ON THE RANGE OF R² OR R³-VALUED HARMONIC MORPHISMS

By F. Duheille

Université de Lyon 1

We prove that, under some general assumptions, the range of any nonconstant harmonic morphism from a simply connected open set U in \mathbf{R}^n to \mathbf{R}^3 , n>3, cannot avoid three concurrent half-lines, which is an extension to Picard's little theorem. To this end, we will prove two results concerning the windings of Brownian motion around three concurrent half-lines in \mathbf{R}^3 and the recurrence of some domains linked with the harmonic morphism.

1. Introduction. Harmonic morphisms between Euclidean spaces (and more generally between Riemannian manifolds) have been introduced by Fuglede [7] in 1978, and some special cases have been studied by Baird and Wood (see, e.g., [1]) and Gudmundsson [8]. Bernard, Campbell and Davie [2] have considered the probabilistic point of view. Let us recall the definition of such objects.

DEFINITION 1.1. A continuous map $f: U \to \mathbf{R}^p$, defined on a domain U of \mathbf{R}^n , is called a harmonic morphism if, for any open set V in \mathbf{R}^p such that $f^{-1}(V) \neq \emptyset$ and for any harmonic function h on V, the composite function $h \circ f: f^{-1}(V) \to \mathbf{R}$ is harmonic.

The following proposition characterizes harmonic morphisms.

PROPOSITION 1.2. Consider an open set $U \subset \mathbf{R}^n$ and a map in the class C^p , $f: U \to \mathbf{R}^p$. The function f is a harmonic morphism if and only if each coordinate f_i is harmonic and if their gradients are orthogonal and have the same norm:

$$\langle \nabla f_i, \nabla f_j \rangle = \lambda^2(x) \delta_{ij}.$$

This proposition leads us to a precise description of harmonic morphisms based on the dimensions of the considered Euclidean spaces. Indeed, Fuglede [7] and Baird and Wood [1] have shown the following.

THEOREM 1.3. (i) The harmonic morphisms from \mathbf{R}^n to \mathbf{R} are the harmonic functions on \mathbf{R}^n [7].

Received December 1995; revised April 1997.

AMS 1991 subject classifications. 58E20, 31C05, 60J65, 60J45.

Key words and phrases. Harmonic morphism, Picard's theorem, Brownian motion, probabilistic potential theory.

- (ii) If n < p, any harmonic morphism from a domain $U \subset \mathbf{R}^n$ to \mathbf{R}^p is constant [7].
- (iii) If n > 2, any nonconstant harmonic morphism from a domain $U \subset \mathbf{R}^n$ to \mathbf{R}^n is a constant times an affine orthogonal map on \mathbf{R}^n [7].
- (iv) The harmonic morphisms from $U \subset \mathbb{R}^2 \simeq \mathbb{C}$ to \mathbb{C} are the holomorphic or antiholomorphic functions on U. More generally, complex-valued holomorphic functions of n complex variables are harmonic morphisms on \mathbb{C}^n .
- (v) Any nonconstant harmonic morphism from \mathbf{R}^3 to \mathbf{R}^2 is an orthogonal projection from \mathbf{R}^3 on a two-dimensional subspace, composed by a holomorphic or antiholomorphic function on \mathbf{R}^2 [1].

Harmonic morphisms admit a probabilistic interpretation. It is, in fact, a generalization of a classical result of Lévy [11] that claims that plane Brownian motion is invariant under any conformal transformation. More precisely, Bernard, Campbell and Davie [2] have proved the following.

THEOREM 1.4. Let $f: U \to \mathbf{R}^p$ be a continuous map defined on a domain U of \mathbf{R}^n and let $(B_t)_{t\geq 0}$ be a Brownian motion on \mathbf{R}^n , issued from $B_0 \equiv b_0 \in U$. Note $\tau = \inf\{t: B_t \notin U\}$ and $\rho(t) = \int_0^t ||\nabla f(B_s)||^2 ds$, for all $t < \tau$.

The map f is a harmonic morphism if and only if the paths of the process $(f(B_t))_{0 \le t \le \tau}$ are Brownian paths on \mathbf{R}^p , that is, there exists a Brownian motion $(\overline{B}_s)_{s \ge 0}$ on \mathbf{R}^p , issued from $\overline{B}_0 \equiv f(b_0)$, such that $f(B_t) = \overline{B}(\rho(t))$.

In such a context, it is natural to search for information on the range f(U) of a harmonic morphism $f: U \to \mathbf{R}^p$, where U is a domain in \mathbf{R}^n . In this article, we prove that, under some general assumptions on f and U, the range of any nonconstant \mathbf{R}^3 -valued harmonic morphism f can not avoid three concurrent half-lines, which is of course an extension to Picard's little theorem, according to which the range of any nonconstant entire function on \mathbf{C} avoids at most one point. Our result has already been announced in [4]. The proof we give of this fact is based on the invariance property of Theorem 1.4, and has been inspired by the probabilistic proof of Picard's little theorem due to [3] (see also [5]). However, transience of Brownian motion in \mathbf{R}^n , $n \geq 3$, implies new technical difficulties.

2. Notations and main result. Let us give a few notations: let $h: U \to \mathbf{R}$ be a harmonic function on a domain U of \mathbf{R}^n . For any unbounded open set $V \subset U$, we note

$$M(r, V, h) = \sup\{|h(x)|, ||x|| \le r \text{ and } x \in V\}$$

and

$$I(V, h) = \liminf_{r \to \infty} \frac{\ln M(r, V, h)}{\ln r}.$$

Let us recall the definition of a recurrent set [13].

310 F. DUHEILLE

DEFINITION 2.1. A Borelian set C in \mathbf{R}^n is recurrent for the Brownian motion $(B_t)_{t\geq 0}$ in \mathbf{R}^n if and only if, ω -almost surely, for all A>0, there exists $\tau(\omega)>A$ such that $B_\tau(\omega)\in C$. Otherwise, the set C is transient.

DEFINITION 2.2. Consider a Borelian set C in \mathbf{R}^n and a Brownian motion $(B_t)_{t\geq 0}$ on \mathbf{R}^n issued from $B_0\equiv b_0\notin C$. The set C is polar if and only if, ω -almost surely, the path $(B_t(\omega))_{t\geq 0}$ does not visit C.

Our main result is the following.

Theorem 2.3. Consider a simply connected domain U in \mathbf{R}^n such that $\mathbf{R}^n \setminus U$ is polar. Let $f = (f_1, \ldots, f_p)$: $U \to \mathbf{R}^p$, n > p, $p \in \{2, 3\}$, be a harmonic morphism, and let $(B_t)_{t \geq 0}$ be a Brownian motion in \mathbf{R}^n issued from $B_0 \equiv b_0 \subset U$. We suppose that:

- (a) Almost surely, $\int_0^{+\infty} \|\nabla f_1(B_s)\|^2 ds = +\infty$;
- (β) The set $f^{-1}(H)$ admits a recurrent connected component for some open half-space H in \mathbf{R}^p .

Then:

- (i) If p = 2, f(U) avoids at most one point in $\mathbb{R}^2 \setminus H$.
- (ii) If p = 3, for all $x_0 \in \mathbf{R}^3 \setminus H$,

$$\operatorname{card}\{u \in \mathbf{S}^2, x_0 + \mathbf{R}^+ u \subset \mathbf{R}^3 \setminus (f(U) \cup H)\} \leq 2,$$

where S^2 is the unit sphere in \mathbb{R}^3 .

REMARK. Assumptions (α) and (β) are always checked if f is a polynomial harmonic morphism.

The hypothesis (β) involves only one coordinate function of the harmonic morphism, which is in fact a harmonic function. We give here a condition, on harmonic functions, that implies hypothesis (β).

Theorem 2.4. Let h be a harmonic function on U where U is a domain of \mathbf{R}^n of polar complement. Then any connected component C of $h^{-1}(\mathbf{R}_+^*)$ such that I(C, h) is finite and such that any point in ∂C is regular for C, is recurrent.

One could think that, for any harmonic function h on \mathbf{R}^n , one at least of the connected components of $h^{-1}(\mathbf{R}_+^*)$ or of $h^{-1}(\mathbf{R}_-^*)$ is recurrent. The following example shows this is false.

EXAMPLE. Consider the function $h: \mathbf{R}^4 \to \mathbf{R}$ defined by

$$h(x, y, z, t) = \cos x \cos y \cos z e^{\sqrt{3}t}.$$

This function is clearly harmonic on \mathbf{R}^4 , but no connected component of $h^{-1}(\mathbf{R}_+^*)$ or of $h^{-1}(\mathbf{R}_-^*)$ is recurrent.

3. Proof of Theorem 2.3. As our method can also be used to solve the case p = 2, we will study more carefully the case p = 3. This theorem is based on two essential facts. We will prove that Brownian paths in \mathbb{R}^3 get more and more tangled in their windings around three concurrent half-lines. An argument based on homotopy allows us to conclude.

Notation. Later on in this article, we will note $E = \mathbf{R}^3 \setminus \bigcup_{i=1}^3 D_i$, where D_1 , D_2 , D_3 are three concurrent half-lines.

Definition 3.1. Let us note T the border of the infinite trihedral defined by the three concurrent half-lines D_i , i = 1, 2, 3, and consider a curve Γ : $[0, t] \rightarrow E$.

- (i) We will say that $\Gamma_{[0,\ t]}$ is unwound in E (around the three half-lines) if there exists a curve $\tilde{\Gamma}$: $[0,1] \to E$ such that:
 - (a) $\tilde{\Gamma}(0) = \Gamma(t), \ \tilde{\Gamma}(1) = \Gamma(0);$
 - (b) card($\tilde{\Gamma}[0,1] \cap T$) ≤ 2 ;
 - (c) $\Gamma_{[0,\,\ell]}*\tilde{\Gamma}_{[0,\,1]}$ is homotopic to a point in $\it E$. Otherwise, we will say Γ is wound in $\it E$.

(ii) We will say that a curve $\Gamma: [0, +\infty) \to E$ comes wound if, for all t big enough, the curve $\Gamma_{[0,t]}$ is wound.

Then we can state the following result.

THEOREM 3.2. Let $(\overline{B}_t)_{t\geq 0}$ be an \mathbf{R}^3 -valued Brownian motion issued from a point $\overline{B}_0 \equiv b_0 \in E$. Then, ω -almost surely, the path $(\overline{B}_t(\omega))_{t>0}$ comes wound around the three concurrent half-lines D_1 , D_2 , D_3 .

REMARK. As straight lines are polar sets for three-dimensional Brownian motion, the winding of Brownian paths around three half-lines is well defined.

Let us admit for a while Theorem 3.2 and deduce from it Theorem 2.3.

Assume that f(U) avoids three concurrent half-lines D_1 , D_2 , D_3 included in the half-space $H^{-}(a, b)$ and that a connected component C of the open set $f^{-1}(H^{-}(a,b))$ is recurrent. We will build, using Brownian motion on \mathbb{R}^{n} , a closed curve Γ in U whose image by $f: U \to E = \mathbb{R}^3 \setminus \bigcup_{i=1}^3 D_i$ is not homotopic to a point in E (thanks to Theorem 3.2), which is absurd. Indeed, as we have supposed U simply connected, the closed curve Γ is homotopic to a point and its image under the continuous map f should be homotopic to a point

Let $(B_t)_{t\geq 0}$ be a Brownian motion on \mathbb{R}^n . We will suppose $B_0 \equiv b_0 \in C$ and note:

$$\Omega_0 = \{ \omega \in \Omega, (B_t)_{t \geq 0} \text{ does not visit } \mathbf{R}^n \setminus U \}.$$

As $\mathbf{R}^n \setminus U$ is polar, $P(\Omega_0) = 1$.

312 F. DUHEILLE

By Theorem 3.2, the paths of $(f(B_t))_{t\geq 0}$ come wound almost surely around the three half-lines, because the paths of this process are Brownian paths in \mathbf{R}^3 , and the assumption (α) implies we find whole Brownian paths. Let us note:

$$\Omega_1 = \{ \omega \in \Omega, \text{ there exists } S_\omega \geq 0, f(B_{[0,t]}) \text{ is wound for all } t \geq S_\omega \}.$$

We have then $P(\Omega_1) = 1$.

Set

$$\Omega_2 = \{ \omega \in \Omega, \forall A > 0, \exists \tau(\omega, A) > A, B_\tau \in C \}.$$

As we supposed C recurrent, we have $P(\Omega_2)=1$, and $P(\Omega_0\cap\Omega_1\cap\Omega_2)=1$. Fix then $\omega\in\Omega_0\cap\Omega_1\cap\Omega_2$. For such an ω , there exists $\sigma=\sigma(\omega)\in\mathbf{R}^+$ such that for all $t\geq\sigma(\omega)$, the path $(f(B_s(\omega)))_{s\in[0,\,t]}$ is wound in E. We can then choose $\tau(\omega)\geq\sigma(\omega)$ such that $B_\tau(\omega)$ is in C.

The set C is connected and open: it is then arcwise-connected, and there exists a curve γ in C linking $B_{\tau}(\omega)$ and $B_0(\omega)$. The curve $f(\gamma)$ closes the path $f(B_{[0,\tau]})$ according to the rules of Definition 3.1. By definition of τ , the closed curve $f(B_{[0,\tau]}*\gamma)$ can not be homotopic to a point in $f(U) \subset E$. The curve $B_{[0,\tau]}*\gamma$ forms the announced curve.

4. Proof of Theorem 3.2. Let D_1 , D_2 , D_3 be three concurrent half-lines in \mathbf{R}^3 , issued from 0. We note $D_i = \mathbf{R}^+ u_i$ with $||u_i|| = 1$, i = 1, 2, 3. Consider the map

$$\pi : \mathbf{R}^3 \setminus D_1 \to \mathbf{R}^2 \simeq D_1^{\perp}$$

$$x \to \pi(x) = \frac{x - \langle x, u_1 \rangle u_1}{\|x\| - \langle x, u_1 \rangle}.$$

Lemma 4.1. The map π is a harmonic morphism from $\mathbb{R}^3 \setminus D_1$ to \mathbb{R}^2 .

Indeed, π is the composite map of $\phi\colon x\to x/\|x\|$ and of the stereographic projection of pole u_1 onto the plane orthogonal to D_1 through 0. The image by ϕ of an \mathbf{R}^3 -valued Brownian motion is a time change of a spherical Brownian motion and the image by the stereographic projection of a spherical Brownian motion is a time change of a plane Brownian motion: the paths of the image by π of an \mathbf{R}^3 -valued Brownian motion are plane Brownian paths. Theorem 1.4 allows us to claim that π is a harmonic morphism.

LEMMA 4.2. We have
$$\pi(\mathbf{R}^3 \setminus \bigcup_{i=1}^3 D_i) = \mathbf{R}^2 \setminus \{\pi(u_2), \pi(u_3)\}.$$

One can easily check that the inverse image by π of any point in \mathbf{R}^2 is a half-line issued from 0, and distinct from D_1 , which proves this lemma.

We can now prove Theorem 3.2. To that effect, consider a Brownian motion $(\overline{B}_t)_{t\geq 0}$ in \mathbf{R}^3 issued from $\overline{B}_0 \equiv \overline{b}_0 \notin \bigcup_{i=1}^3 D_i$. The process $(\pi(\overline{B}_t))_{t\geq 0}$ is a time change of a Brownian motion on the plane minus $\{\pi(u_2), \pi(u_3)\}$, and the change of time converges almost surely to $+\infty$ as $t\to +\infty$. We will now use a

result of McKean [12] (see also [3] and [5]) according to which plane Brownian motion comes wound around two different points.

LEMMA 4.3. Let $(B_t)_{t\geq 0}$ be a plane Brownian motion issued from $B_0 \equiv b_0$ and x_1 , x_2 , two distinct points in \mathbf{R}^2 , different from b_0 . Then, ω -almost surely, there exists $T(\omega) > 0$ such that for all $t > T(\omega)$, the path $(B_s(\omega))_{0 \leq s \leq t}$ is wound in $\mathbf{R}^2 \setminus \{x_1, x_2\}$.

Remark. One can easily define the winding of any unbounded curve in \mathbf{R}^2 minus two points as one did in \mathbf{R}^3 minus three half-lines.

Let T be a time such that $(\pi(\overline{B}_s))_{0 \le s \le t}$ is wound in $\mathbf{R}^2 \setminus \{\pi(u_2), \pi(u_3)\}$ for all t > T, and choose any curve Γ in $\mathbf{R}^3 \setminus \bigcup_{i=1}^3 D_i$ that closes the path $(\overline{B}_s))_{0 \le s \le t}$ according to the rules of Definition 3.1. As the curve $\pi(\Gamma)$ closes $\pi(\overline{B}_{[0,t]})$, the plane closed curve $\pi(\overline{B}_{[0,t]} * \Gamma)$ can not be homotopic to a point in $\mathbf{R}^2 \setminus \{\pi(u_2), \pi(u_3)\}$. Hence, the closed curve $\overline{B}_{[0,t]} * \Gamma$ is not homotopic to a point in $\mathbf{R}^3 \setminus \bigcup_{i=1}^3 D_i$, which proves that \mathbf{R}^3 -valued Brownian motion comes wound around three concurrent half-lines in \mathbf{R}^3 .

5. Proof of Theorem 2.4. Let us first prove the following lemma.

LEMMA 5.1. Let $h: U \to \mathbf{R}$ be a harmonic function on an open connected set of polar complement and consider a connected component C of $h^{-1}(\mathbf{R}_{+}^{*})$.

If ∂C is regular for C and if I(C, h) is finite, the harmonic function h admits a continuous extension on the set \overline{C} .

PROOF OF LEMMA 5.1. At first, choose a point x_0 in $\overset{\circ}{C} \setminus C$. As I(C, h) is finite and $\overset{\circ}{C} \setminus C$ is polar, the harmonic function h is bounded in a vicinity of x_0 in U. Hence, it admits a limit at that point (see, e.g., [10], page 271]). We can then suppose $C = \overset{\circ}{C}$.

Consider now, for any r > 0, the bounded harmonic function \tilde{h}_r on $C \cap B_r$ (where B_r is the ball of center 0 and radius r) such that

$$\tilde{h}_r = h$$
 on $S_r \cap C$,
 $\tilde{h}_r \equiv 0$ on $\partial C \cap B$.

As ∂C is regular for C, h_r does exist and is unique because C_r is bounded. We have then $\tilde{h}_r = h$ on ∂C , except maybe on a polar set of \overline{C} . By unicity of the solution of the Dirichlet problem on $C \cap B_r$, $h = \tilde{h}_r$ on $\overline{C} \cap \overline{B_r}$: the harmonic function h is continuous on \overline{C} and we have h(x) = 0 for any $x \in \partial C$.

PROOF OF THEOREM 2.4. There is no unicity for the Dirichlet problem for the Laplacian on the domain C: the harmonic function h is nonconstant on C and null on its border. Furthermore, we suppose that h does not grow too fast; the set C has to be big enough, and we will show that it is recurrent.

314 F. DUHEILLE

Let us suppose that C is transient and show that, necessarily, I(C, h) is infinite.

We will use the following lemma, proved by Huber [9] that minorizes the growth of a harmonic function h on a connected component of $h^{-1}(\mathbf{R}_+^*)$:

Lemma 5.2. Let $U \subset \mathbf{R}^n$, $n \ge 2$, be an open connected set, $\Gamma = \partial U$ its border and $h: U \to \mathbf{R}$, a subharmonic function such that

$$\forall x \in \Gamma, \lim_{y \to x, y \in U} h(y) \le 0.$$

Then, one of the two following properties is checked:

- (i) We have $h \leq 0$ on U.
- (ii) There exist two constants K > 0 and $r_0 > 0$ such that, for all $r \ge r_0$,

(1)
$$\left(\sup_{x \in U, ||x|| = r} h(x) \right)^2 \ge Kr^{2-n} \int_{r_0}^r \rho^{n-3} \exp \left(2 \int_{r_0}^{\rho} \alpha(s) \, ds/s \right) d\rho,$$

where $\alpha(s)$ is the positive root of the second-degree equation $\alpha(\alpha + n - 2) = \lambda_1(s)$, $\lambda_1(s)$ being the first eigenvalue of the spherical Laplacian on the unit sphere **S** in \mathbb{R}^n , for the Dirichlet problem on $\mathbb{S} \cap s^{-1}U$.

Let us apply Lemma 5.2 to the harmonic function h and the connected open set C. We have clearly

$$h(x) = 0$$
 for all $x \in \partial C$
 \times
 $h(x) > 0$ for all $x \in C$.

and

Here, inequality (1) becomes

$$M^{2}(r, C, h) \ge Kr^{2-n} \int_{r_{0}}^{r} \rho^{n-3} \exp \left(2 \int_{r_{0}}^{\rho} \alpha(s) ds / s\right) d\rho$$

for all $r \ge r_0$, K and r_0 being two positive constants.

For all $r \ge 2r_0$, we deduce

$$M^{2}(r, C, h) \geq Kr^{2-n} \left[\int_{r_{0}}^{r/2} \rho^{n-3} \exp \left(2 \int_{r_{0}}^{\rho} \alpha(s) \, ds/s \right) \, d\rho \right.$$
$$+ \int_{r/2}^{r} \rho^{n-3} \exp \left(2 \int_{r_{0}}^{r/2} \alpha(s) \, ds/s \right) \, d\rho \right].$$

This inequality implies

(2)
$$M^{2}(r, C, h) \geq \frac{K}{n-2} (1 - 2^{2-n}) \exp \left(2 \int_{r_{0}}^{r/2} \alpha(s) \frac{ds}{s}\right).$$

Set
$$K_1 = \frac{1}{2} \ln[K(1 - 2^{2-n})/(n-2)].$$

From the overestimate (2), we infer

$$\frac{\ln M(r,C,h)}{\ln r} \geq \frac{K_1}{\ln r} + \frac{1}{\ln r} \int_{\ln r_0}^{\ln(r/2)} \alpha(e^u) du,$$

As C is transient, the area of $\mathbf{S} \cap s^{-1}C$ converges to 0 as s converges to $+\infty$, so that the first eigenvalue of this set converges to $+\infty$. The quantity $\alpha(s)$ converges to $+\infty$ and finally, I(C, h) has to be infinite.

Acknowledgment. We thank the referee for having suggested to us this short proof of Theorem 2.4. A more precise result on the growth of h can be obtained using Wiener's test (see, e.g., [13]) and an isoperimetric inequality on the unit sphere **S** proved by Friedland and Hayman [6].

REFERENCES

- [1] BAIRD, P. and WOOD, J. C. (1988). Bernstein theorems for harmonic morphisms from R³ and S³. Math. Ann. 280 579–603.
- [2] BERNARD, A., CAMPBELL, E. A. and DAVIE, A. M. (1979). Brownian motion and generalized analytic and inner functions. Ann. Inst. Fourier 29 207–228.
- [3] DAVIS, B. (1975). Picard's theorem and Brownian motion. Trans. Amer. Math. Soc. 213 353–362.
- [4] Duheille, F. (1995). Sur l'image des morphismes harmoniques à valeurs dans ${\bf R}^2$ ou ${\bf R}^3$. C.R. Acad. Sci. Paris Sér. I Math. **320** 1495–1500.
- [5] DURRETT, R. (1984). Brownian Motion and Martingales in Analysis. Wadsworth, Monterey, CA.
- [6] FRIEDLAND, S. and HAYMAN, W. K. (1976). Eigenvalue inequalities for the Dirichlet problem on spheres and the growth of subharmonic functions. *Comment. Math. Helv.* 51 133–161.
- [7] Fuglede, B. (1978). Harmonic morphisms between Riemannian manifolds. *Ann. Inst. Fourier* **28** 107–144.
- [8] GUGMUNDSSON, S. (1994). Harmonic morphisms from complex projective spaces. Geom. Dedicata 53 155–161.
- [9] Huber, A. (1952). Über Wachstumseigenschaften gewisser Klassen von Subharmonischen Funktionen. *Comment. Math. Helv.* **26** 81–116.
- [10] KELLOGG, O. D. (1953). Foundations of Potential Theory. Dover, New York.
- [11] LÉVY, P. (1948). Processus Stochastiques et Mouvement Brownien. Gauthier-Villars, Paris.
- [12] McKean, H. P. (1969). Stochastic Integrals. Academic Press, New York.
- [13] PORT, S. C. and STONE, C. J. (1978). Brownian Motion and Classical Potential Theory. Academic Press, New York.

Laboratoire de Probabilités Université Claude Bernard, Lyon 1 43, Boulevard du 11 Novembre 1918 69622 Villeurbanne Cedex France

 $E\hbox{-}{\tt MAIL:}\ duheille@jonas.univ-lyon1.fr$