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ENTROPY FOR TRANSLATION-INVARIANT
RANDOM-CLUSTER MEASURES

BY TIMO SEPPALAINEN¨ ¨
Iowa State University

We study translation-invariant random-cluster measures with tech-
niques from large deviation theory and convex analysis. In particular, we
prove a large deviation principle with rate function given by a specific
entropy, and a Dobrushin�Lanford�Ruelle variational principle that char-
acterizes translation-invariant random-cluster measures as the solutions
of the variational equation for free energy. Consequences of these theo-
rems include inequalities for edge and cluster densities of translation-
invariant random-cluster measures.

1. Introduction. The random-cluster model was introduced around 1972
� �by Fortuin and Kasteleyn 18 as a family of models that contains the

Bernoulli bond percolation model, the Ising model and the q-state Potts
models as special cases. It has developed into an important and very success-
ful tool for studying the Ising and Potts models. Our paper focuses on the
properties of the random-cluster measures themselves. Our starting point is

� �Grimmett’s 23 development of elements of a thermodynamic formalism for
this model, beginning with a definition of infinite-volume random-cluster

Ž .measures in terms of a DLR Dobrushin�Lanford�Ruelle equation. Just as
for Gibbsian systems, natural next questions concern the validity of large
deviation principles and variational characterizations of infinite-volume mea-
sures. These questions we answer in the present paper, and derive some
consequences.

� �Here is a brief overview of the DLR approach of 23 . The random-cluster
measures of interest live on the graph formed by putting edges between
nearest-neighbor vertices of the d-dimensional hypercubic lattice �d. The
edge that connects two vertices x and y that are l1-distance one apart is

² :denoted by x, y . The symbol � stands for the set of all edges, while ��

² : ddenotes the set of edges x, y such that x, y � � for a subset � � � . The
� 4� Ž Ž ..set � � 0, 1 is the space of edge configurations � � � e . The valuee� �

Ž . Ž .� e � 1 indicates that edge e is present, � e � 0 that edge e is absent. The
Ž . � Ž . 4set of edges of a configuration � is � � � e � �: � e � 1 .

Ž .Fix two parameters p � 0, 1 and q � 0. For � � � and a finite rectangle
d � Ž . Ž .� � � , � is the subset of configurations � � � that satisfy � e � � e for�

Ž .all edges e � � . Let k �, � denote the number of connected components in�
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Ž d Ž ..the graph � , � � that intersect �. The finite-volume random-cluster
measure on � with boundary condition � is the probability measure � �

� � , p, q
supported on � � and defined by�

1 Ž .1�� e� � Že. k Ž� , � . �1.1 � � � p 1 � p q , � � � ,Ž . Ž . Ž .Ł� , p , q �½ 5�Z e��� , p , q �

with the normalizing factor

Ž .1�� e� � Že. k Ž� , � .1.2 Z � p 1 � p q .Ž . Ž .Ý Ł� , p , q ½ 5
e��� �����

Ž .The measures 1.1 satisfy the consistency condition

� � � � � d� � � � �Ž . Ž . Ž .H 	 , p , q � , p , q � , p , q

� Ž .for � � � , whenever 	 � �. Thus, for fixed p, q , the family of probability�

� � 4measures � can be regarded as a specification in the statistical me-� , p, q
Ž� � .chanical sense 20 , page 16 . An infinite-volume random-cluster measure is

then any probability measure 
 on � that satisfies

1.3 
 A � � � A 
 d�Ž . Ž . Ž . Ž .H � , p , q

for all measurable sets A � � and all finite rectangles � � �d. The class of
Ž .all such probability measures is denoted by RR . Equation 1.3 is the DLRp, q

definition of infinite-volume measures.
� �These are some of the basic known results that the reader can find in 23 :

RR is a nonempty convex set of probability measures, and its extremep, q
Ž . dboundary consists of limits of the finite-volume measures 1.1 as � � � . As

for all statistical mechanical lattice models, the interesting question is the
possibility of phase transition. This is the situation where RR containsp, q
more than one measure. Interesting results about the phase transition are
known only for q � 1 because the FKG inequality is valid only in this
parameter range. It follows from general convexity arguments that, for a
fixed q � 1, there are at most countably many values of p for which this
nonuniqueness of the infinite-volume measure may occur. In dimension d � 2,
one can use duality to show that phase transition cannot happen for any

Ž .' 'other value of p except p � q � 1 	 q . Phase transition is known to
� �happen for large enough q in all dimensions higher than one 28 .

� Ž . Ž .Under the usual partial ordering of configurations � 
 �� if � e 
 �� e
�for all e � � , there are two extreme boundary conditions � � 0 and � � 1,

corresponding to having all edges absent or all edges present outside � . The�

measure � 0 is the free random-cluster measure, while �1 is the� , p, q � , p, q
wired. The terminology comes from the connections imposed on the boundary
vertices of �. If q � 1, one can use the FKG inequality to show that the
finite-volume measures � 0 and �1 converge to elements � 0 and �1

� , p, q � , p, q p, q p, q
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of RR , as � � �d. These measures are extreme infinite-volume random-p, q
cluster measures in the sense that the inequalities � 0 
 
 
 �1 hold forp, q p, q

Žall 
 � RR . Inequalities between measures are interpreted in the standardp, q
� � .sense of stochastic dominance; see, e.g., Section II.2 in 29 . Consequently,

the occurrence of a phase transition is equivalent to � 0 � �1 , and it canp, q p, q
be characterized in terms of the edge densities and percolation probabilities
of � 0 and �1 .p, q p, q

In this paper, we study translation-invariant random-cluster measures
from the point of view of the convex duality of free energy and entropy. After
some preliminary definitions in Section 2, Section 3 introduces the notions of
entropy and relative entropy for these models, and shows how entropy
appears in a variational characterization of free energy and also as the rate
function of the large deviation principle of the empirical measure under
random-cluster measures. This picture is then completed by the DLR varia-
tional principle that characterizes translation-invariant random-cluster mea-
sures as precisely those measures that solve the variational equation for free
energy.

In that first part of the paper, the edge density and cluster density of a
Ž .measure are identified as the dual variables of the parameters p, q of the

random-cluster model. In Section 4, we study the properties of the free energy
and its convex dual, which can be regarded as a combinatorially defined
entropy. This enables us to describe the edge and cluster density combina-
tions that are possible for translation-invariant random-cluster measures.
The FKG inequality is not needed in Sections 3 and 4, so the results are valid
for all values of q.

In Section 5, we extend some earlier characterizations of the parameter
values that have a unique random-cluster measure, in terms of the differen-
tial properties of the free energy, and prove some results about the depen-
dence of edge and cluster density on the parameters. The FKG inequality
becomes an important tool, so most of the results are for q � 1 only. Section 6
strengthens one result for the special case of dimension two.

In Section 7, we look at the case where q is an integer greater than or
equal to 2. This is the case where the random-cluster model is related to the
Ising and Potts models. From this connection, we derive an alternative
formula for the entropy that appeared in Section 3. As an easy corollary, we
can characterize translation-invariant random-cluster measures as the expec-
tations of a random nonstationary product measure under translation-
invariant Potts measures. This and the Aizenman�Higuchi theorem about
the two-dimensional Ising model then imply that there is no phase transition
in the random-cluster model in the case d � q � 2.

An interesting feature of the random-cluster model is its lack of quasilocal-
Ž .ity, in the sense that the finite-volume measure defined in 1.1 is not

everywhere continuous as a function of the boundary condition � . Thus the
present work can be seen as part of an effort to extend to nonquasilocal
models the attractive features of Gibbs measures of absolutely summable
potentials, such as the existence of relative entropy, large deviation principles
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and variational principles. The key to overcoming nonquasilocality here is
Ž .twofold: first, k �, � is, up to an error of surface order, an average of

Ž .translates of a continuous function � � , the cluster density. Second, the
discontinuity occurs only when there is more than one infinite cluster, which
is a 0-measure event under all translation-invariant random-cluster mea-

� �sures. References 14, 25, 33, 41 contain further discussion and references on
the themes of Gibbsianness and quasilocality.

� �The original work of Fortuin and Kasteleyn was published in 16�18 .
Applications of random-cluster measures to the study of Potts models and

� �other interacting systems can be found in 2, 5, 26 . Ideas about infinite-
� �volume random-cluster models similar to those in 23 outlined above ap-

� � � �peared earlier in 2 , and more recently again in 5 . For general overviews of
random-cluster measures and for more references to past work, we refer the

� �reader to 21�23 . There are also earlier large deviation results for random-
cluster measures, but in contexts different from ours. In contrast to our

� �volume-order large deviations, 34 studies surface-order deviations. Results
� �for the mean-field random-cluster model on the complete graph appear in 4 .

2. Basic definitions. Here are some further notational conventions. In
� �general, we follow the notation of Grimmett’s paper 23 , except for replacing

Ž . Ž . Ž .p, q by new parameters 
 , � ; see 2.1 below.
d � �Throughout, the dimension d satisfies d � 2. For any subset � � � , �

� �and � denote the number of elements in � and � , respectively. The� �

boundary �� is the set of vertices in � that are adjacent to the complement
�c. A limit as � � �d means that � increases along a sequence of nested
rectangles to eventually contain any finite subset of �d. Vertices x of �d act
on edge configurations � � � by translations � :x

² : ² : ² :� � u , v � � u 	 x , v 	 x for all edges u , v � �.Ž . Ž .x

d � 4��For finite � � � , � � 0, 1 is the space of edge configurations among�

Ž .the nearest-neighbor vertices in �. Sometimes we write � � for � to avoid�

� �multiple subscripts. If � � � for some finite set �, then � stands for the�

cylinder subset of � generated by � ; in other words,

� �� � � � � : � e � � e for e � � .� 4Ž . Ž . �

Ž .If � is a configuration defined on a larger set than � , � � denotes its� �

restriction to an element of � . For �, � � � and � � �d, � � denotes the� �

configuration that satisfies

� e , e � � ,Ž . ��� e �Ž .� ½ � e , e � � .Ž . �

When the rectangle � is understood from the context, we let � � � � �. 0 and 1�

denote the configurations � � 0 and � � 1, respectively. So � 0 has no edges
outside � , and �1 has all potential edges outside � present. For any set A� �

of edges, FF is the �-field in � generated by the coordinate variablesA
Ž Ž ..� e .e� A
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The space of probability measures on � is denoted by MM. It is compact
Ž� �.under the usual weak topology, defined by declaring that � � � if � �n n

Ž� �. d Ž � �� � � for all � � � and all finite � � � . See 3 for a standard�

.treatment of this topology. A probability measure � is translation-invariant
if ��� � � for all x, and the set of such probability measures is denoted byx
MM�, a compact subspace of MM. The integral of a function f against a measure

Ž . Ž .� is denoted by � f . We shall write � also for the identity random variable
Ž . Ž Ž ..defined on �, so the integral � f will also appear in the form � f � . The

indicator function of an event A appears as I .A
For the random-cluster measures, we find it useful to replace the standard

Ž . Ž .parameters p, q with the parameters 
 , � defined by
p

�12.1 
 � log and � � d log q ,Ž .
1 � p

Ž .so that both 
 and � range over ��, 	� . Bernoulli percolation corresponds
Ž . Ž .to the case � � 0, and 
 , � � 0, 0 is Bernoulli percolation with edge

density 1�2. Except for Section 7, everything will be expressed in terms of
Ž . Ž . Ž .
 ,� rather than p, q . The finite-volume random-cluster measures of 1.1
become

1
� �� �2.2 � � � exp 
 � � � � 	 d� k � , � , � � � ,� 4Ž . Ž . Ž . Ž .� , 
 , � � ��Y� , 
 , �

with the normalizing factor
� � �Y � exp 
 � � � � 	 d� k � , �� 4Ž . Ž .Ý� , 
 , � �

�����2.3Ž .
� �� � ��� 1 � p Z .Ž . � , 
 , �

The class RR of random-cluster measures is the set of probability measures
 , �


 � MM that satisfy

2.4 
 A � � � A 
 d�Ž . Ž . Ž . Ž .H � , 
 , �

for all measurable sets A � � and all finite rectangles � � �d. RR� � RR
 , � 
 , �

� MM� is the subclass of translation-invariant random-cluster measures. By
Ž . � � �Theorem 3.2 a in 23 , RR is a nonempty convex set for each value
 , �

Ž . 2 �
 , � � � . It follows from Remark 3.12 below that RR is also compact.
 , �

Ž . Ž . 2The free energy f 
 , � is a finite, convex function of 
 , � � � , defined
by

1
�2.5 f 
 , � � lim log Y .Ž . Ž . � , 
 , �

d � ����� �

For the existence of the limit and its independence of � , see Theorem 4.1 in
� �23 .

For � � �, we define the following two bounded, continuous functions:
d

�1u � � d � e ,Ž . Ž .ˆÝ i
i�1
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where e is the ‘‘ith basic unit vector,’’ or the edge between the origin and theî
Ž .site 0, . . . , 0, 1, 0, . . . , 0 with the unique 1 in the ith slot, and

1
� � � ,Ž .

� �C �Ž .
Ž .where C � is the connected cluster of vertices containing the origin. The

usual convention 1�� � 0 is in force here. As already mentioned in the
Introduction, of central importance for our results is that

� �k � , � � � � � 	 O ��Ž . Ž . Ž .Ý x
x��

Ž .uniformly in �, so that in volume-order limits k �, � behaves essentially as
an empirical average of a continuous function.

For any � � MM�,
1

� �2.6 lim � � � � � � � uŽ . Ž . Ž .Ž .�
d � ����� �

and
d

2.7 lim � k � , � � � � .Ž . Ž . Ž .Ž .
d � ����� �

Ž . Ž .The quantity � u is the edge density of the measure �, and � � the cluster
density. A general translation-invariant measure may have d distinct edge
densities in different coordinate directions, hence the need for the d-fold

Ž .average in the definition of u � . It is clear from the form of the exponential
Ž .factors in 2.2 that, in the thermodynamic formalism of the model, the pair

Ž . Ž Ž . Ž .. Ž .s, t � � u , � � is the conjugate variable of 
 , � in the sense of convex
duality.

� � � �A remark about normalizing by � versus normalizing by � : we have�

� �chosen to normalize volume-order quantities by � . This is consistent with�

� �23 , and natural for certain quantities such as edge density. On the other
� �hand, empirical measures have to be normalized by � to make them

� � � �probability measures, and � is more convenient than � for arguments�

involving partitioning of rectangles into smaller rectangles. Consequently,
� �our choice of � forces some extra technicalities on us, especially in Section 7�

where the edge and spin models are treated jointly.

3. Large deviations and the variational principle. We start with
some familiar definitions of entropy. Let � be a translation-invariant proba-
bility measure on the configuration space �. For finite rectangles �, the

Ž .entropy H � of � on the finite space � is defined by� ��

� � � �H � � � � � log � � .Ž . Ž . Ž .Ý��

����

Ž . � �H � is a number between 0 and � log 2. The infinite-volume limit is given� ��

by
1

3.1 h � � lim H � .Ž . Ž . Ž .��d � ����� �
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Ž .We shall argue later that this limit exists and the function h � is upper
semicontinuous.

Ž � .The relative entropy or Kullback�Leibler distance H Q P of two probabil-
ity measures P and Q defined on a common measurable space is defined by

dQ
�3.2 H Q P � log dQŽ . Ž . H dP

Ž � . Ž .if Q � P, and H Q P � � otherwise. As a function of the pair Q, P ,
Ž � .H Q P is convex and lower semicontinuous in the product of weak topologies

Ž � . Ž � .of probability measures. H Q P � 0, and H Q P � 0 if and only if Q � P.
Working with relative entropy is made convenient by the variational formula

� � �3.3 H Q P � sup Q g � log P exp g ,� 4Ž . Ž .Ž . Ž .
g

where the supremum is over all bounded, measurable functions g. This
� �formula is originally due to Donsker and Varadhan 10 . Often it is desired to

restrict Q and P to a sub-�-field AA of the original �-field for the purpose of
Ž � . Ž � .computing entropy. Then we write H Q P � H Q P where now Q andAA AA AA AA

Ž � .P are the appropriate restrictions. Proofs of the basic properties of H Q PAA

� �can be found in 7, 8, 42 .
In particular, let �, � � MM�. For finite rectangles �, we have the relative

Ž � .entropy H � � of the restrictions � and � to the �-field FF . The� � � �� � � �

specific relative entropy of � and � is defined by

1
� �3.4 h � � � lim H � �Ž . Ž . Ž .��d � ����� �

Ž Ž� ..whenever this limit exists. For any choice � of boundary configurations,
Ž .possibly depending on the rectangles �, we define an entropy I � relative
 , �

to the random-cluster specification as the limit

1 Ž� .�3.5 I � � lim H � � ,Ž . Ž . ž /
 , � � � , 
 , ��d � ����� �

provided this limit exists.

Ž . 2 �THEOREM 1. Let 
 , � � � , and let � � MM be a translation-invariant
probability measure on �.

Ž . Ž . Ž .a The entropy I � defined by 3.5 exists and is independent of the
 , �

Ž Ž� ..choice of � . It satisfies

3.6 I � � f 
 , � � h � � 
� u � �� � .Ž . Ž . Ž . Ž . Ž . Ž .
 , �

I is a nonnegative, lower semicontinuous, affine function on MM�.
 , �

Ž . �b For any translation-invariant random-cluster measure 
 � RR , the
 , �

Ž � . Ž . Ž � . Ž .specific relative entropy h � 
 defined by 3.4 exists and h � 
 � I � .
 , �
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Ž � .In particular, h � 
 does not depend upon the choice of the member 
 of
� Ž � . �RR , and h � 
 � 0 for �, 
 � RR .
 , � 
 , �

Ž . Ž . Ž .c The entropy h � and the free energy f 
 , � satisfy the variational
formula

3.7 f 
 , � � sup h � 	 
� u 	 �� � .� 4Ž . Ž . Ž . Ž . Ž .
��� MM

Ž .The entropy I � appears as the rate function in the large deviation
 , �

Ž . dbounds of the empirical measure M � , defined for finite rectangles � � ��

by
1

3.8 M � � � .Ž . Ž . Ý� � �x� �� x��

Ž .The integral of a function g on � against M � is given by�

1
M � , g � g � � .Ž . Ž .Ý� x� �� x��

Ž . Ž .Extend the function I � to all of MM by declaring I � � 	� for
 , � 
 , �

� � MM � MM�. Let int A and cl A denote the weak interior and closure, respec-
tively, of a subset A � MM. The following theorem is the large deviation
principle.

Ž . 2THEOREM 2. For 
 , � � � and any measurable set A � MM,
1

�� inf I � 
 lim inf log inf � M � AŽ . Ž .
 , � � , 
 , � �
d � ����int A ������ �

1
�
 lim sup log sup � M � AŽ .� , 
 , � �� ��d �������

3.9Ž .


 � inf I � .Ž .
 , �
��cl A

Naturally, since the bounds are uniform in � , they are also valid for any
infinite-volume measure 
 � RR . Next comes the Dobrushin�
 , �

Lanford�Ruelle variational principle that characterizes membership in RR�

 , �

in terms of entropy.

Ž . 2 �THEOREM 3. Let 
 , � � � and 
 � MM . The following statements are
equivalent:

Ž . �i 
 � RR ;
 , �

Ž . Ž .ii I 
 � 0;
 , �

Ž . Ž . Ž . Ž . Ž . � Ž . Ž . Ž .4�iii h 
 	 

 u 	 �
 � � f 
 , � � sup h � 	 
� u 	 �� � .�� MM

Ž .As mentioned in the Introduction, when � � 0 equivalently, q � 1 , the
limiting measures

3.10 � 0 � lim � 0 and �1 � lim �1Ž . 
 , � � , 
 , � 
 , � � , 
 , �
d d��� ���
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� Ž � � .exist and belong to RR . Proofs can be found in 5, 23 . The measures
 , �

� 0 and �1 are invariant under permutations of the coordinate axes� , 
 , � � , 
 , �

when � is a cube centered at the origin. Consequently, this invariance holds
b b Ž . b Ž Ž ..for � , b � 0, 1, and there is an edge density � u � � � e which is
 , � 
 , � 
 , �

Ž .independent of e � �. The statement in Theorem 3 iii can then be written

3.11 f 
 , � � h � b 	 
� b � e 	 �� b � , b � 0, 1.Ž . Ž . Ž . Ž .Ž .Ž .
 , � 
 , � 
 , �

REMARK 3.12. A continuity property of random-cluster measures comes as
Ž . Ž .an easy consequence of the variational principle: suppose 
 , � � 
 , �n n

� � 4 �and 
 � RR . Then all limit points of 
 lie in RR . To prove this,n 
 , � n 
 , �n n
Ž . Ž . Žsuppose 
 � 
 . Then f 
 , � � f 
 , � f is continuous by virtue ofn n n
. Ž . Ž . Ž . Ž . Ž .finiteness and convexity , 
 u � 
 u , 
 � � 
 � and h 
 �n n

Ž .lim sup h 
 because h is upper semicontinuous. So the first equality ofn
Ž .Theorem 3 iii becomes in the limit

h 
 	 

 u 	 �
 � � f 
 , � ,Ž . Ž . Ž . Ž .
� Ž . Ž .which implies that 
 � RR and h 
 � h 
 .
 , � n

Ž .PROOF OF THEOREM 1. To prove the existence of the limit in 3.1 and the
upper semicontinuity of the resulting function of �, it is advantageous to add

² :some edges to � . Each edge e � x, y has a lower and an upper endpoint in�

a natural way, for either x 
 y for i � 1, . . . , d or vice versa. Given ai i
rectangle � � �d, let �

� be the set of edges whose lower endpoint lies in �,�

Ž . �
�and define the entropy H � exactly as before but now over the edge set � .� ��

Ž .For this entropy, the variational formula 3.3 takes the form

3.13 H � � inf log exp g � � � g ,Ž . Ž . Ž . Ž .ÝA ½ 5g A� 4�� 0, 1

where A is now any set of edges and the infimum is over all functions g on
� 4 Athe finite space 0, 1 . From this, it is clear that if � � � � �� , then0 1 1

H � � H � � � H � ,Ž . Ž . Ž .� � �� � �0 0 1

Ž . � � ��1 Ž .�and consequently, the limit in 3.1 will be the same for � H � . The� ��

advantage of using �
� is that, for a fixed � and a larger growing rectangle�

� , �
� can be covered with disjoint translates of �

� and a remainder set of1 � �1
Ž � � � �.O �� � � edges. But translates of � cannot be packed disjointly inside �1 � �1

Ž � � � � � �. Žwithout missing O �� � � � � edges think of the edges connecting neigh-1
. Ž � �.boring disjoint translates of � , and this remainder is not o � .1

Ž .Now 3.13 implies in a standard way a subadditivity from which follows
Ž .that the limit in 3.1 exists and that

1
�3.14 h � � inf H � .Ž . Ž . Ž .� ��� ��� �
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Ž . Ž . Ž Ž� ..The existence of the limit I � in 3.5 , its independence of the �
 , �

Ž .and 3.6 are all consequences of the equality

� � � �� �H � � �log Y �H � �
� � � � � �d�� k � , � ,Ž . Ž . Ž .Ž .Ž .ž /� � , 
 , � � , 
 , � � �� �

Ž . Ž . Ž .the limits in 2.5 � 2.7 and 3.1 and the observation that
0 � � �3.15 0 
 k � , � � k � , � 
 ��Ž . Ž . Ž .

for � � � and � � �.�

Ž . Ž .Equation 3.13 implies that H � is a concave function of �, hence so is��

Ž . Ž .h � . Convexity of h � follows from the inequality

� �tx 	 1 � t y log tx 	 1 � t y � tx log x 	 1 � t y log y � x � y �e,Ž . Ž . Ž .Ž . Ž .
Ž . Ž � �. Ž .valid for x, y � 0 and t � 0, 1 see Exercise 4.4.41 in 8 . Thus h � is

Ž . Ž .affine in �, and the same follows for I � by virtue of 3.6 . The lower
 , �

Ž . Ž . Ž . Ž .semicontinuity of I � follows similarly: 3.13 and 3.14 imply that h �
 , �

is upper semicontinuous, and since u and � are bounded continuous func-
Ž . Ž .tions on �, 3.6 implies the lower semicontinuity of I � .
 , �

Ž � .The existence of the specific relative entropy and the equality h � 
 �
Ž . �I � for 
 � RR follow from
 , � 
 , �

� 0 � �� � � �log � � � log � � � O �� ,Ž .Ž . Ž .� , 
 , � � , 
 , �

valid uniformly in � � � and � � � .�

Ž .We postpone the proof of part c until after the proof of Theorem 2. �

Ž .PROOF OF THEOREM 2. First consider the large deviation bounds 3.9 with
� � replaced by B , the i.i.d. Bernoulli measure on the edges of � with� , 
 , � 1�2
edge density 1�2. Standard arguments show that the large deviation princi-

Ž � . Ž .ple holds with the rate function h � B which, in fact, equals I � . See,1�2 0, 0
� � Žfor example, 15, 31 . The i.i.d. results are typically proved for spins on the

sites rather than for edge variables, but converting a site proof to an edge
.proof is not problematic.

Next, note that

� � M � � A � B M � � � A ,Ž . Ž .Ž . Ž .� , 0, 0 � 1�2 �

Ž . Ž � . dand that M � and M � come close in the weak topology, as � � � ,� �

uniformly in both � and � . This, the compactness of MM and the lower
Ž . Ž .semicontinuity of I � allow one to derive the uniform bounds 3.9 for the0, 0

Ž . Ž .case 
 , � � 0, 0 .
Ž . �Now let 
 , � be general. Before obtaining � , though, we need one� , 
 , �

more intermediate step, to avoid problems due to lack of quasilocality: define
the probability measure � � for � � � � by� �

1
� �� �� � � exp � M � , 
 u 	 �� � � ,� 4Ž . Ž . Ž .� � � � , 0, 0�W�

where W � is the appropriate normalizing factor. The point here is to trans-�

form � � with a continuous exponential factor. An explicit calculation� , 0, 0
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shows that

1
�3.16 lim log W � f 
 , � � log 2,Ž . Ž .�

d � ����� �

� �uniformly in � . Following Exercise 2.1.24 in 8 , we see that the uniform large
Ž . � Ž .deviation bounds 3.9 hold for � M � A with rate function� �

� � I � � 
� u � �� � 	 f 
 , � � log 2,Ž . Ž . Ž . Ž .0, 0

Ž . Ž .which equals I � by 3.6 and because
 , �

3.17 I � � log 2 � h � .Ž . Ž . Ž .0, 0

Finally, we can replace � � by � � on account of� � , 
 , �

� � � � � �� M � , 
 u 	 �� � 
 � � � � 	 d� k � , � 	 O �� ,Ž . Ž . Ž . Ž .� � �

which is valid uniformly in � � �. �

Ž .PROOF OF THEOREM 1, PART C . This is a consequence of Varadhan’s
Ž� � . Ž .theorem 8 , Theorem 2.1.10 applied to the limit in 3.16 , together with the

Ž . Ž . Ž . Ž .large deviation bounds 3.9 for 
 , � � 0, 0 and 3.17 . �

As preparation for the proof of Theorem 3, we first argue that a measure 

Ž . � �with I 
 � 0 satisfies the so-called finite energy condition 30 , which
 , �

guarantees the a.s. uniqueness of an infinite cluster.

� Ž .LEMMA 3.18. Suppose 
 � MM satisfies I 
 � 0. Let 	 be any finite set
 , �
d �² : 4of vertices of � and, as before, � � x, y : x, y � 	 . Then there is a	

Ž� � � . � 4�	cconstant c � 0 such that 
 � FF � c 
-a.s. for all � � 0, 1 .0 � Ž	 . 0

� 4�	 � 4� c
	PROOF. Pick and fix � � 0, 1 . Let K be any event in 0, 1 that

depends on only finitely many edges. Pick a cube � centered at the origin and
large enough so that 	 � � and K is FF -measurable. Let m be a large��

positive integer, and let � denote the cube obtained as a disjoint union of md
1

copies of �, translated by the vertices x , . . . , x d :1 m

md

3.19 � � x 	 � .Ž . Ž .�1 i
i�1

Let � � � and0

3.20 � � x 	 � 
 ��� 
 x 	 � , k � 1, 2, . . . , md .Ž . Ž . Ž .k 1 k

Finally, let A be the set of edges that satisfiesk

3.21 � A � � � � � � , k � 1, 2, . . . , md .Ž . x k � Ž x 		 . �k k k k�1
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Next, a calculation with entropy. Since there is a measure � � RR� , by
 , �

Ž . Ž � .Theorem 1 we can obtain I 
 by calculating h 
 � :
 , �

�H 
 �Ž .� Ž� .1

md

� �� H 
 � � H 
 �Ž . Ž .� 4Ý � Ž� . � Ž� .k k�1
k�1

md

� �� H 
 � � H 
 �Ž . Ž .� 4Ý � Ž� �x . Ak k k
k�13.22Ž .
md

�� H 
 � FF � � FF d
Ý H ž / ž /ž /� Ž� �x . A Ak k k k
k�1

md

� �� ��
 � FF � log � exp �� I FF d
 .Ž .Ý H ½ 5ž / ž /A � � � Ak k
Kk�1

The first inequality above comes from translation invariance and the mono-
Ž .tonicity of entropy, together with the inclusion relation in 3.21 . The second

� �equality comes from the conditional entropy formula, Lemma 4.4.7 in 8 .
Ž � .Here 
 � FF is the conditional probability of 
 , given the �-field FF . TheA Ak k

last inequality comes from two steps: first restrict the integration to the event
Ž . Ž . Ž .K ; then apply the variational formula 3.3 to the function f � � �� I �� � �

where � is a positive constant. The inclusion � � x � � � 	, valid for allk k
k � 1, . . . , md, is needed here.

Ž .Now notice that, by the form 2.2 of the finite-volume specification and the
Ž .DLR condition 2.4 on �, there is a constant c � 0 such that0

�� �� � FF � cŽ .A 0k

holds �-a.s. for all choices of � � 	, all k � 1, . . . , md and for all m. Hence,
c�� � � � �� exp �� I FF � e � � FF 	 � � FFž /ž / ž /� � � A A Ak k k


 1 � 1 � e�� cŽ . 0

is true �-a.s. and, consequently, also 
-a.s. because � charges all the atoms of
Ž .the finite �-field FF . Continuing from the calculation in 3.22 , we getAk

�H 
 �Ž .� Ž� .1

md

d ��� �� �� 
 � FF d
 � m 
 K log 1 � 1 � e cŽ . Ž . Ž .Ž .Ý H ž /A 0k
Kk�1

3.23Ž .

d � � d ��� �� m 
 K � � � m 
 K log 1 � 1 � e c .Ž . Ž .Ž . Ž .0

d Ž d .Now divide through by m , and let m � � equivalently, � � � while1
Ž � .holding � fixed, and use the equality h 
 � � 0:

� � ��0 � ��
 K � � � 
 K log 1 � 1 � e c .Ž . Ž .Ž . Ž .0
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Divide through by � and let � � 0 to get

� �
 K � � � c 
 K .Ž .Ž . 0

Since K was an arbitrary finite-dimensional event, the conclusion follows. �

Ž . Ž .PROOF OF THEOREM 3. The equivalence ii � iii and the implication
Ž . Ž . Ž . Ž .i � ii are contained in Theorem 1, so it only remains to prove ii � i . As
has been observed by many authors, the uniqueness of the infinite component
for random-cluster measures plays a role similar to that of quasilocality for

� �Gibbsian lattice systems. From the version of the Burton�Keane 6 unique-
� �ness theorem given as Theorem 1 in 19 and from Lemma 3.18, it follows

Ž .that if I 
 � 0, then 
-a.s. there is at most one infinite component. Pick
 , �
� Ž . � �and fix an element � � RR . As remarked earlier, Theorem 3.2 a in 23
 , �

Ž . Ž .allows us to do so. The implication ii � i will follow from proving this
statement:

If there is at most one infinite component 
-a.s.
3.24Ž . � Ž � .and 
 � RR , then h 
 � � 0.
 , �

The rest of our proof is similar to earlier arguments given for Gibbsian
� �systems 35, 9 .

Since 
 � RR� , there is a finite rectangle 	 such that the probability
 , �

measures 
 and

˜ �
 � � � 
 d�Ž . Ž .H 	 , 
 , �

are distinct. Consequently, they differ on FF for some finite rectangle � � 	� �

centered at the origin, and then there is an � � 0 such that

˜�0�� 
 H 
 
Ž .� Ž� .

˜� H 
 � FF � 
 � FF d
 .Ž . Ž .H ž /� Ž	 . � Ž� .�� Ž	 . � Ž� .�� Ž	 .

3.25Ž .

˜The equality follows from the conditional entropy formula because 
 and 

coincide on the �-field FF . We shall write this as� Ž� .�� Ž	 .

�� 
 H 
 � FF � � FF d
Ž . Ž .H ž /� Ž	 . � Ž� .�� Ž	 . � Ž� .�� Ž	 .

3.26Ž .
	 log Q d
 ,H 	 , �

where
�� � � � � � �Ž . Ž .Ž .	 � 	

Q � � .Ž .	 , � ˜ �
 � � � � � �Ž . Ž .Ž .	 � 	

The above notation means the conditional probability of the cylinder event
� Ž .� Ž .� � , given the realization � � � � . At this point, we insert a technical	 � 	

lemma.
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LEMMA 3.27. Given the rectangle 	 and � � 0, there exists a rectangle �
such that � � 	 and

�
3.28 log Q d
 
Ž . H 	 , � 2

for all rectangles � � �.

Ž .PROOF. To prove the lemma, rewrite Q � as	 , �

�
� � �H� � � � d� � � � �Ž . Ž .Ž .Ž .	 , 
 , � 	 � 	

Q � � .Ž . ��	 , � � � �H� � � 
 d� � � � � �Ž . Ž .Ž .Ž .	 , 
 , � 	 � 	

Now suppose that, for this fixed �, � is chosen so large that no finite
Ž d Ž ..connected component of the graph � , � � that intersects 	 is connected to

a boundary vertex of �, and so large that if two vertices x, y � 	 are
Ž d Ž .. Ž d Ž . .connected in � , � � , they are also connected in � , � � � � . If � has�

Ž � . Ž � � .at most one infinite component, it follows that k � , 	 � k � , 	 for all� �

� , � � � �, so
���� �� �� � � � � � � for all � , � � � � ,Ž . Ž .Ž . Ž .	 , 
 , � 	 	 , 
 , � 	

Ž . Ž .and consequently Q � � 1. Thus 
-a.s. log Q � converges to zero as	 , � 	 , �

� � �d. The lemma follows from the bound

� � � �log Q � 
 O �	 uniformly in � and � ,Ž . Ž .	 , �

Ž .a consequence of inequalities 3.15 . �

Ž .Returning to the proof of statement 3.24 , choose a cube �, centered at the
Ž . Ž .origin, large enough so that � � 	 and both 3.25 and 3.28 hold for � � �.

� Ž .By the monotonicity of entropy, the validity of 3.25 is not jeopardized by
�increasing �.

Exactly as in the proof of Lemma 3.18, let � and � , . . . , � d be as in1 0 m
Ž . Ž . Ž .3.19 � 3.20 . Let 	 � x 	 	 be the translate of 	. Then inequalities 3.26k k

Ž .and 3.28 give, for each k,
�

� 
 H 
 � FF � � FF d
 	H ž / ž /ž /� Ž	 . � Ž� .�� Ž	 . � Ž� .�� Ž	 .k k k k k 2
�

� �� H 
 � � H 
 � 	Ž . Ž .� Ž� . � Ž� .�� Ž	 .k k k 2
�

� �
 H 
 � � H 
 � 	 ,Ž . Ž .� Ž� . � Ž� .k k�1 2
where we need again both the conditional entropy formula and the mono-
tonicity of entropy. Adding up these inequalities gives

md

� � �H 
 � � H 
 � � H 
 �Ž . Ž . Ž .� 4Ý� Ž� . � Ž� . � Ž� .1 k k�1
k�1

� md��2,
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� � Ž � . Ž � �.from which, by dividing by � and by letting m � �, h 
 � � �� 2 � � 0.� �1

This completes the proof of Theorem 3. �

Ž . � �24. The convex conjugate of free energy. For a point s, t � 0, 1 ,
let
4.1 J s, t � �sup h � : � � MM� , � u � s, � � � t ,� 4Ž . Ž . Ž . Ž . Ž .

where, as usual, the supremum of an empty set is equal to ��. Since
Ž . Ž . Ž .0 
 h � 
 log 2, we have that either �log 2 
 J s, t 
 0 or J s, t � 	�.

Ž Ž . Ž .. Ž . �The former happens iff � u , � � � s, t for some � � MM , and then the
supremum in the definition is attained at some measure �, by the upper

Ž . �semicontinuity of h � and the compactness of the space MM . From this and
Ž .the affinity of h � , it follows that J is a lower semicontinuous convex

2 Ž . Ž . � �2function. Extend J to all of � by declaring J s, t � 	� for s, t � 0, 1 .
� �Then, in the language of Rockafellar 36 , J is a closed, proper convex

function.
The effective domain dom J of J is given by

dom J � s, t � �2 : J s, t � �� 4Ž . Ž .
4.2Ž .

� � u , � � : � � MM� .� 4Ž . Ž .Ž .
� �2It is a compact convex subset of 0, 1 . Perhaps surprisingly, elementary

combinatorial estimates suffice for a complete description of dom J, given
in the next theorem. Let RR� be the set of all translation-invariant random-

� Ž . 2cluster measures, that is, the union of all collections RR over 
 , � � � .
 , �

� Ž Ž . Ž ..THEOREM 4. The image of MM under the map � � � u , � � is the
Ž . Ž . Ž . �closed triangle with vertices 1�d, 0 , 1, 0 and 0, 1 . The set RR maps onto

the interior of this triangle; in other words,
4.3 int dom J � 
 u , 
 � : 
 � RR� .� 4Ž . Ž . Ž . Ž .Ž .

The next theorem contains the convex duality of J and f and some
properties related to it. The boundary bd A of a set A is the difference

Ž .between the closure cl A and the interior int A. The subdifferential � J s, t
Ž .of the convex function J is the set of subgradients 
 , � that satisfy

4.4 J s�, t� � J s, t � 
 s� � s 	 � t� � tŽ . Ž . Ž . Ž . Ž .
Ž . 2 Ž . Ž .for all s�, t� � � . J is differentiable at s, t iff � J s, t is a singleton set,

Ž .and then the gradient �J s, t is the unique subgradient. The reader is
� �referred to 36 for the convex analysis used here.

Ž .THEOREM 5. a J and the free energy f are convex conjugates in the sense
that
4.5 f 
 , � � sup 
 s 	 � t � J s, t� 4Ž . Ž . Ž .

2Ž .s , t ��

and
4.6 J s, t � sup 
 s 	 � t � f 
 , � .� 4Ž . Ž . Ž .

2Ž .
 , � ��



¨ ¨T. SEPPALAINEN1154

Ž . Ž .b J is continuously differentiable on int dom J , and the gradient �J
Ž . 2 Ž . Ž . Ž .maps int dom J onto � according to this rule: �J s, t � 
 , � iff s, t �

Ž Ž . Ž .. � Ž .
 u , 
 � for some 
 � RR . The subdifferential � J s, t is empty for
 , �

Ž . Ž .s, t � bd dom J .
Ž . Ž . 2 Ž .c For each 
 , � � � , the subdifferential � f 
 , � is a nonempty com-

Ž .pact, convex subset of the open triangle int dom J , given by

4.7 � f 
 , � � 
 u , 
 � : 
 � RR� .� 4Ž . Ž . Ž . Ž .Ž . 
 , �

Ž . Ž .The sets � f 
 , � are mutually disjoint, and their union equals int dom J .

There is also a combinatorial definition of J: for a configuration � � � and
� Ž . �� � 0, let N s, t, � be the number of configurations � � � that simultane-� �

ously satisfy

� �� � � � k � , �Ž . Ž .�
4.8 � s � � , s 	 � and � t � � , t � � .Ž . Ž . Ž .

� � � �� ��

Then
1

�4.9 J s, t � � lim lim sup log N s, t , � ,Ž . Ž . Ž .�� ����0 d ����

Ž .as can be verified with the help of Theorem 2 and 3.17 .
Finally, some remarks about the measures that map into the boundary of

Ž Ž . Ž .. Ž .the triangle dom J via � � � u , � � . Obviously, the vertices 0, 1 and
Ž .1, 0 are images of the point masses on the configurations � � 0 and � � 1,

Ž .respectively. Among the many measures that map on the vertex 1�d, 0 is
U � �the uniform spanning tree measure � of Pemantle 32 . This measure has

edge density 1�d because it is a limit of uniform measures on spanning trees
Ž . � �of finite graphs �, � , and each such tree has � � 1 edges, or approxi-�

� � � �mately � �d. Haggstrom 24 proved that as 
 � ��, � � �� and 
 � d�¨ ¨�
U Ž .� 	�, elements of RR converge to � . The boundary points s, 0 for
 , �

1�d � s � 1 are, of course, images of convex combinations of �U and � , but1
also of these ergodic measures: let B be the Bernoulli measure with edger
density r, and let � be the image of the ergodic product measure �U � Br

Ž .under the map �, �� � � � ��. Then � itself is ergodic, and satisfies
Ž Ž . Ž .. Ž Ž . . Ž� u ,� � � 1�d 	 r 1 � 1�d , 0 . In other words, to pick a configuration
under �, first pick a configuration under �U and then add missing edges by

.flipping independent coins.
We start the proofs with Theorem 5. As a preliminary observation, we

record the following consequence of the variational principle.

Ž . Ž .LEMMA 4.10. Suppose 
 , � � 
 �, � � , and we have two random-cluster
measures 
 � RR� and 
 � � RR� . Then
 , � 
 �, � �

4.11 0 � 
 � � 
 
 � u � 
 u 	 � � � � 
 � � � 
 � .Ž . Ž . Ž . Ž . Ž . Ž . Ž .
In particular, two random-cluster measures for distinct parameter values

Ž Ž . Ž .. Ž Ž . Ž ..cannot satisfy 
 u , 
 � � 
 � u , 
 � � .
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PROOF. First note that the classes RR are mutually disjoint. For sup-
 , �

Ž .pose 
 � RR � RR . Then, by the DLR equation 2.4 , we have
 , � 
 �, � �

� � � � � �� � g � 
 d� � � � g � 
 d�Ž . Ž . Ž . Ž .Ž . Ž .H H� , 
 , � � , 
 � , � �

for all � � � and bounded, FF c-measurable g. From this follows� � Ž� .
� � � � � �� � � � � for 
-a.e. � ,Ž . Ž .� , 
 , � � , 
 � , � �

Ž . Ž .which forces 
 , � � 
 �, � � .
Since 
 � � RR� and 
 � RR� , the variational principle gives us the
 , � 
 �, � �

strict inequalities

h 
 	 

 u 	 �
 � � h 
 � 	 

 � u 	 �
 � �Ž . Ž . Ž . Ž . Ž . Ž .
and

h 
 � 	 
 �
 � u 	 � �
 � � � h 
 	 
 �
 u 	 � �
 � .Ž . Ž . Ž . Ž . Ž . Ž .
Ž .A rearrangement of these gives 4.11 . �

Ž . Ž .PROOF OF THEOREM 5. Part a : Equation 4.5 is a direct consequence of
Ž . Ž . Ž .3.7 and the definition 4.1 of J. Equation 4.6 then follows from Theorem

� �12.2 in 36 .
Ž . Ž .Parts b and c are proved in stages.

Ž . Ž . Ž . Ž .CLAIM 1. Suppose 
 , � � � J s, t . Then J s, t � �h 
 for some 
 �
� Ž Ž . Ž .. Ž . �RR that satisfies 
 u , 
 � � s, t . Conversely, if 
 � RR , then
 , � 
 , �

Ž Ž . Ž .. Ž . Ž . Ž Ž . Ž ..J 
 u , 
 � � �h 
 and 
 , � � � J 
 u , 
 � .

Ž . Ž .PROOF. Since � J s, t is nonempty, s, t must lie in dom J, and so there
� Ž Ž . Ž .. Ž . Ž .exists a measure 
 � MM that satisfies 
 u , 
 � � s, t and J s, t �

Ž . Ž . Ž . � ��h 
 . 
 , � � � J s, t implies, by 36, Theorem 23.5 , that

f 
 , � � 
 s 	 � t � J s, tŽ . Ž .
� h 
 	 

 u 	 �
 � ,Ž . Ž . Ž .

and then 
 � RR� follows from Theorem 3, the variational principle.
 , �

Ž . Ž .For the converse part, the variational principle implies that h 
 � h �
� Ž Ž . Ž .. Ž Ž . Ž ..for all � � MM that satisfy � u , � � � 
 u , 
 � , from which follows

Ž Ž . Ž .. Ž . Ž . Ž Ž . Ž ..J 
 u , 
 � � �h 
 . The inclusion 
 , � � � J 
 u , 
 � follows from

f 
 , � � 

 u 	 �
 � � J 
 u , 
 �Ž . Ž . Ž . Ž . Ž .Ž .
� �and 36 , Theorem 23.5. This proves Claim 1.

Ž .CLAIM 2. � J s, t contains at most one element, and so J is differentiable
Ž . Ž .at s, t whenever � J s, t is nonempty.

Ž . Ž . Ž .PROOF. If � J s, t contains two distinct elements 
 , � and 
 �, � � , then
� � Ž .by Claim 1 there are measures 
 � RR and 
 � � RR that satisfy s, t �
 , � 
 �, � �

Ž Ž . Ž .. Ž Ž . Ž ..
 u , 
 � � 
 � u , 
 � � and thereby violate Lemma 4.10. The differen-
� �tiability of J follows from 36 , Theorem 25.1.
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Ž . � � Ž .We can now complete the proof of part b . By 36 , Theorem 23.4, s, t �
Ž . Ž .int dom J implies that � J s, t is nonempty, so by Claim 2, J is differen-

Ž . � �tiable on int dom J . From 36 , Corollary 25.5.1 follows the continuous
Ž . Ž . Ž .differentiability of J. Suppose s, t � bd dom J . If � J s, t were nonempty,

� �then by 36 , Theorem 23.4 it would have to be unbounded, contradicting
Ž .Claim 2. Together this shows that int dom J is precisely the set on which J

�Ž Ž . Ž .. � 4is subdifferentiable, and by Claim 1 this is exactly 
 u , 
 � : 
 � RR .
� Ž . � Ž .This proves 4.3 , which is needed in the next paragraph. The map s, t �
Ž . Ž . Ž . 2
 , � � �J s, t is well defined on int dom J , and maps onto � by Claims
1 and 2.

Ž . � �Part c : A subdifferential is always a closed convex set 36 , page 215. By
� � Ž . Ž . Ž . Ž .36 , Theorem 23.5 and Claim 1, s, t � � f 
 , � iff 
 , � � � J s, t iff
Ž . Ž Ž . Ž .. � Ž . Ž .s, t � 
 u , 
 � for some 
 � RR . This gives 4.7 . � f 
 , � �
 , �

Ž . Ž .int dom J , mutual disjointness and the fact that the � f 
 , � cover
Ž . Ž . Ž .int dom J , follow from 4.3 , 4.7 and Lemma 4.10. �

For the proof of Theorem 4, first a combinatorial lemma. A subgraph of
Ž d . Ž . d� , � is any pair V, E of subsets V � � and E � � such that x, y � V for

² :all x, y � E.

Ž . Ž d . � �LEMMA 4.12. Suppose V, E is a finite subgraph of � , � . Then E 

Ž � � .d V � 1 .

� �PROOF. The statement of the lemma holds if V � 1 or 2. Let V be
arbitrary, and assume by induction that the statement holds for any sub-

Ž . Ž d . � � � �graph V �, E� of � , � with V � 
 V � 1.
Let v be the minimal element of V under lexicographic ordering. Then0

the degree of v is less than or equal to d because the edges incident to v0 0
must be toward increasing directions along coordinate axes. Remove v and0

Ž .the edges incident to it, and call the resulting graph V �, E� . By induction,
� � Ž � � . � � � � � � � �E� 
 d V � � 1 , which, together with E 
 E� 	 d and V � V � 	 1, im-

� � Ž � � .plies E 
 d V � 1 . �

COROLLARY 4.13. For all � � � and finite rectangles � � �d,
1

� � � �4.14 k � , � 
 � � � � � � .Ž . Ž . Ž . �d
Ž 0 . Ž .PROOF. Since k � , � � k �, � for all � � �, it suffices to derive the

0 Ž . Ž 0 .result for � . Let V , E , i � 1, . . . , k � , � , be the connected components ofi i
Ž Ž . .the graph �, � � � � . Then, by the lemma,�

Ž 0 .k � , �

� � � �� � � � � EŽ . Ý� i
i�1
Ž 0 .k � , �

0� �
 d V � dk � , �Ž .Ý i
i�1

4.15Ž .

� � 0� d � � dk � , � ,Ž .
and the conclusion follows. �
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Ž .PROOF OF THEOREM 4. The paragraph after 4.9 indicates that dom J
Ž . Ž . Ž .contains the points 1�d, 0 , 1, 0 and 0, 1 . Since dom J is closed and

convex, it follows that the triangle spanned by these points is contained in
dom J. To prove that dom J is contained in this triangle, we show that
Ž .s, t � dom J implies

4.16 t � 1 � dsŽ .
and
4.17 t 
 1 � s.Ž .

Ž . Ž .To prove 4.16 , draw in the edges of � � � � one by one. Initially,�

Ž . � �k 0, � � � and all vertices of the rectangle � are isolated. Since each edge
reduces the number of components by 0 or 1, we get

0 � � � �k � , � � � � � � � �Ž . Ž . �

Ž .and then by 3.15 ,

� � � � � �4.18 k � , � � � � � � � � � �� .Ž . Ž . Ž . �

Ž . � � � dIntegrate 4.18 against an arbitrary � � MM , divide by � , let � � � and
Ž . Ž . Ž . Ž . Ž .use 2.6 � 2.7 . This gives 4.16 . Inequality 4.17 comes similarly from 4.14 .

Ž . Ž .Finally, 4.3 was already argued in the proof of Theorem 5 b . �

5. The phase transition. The next theorem extends the characteriza-
� � Ž .tions in 23 of the set of 
 , � for which there is a unique random-cluster

b Ž . � 4measure. The measures � , b � 0, 1, are defined as in 3.10 and 0 � �
 , �

denotes the event that the connected cluster at the origin is infinite, equiva-
Ž . Ž .lently that � � � 0. Differentiability of f at 
 , � has its standard mean-

ing, namely that

� �f 
 �, � � � f 
 , � ��f 
 , � � 
 ��
 , � ��� 	o 
 �, � � � 
 , � .Ž . Ž . Ž . Ž . Ž . Ž .Ž .
However, for convex functions, the existence of all partial derivatives is

� �equivalent to differentiability 36 , Theorem 25.2.

Ž .THEOREM 6. Suppose � � 0 q � 1 and 
 � �. The following statements
0 1 � �are all equivalent to � � � , which in turn is equivalent to RR � 1:
 , � 
 , � 
 , �

Ž . Ž .i f is differentiable at 
 , � ;
Ž . Ž .Ž .ii � f��
 
 , � exists;
Ž . Ž .Ž .iii � f��� 
 , � exists;
Ž . 0 Ž Ž .. 1 Ž Ž ..iv � � e � � � e ;
 , � 
 , �

Ž . 0 Ž . 1 Ž .v � � � � � ;
 , � 
 , �

Ž . 0 Ž . 1 Ž .vi � 0 � � � � 0 � � .
 , � 
 , �

Underlying the theorem are these formulas for the left and right deriva-
tives of f : for � � 0 and all 
 � RR� ,
 , �

� f � f
0 15.1 
 , � � � � e 
 
 u 
 � � e � 
 , �Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .
 , � 
 , �� 	�
 �
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and

� f � f
1 05.2 
 , � � � � 
 
 � 
 � � � 
 , � .Ž . Ž . Ž . Ž . Ž . Ž .
 , � 
 , �� 	�� ��

Not much of Theorem 6 can be salvaged for � � 0, due to the lack of a
comparison principle for random-cluster measures. Presently we have the
following result.

Ž .THEOREM 7. For arbitrary 
 , � , the following hold:

Ž . Ž . �a If f is not differentiable at 
 , � , then RR cannot be a singleton.
 , �

Ž . Ž . Ž . �b If � f��
 exists at 
 , � , then 
 u is a constant over 
 � RR , and
 , �

Ž .similarly for � f��� and 
 � .

Ž . Ž . � �The first part of statement b appeared as Theorem 4.5 a in 23 .
Ž .Let DD be the set of values 
 , � at which f is not differentiable.

According to Theorem 6, in the half-space � � 0, the set DD is such that its
intersection with any horizontal or vertical line is at most countable. This is

Ž .because 
 , � � DD if either � f��
 or � f��� exists, and because the deriva-
Ž .tive of a single variable convex function exists at all but at most countably

many points. We cannot make the same statement about DD in the comple-
mentary half-space � � 0 because we do not know whether the existence of
one partial derivative implies the existence of the other and thereby the
differentiability of f.

An important question is whether, in the event of a phase transition, all
� 0 1 Žmembers of RR are convex combinations of � and � speaking now
 , � 
 , � 
 , �

.about the case � � 0 . The answer is known for large enough � : there is a
Ž . Ž .unique critical 
 � such that RR is a singleton for 
 � 
 � , while atc 
 , � c

Ž . �
 � 
 � , RR is the convex hull of the distinct extreme measuresc 
 Ž� ., �c
0 1 � �� and � 28 .
 Ž� ., � 
 Ž� ., �c c

Ž .This question can be asked in two stages. First, does � f 
 , � contain
Ž 0 0. Ž 1 1.anything else besides the line segment from s , t to s , t ? Here we have

written

5.3 sb , t b � sb 
 , � , t b 
 , � � � b � e , � b � b � 0, 1.Ž . Ž . Ž . Ž . Ž . Ž .Ž .Ž . Ž .
 , � 
 , �

If the answer is yes, then not all random-cluster measures are convex
0 1 Ž .combinations of � and � , by 4.7 . But if the answer is no, we have to
 , � 
 , �

ask further whether it is possible to have distinct 
 , 
 � � RR� such that
 , �

Ž Ž . Ž .. Ž Ž . Ž ..
 u , 
 � � 
 � u , 
 � � . Presently, we do not know if this can happen.
Lemma 4.10 precludes such a possibility if 
 and 
 � are random-cluster
measures for distinct parameters.

The next section gives a partial answer to the first question for two
Ž .dimensions. The next theorem gives bounds on � f 
 , � that follow from

stochastic monotonicity. Note that s1 � s0, t 0 � t1 and also ds0 	 t 0 
 ds1 	
1 � Ž . � Ž 0 .t because � � � � 	 k � , � is an increasing function of �.�
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Ž . Ž .THEOREM 8. Suppose � � 0 q � 1 . On the s, t -plane, the compact
Ž . Ž 0 0. Ž 1 1.convex set � f 
 , � contains the line segment from s , t to s , t , and is

Ž 0 0. Ž 1 Ž 0contained in the closed parallelogram with vertices s , t , s � t �
1. 0. Ž 1 1. Ž 0 Ž 0 1. 1. Žt �d, t , s , t and s 	 t � t �d, t in clockwise order from the

. Ž 0 0. Ž 1 1. Ž .upper left corner . Except for the corners s , t and s , t , � f 
 , � does
not contain any other points on the horizontal lines t � t 0 and t � t1.

Ž .Finally we address the issue of how the subdifferentials � f 
 , � are
Ž .situated relative to each other as 
 , � varies. Let H denote the event thate

the endpoints of the edge e are in distinct connected clusters. Below, we write

 for an arbitrary translation-invariant random-cluster measure for pa-
 , �

Ž .rameters 
 , � .

Ž .THEOREM 9. a The following holds for all � : for a fixed � , the edge
Ž .density 
 u depends on 
 in a strictly increasing fashion; in other words,
 , �

Ž . Ž . �if 
 � � 
 , then 
 u � 
 u for all choices 
 � RR and 
 �
 �, � 
 , � 
 , � 
 , � 
 �, �
� Ž .RR . Similarly, the cluster density 
 � is strictly increasing in its
 �, � 
 , �

dependence on � as 
 is held fixed.
Ž . Ž .b For � � 0, further monotonicities hold: 
 u is strictly decreasing in
 , �

Ž .its dependence on � , and 
 � is strictly decreasing in its dependence on 
 .
 , �

More precisely, suppose 
 
 
 
 
 � 
 
 and 0 
 � 
 � 
 � � 
 � and0 1 0 1
1 Ž . 0 Ž Ž ..let A � � H � � e � 0. Then
 , � e 
 , �1 0 0 1

5.4 
 u � 
 u 
 �Ad � � � � if � � � �Ž . Ž . Ž . Ž .
 , � � 
 , �

and
5.5 
 � � 
 � 
 �Ad 
 � � 
 if 
 � � 
 .Ž . Ž . Ž . Ž .
 � , � 
 , �

Ž .Part a is an immediate consequence of Lemma 4.10, and is really the
Ž .simplest constraint on the edge and cluster densities that inequality 4.11

Ž .yields. A weaker version of the first statement of part a appeared as
Ž . � � Ž .Theorem 4.5 b in 23 . Part b is proved by an estimate of the mixed second

Ž .partial derivative of f 
 , � in finite volume. This we prove with the help of
Ž .the FKG inequality; hence the need for � � 0. For � � 0, inequality 4.11 can

� �be combined with the standard comparison inequalities 23 , Theorems 2.2 to
obtain further constraints on the edge and cluster densities’ dependence on
Ž .
 , � .

We begin the proofs with a technical lemma and then argue Theorem 6.

LEMMA 5.6. Assume the following: 
 � RR� , 
 � � RR� , 
 � 
 
 , 
 
 
 �
 , � 
 �, � �

Ž . Ž .and 
 � � 
 � � . Then 
 � 
 �.

PROOF. Let P be the standard coupling of 
 and 
 � on the space
�Ž . 2 4 � ��, � � � : � 
 � as given, for example, by 29 , Theorem II.2.4. P can be
assumed translation-invariant; for if it is not, replace it with any limit point

Ž .of the averages of P under translations. Let C x, � be the connected cluster
Ž d Ž .. Ž .containing vertex x in the graph � , � � , and correspondingly for C x, � .
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Ž . Ž . Ž . Ž . Ž .By the ordering C x, � � C x, � for all pairs �, � . But 
 � � 
 � � and
� � Ž . ��1 � � � Ž . ��1 �translation-invariance imply that E C x, � � E C x, � and conse-

Ž . Ž .quently, C x, � � C x, � P-a.s.
² : � 4Pick and fix an edge e � x, y . Let A � x � y be the event that x and

� 4y are connected, and B � x � y off e the event that x and y are connected
Ž d Ž . � 4.in the graph � , � � � e . By the conclusion of the first paragraph,

5.7 
 A � 
 � A .Ž . Ž . Ž .

By the dominance assumption 
 
 
 �,

5.8 
 � e � 1 
 
 � � e � 1 .Ž . Ž . Ž .Ž . Ž .

� 4 Ž .For � � x, y and � � B, the specification 2.2 gives

e


�� � e � 1 � .Ž .Ž .� , 
 , � 
1 	 e

By the DLR equation and the assumption 
 � 
 
 ,

1 1
��
 � e � 0 B � � � e � 0 
 d� �Ž . Ž . Ž .Ž . Ž .H � , 
 , � 

 B 1 	 eŽ . B

5.9Ž .
1

�
 � 
 � � e � 0 B .Ž .Ž .
 �1 	 e

Ž . Ž .Again by dominance 
 B 
 
 � B , so

�
 � e � 0 � A � 
 � e � 0 � B � 
 B 
 � e � 0 B� 4 � 4Ž . Ž . Ž . Ž .Ž .Ž . Ž .
�
 
 � B 
 � � e � 0 B � 
 � � e � 0 � B� 4Ž . Ž . Ž .Ž . Ž .5.10Ž .

� 
 � � e � 0 � A .� 4Ž .Ž .

� Ž . 4 Ž� Ž . 4 . Ž . Ž . Ž .Since A � � e � 1 
 � e � 0 � A , combining 5.7 , 5.8 and 5.10
Ž Ž . . Ž Ž . .gives 
 � e � 1 � 
 � � e � 1 , and thereby 
 � 
 �. �

� �PROOF OF THEOREM 6. Theorems 4.2 and 5.3 in 23 give the equivalences

� 0 � �1 � ii � iv � vi .Ž . Ž . Ž .
 , � 
 , �

0 1 Ž . Ž 0 1 .Lemma 5.6 gives � � � � v . Take 
 � � , 
 � � � and 
 � � 
 .
 , � 
 , � 
 , � 
 , �

Ž . Ž . Ž . 0 1Consequently, due to 4.7 , v � i because � � � implies that there is
 , � 
 , �

Ž . Ž . Ž .a unique random-cluster measure. i � iii trivially, and the proof of ii �
Ž . � � Ž . Ž .iv given on pages 1479�1480 of 23 can be adapted to prove iii � v . �

Ž . Ž . � �PROOF OF THEOREM 7. a If f is not differentiable at 
 , � , then by 36 ,
Ž .Theorem 25.1, the set of subgradients in 4.7 cannot be a singleton, and

consequently, RR� cannot be a singleton.
 , �
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Ž . Ž . � �b As mentioned, the first part appeared as Theorem 4.5 a in 23 , and
� �the proof on page 1481 of 23 adapts to prove the second part, too. �

Ž .PROOF OF THEOREM 8. The containment of � f 
 , � in the parallelogram
follows from the inequalities � 0 
 
 
 �1 , valid for all 
 � RR� , and the
 , � 
 , � 
 , �

remarks preceding the statement of the theorem. That there cannot be a
� Ž . b Ž .measure 
 � RR such that 
 � � � � for either b � 0 or b � 1 follows
 , � 
 , �

from Lemma 5.6. �

Define the finite-volume free energy by

1
� �5.11 f 
 , � � log Y ,Ž . Ž .� � , 
 , �� ���

� Ž .with Y as in 2.3 . Recall that H is the event that the endpoints of the� , 
 , � e
edge e are in distinct connected clusters.

LEMMA 5.12. For � � 0, any finite rectangle � and boundary condition � ,

� 2 d
� 1 05.13 f 
 , � 
 � � H � � e .Ž . Ž . Ž . Ž .Ž .Ý� � , 
 , � e � , 
 , �� ��
 �� �� e���

Ž .PROOF. The left-hand side of 5.13 equals

d
�� � e k � , �Ž . Ž .Ž .Ý � , 
 , �� ��� e���

d
� �� � � e � k � , � .Ž . Ž .Ž .Ý� , 
 , � � , 
 , �ž /� ��� e���

5.14Ž .

Ž .For a given �, let CC � CC � be the collection of subsets of � that form the
Ž . Ž .connected clusters counted by k �, � . An element of CC � is not necessarily

Ž Ž . .connected in the graph �, � � � � due to the effect of edges outside � .� �

Ž . Ž .For a vertex x, B x is the element of CC that contains x and E x is the set
Ž . Ž . Ž .cof edges in � � with both endpoints in B x . B x is the set of vertices of �

Ž Ž .c.not connected to x, and then � B x is the set of edges in � both of whose�

Ž .c Ž .endpoints lie in B x . The �-field BB contains the information about B xx
Ž . Ž .and E x . Notice in particular that, given BB , � e � 0 for all edges e thatx

Ž . Ž .cconnect B x and B x . Using

1
5.15 k � , � � ,Ž . Ž . Ý � �B xŽ .x��
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Ž .we rewrite the first term of 5.14 as

d
�� � e k � , �Ž . Ž .Ž .Ý � , 
 , �� ��� e���

d 1
� � �� � � � e BB� 4Ž .Ý Ý� , 
 , � � , 
 , � xž /� � � �� B xŽ .� x�� e���

� �d E xŽ .
�� � Ý� , 
 , �½ ž /� � � �� B xŽ .� x��

5.16Ž .
1

� � �	� � � e BB� 4Ž .Ý Ý� , 
 , � � , 
 , � x 5ž /� �B xŽ . cx�� Ž Ž . .e�� B x

d
�� � � eŽ .Ý� , 
 , � ž /½� ��� e���

� � � 		� � � e � � � 0 .� 4Ž . Ž .Ý Ý� , 
 , � � , 
 , � Bž / 5
cŽ .B�CC e�� B

In the last line, the symbol �	 denotes the set of edges in � that are incidentB �

to the vertex set B. We used the fact that if e is not incident to B, then
� � � � 	5.17 � � e B x � B � � � e � � � 0 ,� 4 � 4Ž . Ž . Ž . Ž . Ž .� , 
 , � � , 
 , � B

because B must be disconnected from the rest of �, and the effect on e is the
same as with all edges incident to B set equal to zero.

Ž .Now switch attention to the second term in 5.14 . First note the equality

� � c5.18 k � , � � CC � � I � 	 1 	 I � ,Ž . Ž . Ž . Ž . Ž .Ý �e� � ŽB .4 He
Ž .B�CC �

² : Žvalid for any fixed edge e � x, y and all �. Proof: The first sum on the
Ž .right misses one or two elements of CC � depending on whether the end-
. Ž . Ž .points of e are in the same cluster or not. By 5.18 , the second term in 5.14

can be written as

d
� �� � � e k � , �Ž . Ž .Ž .Ý� , 
 , � � , 
 , �ž /� ��� e���

d
� �

c� � � � e I 	 1 	 IŽ .Ž .Ý Ý� , 
 , � � , 
 , � �e� � ŽB .4 Hež /� ��� e�� B�CC�

d
� � �� � � e 	 � � � eŽ . Ž .Ž .Ý Ý Ý� , 
 , � � , 
 , � � , 
 , �ž /ž /½� �� c� e�� Ž .B�CC e�� B�

5.19Ž .

	 � � H � � � e .Ž . Ž .Ž .Ý � , 
 , � e � , 
 , � 5
e���
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Ž . Ž .Now subtract the last line of 5.19 from the last line of 5.16 . The first
terms cancel. By the FKG inequality,

� � 	 �� � e � � � 0 � � � e 
 0,� 4Ž . Ž .Ž .Ž .� , 
 , � B � , 
 , �

Ž .and consequently, the quantity in 5.14 is at most

d
� �� � H � � e .Ž . Ž .Ž .Ý � , 
 , � e � , 
 , �� ��� e���

Ž .The statement 5.13 follows from stochastic dominance, since H is decreas-e
Ž .ing and � e increasing, as functions of �. �

Ž .PROOF OF THEOREM 9. As indicated, part a follows from Lemma 4.10. For
Ž . Ž . Ž .part b , we prove 5.4 and leave the analogous proof of 5.5 to the reader.

Ž .Utilizing 5.1 and stochastic dominance, the goal is to prove

� f � f
1 05.20 
 , � � � 
 , � 
 �� H � � e d � � � �Ž . Ž . Ž . Ž . Ž . Ž .Ž .
 , � e 
 , � �	 ��
 �


for � � � � � 0.
� �Let us recall the most basic comparison inequality 23 , Theorem 2.2:

5.21 � � 
 � � if � 
 � , � � 0 and 
 � 
 .Ž . � , 
 , � � , 
 , � 1 0 0 1 00 0 1 1

Ž .From Lemma 5.12 and 5.21 , we get

� f � � f �
� �


 , � � � 
 , �Ž . Ž .
�
 �


d � � � �Ž .
1 0
 � � H � � e .Ž . Ž .Ž .Ý � , 
 , � e � , 
 , � �� ��� e���

5.22Ž .

Ž . Ž .Suppose first that � f��
 exists at 
 , � and 
 , � � . By a convex-analytic
� � Ž .lemma 13 , Lemma IV.6.3, the left-hand side of 5.22 converges to the

Ž . d 1 Ž .left-hand side of 5.20 as � � � . For a fixed edge e, the quantity � H� , 
 , � e
1 Ž . d 1 1increases to � H as � � � because � � � and the event H
 , � e � , 
 , � 
 , � e

0 Ž Ž .. 0 Ž Ž .. Ž .is decreasing. Similarly, � � e increases to � � e , and 5.20� , 
 , � � 
 , � �

follows.
Now for the general case. Recall from Theorem 6 that on each horizontal

� 4 Ž .and vertical line in the � � 0 half-space of the 
 , � -plane, both partial
derivatives of f exist except for at most countably many exceptional points.

Ž . Ž .First pick � � � , � � such that � f��
 
 , � exists. Then pick 
 and 
0 0 0 1
Ž . Ž . Ž .so that 
 � 
 � 
 and � f��
 exists at 
 , � , 
 , � and 
 , � � for0 1 i i 0 i

i � 0, 1. These choices can be made so that � is arbitrarily close to � , and0
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 and 
 are arbitrarily close to 
 . By the case proved above,0 1

� f � f
1 0
 , � � 
 
 , � � � H � � e d � � � �Ž . Ž . Ž . Ž . Ž .Ž .1 1 0 
 , � e 
 , � � 01 0 1�
 �


� f
1 0� 
 , � � � H � � e d � � � �Ž . Ž . Ž . Ž .Ž .0 0 
 , � e 
 , � � 01 0 1�


� f � f
	 
 , � � 
 , � .Ž . Ž .1 0 0 0�
 �


Ž . Ž . Ž . Ž .Equations 5.1 and 5.21 imply that � f��
 
 , � 
 � f��
 
 , � because0 0 0
the derivatives exist. Thus we get

� f � f
1 0
 , � � 
 
 , � � � H � � e d � � � �Ž . Ž . Ž . Ž . Ž .Ž .1 0 
 , � e 
 , � � 01 0 1�
 �


5.23Ž . � f � f
	 
 , � � 
 , � .Ž . Ž .1 0 0 0�
 �


Now let 
 � 
 and 
 � 
 . First note that0 1

� f � f � f � f

 , � � � 
 , � � and 
 , � � 
 , � .Ž . Ž . Ž . Ž .1 0	 ��
 �
 �
 �


Ž .Second, since � f��
 
 , � exists,0

� f � f � f � f

 , � � 
 , � � 
 , � � 
 , � � 0.Ž . Ž . Ž . Ž .1 0 0 0 0 0�
 �
 �
 �


Third, we argue that

5.24 lim �1 H � 0 � e � �1 H � 0 � e .Ž . Ž . Ž . Ž . Ž .Ž . Ž .
 , � e 
 , � � 
 , � e 
 , � �1 0 1 0
 �
1

This follows from

5.25 lim � 0 � e � �1 � e � � 0 � eŽ . Ž . Ž . Ž .Ž . Ž . Ž .
 , � � 
 , � � 
 , � �1
 �
1

and

5.26 lim �1 H � �1 H .Ž . Ž . Ž .
 , � e 
 , � e1 0 0
 �
1

Ž . Ž . � � Ž . Ž .Equation 5.25 is a part of 4.14 in 23 . For 5.26 , note first that 
 bd He
� 0 for all translation-invariant random-cluster measures 
 because � �
bd H implies that the endpoints of e lie in distinct infinite clusters. Hencee
Ž .5.26 is equivalent to

5.27 lim �1 K � �1 KŽ . Ž . Ž .
 , � 
 , �1 0 0
 �
1

for the closure K of the complement of H . H is a decreasing event, and so Ke e
Ž . Ž .is a closed increasing event, and then 5.27 follows from Proposition 4.4 b in

� �23 .
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Finally, let � � � , and observe that0

�1 H � 0 � e � �1 H � 0 � eŽ . Ž . Ž . Ž .Ž . Ž .
 , � e 
 , � � 
 , � e 
 , � �1 0 1 1 1

Ž . Ž .due to 5.21 and the decreasing nature of H . Now inequality 5.23 hase
Ž .turned into inequality 5.20 . �

6. The two-dimensional case. Here we strengthen the conclusion of
Theorem 8 for the case d � 2 by a convex-analytic observation. For d � 2 and

� � �� � 0, duality can be used to show that RR � 1 can happen only if 
 � �
 , �

Ž Ž . � �.' 'equivalently, p � q � 1 	 q ; see Theorem 4.3 in 23 . Consequently,
Ž . Ž .� f 
 , � is a singleton unless 
 � � , and only the sets � f � , � remain to be

Ž b b. Ž .characterized. Recall the definition of s , t from 5.3 .

Ž .THEOREM 10. For all but countably many � � �, � f � , � equals the line
Ž 0 0. Ž 1 1.segment from s , t to s , t . If this segment does not reduce to a point, it

has slope �1.

The theorem itself does not require d � 2, but we do not know whether the
statement has any relevance in higher dimensions. In the case � � 0, it does
not imply that all random-cluster measures are convex combinations of � 0

� , �
1 � � 0 1 4 Ž .and � , merely that all 
 � RR � � , � have a number � � 0, 1� , � � , � � , � � , �

such that


 u � �� 0 � e 	 1 � � �1 � eŽ . Ž . Ž . Ž .Ž . Ž .� , � � , �

and

 � � �� 0 � 	 1 � � �1 � .Ž . Ž . Ž . Ž .� , � � , �

� �In light of this result, the results for large � of 28 and conjectures about
Ž Ž . � �.the continuity of the phase transition equation 1.5 in 23 , the following

conjecture appears natural: in two dimensions, there exists an � such that0
RR is a singleton for � � � , and RR is the convex hull of the two distinct� , � 0 � , �

measures � 0 and �1 for � � � . If this conjecture is true, the� , � � , � 0
Ž . ŽAizenman�Higuchi theorem implies that � � log 2 �2 see Corollary 7.12 in0

.the next section , and indeed it is believed that � � log 2 in two dimensions0
Ž Ž . � �.equation 1.6 in 23 .

Ž . Ž . Ž .PROOF OF THEOREM 10. The function g � � f � , � is convex, and s, t
Ž . Ž .� � f � , � implies s 	 t � � g � . Since g is differentiable at all but count-

Ž . Ž .ably many � , it follows that s 	 t is constant over s, t � � f � , � for all but
countably many � . �

7. The case of positive integral q. As mentioned in the Introduction,
originally much of the interest in random-cluster measures centered on their
relationship with Ising and Potts models. This connection involves the ran-
dom-cluster measures with parameter values q � 2, 3, 4, . . . . In this section,
we specialize to this case the results of Section 3 on entropy. Fix such a q, a

Ž .value p � 0, 1 and the dimension d � 2.
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� 4� d
To describe the Potts model, let � � 1, . . . , q be the space of spin

configurations. The Ising model is the case q � 2. Translations act as usual
Ž .Ž . Ž . d Ž .on �, � � y � � x 	 y for x, y � � . Let MM � denote the space ofx

� Ž .probability measures on � and MM � the subspace of translation-invariant
probability measures. In this notation, � is replaced by � when the measures
are on the edges instead of on the spins. For finite � � �d and a boundary

� � 4�condition � � �, a probability measure � on � � 1, . . . , q is defined� , � , q �

by

1
�� � � exp �� IŽ . Ý� , � , q �� Ž x .� � Ž y .4½Z� , � , q ² :x , y ���

�� I .Ý �� Ž x .� � Ž y .4 5
² :x , y ��

cx�� , y��

7.1Ž .

The parameter � � 0 is the inverse temperature. We write � � j for the
Ž .boundary condition when � y � j for all vertices y � �, for a fixed j �

� 41, . . . , q . The free boundary condition is denoted by � � 0. This means that
there is no influence from outside � and the second sum in the exponent of
Ž .7.1 is deleted.

Ž . �The measures 7.1 form a specification. The set GG of translation-�, q
invariant infinite-volume Potts measures contains those measures � �

� Ž .MM � that satisfy

� A � B � � � A � d�Ž . Ž . Ž .H � , � , q
B

for all finite � � �d and measurable sets A � � and B � � c. Let � j �� � � , q
j � 4dlim � , j � 0, 1, . . . , q . These limiting Potts measures exist and are� � � � , � , q

� Ž � �elements of GG . See 5 for the existence of the limit, and pages 67�69 in�, q
� � .20 for a proof that the limiting measures are Gibbs measures.

� �From the large deviation theory of Gibbs measures 9, 15, 31 , we know
that the specific relative entropy

1 1
0� �7.2 h � � � lim H � � � lim H � �Ž . Ž . Ž . ž /� � � , � , q

d d� � � �� ���� ���

� Ž . �exists for any � � MM � and � � GG , and is an affine, lower semicontinuous�, q
Ž � .function of �. The finite-volume entropy H � � is now over the �-field�

Ž . Ž .generated by the spins � x in � instead of edges; compare with 3.4 .
Ž � . �Furthermore, the quantity h � � is independent of the choice of � � GG ,�, q

Ž � . �and h � � � 0 if and only if � � GG . This entropy serves as the rate�, q
function for the level-3 uniform large deviation principle of the empirical
measure

1
M � � �Ž . Ý� � �x� �� x��
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Ž .under Potts measures. Let A � MM � be a measurable set, with interior and
closure taken again under the weak topology. Then these bounds hold:

1
��� inf h � � 
 lim inf log inf � M � � AŽ .Ž . Ž .� , � , q �n n� ��n����int A ���n

1
�
 lim sup log sup � M � � AŽ .Ž .� , � , q �n n� ��n�� ���n

7.3Ž .

�
 � inf h � � .Ž .
��cl A

To express certain random-cluster measures in terms of Potts measures,
we define product measures on the edges that depend on the spin values at
the endpoints. For a spin configuration � that is defined on the endpoints

² : � � Ž x ., � Ž y .x, y of the edge e � x, y , define the measure � � � on the edgee e
Ž .� e by

� � � e � I � � eŽ . Ž .Ž . Ž .e �� Ž x .� � Ž y .4 0

	 I p� � e 	 1 � p � � e .Ž . Ž . Ž .Ž . Ž .�� Ž x .�� Ž y .4 1 0

In other words, two nearest-neighbor spins in agreement are connected with
an edge with probability p, and otherwise edge e is absent. When � is
defined on a rectangle � or on the entire lattice �d, let � � and � � denote the�

product measures

� � � � � � � e and � � d� � � � d� e .Ž . Ž . Ž . Ž .Ž . Ž .� �� e e
e�� e���

� Ž Ž ..Under � , the edge process � e is independent but nonstationary. If pe� �

and � satisfy p � 1 � e�� , then it is not hard to verify that, for � � �0 ,�

7.4 � 0 � � � � � � 0 d� .Ž . Ž . Ž . Ž .H� , p , q � � , � , q
��

Underlying this formula is a coupling of the random-cluster measure and the
� �Potts measure, introduced by Swendsen and Wang 40 and Edwards and

� �Sokal 11 .
Ž .Our goal is to use formula 7.4 to give an alternative expression for the

Ž .entropy defined by 3.5 . To this end, we introduce an entropy relative to the
� Ž . Ž . �measure � , but not the usual entropy of 3.2 � 3.4 , for now we regard � as

Ž .a random measure defined on the probability space �, BB , � . Here BB is� �

the Borel �-field of the spin space �, and � is a given translation-invariant
probability measure on �. Let � be a translation-invariant probability mea-
sure on �. For finite rectangles �, the finite-volume entropy is defined by

� � � �7.5 R � � � sup � g � log � exp g � d� ,Ž . Ž . Ž .Ž . Ž .H� � �½ 5
�g �
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and the specific entropy by

1 1
� � �7.6 r � � � lim R � � � sup R � � .Ž . Ž . Ž . Ž .� �

d � � � �� d ���� ��

Ž .As before, the supremum in 7.5 is over functions g on � . The existence of�

Ž .the limit and the second equality in 7.6 are proved by a standard superaddi-
� � �tivity argument, utilizing the independence of � . The normalizer is d �

� � Ž .rather than � in the last expression of 7.6 , due to the same technical�

problem with the � ’s that appeared in the proof of Theorem 1 in Section 3:�

disjoint translates of a fixed � inside a larger � cannot cover the edges of� �0 1
Ž � �. d� up to an error of o � as � � � .� � 11 1

Ž � .The relevance of the entropy r � � is the following: if the spin configura-
Ž .tion � is generic for �, meaning that the empirical measure M � converges�

d � Ž Ž . .to � weakly as � � � , then the probabilities � M � � A satisfy large�

deviation estimates of the type stated in Theorem 3, with rate function
Ž � . � � Ž� � r � � . This can be proved by the argument of 38 . The only reason we

� � � �cannot directly quote a theorem from 38 is that the results in 38 are for
. Ž � .spins instead of edges. Second, the entropy r � � appears in the variational

� �characterization of disordered Gibbs measures in 39 .
From the point of view of the measures � �, Theorem 3 gives large

deviations for the mixtures

7.7 � � M � � A � 0 d� .Ž . Ž . Ž .Ž .H � � � , � , q

Ž .A natural question is whether the rate function I � of Theorem 3 is
 , �

Ž � . Ž .related to r � � , and this is answered by the next theorem. Write I �p, q
Ž . Ž .for I � when p, q, 
 and � are related by 2.1 .
 , �

THEOREM 11. Suppose q � 2 is a positive integer. Pick any translation-
invariant Potts measure � � GG� for the inverse temperature � that satis-�, q

�� � Ž .fies p � 1 � e . Then, for � � MM � ,

� �1 �7.8 I � � inf r � � 	 d h � � .� 4Ž . Ž . Ž . Ž .p , q �Ž .�� MM �

COROLLARY 7.9. For positive integral q � 2 and translation-invariant
� � Ž . Ž . �measures 
 on �, 
 � RR if and only if 
 � H � � � d� for some � � GGp, q � � , q

with p � 1 � e�� . In particular,

� 0 � � � � � 0 d� ,Ž . Ž .Hp , q � , q
�

�1 � � � � � j d� , 1 
 j 
 q.Ž . Ž .Hp , q � , q
�

7.10Ž .

A further corollary to Corollary 7.9 is that all translation-invariant ran-
dom-cluster measures with integral q are limits of averages of translates of
product measures on the edges. Namely, if � is generic for � � GG� and�, q
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� Ž . Ž . �
 � H � � � d� , then, by the continuity of � � � ,�

1
� �x7.11 
 � lim �Ž . Ý

d � ����� x��

Ž .in the weak topology of MM � . There is also exponentially fast convergence of
empirical averages in � �-probability: for any weak neighborhood U of 
 ,

� � �� M � � U 
 exp �c �Ž . Ž .Ž .� 0

for some constant c � 0. This follows from the large deviation estimate for0
� Ž Ž . . Ž � .� M � � U mentioned above, and the fact that r � � � 0 if and only if�

� Ž . Ž . � �� � H � � � d� 38 , Theorem 2.8.�

COROLLARY 7.12. The phase transition of the random-cluster model can be
characterized in terms of Potts measures in this way: � 0 � �1 if and onlyp, q p, q

0 � j 4if � is in the convex hull of � : 1 
 j 
 q , which in turn is equivalent to�, q � , q
� 0 � q�1Ýq � j . Thus there is no phase transition for the random-cluster�, q j�1 � , q
model in the case d � q � 2.

The last statement of Corollary 7.12 follows from the first statement and
� � Žthe Aizenman�Higuchi theorem 1, 27 : in the case d � q � 2 the two-

. �dimensional ferromagnetic Ising model , the set GG equals the convex hull�, 2
� 1 2 4 0 Ž 1 2 . Žof the pair � , � , and so � � � 	 � �2. Note that the usual 	� , 2 � , 2 � , 2 � , 2 � , 2

.and � spins of the Ising model are replaced here by the values 1 and 2.
To prove Theorem 11, we introduce periodized configurations of both edges

� 4dand spins. From now on, we use the fixed sequence of cubes � � �n, . . . , nn
² :centered at the origin. Let us write edges e � x, y with the convention that

y � x for each i � 1, . . . , d, so that, in fact, y � x for all but one coordinatei i i i
j for which y � x 	 1. The vertex x Žn., ‘‘x modulo � ,’’ is defined as thej j n

� Ž . d4unique vertex of the set x 	 2n 	 1 y: y � � that lies in � . For � � �n
and � � �, the periodized configurations are defined by

Žn. ² : ² Žn. Žn. :� x , y � � x , x 	 y � xŽ . Ž .
and

� Žn. x � � x Žn. .Ž . Ž .
Žn.Ž . Ž .Notice that � e � � e for all edges e whose lower endpoint lies in � .n

Ž Žn.. Ž Žn..Next, we consider the periodized empirical measures M � and M � .� �n n

They are translation-invariant measures. The set of periodized empirical
distributions based on the spins in � is denoted byn

PP� � M � Žn. : � � � ,Ž .� 4� �n n

� Ž .a closed subset of MM � . The benefit of periodization is that the distributions
Ž .in the mixture 7.7 then depend on � only through the empirical measure,

as stated in the next lemma. Periodization does not affect the validity of large
deviation principles because the periodized and unperiodized empirical mea-
sures come uniformly close in the weak topology as � grows.n



¨ ¨T. SEPPALAINEN1170

LEMMA 7.13. Let � , � � � be spin configurations, and suppose the empiri-
Ž Žn.. Ž Žn.. Žn.cal measures M � and M � of the periodized configurations �� �n nŽn. Ž Žn.. � Žn. � Žn.

and � coincide. Then the distributions of M � under � and �� n
Ž � Ž .. Ž .coincide. There is a continuous MM MM � -valued map � � � �, � defined� n

for � � PP� that satisfies� n

7.14 � � Žn.
M � Žn. � A � � M � Žn. , AŽ . Ž . Ž .Ž . Ž .� � �n n n

� Ž .for measurable sets A � MM � .

Žn.Ž² :. Žn.Ž² Žn.PROOF. Periodicity implies that � x 	 z, y 	 z � � x 	 z ,
Žn.:. ² : d Žn.y 	 z for all e � x, y � � and z � � . From this follows � � �x

� Žn. � Žn., and thenx

7.15 M � � Žn. � M � Žn. .Ž . Ž .Ž .� x �n n

We do a calculation to show that
Žn. Žn.� Žn. � � Žn. dz7.16 � G � � � � G � for any z � � ,Ž . Ž .Ž .z

and for any bounded measurable function G on �. Let E� be the set of edgesn
with lower endpoint in � . By the periodicity and general measure-theoreticn
facts, it suffices to consider a function of the type

Žn. Žn. ² :G � � g � x , y ,Ž . Ž .Ž .Ł ² x , y:
�² :x , y �En

� 4where the g ’s are functions on 0, 1 . Then the expectation on the² x, y:
Ž .left-hand side of 7.16 becomes

Žn.� Žn. ² :� g � x 	 z , y 	 zŽ .Ž .Ł ² x , y:
�² :x , y �En

Žn. Ž . Ž .n n� Žn. ² :� � g � x 	 z , x 	 z 	 y � xŽ . Ž .Ž .Ł ž /² x , y:
�² :x , y �En

Ž .nŽn.� � � x 	 z ,Ž .Ž .Ł ½² x , y:
�² :x , y �En

Ž .nŽn. � �� x 	 z 	 y � x gŽ .Ž . 5 ² x , y:

Žn. Žn. � �� � � � x , � � y gŽ . Ž .� 4Ł ² x , y: z z ² x , y:
�² :x , y �En

Žn.� � Žn.z ² :� � g � x , y .Ž .Ž .Ł ² x , y:
�² :x , y �En

Ž . � Ž . Ž .4 � Ž x ., � Ž y .This proves 7.16 . Above, we wrote � � x , � y � � to avoid² x, y: ² x, y:
complicated superscripts.

� Ž .Let G be any bounded measurable function on MM � , and let � and � be
as in the statement of the lemma. Since an empirical measure assigns mass
to only finitely many points, it follows that � Žn. � � � Žn. for some z � �.z
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Ž . Ž .Consequently, by 7.15 and 7.16 ,

Žn. Žn.� Žn. � Žn.� G M � � � G M � �Ž . Ž .Ž . Ž .� � zn n

Žn.� � Žn.z� � G M �Ž .Ž .� n

Žn.� Žn.� � G M � .Ž .Ž .� n

Ž . Ž . �This implies that the measure � �, � can be defined by 7.14 for � � PP .� �n n
Ž . �The continuity of � � � �, � follows from the continuity of � � � and the� n

compactness of �. �

PROOF OF THEOREM 11. Let

� �1 � �I � � inf r � � 	 d h � � , � � MM � ,� 4Ž . Ž .Ž . Ž .
�Ž .��MM �

Ž .denote the right-hand side of 7.8 .
First the easy direction. Let g be any function on � and � any transla-� n

Ž .tion-invariant probability measure on �. Then, by 7.4 , Jensen’s inequality
Ž .and 7.5 ,

0 � �� g � log � exp gŽ . Ž .� , p , qn

�1
d�� n� � �
 � g � log � exp g � � d�Ž . Ž . Ž .Ž .H � �0n nž /d�� � , � , q� nn

d�� n� � �
 � g � log � exp g � d� 	 log d�Ž . Ž .Ž .H H� � �0n n nd�� � � , � , q� � nn n

0�
 R � � 	 H � � .Ž . ž /� � � , � , qn n n

Taking the supremum over g gives

0 0�H � � 
 R � � 	 H � � ,Ž .ž / ž /� � , p , q � � � , � , qn n n n n

Ž . Ž .and dividing by � and letting n � � gives I � 
 I � .� p, qn

To prove the opposite inequality, we need some elementary infinite-
� �dimensional convex analysis, for which we refer the reader to 12 . Also, in

the final step periodization enables us to use the large deviation principle
Ž . Ž � . Ž .7.3 , which explains how the entropy h � � appears in 7.8 .

Ž .For convex analysis, our setting is the following: the Banach space C �
of continuous functions on � and the space NN of all signed Borel measures on

² : Ž .� are in natural duality via the integral �, g � � g . Through the inte-
Ž .gral, these two spaces induce weak topologies on each other. Define I � �p, q

Ž .I � � � for � � NN that are not translation-invariant probability measures
on �. Then I and I are both convex lower semicontinuous functions on thep, q
entire space NN.
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Ž� �By the large deviation principle of Theorem 2 and Varadhan’s theorem 8 ,
. �Theorem 2.1.10 , the convex dual I of I satisfiesp, q p, q

1
� 0 � �I g � lim log � exp � M � , gŽ . Ž .� 4ž /p , q � , p , q � �n n n� ��n�� � n

Ž .for g � C � . We shall show that

7.17 I� g 
 I* g � sup � g � I � .� 4Ž . Ž . Ž . Ž . Ž .p , q
�Ž .��MM �

This implies that I�� � I**, while convexity and lower semicontinuity implyp, q
�� Ž� � . Ž .that I � I and I** � I 12 , Proposition 4.1 . Thus 7.17 leads top, q p, q

I � I and thereby completes the proof of the theorem.p, q
� Ž .For � � MM � , set

�7.18 G � , g � sup � g � r � � .� 4Ž . Ž . Ž . Ž .
�Ž .�� MM �

Ž .The main technical point along the way to 7.17 is to establish the following
statement.

� Ž .CLAIM. Given � � 0, every � � MM � has a closed neighborhood U and�

Ž . Ž . �an integer n � such that, whenever n � n � and �� � PP � U ,� �n

� � � �7.19 exp � � g � ��, d� 
 exp � G � , g 	 � .Ž . Ž . Ž . Ž .Ž .� 4 � 4H � � �n n n�Ž .MM �

Ž .PROOF OF THE CLAIM. For g � C � and spin configurations � � �, set

1
�� � , g � log � exp g � � .Ž . Ž .Ýn x½ 5ž /� ��n x�� n

� Ž . � 4Pick and fix � � MM � . First we argue that, for any sequence � � � suchn
that
7.20 lim M � � � ,Ž . Ž .� nnn��

Ž . Ž .� � , g converges to a limit � �, g that does not depend on the particularn n
� 4sequence � , but only on the limiting measure �.n

It suffices to consider a function g that depends on only finitely many
edges, because such functions approximate uniformly all continuous func-
tions on �, and because

� � � �7.21 sup sup � � , g � � � , g 
 sup g � � g � .Ž . Ž . Ž . Ž . Ž .n 1 n 2 1 2
n � �

So let r be an integer such that g is FF -measurable. The argument is� Ž� .r

fairly standard, so we present only an outline. Pick n � m � r. Let H ben, m
the set of centers of a maximal collection of disjoint translates of � insidem	 r
� that satisfy the further property that x 	 y 	 � � � for any x � Hn m	r n n, m
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and y � � . Then, for any y � � ,m	 r m	r

1
� �x	 y n� � , g � log � exp g � �Ž . Ž .Ý Ýn n z½ 5ž /� ��n x�H z��n , m m

� ��1 � � � �	 O 1 � � H � ,Ž .n n , m m

so upon averaging over y � � ,m	 r

1
� �x	 y n� � , g � log � exp g � �Ž . Ž .Ý Ý Ýn n z½ 5ž /� � � �� �n m	r y�� x�H z��m	r n , m m

� ��1 � � � �	 O 1 � � H �Ž .n n , m m

1 1
� �x n� log � exp g � �Ž .Ý Ý z½ 5ž /� � � �� �n m	rx�� z��n m

� ��1 � � � �	 O 1 � � H � .Ž .n n , m m

What we have here is the integral of a continuous function against the
Ž .empirical measure M � . Let n � � to obtain� nn

� ��1 � �lim � � , g � � � , g � d� 	 O 1 � � � ,Ž . Ž . Ž . Ž .Hn n m m	r m
n�� �

and then m � � to get

7.22 lim � � , g � � � , g � lim � � , g � d� .Ž . Ž . Ž . Ž . Ž .Hn n m
n�� m�� �

� �The arguments of Lemma 5.10 and Proposition 5.11 of 38 are now used to
show that

� �17.23 r � � � d � sup � g � � � , g .� 4Ž . Ž . Ž .Ž .
Ž .g�C �

�1 � �The extra factor d comes from the difference in normalization between �� n
Ž � . � � Ž .for r � � and � for � � , g .n n

Ž .To turn the duality in 7.23 around, observe first that as a function of g,
Ž . Ž .� �, g is convex and strongly continuous on C � . It follows that the sets

� Ž . 4g: � �, g 
 b , b � �, are convex and strongly closed. It is a general fact
about locally convex spaces that strongly closed, convex sets are also weakly

Ž � � � �.closed see Section I.1 in 12 or Theorem 3.12 in 37 . Weak closedness of the
� Ž . 4 Ž .sets g: � �, g 
 b is the definition of weak lower semicontinuity of � �, g .

With convexity and weak lower semicontinuity, we are again in a position to
� � Ž .apply double duality: by 12 , Proposition 4.1, � �, g is its own double dual,

which means that

�7.24 � � , g � sup � g � dr � � .� 4Ž . Ž . Ž . Ž .
�Ž .�� MM �
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Ž .Next observe that the limit in 7.22 is not affected if � and � aren
replaced by the periodized configurations � Žn. and � Žn.. We switch back ton

� � Ž Žn.. Ž .normalization by � , write � � M � and use the measure � � , d�� n � n � nn n n
Ž . Ž . Ž .defined by 7.14 . Then the conclusion of 7.22 and 7.24 can be written in

this way: for any sequence � � PP� of translation-invariant empirical mea-n � n
� Ž .sures that converge to � � MM � as n � �,

1
� �lim log exp � � g � � , d�Ž . Ž .� 4H � � nn n�� ��n�� Ž .MM �� n

1 Žn. �1� Žn.n � � � �� lim log � exp � � g � �Ž .Ý� n x½ 5nž /� ��n�� � x��n n7.25Ž .
� d�1 � � , dgŽ .

�� sup � g � r � �� 4Ž . Ž .
�Ž .�� MM �

� G � , g .Ž .

This proves the claim.

Ž � .By the lower semicontinuity of � � h � � , we may further shrink the
neighborhoods U given by the claim so that�

� �7.26 h �� � � h � � � � for �� � U .Ž . Ž . Ž . �

� Ž .Cover the compact space MM � with finitely many such neighborhoods
U 1 , . . . , U k . In the next calculation, let r again denote an integer such that g� �

Ž .is FF -measurable. First apply 7.4 , then periodize the configurations at� Ž� .r

the expense of neglecting those x � � for which x 	 � � � , and thenn r n
Ž .apply 7.19 :

1
0 � �log � exp � M � , gŽ .� 4ž /� , p , q � �n n n� ��� n

1
Žn. 0� �� log exp � � g � M � , d� � d�Ž . Ž . Ž .� 4HH Ž .� � � � , � , qn n n n� ��� n

� ��1 � � � �	 O � � � �Ž .ž /� n n�rn

k1
0 Žn. i� �i
 log � M � � U exp � G � , g 	 �Ž . Ž .� 4Ž .Ý Ž .� , � , q � � �n n n� ��� i�1n

� ��1 � � � �	 O � � � � .Ž .ž /� n n�mn
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Ž .Letting n � � and using the large deviation principle 7.3 together with the
Ž . Ž . Ž .definition 7.18 of G �, g and 7.26 gives

� �1 � iI g 
 max �d inf h � � 	 G � , g 	 �Ž . Ž . Ž .p , q ½ 5
i1
i
k ��U�

i �1 i� �
 sup max � g � r � � 	 d h � � 	 2�Ž .� 4Ž . Ž .
� 1
i
kŽ .�� MM �


 sup � g � I � 	 2�� 4Ž . Ž .
�Ž .�� MM �

� I* g 	 2� .Ž .
Ž .This proves 7.17 for functions g that depend on finitely many edges. The

Ž .extension to all g � C � is again justified by uniform approximation. This
concludes the proof of Theorem 11. �

REMARK. The argument for the claim in the previous proof essentially
� �proves that the upper large deviation bound of Theorem 2.1 of 38 is valid

Ž . � �under the assumption M � � �. The original assumption in 38 did not� nn
Žallow the quenched variable � to vary with n. See the display at the top of

� � . � �page 246 in 38 . However, the argument for the lower bound given in 38
does not work under this weaker assumption, unless � is assumed ergodic.

Ž .PROOF OF COROLLARY 7.9. The infimum on the right-hand side of 7.8 is
� Ž .achieved due to the compactness of MM � and the lower semicontinuity of

Ž � . Ž � .the functions � � r 
 � and � � h � � . Thus, by Theorems 3 and 11,
� Ž � . Ž � . � Ž . Ž � .
 � RR if and only if r 
 � � h � � � 0 for some � � MM � . But h � �p, q

� Ž � . � Ž . Ž .� 0 if and only if � � GG and r 
 � � 0 if and only if 
 � H� � � d��, q
� �38 , Theorem 2.8.

Ž . Ž .The first half of 7.10 comes by passing to the limit in 7.4 . To get the
corresponding equality for �1 , we consider these edge sets: for a finitep, q
rectangle � � �d, let �	 be the set of edges e � � that have at least one�

endpoint in �, and � the set of vertices adjacent to a vertex in �. The
probability measure

1 Ž .1�� e1 � Že. k Ž� , � .
	� � � p 1 � p qŽ . Ž .Ł� , p , q ½ 51 		Z e��� , p , q �

Ž . 	is well defined for � that satisfy � e � 1 for e � � . Due to the inequalities�

1 1 1
	� 
 � 
 � ,� , p , q � , p , q � , p , q

the convergence �1 � lim d �1
	 holds. The point is that, for anyp, q � � � � , p, q

� 4j � 1, . . . , q ,

7.27 �1
	 � � � � � e � j d� ,Ž . Ž . Ž . Ž .Ž .�H� , p , q e � , � , q

	e���
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where we take � � j outside � in the definition of � � for e � �	 � � .e � �
d Ž . Ž .Passing to the � � � limit in 7.27 gives the second half of 7.9 . �

Ž . 0 1PROOF OF COROLLARY 7.12. From 7.10 , it is clear that � � � holdsp, q p, q
0 � j 4if � lies in the convex hull of � : 1 
 j 
 q .�, q � , q

Ž .The converse comes from turning the representation 7.10 around: fix a
rectangle � and a spin configuration � � � . For any n � m, define them � m

cylinder event generated by � by

� �� � � � � : � x � � x for x � � .Ž . Ž .� 4� mn

Let H be the set of � � � for which x, y � � lie in distinct components� m
Ž . Ž .whenever � x � � y . Then it is straightforward to check that, for n � m,

0 � � �k Ž� , � m . 07.28 � � � q I � � d�Ž . Ž . Ž .Ž . H� , � , q H � , p , qn � n

and
q1

j �k Ž� , � . 1m� � 	7.29 � � � q I � � d� .Ž . Ž . Ž .Ž .Ý H� , � , q H � , p , qn � nq j�1

Ž . �k Ž� , � m . Ž . b Ž .The function g � � q I � is � -a.s. continuous b � 0, 1 dueH p, q�

to the a.s. uniqueness of an infinite cluster; hence, we can let n � � in
Ž . Ž .7.28 � 7.29 to get

0 � � 0� � � g d�Ž . H� , q p , q

and
q1

j 1� �� � � g d� .Ž .Ý H� , q p , qq j�1

This implies that � 0 � q�1Ýq � j whenever � 0 � �1 .�, q j�1 � , q p, q p, q

The equality � 0 � �1 in dimension d � 2 follows from the Aizenman�p, 2 p, 2
Ž .Higuchi theorem and 7.10 as explained in the paragraph following the

statement of Corollary 7.12. �
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