution of

k�1
n � �� � n � lN l mod k ,Ž .Ý tt

l�1
s s

x , n x , n n x , n nX � x � b X , � dr � � X , � dWr ,Ž . Ž .H Hs r r r r
0 0

1Ž .
tt , x , n x , n n n x , n t , x , n t , x , n t , x , nY � g X , � � f � , X , Y , H , Z drŽ . Ž .Hs t t r r r r r

s

k�1
t tt , x , n t , x , n� Z dWr � H l dN l .Ž . Ž .ÝH H rr r

s s l�1

Ž . Ž t, x, l .Then, on assumptions recalled later, u t, x � Y , 1 � l � k is the unique0
viscosity solution of

�ul � L u � f l , x , u , u � u , . . . , u � u ,�u � x , l ,Ž .Ž .l l l l�1 l l�1 l l� t

t � 0, x � � d ,
u 0, x � g x , l , 1 � l � k , x � � d ,Ž . Ž .l



REACTION�DIFFUSION SYSTEMS AND BSDES 1577

Ž Ž . Ž .. � �where L is the operator associated with b 	, l , � 	, l . As in 25 , we usel
this representation to solve the classical problem under the hypoelliptic

Ž . � Ž .hypothesis or when c depends on �u . The case where c depends onl, i i l l, i i
�u� with m � l is not studied since there exists no definition for viscositym
solutions of such systems for the moment. Our approach is the following. We

Ž � . � � dshow that � ln u converges uniformly on compact sets of 0,� �� byl l
� �technics developed in 5 . Then, using the BSDE representation and the

� �probabilistic method 16 , we identify the limit and show the wavefront
propagation. Moreover, we give an example where the convergence to the
stable equilibrium state can be proved and we compute the exponential rate
of convergence to this state. However, we need a large deviation principle for
diffusion�transmutation processes with degenerated diffusion. We prove it in
Section 2. Then, Section 3 is dedicated to the study of the hypoelliptic case
and the ‘‘stabilization’’ for some particular systems and Section 4 is dedicated
to systems which are nonlinear in �u�.

2. A theorem of large deviations. The aim of this chapter is to show a
Ž � � .large deviation principle for a diffusion�transmutation process X , �s s 0 � s� T

of � d � @1, k # without nondegeneracy assumption on the diffusion. The gener-
Ž 1, 2Ž� � d ..kator of this process is given by: for all v � CC 0, T � � ,

d 2� v � � vl li j� a x , lŽ .Ý i j� t 2 � x� xi , j�1

k1
� b x , l ,�v � c x , l , i v � vŽ . Ž . Ž .Ž . Ý� l i l� i�1

� 4 Ž . � dfor all l � @1, k # � l, 1 � l � k , t, x � � � � with v � v if n �n l
� � � � �l mod k . In fact, following the idea of Freidlin and Lee 15 , we replace � byt

its occupation-time vector U which is defined by

t
� � �2 U � U l � � � dsŽ . Ž . Ž .Ž . Ht t l s1�l�k ž /0 1� l�k

since, when c is independent of x, � � is a speeded-up Markov process and so,
in general, � � has no limit when � tends to 0. Such a process can be built ast

Ž . Ž l Ž .follows: let 
, FF, P be a probability space and W , 1 � l � k, N i , 1 � i �
. Ž . lk � 1 be 2k � 1 independent processes defined on 
, FF, P where W is a

Ž .d-dimensional Brownian motion and N i is a standard Poisson process. Let
Ž � .X , � be the unique solution of

k�1
n � �� � n � lN l mod k ,Ž .Ý tt

l�1

k s
� , x , n � , x , n � , x , n˙X � x � b X , l U l drŽ .Ž .Ý Hs � r r

0l�1
3Ž .

ks
� , x , n l˙'� � � X , l U l dW .Ž .Ž .ÝH r r r

0 l�1
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˙ �Ž . nwhere U l � � . Now, we define the probability P byr �� �l4r

� � �dP c X , � c X , l , mŽ . Ž .ˆT s s ��X , � � exp k � 1 � ds � ln ,Ž . Ý ÝH½ 5dP � �0 l , m ��� l , m

where � is the set of times lower than T when � jumps from l tol, m
� � � �l � m mod k . On our assumptions, P and P are equivalent and, under P ,

Ž � . Ž � � .X , � is the required process and we will work with the triplet P , X , U .
Using this notation, X � , x, n is the solution of

k s
� , x , n � , x , n � , x , n˙X � x � b X , l U l drŽ .Ž .Ý Hs � r rž 0l�1

s
� , x � , x , n �˙'� � � X , l U l dW .Ž .Ž .H r r r /0

Ž � � .In fact, the large deviation theorem we prove deals with P , X , U as was�

� �done by Freidlin and Lee 15 on a uniform elliptic assumption.

2.1. Statement of the main theorem. Our assumptions are of two types:
each transition of � � is always possible but with finite intensity and, for all l,

'Ž Ž . Ž ..the diffusion family associated with b 	, l , � � 	, l satisfies a uniform�

large deviation principle. In other words:

Ž . Ž Ž .. Ž d d .ASSUMPTION 2.1. For all l, m � @1, k # � @1, k #, b 	, l � CC � , � ,� 0 � �

Ž . Ž d d�d . Ž . Ž d .� 	, l � CC � , � , c 	, l, m � CC � , � and

Ž . � � d da there exists K � 0,� such that for all x, x�� � � � , for all l, m �
@1, k #, for all �� 0:

� � � � � �b x , l � b x , l� � K x � x� , b x , l � K,Ž . Ž . Ž .� � �

� � � � � �� x , l � � x�, l � K x � x� , � x , l � K,Ž . Ž . Ž .
1

� � � �c x , l , m � c x�, l , m � K x � x� , � c x , l , m ;Ž . Ž . Ž .
K

Ž . Ž .b b converges uniformly to b when � tends to 0; b is uniformly� 0 � �

Lipschitz continuous and bounded by K.

Ž � .Let us now introduce some notation in order to define the action of X , U :

Ž . Ž . Ž . Ž .a for all l, i � @1, k #, l � i, set c x � c x � c x, l, m if m � l �ˆl i l i
ˆ� � Ž . Ž . Ž .i mod k and C x � �c x, l � �Ý c x ;ˆl l i� l l i
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Ž . d kb x, p � � , � � ,

1 2ˆ � �� x , p ,  � C x � Diag � * x , l p � b x , l , p �  , 1 � l � k ;Ž . Ž . Ž . Ž .Ž . lž /2

Ž . Ž . Ž . Ž .c � x, p,  is the Hamiltonian of � x, p,  , which means that � x, p, 
Ž . Ž .is an eigenvalue and, for any eigenvalue �, Re � � � x, p,  ;

Ž . Ž . Ž .d � x, q, � is the Legendre transform of � x, p,  with respect to
Ž .p,  ;

Ž . � k Ž . Ž . 4e DD � �� � , � l 	 0, Ý� l � 1 ;
Ž . Ž� � � � k .f �� CC if �� CC 0, T , 0, T and is absolutely continuous, for all�

Ž . Ž . � � Ž .l � @1, k #, � l is nondecreasing with � l � 0 and, for all t � 0, T , Ý� l0 t
� t or, in other words, � � DD;˙ t

T ˙ l 2 T ˙ l 2Ž . � � � 4 � � � 4g II � � , H � ds � � and II � � , H � ds � a :0 s a 0 s

k 1
 T T 2l k˙� �� � , 0, � ds� � ds, if ��CC and ��II ,Ž .˙ ÝH HW U s s s ��S � , � �Ž . 20 00T l�1���, otherwise.
d k Ž .Finally, if z � � , F : II � CC � II is defined by F � , � � � where � isz � z

the unique solution of

k
t l˙4 � � z � b � , l � � � , l 	 � � l ds.Ž . Ž . Ž . Ž .˙ÝHt s s � Ž l . ss

0 l�1

Now we state the theorem.

Ž � � .THEOREM 2.1. The triplet P , X , U satisfies a uniform large deviation
d �1 Ž .principle on � � @1, k #. The action functional is � S with � �, � �0T

Ž� � d .CC 0, T , � � CC :�

S � , � � inf SW U � , � , F � , � � �Ž . Ž . Ž .� 40T 0T x
�

T

� � , � , � ds, if �� CC and �� II ,˙ ˙Ž .H s s s ��� 0���, otherwise,

where X � � x.0

2.2. The proof. Our strategy is strongly based on a contraction principle
� � � �which is the method used by Azencott 2 and Priouret 27 . We first show

� � , l'Ž .that P , �W , 1 � l � k, U satisfies a uniform large deviation principle,
the action of which is given by SW U and then we deduce Theorem 2.1. To0T

� Ž . �achieve this, we show that X is close to F � , � with P -probability greaterx
l'Ž . Ž .than 1 � exp �R� , R being arbitrarily large, when �W , 1 � l � k, U

Ž l .is close to � , 1 � l � k, � . In fact, although we may consider a different
drift, we only fix the case �� 0 thanks to a change of probability. This is the
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purpose of:

Ž � , l .PROPOSITION 2.2. Let a 	 0. We assume that, for a family W , 1 � l � k
� ŽŽ l . . Ž .kof Brownian motions under a probability Q and � , � � II � CC ,1� l� k a �

Ž . ��� F � , � and X is the solution ofz

k
t

� � � l˙ ˙X � x � U l b X , l � � X , l 	 � dsŽ . Ž . Ž .ÝH žt s � s s U Ž l .s
0 l�15Ž .

� � , l'� � � X , l dW .Ž . /s s

Then, for all R � 0, �� 0, there exist � � 0, � 0, �� 0, r � 0 such that,0
� �if �� � and x � z � r, we have0

R
� � � , l'� � � � � �Q X � � 	 � , sup �W �  , U � � � � � exp �ž /�l�@1, k #

Ž .and � ,  , �, r are independent of � , � and depend only on a.0

PROOF. We will write W for W � � Ýk W � , l. As Priouret did, we dis-l�1 U
cretize X �. Let n � 0. Then

iT i � 1 TŽ .
� , n �x � X if t � t , t � ,t t i i�1i // n n

for i � @0, n@ and x � , n � X � . We need the following lemmas, the proofs ofT T
which are slight generalizations of Priouret’s results.

LEMMA 2.3. For all R � 0, �� 0, there exist � � 0 and n � 0 such that,0
for �� � ,0

R
� � � , n� �Q X � x � � � exp � .Ž . ž /�

� t �' Ž .Denote V � � H � X , � dW . We have:t 0 s s s

LEMMA 2.4. For all R � 0, �� 0, there exist � � 0, � 0 such that, if0
�� � , then0

R
� � � , l'� � � �Q V � � , sup �W �  � exp � .ž /�l�@1, k #

If we denote

k
t

� � � l˙ ˙� � z � b � , � � � � , l 	 � U l ds,Ž .Ž . Ž .ÝHt s s U Ž l . ss
0 l�1

we show Proposition 2.2 for X � and ��.
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LEMMA 2.5. For all R � 0, �� 0, there exist � � 0, � 0, r � 0 such0
� �that, if �� � and x � z � r, we have0

R
� � � � , l'� � � �Q X � � 	 � , sup �W �  � exp �ž /�l�@1, k #

Ž l .and � ,  , � and r are independent of � and only depend on a.0 1� l� k

� � �It remains now to compare � and � with respect to U � � .

LEMMA 2.6. For all �� 0, there exists �� 0 such that, for all �� CC , if�
� � � � �U � � � �, then � � � � �.

PROOF. We also introduce a discretized version �� , n of ��:

iT i � 1 TŽ .
� , n �� � � if t � t , t � ,t t i i�1i // n n

for i � @0, n@ and �� , n � �� . As in Lemma 2.3, we have: for all �� 0, thereT T
Ž . Ž . � � � , n �exists n � , a such that, if n 	 n � , a , then � � � � � . Let �� 0 and

� � � , n �n be such that � � � � � . A short computation leads to
k

t
� �� � � � � �� � � � K � � � � ds � 2 K�T � 2 Kn U l � � lŽ . Ž .ÝHt t s s s

0 l�1

k
' � �'�2kK� aT � 2 Kn a U l � � l ,Ž . Ž .Ý

l�1

k ˙ l T� � Ž . Ž . Ž .where � � 1 � Ý � � l . If K a is such that KH � ds � K a ,˙s l�1 � Ž l . s 0 ss

Gronwall’s lemma leads to
� K Ža.'� � � � � �'� � � � 2kK n U � � � �T � � aT � n a U � � e .ž /

Then we choose
�e�K Ža.

�� ,'4kK T � TaŽ .
Ž . Ž .and n 	 n � , a . Hence, there exists � �, a such that

� � � � �U � � � � � , a � � � � � � . �Ž .

Now, we can prove Proposition 2.2. We only have to choose  according to
Lemma 2.5 such that

� R
� � � � , l'� � � �Q X � � 	 , sup �W �  � exp �ž /2 �l�@1, k #

� � �and � according to Lemma 2.6 such that � � � � �2. Then, we have

R
� � � , l'� � � � � �Q X � � 	 � , sup �W �  , U � � � � � exp � . �ž /�l�@1, k #



F. PRADEILLES1582

ŽŽ l . . Ž .kNow, we come back to the initial problem. Let � , � � II � CC .1� l� k a �
We define the probability Q�, � by

� , � kdQ 1 1T T 2l l l˙ ˙� �� exp � dW � � ds .Ł H Hs s s� ½ 5'dP 2�� 0 0l�1

�, � l l l � k l'Under Q , W � W � �  � and W � Ý W are Brownian motionsl�1 UŽ l .
and X � is a solution of

k
t

� � � l˙ ˙X � x � b X , l � � X , l 	 � U l dsŽ .Ž . Ž .ÝHt � s s U Ž l . ss
0 l�1

t
� �'� � � X , � dW .Ž .H s s s

0

Ž .THEOREM 2.7. If � is defined by 4 , for all R � 0, �� 0, there exist
� �� � 0, � 0, �� 0 and r � 0 such that, if �� � and x � z � r,0 0

R
� � l l'� � � � � �P X � � 	 � , sup �W � � �  , U � � � � � exp � ,ž /�l�@1, k #

Ž .and, for a given a, � ,  , �, r are independent of � , � .0

PROOF. Denote

� l l'� � � � � �A � X � � 	 � , sup �W � � �  , U � � � �½ 5
l�@1, k #

and
k 1 T l l˙�� exp � � dW .Ł H s s½ 5'� 0l�1

The exponential inequality leads to
2kk� � �T

� � l l˙P �� exp � P � dW � � 2k exp � .Ý H s sž / ž /'� a��0l�1

Moreover,
k� �� a2

� � , � � �P A , �� exp � exp k Q A .ž / ž /� �

But, under Q�, �, A is the event we considered in Proposition 2.2. Once we
have chosen � large enough in order that �22 a 	 R, we only have to apply
Proposition 2.2. �

Let us now assume that we are under a probability Q� such that the jump
ˆŽ . Ž .intensities are only time dependent which means that c x, l, m , C x and

ˆŽ . Ž . Ž . Ž .� x, p,  become c t, l, m , C t and � t, p,  . For example,
�dQ c s, � c � , l , mŽ . Ž .ˆT s� exp k � 1 � ds � ln ,Ý ÝH½ 5dP � �0 l , m ��� l , m
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� �where � is the set of times T when � jumps from l to l � m mod k . Then,l, m
Ž � , l .W is still a family of independent Brownian motions and indepen-1� l� k

Ž . Ž . Ž .dent of U. Set � t,  � � t, 0,  and � t, � its Legendre transform with
respect to  .

k 1
 T T 2l k˙� �� s, � ds � � ds, if �� CC and �� II ,Ž .˙ ÝH H1 s s ��S � , � �Ž . 20 00T l�1���, otherwise.

� l'Ž Ž . .PROPOSITION 2.8. The family Q , �W , U satisfies a uniform1� l� k
large deviation principle in the uniform topology. The action functional is
��1S1 .0T

PROOF. It is a direct consequence of the Schilder theorem and Proposition
� �2.2 of 17 . �

Ž l . Ž . �, �We know that we can associate � with � defined by 4 . Let P1� l� k
be defined by

� , �dP c � , � c � , l , mŽ . Ž .ˆT s s �� exp k � 1 � ds � ln ,Ý ÝH½ 5dP � �0 l , m ��� l , m

or, equivalently,

dP � , � 1 c X � , l , mŽ .T ��� exp c X , � � c � , � ds � ln .Ž .Ž .ˆ ˆ Ý ÝH s s s s� ½ 5dP � c � , l , mŽ .0 �l , m ��� l , m

�, � � ˆUnder P , X satisfies the same SDE but the matrix C is time dependent
and no more space dependent. Then, we are in the previous case.

� l'Ž Ž . .PROPOSITION 2.9. The family P , �W , U satisfies a uniform1� l� k
large deviation principle in the uniform topology. The action functional is
��1SW U with0T

k 1
 T T 2l k˙� �� � , 0, � ds� � ds, if ��CC and ��II ,Ž .˙ ÝH HW U s s s ��S � , � �Ž . 20 00T l�1���, otherwise.

PROOF. Our approach is deeply inspired by the work of Freidlin and Lee
� � W UŽ .15 . We just have to show that, if S � , � � �, then0T

� � , l l W U'� � � �lim lim � ln P sup �W � � � � , U � � � � � �S � , �Ž .0T
��0 ��0 l�@1, k #

� l'Ž Ž . .and P , �W , U is exponentially tight; that is, there exists a1� l� k
Ž . ksequence K of compact subsets II � CC endowed with the uniformn n� � �

topology such that
� � , l'lim lim � ln P �W , U � K � ��.Ž .Ž .Ž .n1�l�k

n�� ��0
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� , l'Ž .We just have to notice that CC is compact and that, for �W , we� 1� l� k
can choose

W � l l � � �14K � � : � � x , � � � � n t � s , l � @1, k #, 0 � s � t � T ,� 4n 0 t s

ˆ� �according to a result of Ben Arous and Ledoux 7 . Let C be uniformly
Ž . Ž .Lipschitz continuous. Therefore, there exists � � such that � � tends to 0

� � � � T � Ž . Ž � .� � Ž .when � tends to 0 and, if X � � � �, H c � , � � c X , � ds � � �ˆ ˆ0 s s s s
Ž . k�1 Ž .since c x, l � Ý c x, l, m andˆ m� 1

� � �sup ln c � , l , m � ln c X , l , m � � � .Ž . Ž .Ž .s s
l , m

Set

l l'� � � �A � sup �W � � � � , U � � � � ,½ 5
l�@1, k #

� l l'� � � � � �B � X � � � � , sup �W � � � � , U � � � � .½ 5
l�@1, k #

� �Finally, denote by � the number of jumps of � before time T. We have
�dP

� � , � � �� � � �P A � P X , � ; B � P A � BŽ .� , �dP

� �Ž .
� , � �� � � �� exp P exp � � � ; B � P A � B .� 4Ž .½ 5�

The Holder inequality leads to¨
1q1�1q� , � � , � � , �� � � �� �P exp � � � ; B � P A 	 P exp q� � �� 4 � 4Ž . Ž .

� Ž .�for all q � 1. Notice that max c �, l, m � K, which impliesl, m

T k � 1 KŽ .
� , � q� Ž� .� �P exp q� � � � exp e � 1 .� 4Ž . Ž .½ 5�

But, under P �, �, Proposition 2.8 applies. Hence,
� , � � �lim sup� ln P exp � � � ; B� 4Ž .

��0

1
W U q� Ž� .� � 1 � S � , � � T k � 1 K e � 1Ž . Ž . Ž .0Tž /q

for all q � 1 and all �� 0. Moreover, for a given �, for all R � 0, there exists
�� � Ž .�� 0 such that P A � B � exp �R� according to Theorem 2.7. Then

� � �lim sup lim sup� ln P A
��0 ��0

1
W U q� Ž� .� � 1 � S � , � � T k � 1 K e � 1 � � �Ž . Ž . Ž . Ž .0Tž /q
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for arbitrary � and q. In fact,
� � � W Ulim sup lim sup� ln P A � �S � , � .Ž .0T

��0 ��0

Using the arguments developed previously and the following inequality

� �Ž . 2� � , � � , �� � � � � �P A 	 exp � P A � P A � BŽ .½ 5�

�1� , � � �� P exp � � � ; B ,� 4Ž .Ž .
we get the lower bound. �

We are now ready to prove Theorem 2.1. We go back to the method used by
Priouret. We notice that in the definition of S the infimum is realized for a0T

Ž .vector � , 1 � l � k : for a given �, we have the same kind of problem as inl
the case of the action functional of a small perturbation of a dynamical

Ž� � .system and Azencott 2 , Proposition 3.2.10 showed that the infimum is
actually achieved. Indeed,

k 1T T 2l˙� �S � , � � � � , 0, � ds� inf � ds, F � , � ��Ž . Ž .Ž .˙ ÝH H0T s s s x½ 52�0 0l�1

k 1T T 2l˙� �� � � , 0, � ds� inf � � l ds, F � , � �� .Ž . Ž .Ž .˙ ˙ÝH Hs s � Ž l . s xs½ 52�0 0l�1

d�k dŽ . Ž Ž . Ž . .' 'But if we denote � x, � � � x, 1 � 1 , . . . , � x, k � k � � andŽ . Ž .
Ž . Ž . Ž .b x, � � �b x, l � l , then

l l˙ ˙� � b � , � � � � , � � � 1 , . . . , � � k *,' 'Ž . Ž .Ž . Ž .˙ ˙ ˙ ˙ ˙ž /s s s s s � Ž1. s � Žk . ss s

which is, for a given �, the problem studied by Azencott even though the
diffusion coefficient depends on time. Hence,

S � , �Ž .0T

1T 2� �� � � , 0, � � sup p	 � �b � , � � �* x , � p ds.Ž . Ž .Ž .˙ ˙ ˙ ˙Ž .H s s s s s sž /20 p

A short computation leads to

T
S � , � � � � , � , � ds.Ž . ˙ ˙Ž .H0T s s s

0

Ž . �Ž . Ž . 4 Ž .Denote � s � �, � , S �, � � s , � � x . Note that � s is compactx 0 0T 0 0 x 0
� �according to Lemma 3.1.3 in 2 . We first show that

LEMMA 2.10. For all �� 0, �� 0, s � 0, there exists � � 0 such that0 0

1
�� � � �� �P X � � � � , U � � � � 	 exp � S � , � � �Ž .Ž .0T½ 5�

d Ž .for all �� � , x � � , n � @1, k #, ��� s .0 x 0
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This is a simple consequence of Proposition 2.8 and Theorem 2.7. Let us
prove the upper bound. Denote

� � � � � �� , � ,� s � inf max �� � , �� � .Ž . Ž . Ž .
Ž . Ž .� , � �� s

LEMMA 2.11. For all �� 0, �� 0, s � 0, there exists � � 0 such that0 0

s � �
�� �P X , U ,� s 	 � � exp �Ž . Ž .x ž /�

for all �� � , x � � d, n � @1, k #, s � s .0 0

� � � W U 4PROOF. For all s � 0,� , S � s is compact. Therefore, b and � being0T
Ž . Ž . �Ž . �Ž . Ž .� 4bounded, � s is compact. Denote F s, � � �, � : �, � , � s 	 � .x 0
Ž . � W U 4 Ž . Ž .Let �� 0, � , � � S � s � � . If �� F � , � , then S �, � � s � � .0T x 0T

Ž . Ž .Hence, �, � � F s, � and there exists � � 0 such that��

B � , � , � � F s, � � �,Ž . Ž .Ž .��

ŽŽ . .where B �, � , � is the open ball the radius of which is � for uniform
topology. Moreover, according to Theorem 2.7, there exist  � 0 and � � 0�� ��

such that, if �� � ,��

R
� � , l'� � � � � �P X �� 	� , � W �� � , U�� � �exp � .Ž . l�@1, k #�� �� �� ž /�

� W U 4But S � s � � is compact. Therefore, there exist N � � and0T

NW U� , � � S � s � �Ž . � 4Ž .i i 0T1�i�N

such that
N

W US � s � � � B � , � ,  � OO ,Ž .� 4 Ž .�0T i i i
i�1

where  �  . In the same way, denote � instead of � . Notice thati � � i � �i i i i

N
� , l �'�W , U � OO � X , U � F s, � � C ,� 4Ž . Ž .Ž .½ 5 �Ž .l�@1, k # i

i�1

Ž .where C � C � , � . Theni i i

R
� , l �'P �W , U � OO , X , U � F s, � � N exp � .Ž . Ž .Ž .Ž .l�@1, k # ž /�

We are now close to the conclusion:
� � , l �'P X , U � F s, � � P �W , U � OO , X , U � F s, �Ž . Ž . Ž . Ž .Ž .Ž .l�@1, k #

� , l'� P �W , U � OOŽ .Ž .l�@1, k #

R s � �2
� N exp � � exp �ž / ž /� �

s � �
� exp � . �ž /�
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Notice that the uniformity of the large deviation principle comes from the
uniformity of the estimates in Theorem 2.7 and Proposition 2.8.

2.2.1. A few remarks. When, for all l � @1, k #, � 	 � 	 is definite positive,l l
as soon as � is absolutely continuous, for all �� CC the set of � such that�

Ž . 	F � , � � � is nonempty. It is not always true when � 	 � may degeneratex l l
Ž .because F � , � � � may have no solution. As for a single equation, thex

d Ž .question is: for given x, y � � and t � 0, is there �, � such that
Ž .S � , � � � and � � x, � � y? It is true as soon as � �0 t 0 t

Ž Ž . Ž .. d�k d Ž� 	, 1 , . . . , � 	, k � � satisfies the strong Hormander condition cf.¨
. Ž . Ž . � �Definition 2.12 . Then we can choose � l � 1k for all s, l � 0, t � @1, k #˙ s

and the question becomes the classical one in linear control theory. Let us
recall the definition of the strong Hormander assumption.¨

Ž . Ž .DEFINITION 2.12. We denote by � x, i the columns of matrices � x and
�Ž d d�k d . Ž .we assume that �� CC � , � . Denote by AA n, x the set of Lie brackets

Ž . dof � of order lower than n at the point x � � .i 1� i� k d
We say that � satisfies the strong Hormander condition if, for all x � � d,¨

Ž . dthere exists n � � such that AA n , x generates � .x x

We introduce the pseudo Riemannian metric associated with S .0 t

Ž . � � d dDEFINITION 2.13. For all t, x, y � 0,� �� � � ,

� 2 t , x , y � inf S � , � , � � x , � � y .� 4Ž . Ž .0 t 0 t
� , �

Ž .As noted in the Appendix, � t, 	 , 	 is not continuous in general, even if �
satisfies the strong Hormander condition. We need some stronger assump-¨
tions to get the continuity of �:

Ž . Ž . Ž . Ž . Ž . dH1 b x, l � b x, 1 � b x for all x, l � � � @1, k # and � satisfies the
strong Hormander condition;¨

Ž . Ž . Ž . dH2 � x �* x 	 1K 	 I for all x � � .d

Ž . Ž . � � 2Ž .PROPOSITION 2.14. On H1 or H2 , for all t � 0,� , � t, 	 , 	 is continu-
ous on � d � � d.

PROOF. For the proof and some remarks on �, we refer the reader to the
Appendix.

3. About degenerate systems of KPP equations. As we said in the
Introduction, we want to study systems of scaled KPP equations:

�u� 1l � � �t , x � L u t , x � f x , l , u t , x ,Ž . Ž . Ž .Ž .l l� t �

t � 0, x � � d , l � @1, k #,
6Ž .

u 0, x � g x , x � � d ,Ž . Ž .l l
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where

d 2 d� � �
� i j iL � a x , l � b x ,Ž . Ž .Ý Ýl � , li j i2 � x� x � xi , j�1 i�1

	 Ž . Ž . Ž .a � � 	 � and f x, l, u behaves like c x, l u 1 � u plus a coupling term.l l l l l
� �Wavefront propagation for such systems is studied in 16 on one hand and

� �5 on the other hand on uniform ellipticity assumptions. Moreover, according
� �to Pardoux, Pradeilles and Rao 24 , BSDEs and parabolic systems are

� �connected. We will show that the ideas developed in 25 to study hypoelliptic
KPP equations still apply despite some new technical difficulties, mainly
when we want to study the convergence to the stable equilibrium state. We
give an example where it occurs and we compute the convergence rate.

Before recalling the basic results on BSDEs and giving the proof of the
main theorem, we set the assumptions of this section. But the degeneracy of

� �parabolic operators is given in 16 .

3.1. Assumptions and main theorem. Our assumptions are of two types:
Ž . Ž .b and � satisfy Assumptions 2.1 and are such that � t, 	 , 	 is continuous;� �

Ž . Ž .that is, H1 or H2 is true. As we said previously, we make on g and f
� �Freidlin�Lee assumptions 16 . We recall them below and introduce some

notation.

Ž . Ž d .ASSUMPTIONS 3.1. a For all l � @1, k #, g � CC � , � andl b

sup sup g x , l � g � �,Ž .
d l�@1, k #x��

G � x � � d : �l � @1, k #, g x , l � 0 .� 4Ž .0

Owing to comparison theorems, this assumption can be weakened: g:
�

d ˚� �� � � � 0,� is bounded and G � G ;0 0
d kŽ .b f : � � � � � � �;

dŽ . � � Ž . Ž . Ž .c if n � l mod k , l � @1, k #, g 	, n � g � CC � , � , f 	, n, 	 � f �l l
Ž d k .CC � � � , � ;
Ž .d moreover f satisfies the following conditions:

Ž . Ž .i for all y � �, l � @1, k #: f 	, y is bounded;l
Ž . d dii for all x � � , y, y�� � , l � @1, k #,

� � � �f x , y � f x , y� � K y � y� .Ž . Ž .l l

Let us now introduce generalized KPP assumptions: for all x � � d, l �
@1, k #:

kŽ . Ž . Ž .a f x, 0 � 0, f x, u � 0 if, for all i � @1, k #, u 	 0, u � 0 and Ýl l i l i�1
u � 0;i

Ž . db there exists  � 0 such that, for all x � � , if u � then, for all
kŽ Ž . .l � @1, k #, f x, u � 0;l
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Ž . dc for all x � � , l, i � @1, k # we define

� f � fl l
c x , l , i � x , 0 , c x � x , 0 , C x � c xŽ . Ž . Ž . Ž . Ž . Ž .Ž .1� i , j�kli l i�u �ul�i i

and we assume that the matrix C satisfies Assumptions 2.1 and is uniformly
bounded;

d kŽ . Ž . Ž .d for all x � � , l � @1, k #, f x, u � Ý c x u ;l i�1 l i i
Ž . Ž .e for all �� 0, there exists B � � 0 such that

k
kd� x , l , u � � � @1, k # � 0, B � , c x � � u � f x , u .Ž . Ž . Ž . Ž .Ž .Ý l i i l

i�1

Ž . � � dDEFINITION 3.1. For all t, x � 0,� �� ,

V * t , x � inf sup R � , � , � � x , � � G� 4Ž . Ž .0� 0 t 0
��!t � , �

� inf sup R � , � � x , � � G ,� 4Ž .0� 0 t 0
��!t �

where
ks

R � , � � c � , l � l dr � S � , �Ž . Ž . Ž . Ž .˙ÝH0 s r r 0 s
0 l�1

s
R � � " � , � drŽ . Ž .˙H0 s r r

0

and ! is the set of stopping times � no greater than t defined by: theret
� � dexists OO an open subset of 0, t � � such that

� �� � � min s � 0, t : t � s, � � OO .� 4Ž . Ž .s

� 4 � 4V * is nonpositive and we denote MM � V * � 0 and EE � V * � 0 the
subsets of ��� � d. Here is our main result:

THEOREM 3.2. � ln u� converges uniformly on compact subsets to V * forl
all l � @1, k #. Moreover:

� Ž .1. sup u t, x converges uniformly to 0 on compact subsets of EE ;1� l� k l
2. there exists h � 0 such that

lim inf inf u� t , x 	 hŽ .l
��0 1�l�k

˚uniformly on compact subsets of MM.

Before giving the proof, we notice that our assumptions include the usual
systems of KPP equations. Indeed, if f is defined by

k�1

f x , u � c x , l u � g � 1 1 � u � 0 � c x , l , i u � u ,Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ýl l l l�i l
i�1
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it is easy to check that the unique solution of the system is the solution of the
classical system and one can show that the solutions of the BSDE associated
with KPP systems must be bounded and nonnegative.

3.2. The proof. We first recall some notation and definitions and the link
Ž Ž . .between BSDEs and our problem. The probability space 
, FF, FF , P hast t 	 0

been defined in the previous section.

Ž .DEFINITION 3.3. Let u be a viscosity solution of 1 if u is continuous and
Ž .if it is both a sub- and a supersolution of 1 .

Ž . Ž .Let u be a subsolution resp. supersolution if, for all l, t , x � @1, k # �0 0
� � d 1, 2Ž� � d .0, �� �� , for all real-valued �� CC 0, �� �� such that �� u 	l
Ž .Ž . Ž .�� u t , x resp. � ,l 0 0

��
t , x � L � t , xŽ . Ž .0 0 l 0 0� t

� f x , u t , x ,�� t , x � x , l �0 resp.	Ž . Ž . Ž . Ž .Ž .l 0 0 0 0 0 0

As far as we know, there is no definition of the viscosity solution for a
system such that f depends on �u with m � l.l m

DEFINITION 3.4. We set
k�1

T
L � c T l , l � exp 1 � c s, l ds ,Ž . Ž .Ž .Ž .Ł Ł HT n �T Ž l .� T 4 ½ 5n

0l�1 n	1

Ž . Ž .where T l is a jump time of N l lower than T and we assume thatn
˜ ˜� �E L � 1. We say that P defined by dPdP � L is the probability underT T

Ž . Ž .which N l has intensity c 	, l for all l � @1, k #.

Ž . k lŽ .If u � u � � , we denote h i � u � u for all i � @1, k � 1#l 1� l� k l�i l
with u � u andj�k j

hl � hl i ,Ž .Ž .1� i�k�1

k�1

f̃ t , l , y , h , z � f t , l , y , h , z � � i h i ,Ž . Ž . Ž . Ž .Ý t
i�1

l˜f t , l , u , z � f t , l , u , h , z ,Ž . Ž .l

Ž . Ž . �, � Ž � , x, l l .where � i � is the intensity of N i under P , X , � is the
Ž . Ž � , t, x, l � , t, x, l � , t, x, l .diffusion�transmutation process defined in 3 and Y , H , Z

Ž .is the unique solution of the BSDE associated with 6 :
1 t

� , t , x , l � , x , l l � , x , l l � , t , x , l � , t , x , lY � g X , � � f X , � , Y , H drŽ . Ž .Hs t t r r r r� s

k�1
T T

� , t , x , l � , t , x , l� Z dW � H i dN i .Ž . Ž .ÝH Hr r r r
t t i�1

7Ž .
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˜The existence and uniqueness do not depend on P equivalent to P as well as
� �the following theorem according to 24 .

� Ž .THEOREM 3.5. If u is the unique viscosity solution of 6 , then
d � � , t , x , l� t , x , l � 0,� �� � @1, k #, u t , x � Y .Ž . Ž .l 0

We can use this formula and the comparison theorem for BSDEs to show a
first property.

LEMMA 3.6. For all �� 0, t � 0, x � � d and l � @1, k #,
� , t , x , l0 � Y � � g .0

� , t, x, lPROOF. 0 � Y � � g is quite simple. In order to show that the0
� dlower bound is strict, we introduce �� 0 and f defined on � � @1, k # �

� � k0, � by
k u 1l�f x , u � u 1 � � u � u ,Ž . Ž .Ýl l i lž /2 K � 2 Ki�l

� Ž � � � .and 0 � g � � . Set Y , Z , H the unique solution of the BSDE associated
� �Ž .with 6 , where f and g are replaced by f and g . According to the

comparison theorem, Y� � Y � , x, t and 0 � Y� � � if � is small enough. Then
Ž .we just have to notice that, under the probability under which all N l have

the intensity c2� , Y� is a supermartingale. Hence,

Y� 	 Eg� X , � � 0Ž .0 t t

since � satisfies the strong Hormander condition. �¨

Actually, the last inequality is a consequence of the well-known
� , t, x, l � Ž � , t, x, l .lFeynman�Kac formula using that Y � u t � s, X : we refer tos � ss� �24 for viscosity solutions.

� �THEOREM 3.7. Let c: 
� 0, T � �, FF -predictable, be such thatt

sT 28 E c s 1 � exp 2c r dr ds � �.Ž . Ž . Ž .H Hž /0 0

and let � be a Markov time lower than T. Then
�

Y � EY exp c s dsŽ .H0 � ½ 5
0

9Ž .
� s

� E exp c r dr f s, Y , H , Z � c s Y ds.Ž . Ž . Ž .H H s s s s½ 5
0 0

� �PROOF. We refer to the equivalent result in 25 . �

Denote
v� t , x � � ln u� t , x ,Ž . Ž .l l
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where v� is a viscosity solution of

� v� 1l 2	� � �� �t , x � L v t , x � � x �v t , xŽ . Ž . Ž . Ž .l l� t 2
�f x , u t , xŽ .Ž .l d� , 0 � t , x � � ,

�u t , xŽ .l

lim v� t , x � �� if g x � 0,Ž . Ž .l l
t�0

v� 0, x � � ln g x if g x � 0.Ž . Ž . Ž .l l

Let us now introduce some notation:

Ž . 2Ž . � Ž . 4a � t, x, G � inf S �, � : � � x, � � G ;0 � , � 0 t 0 t 0
Ž . Ž .b L x, p is the Hamiltonian of

1 	 2 1 	 2� � � �A x , p � C x � Diag � x p � b x , p , . . . , � x pŽ . Ž . Ž . Ž . Ž .Ž .Ž 1 1 k2 2

� b x , p ;Ž .Ž . .k

Ž . Ž . � � dc for all t, x � 0,� �� ,

u* t , x � lim sup v� s, y ; �� � , s, y � B t , x , � , l � @1, k # ,� 4Ž . Ž . Ž . Ž .Ž .l
��0

v* t , x � lim inf v� s, y ; �� � , s, y � B t , x , � , l � @1, k # ,� 4Ž . Ž . Ž . Ž .Ž .l
��0

� 2 t , x , G � inf S � , � , � � x , � � G .� 4Ž . Ž .0 0 t 0 t 0
� , �

kŽ . Ž .REMARK 3.8. Using the fact that 0 � f x, u � KÝ c x u , large devi-l i�1 l i i
ations and the continuity of �, we easily show

�� 2 t , x , G � v* t , x � u* t , x � min kKt � � 2 t , x , G , 0 .Ž . Ž . Ž . Ž .Ž .0 0

LEMMA 3.9. u* and v* are sub and super viscosity solutions of

�w
dmax w , t , x � L x ,�w � 0, 0 � t , x � � ,Ž . Ž .ž /� t

lim w t , x � ��, x � G ,Ž . 0
t�0

10Ž .

w 0, x � 0, x � G .Ž . 0

� �PROOF. The proof we give is in 5 with constant coefficients.
Ž . � � dWe first consider u*. Let t , x � 0,� �� . Let �	 u* be a smooth0 0

Ž . Ž . Ž .function such that � t , x � u* t , x and t , x is a strict local mini-0 0 0 0 0 0
Ž . Ž� �.kmum of � � u*. Let � , . . . , � � 0, � be an eigenvector of1 k

Ž Ž .. Ž Ž ..A x,�� t , x for the eigenvalue L x,�� t , x . Then0 0 0 0

u* t , x � lim sup v� s, y � � ln � ; �� � , s, y � B t , x , � .� 4Ž . Ž . Ž . Ž .Ž .0 0 l l 0 0
��0 l�@1, k #
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Ž . Ž .There exist m � @1, k # and a sequence � , t , x which tends to 0, t , xn n n 0 0
such that

v�n t , x � � ln � � max v�n t , x � � ln � � u* t , xŽ . Ž . Ž .Ž .m n n n m l n n n l 0 0
l�@1, k #

Ž . � Ž .and t , x locally minimizes �� v � � ln � . Hence we omit n ,n n m n m

��� 1 f x , u t , xŽ .Ž .m2	� � �t , x � L � t , x � � x �� t , x � .Ž . Ž . Ž . Ž .m m �� t 2 u t , xŽ .m

Actually,

� �k kf x , u t , x u �Ž .Ž .m l l� c x t , x � c x ,Ž . Ž . Ž .Ý Ýml ml� �u t , x u �Ž .m m ml�1 l�1

� Ž . � Ž .since u t, x � � u t, x � . Passing to the limit leads tol l m m

�� 1 2	� �t , x � � � x �� t , x � b x ,�� t , x �Ž . Ž . Ž . Ž . Ž .Ž .0 0 m m 0 0 0 0 0 0 mž /� t 2
k

� c x � .Ž .Ý ml n l
l�1

Ž Ž .. Ž Ž ..Since � is an eigenvector of A x,�� t , x for L x,�� t , x and � � 0,0 0 0 0 m
the proof is complete.

Ž . � � d Ž .Let us now consider v*. Let t , x � 0,� �� such that v* t , x � 0.0 0 0 0
Ž . Ž . Ž .Let �� v* be a smooth function such that � t , x � v* t , x and t , x0 0 0 0 0 0

Ž . Ž� �. kis a strict local maximum of �� v*. Let � , . . . , � � 0,� be an eigen-1 k
Ž Ž .. Ž Ž ..vector of A x,�� t , x for L x ,�� t , x . Then0 0 0 0 0

v* t , x � lim inf v� s, y � � ln � ; �� � , s, y � B t , x , � .� 4Ž . Ž . Ž . Ž .Ž .0 0 l l 0 0
��0 l�@1, k #

Ž . Ž .There exist m � @1, k # and a sequence � , t , x which tends to 0, t , xn n n 0 0
such that

v�n t , x � � ln � � min v�n t , x � � ln � � v* t , xŽ . Ž . Ž .Ž .m n n n m l n n n l
l�@1, k #

� Ž . Žand �� v � � ln � has a local maximum in t , x . Therefore wem n m n n
.omit n ,

��� 1 f x , u t , xŽ .Ž .m2	� � �t , x � L � t , x � � x �� t , x 	 .Ž . Ž . Ž . Ž .m m �� t 2 u t , xŽ .m

� Ž .Hence, for all l � @1, k #, u t, x tends to 0. Otherwise we would have al
� �Ž Ž .. Ž .contradiction with the fact that f x, u t, x u t, x is bounded. Then, form m

n large enough,

� �kf x , u t , x 1 uŽ .Ž .m l
M 	 	 t , x 	 0.Ž .Ý� �u t , x 2 K uŽ .m ml�1
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This leads to

� �kf x , u t , x uŽ .Ž .m l� c x t , x � o 1 ,Ž . Ž . Ž .Ý ml� �u t , x uŽ .m ml�1

� � Ž .� � Ž .since u t, x � 2 KMu t, x for n large enough. We conclude as for u*. �m

Now, we establish a uniqueness theorem for this equation.

Ž .THEOREM 3.10. Let u and v be sub and super viscosity solutions of 10 . If,
Ž . Ž . dfor all t, x � 0,� � � ,

� � 2 t , x , G � v t , x � 0,Ž . Ž .0

u t , x � min kKt � � 2 t , x , G , 0 ,Ž . Ž .Ž .0

11Ž .

then v 	 u.

Ž .PROOF. Let T � 1, �� 0, 1 and R � 0 be such that0

2kKT � 1 � � R � 0.Ž . Ž .0

Then

sup u t , x � �v t , x � max sup u t , x � �v t , x , 0 ,Ž . Ž . Ž . Ž .Ž . Ž .ž /
d B� �0, T �R

�Ž . Ž . Ž . 4where B � t, y , t � 0, T , � t, y, G � R is an open subset: � is contin-0 0
Ž .uous according to Proposition 2.14. Let �� 0, 1 and �� 0 be given. We set

u� t , x � u t , x e�t and v� t , x � � v t , x � � t e�t .Ž . Ž . Ž . Ž .Ž .
Here u� is a solution of

�w
max w , t , x � w t , x � L t , x ,�w � 0Ž . Ž . Ž .ž /� t

and v� is a solution

�w
� �Tmax w , t , x � w t , x � L t , x ,�w 	 ���e ,Ž . Ž . Ž .ž /� t

Ž . �Ž .where L t, x, p and L t, x, p are the eigenvalues of

1 	 2 1 	 2�t t t� � � �C x e �Diag � x p e � b x , p , . . . , � x p e � b x , pŽ . Ž . Ž . Ž . Ž .Ž . Ž .Ž .1 1 k k2 2

and

1 2	�t t� ��C x e � Diag � x p e � b x , p , . . . ,Ž . Ž . Ž .Ž .1 1ž 2�

1 2	 t� �� x p e � b x , p .Ž . Ž .Ž .k k /2�
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� � Ž . � � �4We assume that, for all �� 0, 1 , there exists t , x �
�� B � t � � , T0 0
Ž . Ž .such that u� t , x � v� t , x � 0 and denote by M � 0 the supremum of0 0 0 0

u�� v� on 
�. Then, since v� is bounded on 
� and u�� 0, for �� 0 and
� 0 small enough,

� � 2 � � 2t � s � x � y  2 2� � � �u� t , x � v� s, y � � x � yŽ . Ž . Ž .2 22�

ŽŽ . Ž ..has a maximum M � 0 in 
�
 at t , x , s , y . Then� ,  � ,  � ,  � ,  � , 
Ž . Ž . Ž . 2v� s, y � 0 we omit � ,  , since M � 0. If we set p � x � y � , then� , 

u� t , x � v� s, y � L t , x , p �  x � L� s, y , p �  y � ����e�T .Ž . Ž . Ž . Ž .
Ž � �.Hence cf. the proof of Theorem 4.3 25

1 2	 s� �� y p �  y e � b x , p �  yŽ . Ž . Ž .Ž .l l2�
Diag 	 o 1 I .Ž .� ,  k1 2	 s� � 0� � x p �  x e � b x , p �  xŽ . Ž . Ž .Ž .l l2

Ž . Ž . Ž .Denote by � t, x the positive eigenvector of C t, x for L t, x, 0 such that
� Ž . � Ž . Ž .� t, x � 1. At least for a subsequence � ,  which tends to 0, 0 andm m

Ž . Ž Ž . Ž . Ž .. Ž .such that  � o � , C t, x , � t, x , L t, x, 0 converges to C, � , L , wherem m
C � 0, L is its Hamiltonian and C�� L� . According to the Perron�Frobenius

Ž� � .theorem, �� 0. Moreover, using that 11 , e.g. ,

C s, y � C s, y �Ž . Ž .Ž . Ž .i i
L s, y , 0 � min max � max min ,Ž .

� ���0 1�i�k ��0 1�i�ki i

one can prove:

Ž . Ž .LEMMA 3.11. There exists K �� 0,� such that, for all � ,  ,m m

� � � � � �L s, y , 0 � L t , x , 0 � K � x � y � t � s .Ž . Ž . Ž .

�Ž . �s Ž . Ž . � �Moreover, L s, y, 0 � �e L 0, y, 0 and L 0, y, 0 � 0, kK . Then
� � � � �L s, y , 0 � L t , x , 0 	 k �� 1 kK � K � x � y � t � sŽ . Ž . Ž . Ž .

��
�T �T	 ����e � e � o 1 .Ž .� , 2

If we choose

k 2Ke�� � ��e�T2
�� ,2 �� �Tk Ke � ��e

then
��

�TM � o 1 � � e ,Ž .� ,  � ,  2
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� �according to Lemma 4.3 of 3 , which is a contradiction with M � 0 according
to the same result. Then

sup u� t , x � v� t , x � kK max �e�� , Te�T .Ž . Ž . Ž .Ž .
d� �� , T �R

But v is locally bounded and � tends to 1 when � tends to 0. Then, for all
R � 0,

lim sup u� t , x � v� t , x � sup u t , x � v t , x e�t .Ž . Ž . Ž . Ž .Ž . Ž .
��0 � � � �� , T �B � , T �BR R

Hence,

sup u t , x � v t , x e�t � kK max �e�� , Te�T .Ž . Ž . Ž .Ž .
d� �� , T �R

But, for all 0 � � �� �� T � T �� �,

sup u t , x � v t , x e�t � sup u t , x � v t , x e�t ,Ž . Ž . Ž . Ž .Ž . Ž .
d d� � � �� , T �R � � , T � �R

which completes the proof. �

COROLLARY 3.12. � ln u� converges uniformly to v* on compact subsetsl
� � d0,� �� for all l � @1, k #.

Ž .COROLLARY 3.13. If u and v are two viscosity solutions of 10 and satisfy
Ž .11 , then u � v.

Now, we can prove the asymptotic results on u� and � ln u�.

THEOREM 3.14. sup u� converges uniformly to 0 on compact subsets1� l� k l
of EE.

PROOF. This is a consequence of Corollary 3.12: by continuity, v* is
uniformly negative on compact subsets of EE. �

THEOREM 3.15. For all l � @1, k #, � ln u� converges uniformly to V * onl
Ž . dcompact subsets of 0,� � � .

PROOF. According to Corollary 3.13, we just have to show the result
Ž . dfor strongly coupled KPP equations, that is, when, for all x, l, u � � �

Ž� ..k@1, k # � 0,� ,

k�1

f x , u � c x , l u 1 � u � c x , l , i u � u .Ž . Ž . Ž . Ž . Ž .Ýl l l l�i l
i�1
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� � d Ž .Let KK be a compact subset of t , T � � where 0 � t � T � �. Let t, x �0 0
KK, ��! . We omit indices. We work under the probability under which thet

Ž . Ž .intensity of N i is c X, � , i � :
�1

Y � EY exp c X , � drŽ .H0 � r r½ 5� 0

�1
�  � g E� exp c X , � drŽ . Ž .H�� t r r½ 5� 0

1 t
�  � g E� � exp c X , � dr .Ž . Ž .HX � G ��t r r½ 5t 0 � 0

� 4 � 4Denote B � �� t � �� t, X � G . According to Proposition A.6,t 0

�1
lim sup� ln E� exp c X , � drŽ .HB r r½ 5� 0��0

� sup R � , � , � � x , � � G .� 4Ž .0� 0 t 0
� , �

Ž . Ž .Hence, v* t, x � V * t, x , which completes the proof on MM. Let us show the
Ž .lower bound on EE. Let t, x � EE, � 0. We set

�  � inf s � t , v* t � s, � � � .� 4Ž .s

Ž . Ž .Let � be such that R � 	 V * t, x �  , � � x and � � G . Notice that0� 0 t 0
Ž . � Ž .�� � � t. Let us choose �� 0, t � � � , where � is upper semicontinuous.

Hence, there exists �� 0 such that
� �sup � � � � �� � � � � � � � .Ž . Ž .s s

� �s� 0, t

Then, according to the definition of Markov times,
� � � ��� � � sup � � � � �� � � � � � � � .Ž . Ž .� s s

� Ž . �s� 0, � � ��

Moreover, we choose � such that


� � � ��� � � �� � s � 0, � � � � , v* t � s, � � v* t � s, � � .Ž . Ž . Ž .� s s 2
For a given �� 0, if � is small enough, Corollary 3.12 and Theorem 3.14 lead
to

1 Ž .� � ��
Y 	 EY � exp c X , Y drŽ .H0 � Ž� .�� � X�� � � � r r½ 5� � 0

1 Ž .� � ��	 E� exp c X dr � 2� � .Ž .H� X�� � � � r½ 5� ž /� 0

According to Varadhan’s theorem,

Ž .� � ��
� �v* t , x 	 sup c � dr � S � , � � x , �� � � �Ž . Ž . Ž .H �r 0� Ž� .�� 0½ 5

0�

� 2� � .
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Ž . Ž .If � and � tend to 0, then, for all � 0, v* t, x 	 R � � 2	0� Ž� .
Ž .V * t, x � 3 . �

THEOREM 3.16. There exists h � 0 such that

lim inf inf Y � , t , x , l 	 h0
��0 1�l�k

˚uniformly on compact subsets of MM.

PROOF. According to the assumptions, we can write f as follows:

k

f x , u � c x , l , i , u uŽ . Ž .Ýl l�i
i�1

k�1

� c x , l , u u � c x , l , i , u u � u ,Ž . Ž . Ž .Ýl l�i l
i�1

Ž .where all c 	, l, i, 	 are bounded continuous functions. There exists h � 0
d Ž� �. ksuch that, for all x � � , u � 0, h , l, i � @1, k #,

1
c x , l , i , u 	 .Ž .

2 K

Let �� 0 and f �� f be a function which satisfies Assumption 3.1 and such
d Ž� �. kthat, for all x � � , u � 0, h , l � @1, k #,

k�1ul
f � x , l , u � c x , l � k� u 1 � � c x � � u � u .Ž . Ž . Ž . Ž .Ž . Ž .Ýl l i i lž /h i�1

� Ž . Ž .R is defined like R but C x is replaced by C x � �1 and we denote
� � ˚ �̊� 4 Ž . Ž . ŽMM � V * � 0 . If t, x � MM, there exists �� 0 such that t, x � MM proof

� �.of in 25 . This inclusion shows that we can choose �� 0 for a compact
˚ Ž .subset of MM. Denote by g �� g � h and Y �, H�, Z� the solution of the BSDE

associated with the system where f and g are replaced by f � and g �.
Applying comparison theorems leads to 0 � Y �� h. Moreover, under the

Ž . Ž Ž . .probability under which the intensity of N i is c X, � , i � � � , Y � is a
supermartingale and for all Markov time � ,

�

1 Yr
 
Y � EY exp c X , � � k� 1 � dr .Ž .Ž .H0 � r r½ 5ž /� h0

� �Using the arguments of the proof of Theorem 3.17 or Theorem 4.7 in 25 , we
show that Y � converges uniformly to h on compact subsets of MM�. The
inequality Y �� Y completes the proof. �

3.3. One example of stabilization. We now give an example where u�

converges to the stable equilibrium on MM without Lyapounov assumption.
For the sake of simplicity, g � 1 and we assume that the stable equilibrium
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point is 1. The L� operators are given in the previous section but thel
nonlinearities have the following form:

k�1

f x , u � c x , l , l , u u � c x , l , i , u uŽ . Ž . Ž .Ýl l l�i
i�1

k�1

� c x , l , u u � c x , l , i , u u � u ,Ž . Ž . Ž .Ýl l�i l
i�1

Ž . Ž . d Ž� ..kwhere, for all l, i � @1, k # � @1, k � 1# and all x, u � � � 0,� :

Ž . Ž .a 1K � c x, l, i, u � K ;
Ž . Ž . � � Ž .b if u � 1, then c x, l, u � 0, and if u � 0, 1 , then c x, l, u � 0;l l
Ž . Ž .c there exists � CC �, � uniformly Lipschitz continuous such that, for
Ž . d k � �all x, l, u � � � @1, k # � � , u � 0, 1 ,l

c x , l , u , hl � c x , l , u 	  u � 0.Ž . Ž .˜Ž .l l

Hence, 0 � Y � � 1 and, under the probability under which the intensity of
Ž . Ž � � . �N i is c X, � , i, Y , H � , Y is a supermartingale. Moreover, as we al-

ready mentioned in the previous section,

�1
Y � EY exp c X , � , Y , H dr .Ž .H0 � r r r r½ 5� 0

� , t, x, l ˚THEOREM 3.17. lim Y � 1 uniformly on compact subsets of MM.�� 0 0

� �PROOF. The proof is similar to the proof of Theorem 4.7 in 25 . Let KK be a
˚ ˚compact subset of MM and KK � a compact neighborhood of KK in MM. Further-

Ž .more, � 	, 	 is defined by

� t , � � inf s � t : t � s, � � KK �� 4Ž . Ž .s

� Ž .and �� 0. Using that v converges uniformly to 0 on KK � and that  Y 	r
� Ž t, X . Ž .0 dP � dr a.s., we prove that EH  Y dr converges uniformly to 0 on KK.0 r

Since every coefficient is bounded by K and KK � is a compact neighborhood
Ž .of KK, there exists �� 0 such that, for all t, x � KK, the distance between

Ž .t, x and the complementary of KK � is greater than 2 K� . Therefore,
ŽŽ � , x . .P t�s, X � KK � converges uniformly to 1 on KK.s 0 � s� �

Let us assume that Y � , t, x, l does not converge uniformly to 1 on KK. Let0
h � 0 be such that

� � � 0, � �� 0, � , t � , x � , l� � KK � @1, k #, Y � , t � , x � � 1 � h.Ž . Ž .0 0 0

� Ž � � , x � .Denote � � � t , X . The two previous remarks imply

� ��lim P � 	 � � 1 and lim E  Y dr � 0.Ž . Ž .H r
��0 ��0 0
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� � � , t � , x � 4 � � �Set � � inf s, Y 	 1 � h2 and � � � � � .s

� � �E  Y dr 	 E� min  y 	 0.Ž . Ž .H r
0�y�1�h20

This leads to

lim E� � 	 min  y � 0.Ž .
��0 0�y�1�h2

� Ž � .Hence, lim E� � 0. But lim P � 	 � � 1, which implies that�� 0 �� 0
Ž � � � . Ž � , t � , x � , l � .�P � � � , � � t converges to 1. Therefore, P Y � 1 � h2 also�

tends to 1, and lim EY � , t � , x �
� � 1 � h2, according to the Lebesgue theo-�� 0 �

rem. We have a contradiction with the fact that Y is a supermartingale. �

Ž .Now, we briefly study the speed of convergence to 1 if c x, l, u u �l
Ž .Ž . Ž . Ž .d x, l, 1 � u u � 1 with d 	, l, 	 continuous and bounded. Set d x, l, 0 �l
Ž .d x, l � 0 and

˚� t , � � inf s � t : t � s, � � MM ,Ž . Ž .� 4M s

ks

Q � , � � d � , l � l dr � S � , � ,Ž . Ž . Ž . Ž .˙ÝH0 s r r 0 s

0 l�1

J t , x � sup Q � , � : � � x , � � H ,Ž . Ž .� 40� 0 t 0M
� , �

� d Ž . 4where H � x � � : � l � @1, k #, 1 � g x, l � 0 , and, for all l � i,0
Ž . Ž . Ž . Ž .d x � c x, 1 replaces c x, 0 in the definition of S�. Let D x �l i l i l i

Ž Ž .. Ž .d x and let M x, p be the Hamiltonian ofl i 1� l, i� k

1 	 2� �D x � Diag � x �w t , x � b x ,�w t , x .Ž . Ž . Ž . Ž . Ž .Ž .Ž .l l2

As for a single equation, the following result is true:

Ž � , t, x, l . Ž .THEOREM 3.18. � ln 1 � Y converges uniformly to J t, x on com-0
˚pact subsets of MM and J is a viscosity solution of

�w ˚t , x � M x ,�w t , x � 0, t , x � MM ,Ž . Ž . Ž .Ž .
� t

w t , x � 0, t , x �EE , t � 0,Ž . Ž .12Ž .
lim w t , x � ��, x�H ,Ž . 0
t�0

w 0, x � 0, x�H ,Ž . 0
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� � � �PROOF. We refer to the proof of Theorem 4.10 in 25 . Here a � 1 � u is
a solution of

�a�l � �t , x � L a t , xŽ . Ž .l l� t
k�11

� � � � �� d x , l , a a � c x , l , i , u a � a ,Ž . Ž . Ž .Ýl l�i lž /� i�1

t � 0, x � � d ,
a� 0, x � 1 � g x , x � � d .Ž . Ž .l l

The technique used to study the speed of convergence to 0 still applies since
Ž .one can prove a uniqueness theorem for 12 in a good class of solutions.

Ž � , t, x, l . Ž .Hence, � ln 1 � Y converges uniformly to J t, x and J is a solution of0
Ž .12 under our strong assumptions.

Ž .According to the uniqueness theorem, we can choose c x, l, i, u �
Ž . Ž .c x, l, i, 1 to compute J. If under the probability P the intensity of N i is
Ž .c X, � , i, 1 � , then

�1
1 � Y � E 1 � Y exp d X , � , 1 � Y , H dr .Ž . Ž .H0 � r r r r½ 5� 0

Ž . � � k � �Since d x, l, a � 0 if a � 0, 1 , the computation given in Section 4.4 of 25
is still valid. �

4. The gradient-dependent case. Now, we want to study the case
�where f depends on �u . More precisely, we consider the following systems:

�u� 1l � � � �t , x � L u t , x � f x , l , u t , x , m � �u � t , x ,Ž . Ž . Ž . Ž . Ž .Ž .l l l l� t �

t � 0, x � � d , l � @1, k #,
13Ž .

u 0, x � g x , x � � d , l � @1, k #,Ž . Ž .l l

Ž .where lim sup � ln m � � 0 when � tends to 0. The basic ideas are like those
� � �used in 25 to study a single KPP equation which is nonlinear in �u .

However, the following study is more difficult since Y may not be a super-
martingale, even if we assume g very small. We first set our new assump-
tions and then we show that Z is controlled by Y if f satisfies strong0 0
assumptions. Moreover, we need that every operator is uniformly elliptic.
Then, by comparison, we prove the result in the general case. Denote K �
Ž .1,� such that:

Ž . Ž . 1Ž d d . 1Ž d d�d .a for all l � @1, k #, b � CC � , � , � � CC � , � satisfy As-� , l 0 � � l
sumptions 2.1 and

1
� � � � � �x� � � x 	 x� � K x� ;Ž .lK
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1 d k d 1 dŽ . Ž . Ž � �.b for all l � @1, k #, f � CC � � � � � , � and g � CC � , 0,� andl l
f and g satisfy Assumptions 3.1 uniformly with respect to the last variable if
we denote, for all x, z � � d, l, i � @1, k #,

� f � fl l
c x , l , i , z � x , 0, z , c x � x , 0, 0 ;Ž . Ž . Ž . Ž .l i�u �ul�i i

Ž . Ž . Ž . dc for all �� 0, there exists B � � 0 such that, for all x, l, u, z � � �
� Ž .� k � Ž .� d@1, k # � 0, B � � 0, B � ,

k

c x � � u � f x , u , z ;Ž . Ž .Ž .Ý l i i l
i�1

Ž . d k dd for all x � � , l � @1, k #, u, u�� � , z, z�� � ,

� fl p� �x , u , z � K 1 � x ,Ž . Ž .
� x

� f � fl l
x , u , z � x , u , z � K ;Ž . Ž .

�u � z

Ž . de for all l, i � @1, k #, x, x�, z, z�� � ,

� � � � � �c x , l , i , z � c x�, l , i , z� � K x � x� � z � z� .Ž . Ž . Ž .
Ž � , x, l l . Ž . Ž � , t, x, l � , t, x, l � , t, x, l .The process X , � is the solution of 3 and Y , H , Z is

the unique solution of

1 t
� , t , x , l � , x , l l � , x , l l � , t , x , l � , t , x , l � , t , x , lY � g X , � � f X , � , Y , H , Z drŽ . Ž .Hs t t r r r r r� s

k�11 t t
� , t , x , l � , t , x , l� Z dW � H i dN i ,Ž . Ž .ÝH Hr r r rp �Ž . s s i�1

14Ž .

� � , t, x, l'Ž . Ž . � � Ž .where p � � m �  � . Then, according to 24 , u t, x � Y .l 0

� � � � � �4.1. Control of �u by u . According to Theorem 3.1 in 24 ,l l

�1� , t , x , l � , t , x , l � , x , l � , x , l lZ � m � �Y �X � X , � ,Ž . Ž . Ž .s s s s s

where �X � , x, l is the unique solution of the linear equation obtained by
Ž . � , t, x, lformal derivation with respect to x of the SDE of 3 ; �Y is defined in

Ž .the same way by derivation of 14 . However, in order to be able to choose a
probability under which Y is a supermartingale, we assume that, for all

� � ku � 0,  :
k�1ul

f x , l , u , z � c x , l , z u 1 � � c x , l , i , z u � u ,Ž . Ž . Ž . Ž .Ý l i�l lž / i�1

Ž . Ž .c 	, l, 	 	 1K and c 	, l, i, 	 	 1K are smooth, bounded with bounded
�˜derivatives and g �  . Denote by P the probability under which the inten-
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�˜Ž . Ž .sity of N i is c X , � , i, Z � and E the associate expectation. We write fr r r
instead of f in this section. A direct consequence of the Ito formula is:ˆ

LEMMA 4.1. For all � , t, x, l, Y � , t, x, l is a positive supermartingale and is
˜�bounded by  under P . Moreover,

k�11 1t t2 2� � , t , x , l � � , t , x , l � , x , l l � , t , x , l˜ ˜� � � �E Z ds � E H i c X , � , i , Z dsŽ . Ž .ÝH Hs s s s s� �0 0 i�1

� 2Y � , t , x , l .0

2 32Ž . Ž . Ž .Denote m � � m � � m � � � .

� � dPROPOSITION 4.2. Let KK be a compact subset of 0,� �� . There exists
Ž . Ž .M � 0 such that, for all t, x � KK, �� 0, 1 ,

M 	m � M 	m �Ž . Ž . 1414� , t , x � , x � , t , x� �15 �Y � P X � G � Y .Ž . Ž .Ž . Ž .0 t 0 032 3� �

Ž .PROOF. Let us recall the BSDE of which �Y, �H, �Z is a solution as well
as some notation:

� f

f r � X , � , Y , H , Z ,Ž . Ž .x r r r r r� x

� f 2Yr
f r � X , � , Y , H , Z � c X , � , Z 1 � ,Ž . Ž . Ž .y r r r r r r r r ž /� y 

� f

f r , i � X , � , Y , H , Z � c X , � , i , Z ,Ž . Ž . Ž .h r r r r r r r r�h

� f

f r � X , � , Y , H , Z ,Ž . Ž .z r r r r r� z

1 	
N i � N i � c X , � , i , Z dr .Ž . Ž . Ž .H r r r� 0

Ž . Ž . Ž . Ž .In the same way, we define c r , c r , c r, i , c r, i :x z x z

k�11 t t
�Y � �g X , � �X � �Z dWr � �H i dN iŽ . Ž . Ž .ÝH Hs t t t r r r'� s s i�1

1 t 
 
 
� f r �X � f r �Y � f r �ZŽ . Ž . Ž .H x r y r z r� s

k�1

� f r , i �H i dr .Ž . Ž .Ý h r

i�1
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Ž .For s � t, �Y � �g X , � �X , and for s � 0,t t t t

1 t 
 
 
˜ ˜�Y � E �Y � E f r �X � f r �Y � f r �Z dr ,Ž . Ž . Ž .H0 t x r y r z r� 0

which leads to

˜� � � ��Y � E �Y0 t

1 t 
 
 
˜ � � � � � � � � � � � �� E f r 	 �X � f r 	 �Y � f r 	 �Z dr .Ž . Ž . Ž .H x r y r z r� 0

16Ž .

We are going to bound each term. Let M be a real positive number that may
change from one line to another but that remains independent of � .

� 4 Ž .LEMMA 4.3. There exists M � 0 such that, for n � 1, 2 , � t, x � KK,
0 � �� 1,

n˜� �E g � X , � 	 �X � M P X � G'Ž . Ž .t t t t 0

1 Mt 
˜ � � � �E f r 	 �X dr � Y � t , x � KK, 0 � �� 1,Ž . Ž .'H x r 0� �0

1 Mt 
˜ � � � �E f r 	 �Y dr � Y � t , x � KK, 0 � �� 1,Ž . Ž .'H y r 032� �0

1 M 	 p � p � �1Ž . Ž .t 14 14
˜ � � � �E f r 	 �Z dr � P X �G � Y .Ž . Ž . Ž .H z r t 0 0ž /� � �0

PROOF. We will only give the proof of the last upper bound which includes

� Ž . �the different technics used to show the others. Notice that f r � M. Thenz

1 t 
˜ � � � �E f r 	 �Z drŽ .H z r� 0

12M 	 p � 1Ž . t 2˜ � �� E �Z dr .H r2ž /� 0p �Ž .
The Ito formula leads toˆ

1 t 2 2˜ ˜� � � �E �Z dr � E �YH r t2
0p �Ž .

2 t 
 
 
˜� E f r �X � f r �Y � f r �Z , �Y dr .Ž . Ž . Ž .H ž /x r y r z r r� 0
2 2 
 
Ž . Ž . Ž . � � � �Set q � � p � � 1. Using that 2 a, b � a � b and that f and f arey z

bounded, we get
1 Mt t2 2 2
˜ ˜ ˜� � � � � �E �Z dr � E �Y � E f r �X drŽ .H Hr t x r2 �0 02 p �Ž .

2M 	 q �Ž . t 2˜ � �� E �Y dr .H r� 0
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Ž � �.After a short computation cf. Lemma 5.6 in 25 , we also get

122M� 1 Mt t2 2˜ ˜� � � �E �Y dr � E Z dr � Y .'H Hr r 02ž /ž /� �0 0p �Ž .

Hence,

21 M M 	 q �Ž .t 122˜ � �E �Z dr � P X � G � Y .Ž . 'Ž .H r t 0 02 2� �0p �Ž .

Therefore,

1 M 	 p � q �Ž . Ž .t 14 14
˜ � � � �E f r 	 �Z dr � P X � G � Y . �Ž . Ž . Ž .H z r t 0 0ž /� � �0

Proposition 4.2 follows from the four results given previously. �

COROLLARY 4.4. Let KK be a compact subset of �	 � � d. There exists M � 0�
Ž . � �such that, for all t, x � KK and all �� 0, 1 ,

M 	m � m � M 	m � 	m �Ž . Ž . Ž . Ž . 1414� , t , x � , x � , t , x� �Z � P X � G � Y .Ž .Ž . Ž .0 t 0 032 3� �

4.2. Asymptotic behavior of u� and � ln Y �. We follow the same approach
used in the previous section. We show that � ln u� converges uniformly to V *

Ž . don compact subsets of 0,� � � � @1, k #. Then we study the asymptotic
� � 4 � 4behavior of u on EE � V * � 0 and MM � V * � 0 . Let us recall the defini-

tion of V * given in Definition 3.1:

V * t , x � inf sup R � , � , � � x , � � G ,� 4Ž . Ž .0� 0 t 0
��!t � , �

where
ka

R � , � � c � , l � l ds � S � , � ,Ž . Ž . Ž . Ž .˙ÝH0 a s s 0 a
0 l�1

Ž � � .and S is the action of X , U . We only write the points where the proofs are
different from the previous section.

LEMMA 4.5. u� is a viscosity solution of

�u�l � �t , x � L u t , xŽ . Ž .l l� t
1

� � , t , x , l d� f x , l , u t , x , Z , t � 0, x � � , l � @1, k #,Ž .Ž .0�

u 0, x � g x , x � � d .Ž . Ž .l l



F. PRADEILLES1606

� �PROOF. This is a simple generalization of the proof of Theorem 4.1 in 24 .
� �We also refer to Theorem 5.8 in 25 . �

REMARK 4.6. According to comparison theorems,

�� 2 t , x , G � v* t , x � u* t , x � min kKt � � 2 t , x , G , 0 .Ž . Ž . Ž . Ž .Ž .0 0

� Ž .THEOREM 4.7. For all l � @1, k #, � ln u t, x converges uniformly on com-l
pact subsets to V *.

Ž .PROOF. According to the proof of Theorem 3.15, u* is a subsolution of 10 .
� Ž . � 4If there exists � 0 such that f � f , then, using that u t, x � exp �k� l

implies the convergence of Z� , t, x, l to 0, we show that v* is a supersolution of0
Ž .10 . Therefore, u* � v* � V *.

Ž . Ž .In the general case, if v* t, x � 0, for a subsequence � �, t�, x� which
Ž . � �Ž . Ž .tends to 0, t, x and such that v t�, x� tends to v* t, x , if � � is small

Ž . � � kenough, there exist � 0 and �� 0 such that, for all l, u � @1, k # � 0,  ,
� , t � , x � , lf x�, l , u , ZŽ .0

k

	 c x� � � uŽ .Ž .Ý l i i
i�1

ul	 c x�, l � k� u 1 � � c x� � � u � u .Ž . Ž . Ž .Ž . Ž .Ýl l i i lž / i�l

� �Ž . Ž .Then, v* 	 V * . But, if L x, p is the Hamiltonian associated with c x, l, i
� �, L� converges to L when � tends to 0. Moreover, if

V� t , x � lim inf V *� s, y ; �� � , s, y � B t , x , � ,� 4Ž . Ž . Ž . Ž .Ž .
��0

Ž . � �then V� is a supersolution of 10 according to 3 . Therefore,

u* � V� � v*.

Hence, we have the uniform convergence on compact subsets and the limit is
Ž .a viscosity solution of 10 . By Corollary 3.13 the proof is complete. �

THEOREM 4.8. By our assumptions:

1. lim sup Y � , t, x, l � 0 uniformly on compact subsets of EE ;�� 0 1� l� k 0
2. there exists h � 0 such that

lim inf inf Y � , t , x , l 	 h0
��0 1�l�k

˚uniformly on compact subsets of MM.

PROOF. The first statement is straightforward since

lim� ln Y � , t , x � V * t , xŽ .0
��0
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uniformly on compact subsets. The proof of the second statement is the same
as that of the proof of Theorem 3.16. �

APPENDIX

The two following propositions refer to the so-called ‘‘small loop principle’’
� �19, 20 of which Theorem 4.1 is a straightforward consequence, according to
� � Ž . Ž .25 . Let us first recall the definition of H1 and H2 :

Ž . Ž . Ž . Ž . Ž . dH1 b x, l � b x, 1 � b x for all x, l � � � @1, k # and � satisfies the
strong Hormander condition;¨

Ž . Ž . Ž . dH2 � x �* x 	 1K 	 I for all x � � .d

THEOREM A.1. If � satisfies the strong Hormander condition and if � is¨
Ž 1. 1 Ž 1.such that S �, � � � where � � 1k, � � x, � � y and �� F h, � ,˙0 t 0 1 x

then, for all �� 0, there exists �� 0 such that

1
 2
̇ ˙� �h � h ds � � ,H s s2 �� � 0y � z � �� � h�� H 0, 1 Ž .
1�F h�, � � z .Ž .x 1

More precisely, we will use:

Ž . Ž .PROPOSITION A.2. We assume that H1 or H2 is true and we choose
Ž . Ž . Ž .�, � such that S �, � � �, � � x, � � y and �� F h, � . Then, for all01 0 1 x

� � Ž .k�� 0, there exists �� 0 such that if y � z � � there exists h�� II such
that

1 2
 
˙ ˙� � � �h � h � � � , 0, � � � F h�, �� , 0, � ds � � ,Ž .Ž . Ž .˙ ˙H ss s s s x s
0

F h�, �� � z .Ž . 1x

Ž . Ž # # .PROOF. We assume that H1 is true. For a given #� 0 we define h , �
as follows:

# Ž . Ž . � �� l � � l if s � 0, 1 � # ,˙ ˙s s
# Ž . � �� l � 1k if s � 1 � # , 1 ,˙ s

# #˙ ˙Ž . Ž . � Ž .�h l � h l if s � 0, � l ,s s 1�#

#˙ ˙Ž . Ž . Ž . � �#h l � kh l � l if s � 1 � # , 1 ,˙� Ž l . � ss s

# #˙ Ž . � Ž . �h l � 0 if s � � l , 1 .s 1

Ž # # .It is easy to see that F h , � � �. Moreover,x

1 2# #˙ ˙� � � �lim h � h � � � , 0, � � � � , 0, � ds � 0.Ž .˙ ˙Ž .H s s s s s s
#�0 0
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Hence, for a given �� 0, there exists #� 0 such that
�1 2# #˙ ˙� � � �h � h � � � , 0, � � � � , 0, � ds � .Ž .˙ ˙Ž .H s s s s s s 40

Then, we apply Theorem A.1 to � between 1 � # and 1 with � �� �4.
Ž . Ž 2 .Ž .Now, we assume that H2 is true. Set � �� �2kK 2 � 8 K � K 1 � kK .

� � W U Ž .Let �� 0, � � be such that S h, � � � �, and denote z � � . Then1�� 1 � 1��

� � 2 d� � z �� 4K� �. Moreover, if z , z � � , set1 � 1 2

z � z2 1�1 1�̇ � k�* z � z �* z � b z , � ,Ž . Ž . Ž .Ž . ˙Ž .s k s s s sž /�

ŽŽ . . Ž 1.where z � �� s z � sz � , z � F � , � ands 1 2 2 z �1

� � 21 z � z� 1 22 2˙� �� ds � kK � K � .H s ž /2 �0

� � 2 1Ž . ŽŽ .k 1.Hence, if z � y � � �� , there exists �� H 0, � such that z � F � , �z ��

and
1 �� 2 2˙� �� ds � kK 2 � 8 K � K � �� ,Ž .H s2 20

Ž .k Ž . kwhere � � � , . . . , � � II . Therefore, we just have to set


 ˙ � �h , � , if s � 0, 1 � � ,˙ž /s s
 
 �ḣ , � �˙ž /s s 1� ˙ � �� , � , if s � s�� t � �� 1 � � , 1˙ž /s� s�

to satisfy the second condition. Moreover,

1 2
 
˙ ˙� � � �h � h � � � , 0, � � � F h�, �� , 0, � dsŽ .Ž . Ž .˙ ˙H ss s s s x s
0

�
� � � 1 � kK � � � ,Ž .

2

which completes the proof. �

These results allow us to prove Proposition 2.14 which we rewrite.

Ž . Ž . � � 2Ž .PROPOSITION A.3. On H1 or H2 , for all t � 0,� , � t, 	 , 	 is continu-
ous on � d � � d.

Ž . Ž .PROOF. Proposition A.2 applied to b, � and to �b, �� imply that, for
all �� 0, there exists �� 0 such that

� � � � 2 2x � x� � y � y� � �� � t , x�, y� � � t , x , y � �Ž . Ž .
Ž . Ž .or, in other words, if lim x , y � x, y ,n n

lim sup � 2 t , x , y � � 2 t , x , y .Ž . Ž .n n
n��



REACTION�DIFFUSION SYSTEMS AND BSDES 1609

On the other hand,

lim inf � 2 t , x , y 	 � 2 t , x , y .Ž . Ž .n n
n��

Ž . n n Ž .Indeed, let � , � be such that x � � , y � � and S � , � �n n n 0 n t 0 t n n
2Ž . Ž . 2Ž .� t, x , y � 1n; lim inf S � , � � � t, x, y � �. Then, there exists an n 0 t n n

Ž .subsequence � , � such thatn� n�

lim S � , � � lim inf S � , � � �.Ž . Ž .0 t n� n� 0 t n n

Ž . Ž .Therefore, sup S � , � � �. Hence, � , � is relatively compact be-n� 0 t n� n� n� n�
Ž . Ž .cause x is bounded, too. One can extract � , � which converges ton� n$ n$

Ž . Ž . Ž .�, � such that � � x, � � y and S �, � � lim inf S � , � . Hence,0 t 0 t 0 t n n

� 2 t , x , y � S � , � � lim inf � 2 t , x , y .Ž . Ž . Ž .0 t n n

The proof is complete. �

If we only have the strong Hormander condition on �, we may lose¨
the continuity of �. Indeed, let us consider the following case: for all x �
Ž . 2x , x � � ,1 2

1 0 0
� x , 1 � , b x , 1 �Ž . Ž .3 ž /ž /0 x 11

Ž . Ž . Ž . Ž .and � x, 2 � 0, b x, 2 � 0. Moreover, we assume c x, 1, 2 � c x, 2, 1 �
2Ž . Ž .c � 0. In this case, if �� DD, � x, 0, � � c � � � � c.' '1 2

Ž Ž . .THEOREM A.4. There exists c � 0 such that the mapping x � � 1, 0, 0 , x0
2 Ž .from � to � is not continuous in 0, 0 .

0Ž . 0 Ž 0 0. Ž .PROOF. It is evident that if � 2 � s and � � 0, F � , � � 0, 0 .s s Ž0, 0. 1
Ž . 1 Ž .Assume that � 1 � 0. Set �� F h the unique solution of1 Ž0, 0.

˙ ˙� � b � , 1 � � � , 1 	 h ,Ž . Ž .s s s s

� � 0, 0 .Ž .0

Ž . Ž .If �� F h, � , �� � �� 1 . Hence,Ž0, 0.

inf S � , � , � � � � 0, 0 � � 2 � 1 , 0, 0 , 0, 0 ,� 4Ž . Ž . Ž . Ž . Ž .Ž .01 0 1 1 1
�

Ž Ž . Ž ..where � is the sub-Riemannian metric associated with b 	, 1 , � 	, 1 . Ac-1
� �cording to Ben Arous and Leandre 6 ,´

lim � 2 t , 0, 0 , 0, 0 � �.Ž . Ž .Ž .1
t�0, t�0

Hence,

inf S � , � , � � � � 0, 0 , � 1 � 0 � a � 0.� 4Ž . Ž . Ž .01 0 1 1 1
� , �
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2Ž Ž . Ž ..Then, if c � a , � 1, 0, 0 , 0, 0 � c and there exists �� 0 such that if1
Ž . k Ž . Ž .h, � � II � CC and � � 0, 0 where �� F h, � and the associate� 1 Ž0, 0.

Ž . Ž 0 0.Malliavin matrix is definite positive, then S �, � 	 c � �� S � , � � � .01 01
The ‘‘small loop principle’’ is no longer true.

2Ž Ž . Ž .. � 2Ž Ž . Ž ..Moreover, if y � 0, � 1, 0, 0 , 0, �y � inf � t, 0, 0 , 0, �y , 0 �1
4 1 Ž . Ž . 1 Ž . Ž . �t � 1 . But, if F h � 0, �y , then F h � 0, 0 with, for all s � t,Ž0, 0. t Ž0, 0. t�y

˙�t � y , h � 0. Therefore,s

� 2 t , 0, 0 , 0, �y 	 � 2 t � y , 0, 0 , 0, 0 .Ž . Ž . Ž . Ž .Ž . Ž .1 1

� 2Ž Ž . Ž .. 4But, according to the preceding results, a � inf � t, 0, 0 , 0, 0 , 0 � t � 21
� � 2Ž Ž . Ž .� 0. Hence, if c � a � a , for all y � 0, 1 , � 1, 0, 0 , 0, �y 	 a �1

2Ž Ž . Ž ..� 1, 0, 0 , 0, 0 . �

Ž . Ž Ž ..We recall that C x � c x, i, j is Lipschitz continuous and its1� i, j� k
� �coefficients belong to 1K, K and that

k

c x , l � c x , l , i .Ž . Ž .Ý
i�1

Ž� � d .LEMMA A.5. The mapping from CC 0, t , � � CC to � defined by�

k
t

� , � � c � , l � l dsŽ . Ž . Ž .˙ÝH s s
0 l�1

is continuous for the uniform topology.

Ž� � d .PROOF. Let �, ��� CC 0, t , � and �, ��� CC . If n � �,�

it i � 1 tŽ .
n� � � if s � t , t � , 	.s t i i�1i /n n

� n �Let � 0 and n be such that �� � �  . A short computation leads to

k
t 
 
c � , l � l � c � , l � l dsŽ . Ž . Ž . Ž .˙ ˙ÝH s s s s

0 l�1

� � � �� Kt �� �� � 2Kt � 2nK �� �� ,

which completes the proof. �

Ž . � Ž . 4 � 4 � 4Set � � � inf s � t: t � s, � � OO and B � �� t � �� t, X � G .˙s t 0

Ž . Ž .PROPOSITION A.6. On H1 or H2 ,

�1
lim sup� ln E� exp c X , � drŽ .HB r r½ 5� 0��0

� sup R � , � , � � x , � � G ,� 4Ž .0� 0 t 0
� , �
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PROOF. Denote

B � � : � � x , t � � , � � OO � � : � � x , �� t , � � G ,� 4Ž .� 40 � 0 t 0

C � � : � � x , t � � , � � OO ,Ž .� 41 0 �

C � � : � � x , �� t , � � G , 0, � � OO .Ž .� 42 0 t 0 t

According to Varadhan’s theorem,

�1
lim sup� ln E� exp c X , � drŽ .HB r r½ 5� 0��0

� sup R � , � , �� B .Ž .� 40 t
� , �

But Proposition A.2 implies the two following lemmas:

Ž . Ž . Ž .LEMMA A.7. Let �, � � C � CC be such that � � � t and S � � �.1 � 0 t
Ž . Ž . Ž . 
 Ž .On H1 or H2 , for all �� 0, there exists ��, �� such that � � x, � �� � t0

and

R ��, �� 	 R � , � � � .Ž . Ž .0� 0�

Ž . Ž . Ž .LEMMA A.8. Let �, � � C � CC be such that S � � �. On H12 � 0 t
Ž . Ž . 
or H2 , for all �� 0, there exists ��, �� � C � CC such that � � G ,2 � t 0

Ž .� � � t,

R ��, �� 	 R ��, �� � � .Ž . Ž .0 t 0 t

Hence,

sup R � , � , �� C � sup R � , � , � � x , � � G , �� t� 4 � 4Ž . Ž .0 t 1 0� 0 t 0
� , � � , �

and

sup R � , � , �� C � sup R � , � , � � x , � � G , �� t .� 4 � 4Ž . Ž .0 t 2 0� 0 t 0
� , � � , �

It follows that

sup R � , � , �� B � sup R � , � , � � x , � � G .� 4Ž . Ž .� 40 t 0� 0 t 0
� , � � , �

� �For more details on the proofs of the two last lemmas, we refer to 25 . �
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