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LIMIT SET OF A WEAKLY SUPERCRITICAL CONTACT
PROCESS ON A HOMOGENEOUS TREE

By Steven P. Lalley and Tom Sellke

Purdue University

A conjecture of Liggett concerning the regime of weak survival for the
contact process on a homogeneous tree is proved. The conjecture is shown
to imply that the Hausdorff dimension of the limit set of such a contact
process is no larger than half the Hausdorff dimension of the space of ends
of the tree. The conjecture is also shown to imply that at the boundary
between weak survival and strong survival, the contact process survives
only weakly, a theorem previously proved by Zhang. Finally, a stronger form
of a theorem of Hawkes and Lyons concerning the Hausdorff dimension of
a Galton–Watson tree is proved.

1. Introduction. This paper concerns the growth of an isotropic contact
process on an infinite homogeneous tree. The process was introduced by Pe-
mantle [12], and discussed at some length by Liggett in the 1996 Wald Memo-
rial Lectures [10] (see also [9]). An isotropic contact process on the homoge-
neous tree � = �d of degree d+1 is a continuous-time Markov process At on
the set of finite subsets of (the vertex set of) � that evolves as follows. Infected
sites (members of At) recover at rate 1 and upon recovery are removed from
At; healthy sites (members of Act) become infected at rate λ times the number
of infected neighbors and upon infection are added to At. Under the default
probability measure P, the initial state A0 is the singleton set �e� (where e is
a distinguished element of � called the “root”); under Px, the the initial state
A0 is the singleton set �x�. The neighborhood system on � is the usual one:
each x ∈ � has exactly d+ 1 neighbors.

The (isotropic) contact process on a homogeneous tree of degree 3 or greater
differs from the contact process on an integer lattice Z

d in that there exist two
essentially different survival phases (cf. [12], [10] and [13]). In detail, there
exist critical constants 0 < λ1 < λ2 <∞ such that:

(a) If λ < λ1, then At = � eventually, w.p.1.
(b) If λ1 < λ < λ2, then P��At� → ∞� > 0, but, for each x ∈ � ,

P�x ∈ At for arbitrarily large t� = 0�

(c) If λ > λ2, then with positive probability �At� → ∞ and, for all x ∈ � ,
x ∈ At for arbitrarily large values of t.

For λ < λ1 the process is subcritical; for λ1 < λ < λ2 it is weakly supercriti-
cal; and for λ > λ2 it is strongly supercritical. The main results of this paper
concern only the weakly supercritical phase.
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Let x ∈ � be a vertex at distance n from the root vertex e. The probability
that x ∈ At for some t > 0 depends only on n, by the isotropy of the process;
thus, we may define

un = P�x ∈ At for some t > 0��
Observe that if the contact process is weakly supercritical, then un < 1 for
all n ≥ 1, because if un = 1 then w.p.1 the root e would be reinfected at
indefinitely large times, and so the process would not be weakly supercritical.
A simple subadditivity argument shows that

lim
n→∞u

1/n
n = β = β
λ�(1)

exists, and that un ≤ βn for all n. The main result of this paper is the following
theorem, conjectured by Liggett in [10].

Theorem 1. If the contact process is weakly supercritical, then

β ≤ 1√
d
�(2)

Theorem 1 will be proved in Sections 3–5. An immediate consequence of
the theorem is the following corollary.

Corollary 1. For λ = λ2 the contact process is weakly supercritical.

Proof. Thanks to Tom Liggett for pointing this out. For each n ≥ 1,

lim
λ↑λ2

↑ un
λ� = un
λ2��

This may be proved by standard arguments, for example, using the mono-
tonicity of the “percolation structures” described in the next section. For each
λ ∈ 
λ1� λ2� and each n ≥ 1, un
λ� ≤ β
λ�n ≤ d−n/2 by Theorem 1; hence,
un
λ2� ≤ d−n/2. Consequently, the contact process at λ2 cannot be strongly
supercritical, because if it were then for every n ≥ 1 it would be the case
that un
λ2� ≥ ε, where ε > 0 is the probability that the root is infected at
indefinitely large times. ✷

Our interest in Theorem 1 was prompted by its similarity to a theorem
concerning the Hausdorff dimension of the limit set of branching Brownian
motion in the hyperbolic plane [7]. To explain the connection, we reformulate
Theorem 1 as a result about the “limit set” of the weakly supercritical contact
process. Define ∂� to be the set of “ends” of the tree � ; that is, ∂� is the set
of all infinite paths in � beginning at the root e that have no loops. There is
a natural family of metrics on ∂� defined as follows:

dθ
γ� γ′� = θN
γ� γ′��

where θ ∈ 
0�1� and N
γ� γ′� is the distance to e in � of the last point that
γ and γ′ have in common. Define the limit set � of the contact process on �
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to be the (random) set of all γ ∈ ∂� such that each vertex of γ is infected at
some time. It is easily seen that if the contact process is supercritical, then
on the event of survival � is nonempty and compact (relative to any of the
metrics dθ). In Section 6 we will prove the following theorem:

Theorem 2. For λ ∈ 
λ1� λ2� and θ ∈ 
0�1�, the Hausdorff dimension of
the limit set � is

δθH
�� = − log
dβ�
log θ

(3)

almost surely on the event of survival.

It is well known, and easy to prove, that the Hausdorff dimension of the
set of ends (relative to the metric dθ) is

δθH
∂� � = − log d
log θ

�(4)

Corollary 2. In the weakly supercritical regime, the Hausdorff dimension
of the limit set � is never greater than half the Hausdorff dimension of the space
∂� of ends.

In [7] a completely analogous result was proved for hyperbolic branching
Brownian motion. In fact, it was shown that at the boundary of the weak sur-
vival/strong survival regimes, the Hausdorff dimension of the limit set equals
half the Hausdorff dimension of ∂H. We conjecture that this is also true for the
contact process on � for any of the metrics dθ. In particular, we conjecture
that, for λ = λ2,

δθH
�� = 1
2δ
θ
H
∂� ��(5)

2. Contact process: preliminaries.

2.1. The homogeneous tree. In the subsequent discussion, we will identify
the tree � with its vertex set, as there will be no need to explicitly refer to
the edge set. There is a natural distance function on � defined as follows:
For any two vertices x�y ∈ � , d
x�y� is the minimum number of edges in
a path from x to y. There is a unique path γx�y with this minimum number
of edges—it is called the geodesic segment with endpoints x and y. For each
x ∈ � and each integer n ≥ 0, define Bn
x� to be the set of all vertices y at
distance no larger than n from x, and define ∂Bn
x� to be the set of vertices
y such that d
x�y� = n. Note that, for n ≥ 1,∣∣∂Bn
x�∣∣ = 
d+ 1�dn−1

and
∣∣Bn
x�∣∣ = 1 +

n∑
m=1


d+ 1�dm−1 = 1 + 
d+ 1�d
n − 1
d− 1

�
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As n → ∞, both cardinalities grow like constant×dn. It is the exponential
growth of �Bn
e�� that accounts for the difference between the behavior of the
contact process on � and the behavior of the contact process on the Euclidean
lattices Z

d.
The tree � is homogeneous in the sense that every vertex has exactly d+1

neighbors. It is also homogeneous in the sense that for any two vertices x�y
there is an isometry that maps x to y. Nevertheless, it is convenient to mark
a distinguished vertex e as the root; under the default probability measure
P = Pe, the contact process is initiated at e. The vertices of � may be arranged
in levels �n, where n ∈ Z, in such a way that:

(a) every vertex y ∈ �n has exactly d neighbors in �n+1 and one in �n−1;
and

(b) the root vertex e is in level �0.

For an arbitrary vertex x ∈ � , define the depth L
x� of x to be the index of
its level (i.e., the unique integer n such that x ∈ �n), and set �x� = d
e� x�.
For any vertex x ∈ � , define �+
x� to be the set of all vertices y ∈ � that lie
“below” x in � , that is, such that the geodesic segment γx�y lies completely
in

⋃
n≥L
x� �n. Note that if x ∈ �+
e�, then �x� = L
x�, but if x �∈ �+
e�,

then �x� > L
x�. Also, if x�y �= e are two vertices such that x �∈ �+
y� and
y �∈ �+
x�, then

�+
x� ∩ �+
y� = ��

Note also that if L
x� = n, then

�+
x� ∩
( ⋃
k≤n

�k

)
= �x��

2.2. The contact process. The contact process on � may be constructed
with the aid of a percolation structure on � × 
0�∞� (see Harris [4] for a de-
tailed explanation). The percolation structure is a system of independent Pois-
son processes attached to vertices and ordered pairs of neighboring vertices.
For each x ∈ � the Poisson process attached to x has rate 1, and determines
the recovery times at x: In particular, at every occurrence time site x recovers
if it is infected. For each ordered pair 
x�y� of neighboring vertices, the Pois-
son process attached to 
x�y� has rate λ; the occurrence times are precisely
those times when an infection at x may jump to y. For purposes of visualiza-
tion, it is helpful to imagine that (1) for each vertex x there is a directed ray
�x�×�0�∞� drawn over x; (2) at each occurrence time t of the Poisson process
attached to 
x�y�, an arrow is drawn from 
x� t� to 
y� t� in � × 
0�∞�; and
(3) at each occurrence time t of the Poisson process attached to x a mark *
is attached to 
x� t�. The set At may then be described as follows: y ∈ At if
and only if there is a (directed) path through the percolation structure (the
system of rays and arrows described previously) that begins at a vertex in A0
at time 0, ends at 
y� t� and does not pass through any marks *. Henceforth,
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we will refer to any path through the percolation structure (or its projection
to � ) that does not pass through a mark * as an infection trail.

We will repeatedly make use of three important properties of the contact
process and the associated percolation structure. The first is monotonicity: If
two contact processes At, A′

t are built over the same percolation structure,
and if A0 ⊂ A′

0, then for all t ≥ 0 it must be the case that At ⊂ A′
t. In par-

ticular, if at some time t all vertices of At are erased except one, then the
resulting subsequent process will be dominated by the original process. The
second property is isotropy: If i is an isometry of the tree � that maps e to
x, and if At is a contact process initiated by the single infected site e, then
i
At� is a contact process initiated by the single infected site x. The third is an
extended form of the usual strong Markov property: Let G, F1�F2� � � � �Fν be
(pairwise) nonoverlapping parts of the tree � , and let τ1� τ2� � � � � τν be stop-
ping times that are determined by the percolation structure over G. Then,
conditional on the percolation structure over G, the post-τi portions of the
percolation structures over the sets Fi are independent, and for each i the
post-τi percolation structure over Fi has the same distribution as the entire
percolation structure over Fi.

3. Downward infection trails. Fix x ∈ � and y ∈ �+
x� − �x�, so that
L
y� > L
x�. Define a downward infection trail from x to y to be an infection
trail that begins at x; does not exit the sector �+
x� and first reaches �L
y� at
y, where it terminates. For any vertex x ∈ �+
e�, define

�+
e� x = �∃ downward infection trail e→ x beginning at t = 0��

By the isotropy of the contact process, P
�+
e� x� depends only on the depth

m = L
x� of the vertex x. Thus, for any vertex x ∈ �+
e� at depth m ≥ 1, we
may define

wm = P
�+
e� x��

Proposition 1. limm→∞ w
1/m
m = β.

Proof. Isotropy, monotonicity and the strong Markov property imply that
wm+k ≥ wmwk, so, by the subadditivity lemma, limm→∞ w

1/m
m exists. Obvi-

ously, wm ≤ um, so the limit is no greater than β. It remains to prove that the
limit is no smaller than β.

For each x ∈ � and each integer n ≥ m = �x�, define Hn
x to be the event

that there is an infection trail from the root vertex e to x that does not exit
the ball Bn−1
e� before reaching x. Define

nvm = P
Hn
x��

This probability depends only on n and �x�, by the isotropy of the contact
process. For each n ≥ �x� the event Hn

x is contained in the event that site x is
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ever infected, and so nvm ≤ um. Moreover, as n→ ∞ the events Hn
x increase

to the event that site x is ever infected, so

lim
n→∞ ↑n vm = um�

Fix ε > 0, and choose m, k ≥ 1 sufficiently large that

kvm > β
m
1 − ε�m�(6)

That such a choice is possible follows from the preceding paragraph and the
definition of β. Let y be a vertex at distance k from the root, and define αk
to be the probability that there is a direct infection trail from e to y (i.e., one
that follows the geodesic segment from e to y). By the isotropy of the process,
this probability depends only on �y� = k; moreover, αk > 0. We will show that,
for all integers n ≥ 1 and j ∈ �1�m��

wnm+2k+j ≥ αkαj+k
kvm�n�(7)

In view of (6), this will imply that

lim inf
n→∞ w1/n

n ≥ β
1 − ε��

Since ε > 0 is arbitrary, the proposition will then follow.
Choose x ∈ �+
e� such that L
x� = nm+2k+j, and let x0� x1� � � � � xn be the

vertices on the geodesic segment from e to x such that L
xi� = k+im. Suppose
that all of the following events occur: (A) There is a direct infection trail from
e to x0 that reaches x0 at a stopping time τ0. (B) For each i = 0�1� � � � � n− 1,
there is an infection trail from xi to xi+1, beginning at time τi and ending at
a stopping time τi+1, that does not exit Bk
xi�. (C) There is a direct infection
trail from xn to x, beginning at time τn. (Note that each τi may be taken
to be the first time after τi−1 that such a path reaches xi—this will assure
that the random times τi are stopping times.) Then the concatenation of the
infection trails (A), (B) and (C) is a downward infection trail from e to x. Since
the times τi are stopping times and since the events (A), (B) and (C) involve
nonoverlapping parts of the percolation structure, it follows by isotropy and
the strong Markov property that the probability of the existence of a downward
infection trail from e to x is at least

αk
kvm�nαj+k�
this proves (7). ✷

4. Embedded Galton–Watson processes. Fix an integer L ≥ 1, and let
x ∈ �+
e� be any vertex at depth L
x� = nL, a positive integer multiple of L.
Denote by x0 = e� x1� x2� � � � � xn = x the vertices on the geodesic segment γe�x
at depths 0�L�2L� � � � � nL, respectively. Say that x is an L-descendant of e if,
for each i = 0�1�2� � � � � n−1, (i) there is a downward infection trail ζi from xi
to xi+1 beginning at time τi and first reaching xi+1 at time τi+1 (by convention,
τ0 = 0) and (ii) for each i the infection trail ζi is the first downward infection
trail beginning at 
τi� xi� to reach xi+1. Observe that the random times τi so
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defined are stopping times. Write νx = τn; we will say that νx is the time at
which the vertex x becomes an L-descendant of e. Define �0 = �L0 = �e�, and
for n = 1�2� � � � define

�n = �Ln = {
x ∈ �nL � x is an L− descendant of e

}
�

Zn = ZLn = cardinality
(
�Ln

)
�

Proposition 2. 
ZLn �n≥0 is a Galton–Watson process with mean offspring
number

EZ1 = dLwL�

Proof. Suppose that x ∈ �n; then a vertex x′ ∈ �+
x� at depth 
n+1�L is
included in �n+1 if and only if there is a downward infection trail from x to x′

beginning at the time νx that x becomes an L-descendant of e. The existence
of such a downward infection trail clearly depends only on the percolation
structure in �+
x� after time νx. For distinct vertices in �n these regions are
nonoverlapping, and do not overlap the region of the percolation structure
that determines �n. Hence, by the strong Markov property, if, for x ∈ �n, Yx
denotes the number of vertices in �n+1 ∩ �+
x�, then the random variables
Yx, x ∈ �n, are conditionally independent given �n. Moreover, by isotropy, for
each such x, the conditional distribution of Yx is the same as that of Ye = Z1.
Since Zn+1 = ∑

x∈�n Yx, it follows that the sequence Zn is a Galton–Watson
process.

The random set �1 is a subset of �+
e� ∩ �L. There are dL vertices in
�+
e� ∩�L, and, for any one of them, the probability of inclusion in �1 is wL.
Thus, EZ1 = dLwL. ✷

Corollary 3. For any β∗ < β,

lim inf
k→∞

P
{
Z2k

1 > 
dβ∗�2k} = ρ > 0�

Proof. Let x be any vertex at depth 2k. Fix 1 ≤ m ≤ k, and let x0 =
e� x1� � � � � x be the vertices along the geodesic segment from e to x at depths
i2m, where i = 0�1� � � � �2k−m. If for every i there is a downward infection trail
ζi from xi to xi+1, beginning at the time of termination of ζi−1, then there is a
downward infection trail from e to x, and so x ∈ �2k

1 . Thus, if x ∈ �2m
2k−m� then

x ∈ �2k
1 , and so

Z2k
1 ≥ Z2m

2k−m�(8)

Take m so large that w1/2m

2m > β∗; that such an m exists follows from Proposi-
tion 1. By Proposition 2, Z2m

n is a Galton–Watson process with mean offspring
number d2mw2m . Therefore, by a standard theorem from the elementary theory
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of Galton–Watson processes,

lim
n→∞

Z2m
n(

d2mw2m
)n = Z

exists; and since the offspring distribution has finite support, Z > 0 almost
surely on the event of nonextinction (see, e.g., Theorem 2, Section 6 of [1]).
Consequently,

P
{
Z2m
n > 
d2mβ2m

∗ �n eventually
}
> 0�

The advertised result now follows from (8). ✷

5. Backscattering. In this section we will use the existence of embedded
Galton–Watson processes to prove the following proposition.

Proposition 3. Suppose that dβ2 > 1. Then there exists ε > 0 such that,
for every n ≥ 1,

P
Fn� ≥ ε�
where Fn is the event that there is an infection trail that starts at e exits Bn
e�
and then returns to e.

Corollary 4. If dβ2 > 1, then the contact process is not weakly super-
critical.

Proof. Proposition 3 implies that P
F� ≥ ε, where F = ⋂
n≥1 Fn. On the

event F there are infection trails starting at e that wander arbitrarily far
away from e and then return to e. But a contact process initiated by the single
infected site e can only reach finitely many sites in finite time. Consequently,
on the event F, the root vertex e is reinfected at arbitrarily large times, and
therefore the contact process is strongly supercritical. ✷

Proof of Proposition 3. Assume that dβ2 > 1, and fix β∗ such that
d−1/2 < β∗ < β. Choose an integer L sufficiently large that all of the following
are true:

uL ≥ wL > βL∗ �(9)

pL
-= P{ZL1 ≥ 
dβ∗�L

}
> 0�(10)

(
1 − pLβL∗ /2

)
dβ∗�L < 1/2�(11)

The existence of such an integer follows from Proposition 1, Corollary 3
and elementary considerations: The definition of wL implies that uL ≥ wL,
and Proposition 1 implies that, for all large L, wL > βL∗ . Corollary 3 implies
that pL is bounded away from 0 as L→ ∞ through powers of 2. Finally, since
dβ2

∗ > 1 and pL > ε > 0 for all large L = 2k, we have for all large L = 2k that


dβ∗�L log
(
1 − pLβL∗ /2

)
< −
dβ∗�LpLβL∗ /2 < − log 2�

which implies (11).
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Let x → y denote the event that there is an infection trail from x to y
beginning at the time νx that vertex x becomes an L-descendant of e. To
finish the proof, we will show that, for every integer n ≥ 1,

rn
-= P{∃x ∈ �n = �Ln � x→ e

}
>
pLβ

L
∗

2
�(12)

Observe that on this event there exists an infection trail that starts at e,
extends to some x at distance nL from e and then extends back to e, so (12)
does, in fact, prove the proposition. The proof of (12) is by induction on n.
For n = 1, the event occurs if Z1 ≥ 1 and, for a single randomly chosen
x ∈ �1, there is an infection trail from x to e beginning at the time νx when
x becomes an L-descendant of e. By (10), the probability that Z1 ≥ 1 is at
least pL. Given that Z1 ≥ 1, the conditional probability that x → e for a
randomly chosen x ∈ �1 is uL, which by (9) is at least βL∗ . Thus,

r1 ≥ pLβL∗ �
Now suppose that inequality (12) is true for every positive integer smaller

than n, where n ≥ 2. There will be a vertex x∗ ∈ �n such that x∗ → e if all of
the following occur:

(A) The cardinality Z1 of �1 is at least 
dβ∗�L.
(B) For some x ∈ �1 there is a vertex x∗ ∈ �n ∩ �+
x� such that x∗ → x.
(C) There is an infection trail from x to e beginning at the time of first

reinfection from �n.

For any x ∈ �1, let Gx be the event that there is a vertex x∗ ∈ �n∩�+
x� such
that x∗ → x. Conditional on the composition of �1, the events Gx, x ∈ �1,
are independent, by the strong Markov property, and each Gx has condi-
tional probability rn−1, by isotropy. Consequently, by the induction hypothesis
and (11),

P

(( ⋃
x∈�1

Gx

)c∣∣∣∣Z1 ≥ 
dβ∗�L
)
≤ 
1 − rn−1�
dβ∗�L

≤ 
1 − pLβL∗ /2�
dβ∗�L

< 1/2�

and so the conditional probability is greater than 1
2 that Gx occurs for at least

one x ∈ �1, given that Z1 ≥ 
dβ∗�L. Let x̂ be the first x ∈ �1 for which
Gx occurs (provided that there is one). The conditional probability (given the
history of the contact process up to the time that x̂ is reinfected from �n) that
there is an infection trail from x̂ back to e is uL. Hence, by (9),

P
(∃x∗ ∈ �n� x∗ → e

∣∣Z1 ≥ 
dβ∗�L
) ≥ uL/2 > βL∗ /2�

But by (10) the probability that Z1 ≥ 
dβ∗�L is pL, so (12) now follows. ✷
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6. The limit set. In this section we use the existence of the embedded
Galton–Watson processes to identify the Hausdorff dimension of the limit
set �.

Proof of Theorem 2. For each integer n ≥ 1, define �n to be the set of all
vertices in � at distance n from the root e that are ever infected, and define
Yn to be the cardinality of �n. Then

EYn = 
d+ 1�dnun ≤ 
d+ 1�dnβn�
since there are exactly 
d+ 1�dn vertices at distance n from e. Consequently,
by the Borel–Cantelli lemma, for any ε > 0 it is P-almost surely the case that
eventually

Yn ≤ d
β+ ε�n�
The sets �n provide a sequence of open covers of �. In particular, if �x is

the set of all ends of � that pass through x, then

� ⊂ ⋃
x∈�n

�x�

Note that, for each x ∈ �n, the diameter (in the dθ metric) of �x is θn, which
becomes small as n → ∞. Hence, by the result of the preceding paragraph,
for any ε > 0, ∑

x∈�n
diameterθ
�x�− log
dβ+dε�/ log θ ≤ 1

for all sufficiently large n. This implies that, with probability 1,

δθH
�� ≤
− log
dβ�

log θ
�(13)

The proof of the reverse inequality uses the existence of the embedded
Galton–Watson processes Zn = ZLn constructed in Section 3. Recall that Zn
is the cardinality of the set �n of vertices at distance nL from e that are
L-descendants of vertices in �n−1, and that the mean offspring number is
dLwL. Now any infinite sequence of vertices xn ∈ �n such that each xn is
a descendant of xn−1 determines a unique end of � that must be included
in the limit set �, since all of the vertices xn are eventually infected. Thus,
� contains the set of ends of the Galton–Watson tree for the Galton–Watson
process Zn. By a theorem of Hawkes [5] (see also Lyons [11]), the Hausdorff
dimension (in the metric dθ) of this Galton–Watson tree is

− log
dw1/L
L �

log θ
�

It follows that, on the event of survival of 
ZLn �, this is a lower bound for the
Hausdorff dimension of �.

Since w1/L
L → β as L → ∞, to complete the proof, it suffices to show that

the Hausdorff dimension of � is almost surely constant on the event that the
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contact process survives. This is routine. Let δ∗ be the essential supremum of
the random variable δθH
��. Then, for any δ < δ∗, there is positive probability
p that the limit set of a contact process initiated at e has Hausdorff dimension
at least δ. Since the Hausdorff dimension of a subset of ∂� is unchanged by
application of an isometry of � , it follows that, for any vertex x, there is
positive probability p that the limit set of a contact process initiated at x has
Hausdorff dimension at least δ. Consequently, if �t is the σ-algebra generated
by the percolation structure up to time t, then

P
(
δθH
�� ≥ δ ��t

) ≥ pI{��At� ≥ 1�}�
But the martingale convergence theorem implies that this conditional prob-
ability converges to the indicator function of the event �δθH
�� ≥ δ� almost
surely as t → ∞. Since the indicator of the event ��At� ≥ 1� obviously con-
verges to that of the event that the contact process survives, it follows that

I�δθH
�� ≥ δ� ≥ pI�survival�
almost surely. Since the indicators are 0–1-valued random variables, this im-
plies that δθH
�� ≥ δ almost surely on the event of survival. ✷

APPENDIX

Pruning a Galton–Watson tree. In this Appendix, we provide a new and
simple proof of the theorem of Hawkes and Lyons cited in the proof of Theo-
rem 2. The result we obtain is, in fact, stronger than the results of Hawkes
and Lyons: We prove that a Galton–Watson tree must contain infinite homo-
geneous subtrees of any degree smaller than the growth rate prescribed by
the mean offspring number. Proposition 4 contains a precise statement. The
proof is similar in spirit to that of Proposition 3.

Let 
Zn�n≥0 be a supercritical Galton–Watson process with mean offspring
number µ > 1, and let � be the Galton–Watson tree associated with the
process 
Zn�n≥0. Thus, � has vertices arranged in “levels” n = 0�1�2� � � �, with
exactly one nth level vertex for each particle counted inZn; and � has directed
edges from nth level vertices to 
n+ 1�th-level vertices, one for each parent–
child pair. For each integer L ≥ 1, let �L be the Galton–Watson tree associated
with the Galton–Watson process 
ZnL�n≥0. Fix a real number 1 < λ < µ and an
integer L ≥ 1. Define the 
L�λ�-pruned tree �L
λ� as follows: (1) Set �L0 = �L.
(2) For each integer n ≥ 1, define �Ln+1 by removing from �Ln every vertex with
fewer than λL offspring and all of that vertex’s descendants. (3) Set

�L
λ� =
∞⋂
n=1

�Ln �

Observe that the sequence of trees �Ln is nested, so the intersection is well
defined and is a tree (albeit possibly empty). By construction, every vertex of
�L
λ� has at least λL offspring, so if �L
λ� �= � then it is infinite, and, in fact,
contains an embedded tree in which every vertex has exactly �λL� offspring.
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Proposition 4. For every 1 < λ < µ� there exists L ≥ 1 sufficiently large
that, with positive probability, the 
L�λ�-pruned tree �L
λ� contains the root
vertex v0 of �L. On this event, the Galton–Watson tree �L contains an infinite
homogeneous tree of degree �λL� + 1.

Lemma 1. For every ν < µ, there exists γ1 = γ1
ν� < 1 such that, for all
sufficiently large n ≥ 1,

P�0 < Zn < ν
n� ≤ γn1 �

Proof. Let ϕ
s� = EsZ1 be the probability generating function of Z1; then
ϕn
s� = EsSn is the n-fold composition of ϕ. Let ρn = P�Zn = 0�; then ρn ↓ ρ,
where ρ, the probability of ultimate extinction, is the unique root of ϕ
s� = s in
[0,1). The probability of interest may be bounded as follows: For any 0 < s < 1,

P�0 < Zn < ν
n� =

νn∑
m=1

P�Zn =m�

≤
∞∑
m=1

P�Zn =m�
1 − s�m/
1 − s�νn

≤ ϕn
1 − s� − ρ

1 − s�νn �

If s = ν−n, then the denominator converges to e−1 as n→ ∞. Thus, it suffices
to prove that there exists γ = γ
ν� < 1 such that, for all sufficiently large
n ≥ 1,

ϕn
1 − ν−n� − ρ ≤ γn�(14)

The proof of (14) is a routine exercise in function theory. Since the derivative
of ϕ
s� at s = 1 is µ > ν, there is a neighborhood �t�1� such that, for some
µ− ∈ 
ν� µ�,

ϕ
1 − s� < 1 − µ−s(15)

for all s ∈ �t�1�. Assume that t is chosen so that ρ < t < 1. Since ϕ
s� is
strictly convex on �ρ�1� and ϕ
ρ� = ρ, it follows that there exists 0 < ζ < 1
such that, for all s ∈ 
ρ� t�,

ϕ
s� − ρ < ζ
s− ρ��(16)

Inequalities (15) and (16) allow easy estimation of the behavior of ϕn
1− ν−n�
for large n. Inequality (15) implies that if ϕn−1
1 − s� ≥ t, then ϕn
1 − s� <
1 − µn−s. Consequently, if a = log ν/ logµ− < 1 and m = �an� + 1, then ϕm
1 −
ν−n� ≤ t. It now follows from (16) that

ϕn
1 − ν−n� = ϕn−m ◦ ϕm
1 − ν−n�
≤ ϕn−m
t�
≤ ρ+ ζn−m
t− ρ��
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Since n−m ∼ 
1−a�n, it now follows that (14) holds for any γ > ζ1−a, provided
that n is sufficiently large. ✷

Lemma 2. Let ξ1� ξ2� � � � be independent, identically distributed Bernoulli-r
random variables, and let Sn = ∑n

i=1 ξi. For any pair r� s of real numbers
satisfying 0 < s < r < 1, there exists γ2 = γ2
r� s� < 1 such that, for all
sufficiently large n ≥ 1,

P�Sn ≤ ns� ≤ γn2 �

Proof. This is a standard result.

Proof of Proposition 4. It suffices to prove that for every 1 < λ < µ
there exist an integer L ≥ 1 and a real number α > 0 such that, for all n ≥ 1,

pn
def= P

{
v0 ∈ �Ln

}
> α�(17)

Denote by p∗ the survival probability for the Galton–Watson process

Zn�n≥0 (i.e., q∗ = 1 − p∗ is the probability of eventual extinction, given that
Z0 = 1). Choose γ2 so that the conclusion of Lemma 2 holds with r = p∗/4
and s = p∗/8. Fix ν ∈ 
λ�µ�, and choose γ1 < 1 so that the conclusion of
Lemma 1 holds. Then, for all sufficiently large integers L, all of the following
inequalities will hold:

γL1 < p∗/4�

γλ
L

2 < p∗/4�

λL < sνL�

We will show that, for any such L, (17) must be true for α = r = p∗/4.
The proof is by induction on n. The probability that v0 has fewer than νL

offspring in �L is less than q∗ + γL1 , by Lemma 1. Consequently,

p1 > p∗ − γL1 > p∗/2�

Assume now that pn > p∗/4; we must show that pn+1 > p∗/4. Observe that
v0 ∈ �Ln+1 occurs if and only if v0 has at least λL offspring v in �Ln . Consider all
of the offspring v of v0 in �L. The event that there are at least νL of these has
probability greater than p∗/2, by the preceding paragraph. For each offspring
v, there is probability at least pn > p∗/4 = r that v ∈ �Ln , by the induction
hypothesis. Hence, by Lemma 1 and our choice of γ2 and s, the conditional
probability that v0 has fewer than sνL offspring in �Ln , given that v0 has at
least νL offspring in �L, is smaller than

γν
L

2 < p∗/4�

Since λL < sνL, it follows that the event that v0 has fewer than λL off-
spring in �Ln has probability smaller than 
1 − p∗/2� + p∗/4� Consequently,
the probability pn+1 that v0 has at least λL offspring in �Ln is greater than
p∗/2 − p∗/4 = α. ✷
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