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ON THE EXISTENCE AND NONEXISTENCE OF FINITARY
CODINGS FOR A CLASS OF RANDOM FIELDS

By J. van den Berg1and J. E. Steif1�2

CWI and Chalmers University of Technology

We study the existence of finitary codings (also called finitary homo-
morphisms or finitary factor maps) from a finite-valued i.i.d. process to cer-
tain random fields. For Markov random fields we show, using ideas of Mar-
ton and Shields, that the presence of a phase transition is an obstruction
for the existence of the above coding; this yields a large class of Bernoulli
shifts for which no such coding exists.

Conversely, we show that, for the stationary distribution of a monotone
exponentially ergodic probabilistic cellular automaton, such a coding does
exist. The construction of the coding is partially inspired by the Propp–
Wilson algorithm for exact simulation.

In particular, combining our results with a theorem of Martinelli and
Olivieri, we obtain the fact that for the plus state for the ferromagnetic
Ising model on Zd, d ≥ 2, there is such a coding when the interaction
parameter is below its critical value and there is no such coding when the
interaction parameter is above its critical value.

1. Introduction. One of the main motivations for our paper is the follow-
ing (all definitions will be given later): in [34] (see [1] for a published version),
it is proved that the plus state for the Ising model (with 0 external field) is
a Bernoulli shift (i.e., is isomorphic to an i.i.d. process) below, above and at
the critical value of the interaction parameter. Therefore, although there are
important differences in the behavior of the plus state above and below the
critical value, these differences are not reflected in the notion of isomorphism.
It turns out, however, that these differences are reflected if one considers
the notion of finitary mappings instead. The following theorem (restated and
proved in Section 4) is a particular case of the general results obtained in our
paper.

Theorem 1.1. There does not exist a finitary factor map from any finite-
valued i.i.d. process to the plus state for the Ising model above the critical
interaction parameter. However, there does exist a finitary factor map from a
finite-valued i.i.d. process to the plus state for the Ising model below the critical
interaction parameter.

Received January 1998.
1Part of this research done while participating, with financial support from Rutgers University,

in the DIMACS program on Discrete Probability in the spring of 1997 and while participating,
with financial support from the Stochastic Centre at Chalmers University of Technology, in the
program on Percolation, Particle Systems and Ergodic Theory in the fall of 1997.

2Research also supported by grants from the Swedish Natural Science Research Council and
from the Royal Swedish Academy of Sciences.

AMS 1991 subject classifications. Primary 28D99, 60K35, 82B20, 82B26.
Key words and phrases. Ising model, random fields, phase transitions, finitary coding.

1501



1502 J. VAN DEN BERG AND J. E. STEIF

In fact, one direction of Theorem 1.1 will follow from the following more
general theorem (restated and explained in Section 3).

Theorem 1.2. The limit distribution µ of a monotone, exponentially er-
godic probabilistic cellular automaton is a finitary factor of a finite-valued i.i.d.
process.

We will now give background and the necessary definitions. Throughout this
paper, all stationary processes and stationary random fields will be assumed
to be finite-valued unless otherwise stated, � � will denote the L1 norm on Zd

given by �x� = �x1�+ �x2�+ · · ·+ �xd�, and we will often write �a� b� for �a� b�∩Z
and �a� b�d for �a� b�d ∩ Zd.

In [33], D. Ornstein proved the celebrated isomorphism theorem for
Bernoulli shifts. This states that if 
Xn�n∈Z and 
Yn�n∈Z are stationary
processes consisting of independent and identically distributed (i.i.d.) random
variables with equal entropy, then there exists a stationary a.e. invertible
mapping from the first process to the second. More specifically, if µ is a proba-
bility measure on AZ (A a finite set), which is a product measure with all the
same marginals, and if ν is a probability measure on BZ (B a finite set) which
is a product measure with all the same marginals and if −∑

i∈A pi logpi =
−∑

i∈B qi log qi, where �pi� i ∈ A� and �qi� i ∈ B� are the marginals of µ
and ν, respectively, then there exists an invertible measure preserving map
from �AZ� µ� to �BZ� ν� which is defined a.e. and which commutes with shifts.
When µ and ν are arbitrary probability measures on AZ and BZ, respectively,
which are each invariant under the natural Z-action, then a mapping with the
above property is called an isomorphism and the two processes are then called
isomorphic. If we drop the invertibility assumption, we call the mapping a
factor map or homomorphism and say that the second process is a factor of
the first. Often, instead of “factor map” or “homomorphism” the shorter term
“coding” is used in the literature (although some authors use this only for
isomorphisms), and we will use this in most of the paper.

The σ-algebra involved above is the completed Borel σ-algebra with respect
to the product topology. Actually, it is not necessary that A and B are finite
sets and the above result holds more generally (see [33]). From this work,
a number of properties of stationary processes emerged which implied that a
given process is isomorphic to an i.i.d. process. Processes which are isomorphic
to i.i.d. processes are called Bernoulli shifts.

It was also proved by Ornstein (see [33]) that a factor of an i.i.d. process is
a Bernoulli shift.

Prior to [33], isomorphisms between certain classes of i.i.d. processes were
obtained (see [5] and [31]). These mappings had the advantage of being fini-
tary. A coding is called finitary if it is continuous after removing some set of
measure 0. There is another more natural equivalent definition of finitary in
this context (which also explains the word “finitary”). To describe this, if z ∈ AZ

and q ≤ r are integers, we let z�q� r� denote �z�q�� z�q + 1�� � � � � z�r��. With
this notation, φ is a finitary coding if and only if there exists a set � ⊆ AZ of
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µ-measure 0 such that for all x ∈ AZ\� , there exist integers q ≤ r (depending
on x) so that if y ∈ AZ\� and y�q� r� = x�q� r�, then φ�y��0� = φ�x��0�. In
words, after a long enough finite subsequence of the x sequence is revealed,
we know the 0th coordinate of φ�x�. In [21], it is proved that there exists a
finitary coding from any i.i.d. process onto any other i.i.d. process with strictly
lower entropy. One of the ideas of this approach came from [32] where finitary
isomorphisms were obtained between special Markov chains and i.i.d. pro-
cesses. The work in [21] was extended in [4] to the case of general finite state
mixing Markov chains. At the same time, it was proved in [22] that, for any
two i.i.d. processes with the same entropy, there exists a finitary isomorphism
between them whose inverse is also finitary. Finally, after this, it was proved
(see [23]) that for any two finite state Markov chains with the same entropy
and period, there exists a finitary isomorphism between them whose inverse
is also finitary. We mention that it was proved much earlier (see [16]) that a
finite state mixing Markov chain is isomorphic (not necessarily finitarily) to
an i.i.d. process.

For d ≥ 2, one considers probability measures µ and ν on AZd and BZd ,
respectively, which are each invariant under the natural Zd-action. One calls
such objects stationary random fields. An invertible measure preserving map
from �AZd� µ� to �BZd� ν� which is defined a.e. and which commutes with shifts
in the d directions is also called an isomorphism and the two processes are
then also called isomorphic. The notions of (finitary) coding and Bernoulli
shift extend immediately to d ≥ 2 dimensions. The Ornstein isomorphism
theorem also extends to d ≥ 2 dimensions (see [20]) and in fact much further
to amenable groups (see [35]). It is also mentioned in [20] that the theorem
by Ornstein mentioned earlier that a factor of an i.i.d. process is a Bernoulli
shift also extends to random fields.

Several results in this paper are about Markov random fields which, for
completeness, we give the definition of. Let Bn denote �−n�n�d and forU ⊆ Zd,
let ∂�U� denote the boundary 
x ∈ Zd\U� ∃ y ∈ U with �x−y� = 1�. Further,
if U ⊆ Zd, we use the notation XU = 
Xx�x∈U.

Definition 1.3. A stationary process 
Xx�x∈Zd is called a Markov random
field if, for all finite subsets B ⊆ Zd, the conditional distribution of XB given
XBc is the same as the conditional distribution of XB given X∂�B�.

While it is known that finite state mixing Markov chains in one dimen-
sion are isomorphic to i.i.d. processes, this is not so in higher dimensions.
See [39] for examples of mixing (k-step) Markov random fields which are not
K (the definition of K is given below) and hence are not Bernoulli shifts, as
well as a number of other interesting examples. Here we also mention the
recent book [37] where random fields which arise in an algebraic context are
studied and where their dynamical properties are given certain algebraic char-
acterizations. We finally mention that a Markov random field which is K but
not a Bernoulli shift was recently constructed in [19], thereby giving a coun-
terexample to a previous conjecture. The definition of K in general is slightly
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complicated but for Markov random fields it is shown (in [11]) to be equivalent
to the property that the (full) tail σ-algebra,

⋂
n≥1 σ�Xi� i �∈ Bn�, is trivial. See

[11] for other related results concerning the K property and Bernoulli shifts
for Markov random fields and [12] for extensions to Gibbs states.

As far as extending the results in [4] and [23] to higher dimensional Markov
random fields, it was proved in [10] that there exists a finitary coding from
any ergodic Markov random field onto any i.i.d. random field of strictly lower
entropy. It is mentioned there that it is not known when a Markov random
field is a Bernoulli shift and so one should not necessarily hope to prove that
there exists a finitary coding from any i.i.d. random field onto any mixing
Markov random field of strictly lower entropy.

It turns out, as we show in Section 2, that there are even Markov random
fields which are Bernoulli shifts but are not a finitary factor of any i.i.d. random
field. In fact, there is a fundamental obstruction to the existence of a finitary
coding from an i.i.d. random field onto a given random field, and there are a
large number of Markov random fields which are Bernoulli shifts and possess
this obstruction. Some of these are even measures of maximal entropy for
nearest neighbor subshifts of finite type (see [6], [7] and [8]). Conversely, we
show in Section 3 how, for certain random fields, a finitary coding from an i.i.d.
process can be constructed. In Section 4 we treat, as an important special case,
the ferromagnetic Ising model on Zd and restate and prove Theorem 1.1.

2. A fundamental obstruction for finitary coding In this section we
show that many Markov random fields are not a finitary factor of an i.i.d.
random field. The main result in this section is the following.

Theorem 2.1. Let ν be an ergodic Markov random field all of whose cylin-
der sets have positive probability and with the property that there exists another
(different) ergodic Markov random field ν′ which has the same conditional prob-
abilities as ν (i.e., for all finite sets B ⊆ Zd, the ν-conditional distribution of
XB givenX∂B is the same as the ν′-conditional distribution ofXB givenX∂B).
Then there does not exist a finite-valued i.i.d. random field µ and a finitary
coding from µ onto ν.

Remarks. (a) This result can be extended to so-called infinite range Gibbs
states with essentially the same proof.

(b) An obstruction for finitary codings between infinite state Markov chains
due to Smorodinsky is given in [26]. This obstruction arises from the fact that
certain waiting times between states have tails which are not exponential. In
our case, this latter behavior is not present and the nature of the obstruction
is completely different.

(c) Before proving this theorem, we mention that there is a large class of
Markov random fields which satisfy the assumptions of the theorem and which
are Bernoulli shifts. Theorem 2.1 tells us that these random fields provide ex-
amples of Bernoulli shifts for which no i.i.d. process can be mapped onto them
in a finitary fashion. An example of such a field is the “plus state” for the Ising
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model with sufficiently large interaction parameter (see Section 4). In Section
4, it is explained that this example satisfies the assumptions of Theorem 2.1,
while the fact that it is a Bernoulli shift is proved in [34]. (Whenever we refer
to [34] in this paper, if one wants to see published work on the same topic, one
can refer to [1], which extends the work in [34] to an amenable group setting.)
The above theorem also holds in many situations where one does not need to
assume that all the cylinder sets have positive probability. For example, by
modifying the proof below, one can obtain the same conclusion for some of the
measures of maximal entropy in [6], [7] and [8].

(d) In the proof we give below, the reader may not see “what is really go-
ing on.” For this reason, we first give a quick discussion explaining to some
extent what is going on. There is an important property called the blowing-
up property which says, more or less, that any collection of configurations on
a large finite box which has a total measure which is not too exponentially
small in the volume of the box has the property that most configurations are
close to it in the Hamming metric. (The blowing-up property is related to the
notion of concentration of measure; see [41].) A consequence of this blowing-up
property is that the mean ergodic theorem holds at an exponential rate. Since
i.i.d. processes have the blowing-up property (as mentioned in the proof), and
finitary codings preserve this property (as also mentioned in the proof), any
Markov random field which is a finitary factor of an i.i.d. process must have
the mean ergodic theorem holding at an exponential rate. However, when an
ergodic Markov random field is not the unique Markov random field with
its conditional probabilities, this usually results in the mean ergodic theo-
rem holding at a subexponential rate and a typical scenario is as follows: µ
and ν are distinct ergodic Markov random fields with the same conditional
probabilities but have different means. Roughly speaking, there is a certain
boundary condition which can be placed on ∂�Bn� which has positive µ mea-
sure but such that, conditioned on this boundary condition, what is inside
looks like ν. The µ-probability that this particular boundary condition arises
is at least exp�−cnd−1� for some constant c < ∞ independent of n. However,
if this boundary condition occurs, then with high (conditional) probability the
average in the box will be the ν mean which is a fixed distance away from
the µ mean. Therefore, in this scenario, the mean ergodic theorem occurs at
a subexponential rate.

In [30], the blowing-up property for a stationary ergodic process is discussed
(see also Section 1.5 in [9] and references there for background). This defini-
tion, which we will need here, immediately extends to random fields and is
the following.

Definition 2.2. An ergodic stationary random field taking values in the
set A and indexed by Zd has the blowing-up property if, given ε > 0, there
exists δ > 0 and an N such that for all n ≥ N, we have that if C ⊆ A�−n�n�d
with P�C� ≥ 2−�2n+1�dδ, then P��C�ε� ≥ 1 − ε where �C�ε is the set of all
configurations �ai� i ∈ �−n�n�d� for which there exists �ci� i ∈ �−n�n�d� ∈ C
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with
1

�2n+ 1�d
∑

i∈�−n�n�d
I
ai �=ci� < ε�

that is, �C�ε is the ε–neighborhood of C in the d-metric.

Proof of Theorem 2.1. It is proved in [30] that finitary codings preserve
the blowing-up property in one dimension. The proof of this result goes through
step by step to d ≥ 2 dimensions. It is proved in [9] that a one-dimensional
i.i.d. process satisfies the blowing–up property. This result for one dimension
immediately yields the same fact for higher dimensions. Therefore, in order
to show that there does not exist an i.i.d. random field µ and a finitary coding
from µ onto ν, we need only show that ν does not have the blowing-up property.

Next, it follows immediately from Theorem 1.1 in [30] that if a one-
dimensional process µ has the blowing-up property, then given any other
(different) ergodic process ν, the lower divergence rate of ν with respect to µ
is positive where the lower divergence rate, also known as relative entropy,
of ν with respect to µ for Zd processes is defined as

lim inf
n→∞

1
�2n+ 1�d

∑
a∈A�−n�n�d

ν�a� log
(
ν�a�
µ�a�

)
�

The proof of this result easily extends to d ≥ 2 dimensions. Finally, it is
known (see [17], pages 322 and 323) that for any two Markov random fields
all of whose cylinder sets have positive probability and which have the same
conditional probabilities, the lower divergence rate of one with respect to the
other is 0. Applying these facts to ν and ν′, we conclude that ν does not have
the blowing-up property. ✷

Remark (e). K. Marton has explained to us that the proof that a finitary
factor of an i.i.d. process has the ergodic theorem occurring at an exponen-
tial rate for all functions is simpler than the proof that finitary codings pre-
serve the blowing-up property. As it is known that for any ν satisfying the
assumptions of Theorem 2.1, the ergodic theorem cannot occur at an expo-
nential rate for all functions, this would yield a simpler proof of Theorem 2.1.
However, since the blowing-up property is stronger, it gives rise to a more
powerful recipe for determining that a random field is not a finitary factor
of an i.i.d. process. Moreover, the higher-dimensional generalizations above of
results concerning the blowing–up property are also useful outside the scope
of this paper.

Remark (f). Finally, we mention that there are nontrivial Markov random
fields in higher dimensions which have the blowing-up property. Theorem 2
in [29] easily extends to d ≥ 2 dimensions. Using this corollary together with
the arguments in [34], it follows that when there is a unique Markov random
field for the Ising model, it has the blowing-up property. Therefore, the proof



FINITARY CODINGS FOR RANDOM FIELDS 1507

of Theorem 2.1 does not exclude the possibility that there exists a finitary
coding from some i.i.d. process onto this Markov random field, and in Section
4 we show that this is, except possibly at the critical point, indeed the case.

3. Finitary codings for the limit distributions of exponentially
ergodic probabilistic cellular automata. Let S be a finite set; this
will be our single-site state space. We assign a linear order ≤ to S and
denote the maximal and minimal element of S by + and −, respectively. Let
% = SZd . With abuse of notation, + and − will also be used to denote the
maximal and minimal element of SV with the induced partial order [given by
�ai� i ∈ V� ≤ �bi� i ∈ V� if ai ≤ bi for all i ∈ V] when V ⊆ Zd. We consider
certain time evolutions on %. As in Section 2, if ω = �ωi� i ∈ Zd� ∈ % and
V ⊆ Zd, then ωV is the “restriction of ω to V”, that is, ωV = �ωi� i ∈ V�.
Further, if µ is a probability distribution on % (with the natural σ-field),
then µV denotes the “restriction of µ to V”, that is, µV�·� = µ�ωV ∈ ·�. If
µ and ν are two probability distributions on a finite set F, the variational
distance of µ and ν [defined as 1/2

∑
x∈F �µ�x� − ν�x��] is denoted by dv�µ� ν�.

The time evolutions we consider on % correspond with so-called probabilistic
cellular automata (PCAs). To describe them in a way suitable for future use,
let Wi� t� i ∈ Zd� t ∈ N, be i.i.d. random variables taking values in a finite
set A. Let, for i ∈ Zd, Ni denote the set of vertices at (lattice) distance ≤ 1
from i. Consider a function f� SNO × ANO → S. Define, for each i ∈ Zd,
fi� SNi ×ANi → S by fi�s� a� = f�s − i� a − i�, where s − i ∈ SNO is defined
by �s − i�j = si+j, j ∈ NO, and a − i ∈ ANO is defined similarly. The time
evolution σ�ω� t�� t = 0�1� � � � � starting from an initial configuration ω is now
described by

σ�ω�0� = ω�
σi�ω� t+ 1� = fi��σj�ω� t�� j ∈Ni�� �Wj�t� j ∈Ni��� i ∈ Zd�

(3.1)

Since the Wi�j’s are random, the σi�ω� t�’s are also random.

Remark (g). If f does not depend on the A-variables, we have a determin-
istic cellular automaton. PCAs are usually defined somewhat differently from
the above, namely with f being a function SN0×A→ S. The interpretation is
then that at each time the value of each vertex is replaced by a new (random)
value, whose distribution depends on the current local configuration, and that,
conditioned on σ�ω� t� the σi�ω� t + 1�� i ∈ Zd are independent. With the ap-
plication in Section 4 to the Ising model in mind, we prefer the slightly more
general setup which allows local conditional dependence.

Definition 3.1. We say that a PCA is monotone if the function f above is
monotone in its first argument (i.e., if for each α, β ∈ SN0 with α ≥ β, and
each a ∈ ANO , f�α� a� ≥ f�β�a�).

Let µ�ω� t� denote the distribution of the configuration at time t when we
start with configuration ω.
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Definition 3.2. We say that a PCA is ergodic if there exists a distribution
µ on % such that for all ω ∈ %, µ�ω� t� converges (weakly) to µ as t→∞.

(Note that the word “ergodic” here has a different meaning from that in
Sections 1 and 2, but it should always be clear from the context which is
meant.) If the system is monotone, this is (as is well known and can be easily
checked by standard coupling arguments) equivalent to saying that

lim
t→∞
P�σO�−� t� �= σO�+� t�� = 0�

(Note that by the construction of the PCA, the evolutions starting from differ-
ent configurations are coupled and so this last probability makes sense.)

Definition 3.3. We say that a monotone PCA is exponentially ergodic if
there exists C�λ > 0 such that

P�σO�−� t� �= σO�+� t�� ≤ C exp�−λt�
for all t.

The main result of this section (which is Theorem 1.2 in the introduction)
is the following.

Theorem 3.4. The limit distribution µ of a monotone, exponentially ergodic
PCA (as defined above) is a finitary factor of a finite-valued i.i.d. process.

Proof. The first part of the proof gives an algorithm for exact simulation
of µ, that is, a randomized algorithm which assigns to each vertex, one by one,
a value in S, such that the resulting configuration has distribution µ. This
is a modification of the popular (finite-volume) Propp–Wilson algorithm (see
[36]) and is used as a starting point for the construction of a finitary coding.

As to the simulation procedure, it is convenient (and essential in the Propp–
Wilson method) to extend time to the negative integers, so we now have
�Wi� t� i ∈ Zd� t ∈ Z�. Completely analogous to what we did before, we can
then consider, for each t1 < t2, the configuration we have at time t2 when we
start with configuration ω at time t1. We denote this by 4t2t1�ω�. (This depends
of course on the Wi� t’s, but we omit these from our notation.) Clearly, 4t2t1�ω�
has distribution µ�ω� t2 − t1�, defined before. The idea is to start, for each
i ∈ Zd, so far “backwards in time” that the spin value at site i at time 0 is the
same for all starting configurations. More formally, define

τi = min
{
t� �40

−t�+��i = �40
−t�−��i

}
�

Clearly, if such a τi exists, then (using monotonicity) 40
−t�ω� = 40

−t�ω′� for all
ω and ω′ ∈ % and t ≥ τi. In other words, if we start at or before time −τi, then
the value at vertex i at time 0 no longer depends on the starting configuration
(or on the starting time, as long as it is smaller than or equal to −τi). We
denote this value by σ∗i . So, formally, σ∗i = �40

−τi�+��i. Of course we have to
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show that τi exists (i.e., is finite a.s.). Once we have done this, and, moreover,
have shown that σ∗ ≡ �σ∗i � i ∈ Zd� has the desired distribution µ, then it is
clear what the simulation algorithm is; determine for each i ∈ Zd, one by one,
the value σ∗i as follows. Check, for larger and larger values of t, if �40

−t�+��i
equals �40

−t�−��i� If this is the case, assign their common value to σ∗i .

Remark (h). Note that for each t the above-mentioned check is a finite
task, since it involves only thoseWj�t′ , j ∈ Zd, t′ ∈ 
−t� � � � �−1� with � j−i �≤
�t′� where � � is the L1 norm on Zd. During the algorithm, aWj�t is generated
the first time it is needed in a calculation and, which is important, of course
keeps its value during the remainder of the algorithm. We soon come back to
this notion of “being needed,” which will be essential in our construction of a
finitary coding.

Lemma 3.5. If the PCA is monotone and ergodic, then each τi is finite a.s.

Proof. Let µ be the limit distribution of the PCA. Using the monotonicity
of the PCA,

P�τi > t� = P��40
−t�+��i �= �40

−t�−��i�
= P�σO�−� t� �= σO�+� t���

(3.2)

which (by the assumption that the system is ergodic) goes to 0 as t goes
to ∞. ✷

Lemma 3.6. The random configuration σ∗, defined above, has distribu-
tion µ.

Proof. Let 6 be a finite subset of Zd, and let σ be a random configura-
tion on Zd, drawn according to distribution µ. Since µ is invariant under the
dynamics, we have for every t that 40

−t�σ� has distribution µ. In particular
we have �40

−t�σ��6 has distribution µ6 for every t. However, by Lemma 3.5,
�40

−t�σ��6 = �σ∗�6 for all sufficiently large t. Hence σ∗6 has distribution µ6.
This holds for every finite 6 ⊆ Zd, which completes the proof. ✷

Remark (i). Letting Zi = 
Wi� t� t ∈ Z�, we have that 
Zi�i∈Zd is an i.i.d.
process and that µ is a finitary coding of it. The point however is that 
Zi�i∈Zd

is not a finite-valued process. The idea is now to modify the process 
Zi�i∈Zd

and the simulation algorithm so that we can obtain a finitary coding from a
finite-valued i.i.d. process to µ.

The proofs of Lemmas 3.5 and 3.6 have not used the exponential conver-
gence. However this exponential convergence yields the fact that (as we point
out more precisely below) for each i the expected number of t ∈ 
� � � �−2�−1�
for which there exists a j ∈ Zd such that Wi�t is “needed for the computation
of σ∗j” is finite.
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Remark (j). It is not difficult to show that this exponentiality even im-
plies that, for the above described simulation procedure, the expected amount
of computational work to generate the spin values of n vertices is bounded by
a constant times n. Although this is not essential for our purpose, it is inter-
esting from a simulation point of view, since it says that, in some sense, this
algorithm has linear rate, while it is clear that it is impossible to do essentially
better than linear.

Consider the random variables 
Wi� t� i ∈ Zd� t ≤ −1�. Informally, we say
that the position �i� t� (i ∈ Zd� t ≤ −1) in the space time diagram is needed
if, for some j ∈ Zd, it is “involved” in the evaluation of σ∗j. More precisely,
we define that �i� t� is needed if there is some j ∈ Zd such that τj ≥ �t� and
� j − i �≤ �t�; we let n�i� t� denote the indicator function of this event. If
�i� t� is not needed and the W variable is changed at �i� t�, then clearly σ∗ is
unaffected. Next, the expected number of t such that �0� t� is needed equals

−1∑
t=−∞

P

( ⋃
j� �j�≤�t�


τj ≥ �t��
)
≤

−1∑
t=−∞

�
j� � j �≤ �t���P�τ0 ≥ �t�� <∞

by (3.2) and the exponentially ergodic assumption.
Let M be any integer larger than this expectation and

L �=M−E
[ −1∑
t=−∞

n�0� t�
]
> 0

be the difference. For j ∈ Zd, let n�j� = ∑−�M+1�
t=−∞ n�j� t� and s�j� = M −∑−1

t=−M n�j� t�. For i ∈ Zd and k ∈ Z, we denote by i + k the vertex i +
�k�0� � � � �0�. Further, with abuse of notation, if 0 ≤ k ∈ Z and i ∈ Zd, we
define �i� i+k� = 
i+l� 0 ≤ l ≤ k�, and we say that i is smaller than j if there
exists an integer k ≥ 0 with j = i+k. By our choice ofM, E�s�0�−n�0�� = L
and so by the ergodic theorem, we have that for all i ∈ Zd,

lim
k→∞

1
k

i+k−1∑
j=i

�s�j� − n�j�� = L a.s.(3.3)

The idea is to continue the proof as follows. Intuitively, we should be able
to carry out the generation procedure of σ∗ by using only the Wi� t, i ∈ Zd,
−M ≤ t ≤ −1 because E�s�j�� > E�n�j�� and so on the average, there are
sufficiently many Wi�t’s around with t ∈ �−M�−1�; if, for some i, we need
a Wi�t with t < −M, we can transport unused Wj�t′ ’s from elsewhere with
t′ ∈ �−M�−1�. In this way, if this procedure is defined carefully, in a shift-
invariant finitary manner, we should, by combining this with the procedure
for generating σ∗ above, obtain a finitary coding from the process �Wi� i ∈ Zd�
to µ, whereWi = �Wi� t� −M ≤ t ≤ −1� (which is a finite-valued process). The
above procedure will be carried out in stages. We now make the above intuition
precise.

Let Ŵj� t� j ∈ Zd� t ∈ 
−M� � � � �−1� be i.i.d. random variables with the
same distribution asWO�0. We will construct a finitary coding from Ŵ = �Ŵj�
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j ∈ Zd� to µ, where Ŵj = �Ŵj� t� t ∈ 
−M� � � � �−1��. As suggested before,
the method is to extend (if necessary) the Ŵ-process to time indices less than
−M by using unneeded Ŵi� t’s, −M ≤ t ≤ −1. First we define the notion
“being needed” and the variables n̂�i� t�� i ∈ Zd� t ∈ 
−�M + 1�� � � � �−1�
exactly as before, but now with respect to the Ŵ process. Note that n̂�i� t� is
measurable with respect to 
Ŵj� s� j ∈ Zd� s ∈ 
t + 1� � � � �−1��. Therefore,
since the information that a certain �i� t� is needed tells us nothing about
the value of Ŵi� t, unneeded Ŵi� t’s can be regarded as independent random
variables with the “correct” (original) distribution.

Let T1 = Zd × �−∞�−�M + 1�� and T2 = Zd × �−M�−1�. For p = �i� k� ∈
T1 ∪T2, let

Cp =
{�i′� k′�� k+ 1 ≤ k′ ≤ −1� �i− i′� ≤ 2�k�}�

For i ∈ Zd� l ≥ 0, let

Ail =
{�j� r� ∈ T1� j ∈ �i� i+ l�

}
�

We will now define two processes 
Ŵnp�p∈T1∪T2� n≥0 and 
Ŝnp�p∈T2� n≥0 on the
same probability space.(These processes will in fact be defined in terms of the
variables 
Ŵj�j∈Zd .) For p ∈ T2, let Ŵnp = Ŵp for all n ≥ 0. Informally (but
not precisely), for p ∈ T1, Ŵnp will be:

(a) “?” if at the end of stage n, we don’t yet know if a Ŵ variable will be
needed at space–time location p;

(b) “u” (for unneeded) if at the end of stage n, we know that a Ŵ variable
will not be needed at space–time location p;

(c) “n” (for needed) if at the end of stage n, we know that a Ŵ variable
will be needed at space–time location p but its value has not yet been deter-
mined, or

(d) some element of the alphabet A if at the end of stage n, it is known
that a Ŵ variable will be needed at space–time location p and this variable
is determined and given by Ŵnp.

Informally, for p ∈ T2, Ŝnp will be:

(a) 1 if the space–time location p is not needed initially and if at the end
of stage n, its value has not been “transported away” (and is therefore still
available for use);

(b) 0 otherwise.

We now formally define these two processes inductively or in stages with re-
spect to n. Each stage other than the 0th will consist of two substages.

Stage 0. Let Ŵ0
p = ? for all p ∈ T1 and Ŝ0

p = I
p is not needed� for all p ∈ T2.
Stage 1(a). Let V1 = 
p ∈ T1� Ŵ0

p = ?� (which is T1 at this stage) and
U1 = 
p ∈ T1� Ŵ0

p = “n”� (which is empty at this stage). We partition V1 into
three sets V1

1, V1
2, V1

3 as follows: V1
1 = 
p ∈ V1� Cp∩�V1∪U1� �= �� (which is
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�i� k� ∈ T1� k < −�M+1�� at this stage), V1
2 = 
p ∈ V1\V1

1� p is not needed�
and V1

3 = 
p ∈ V1\V1
1� p is needed�. (Note that if p ∈ V1\V1

1, we can
determine whether p is needed.) Let Ŵ1 be “?” on V1

1, “u” on V1
2 and “n” on

V1
3. Note that for each i ∈ Zd, there is at most one k such that �i� k� ∈ V1

3.
Stage 1(b). We next partition V1

3 ∪U1�= V1
3� into two sets V1

4 and V1
5 as

follows. Let V1
4 be{

�i� k� ∈ V1
3 ∪U1� ∃ l ∈ �0�1�� ∑

j∈�i� i+l�� r∈�−M�−1�
Ŝ0
j� r ≥ ��V1

3 ∪U1� ∩Ail�
}

and V1
5 = �V1

3 ∪U1�\V1
4.

For �i� k� ∈ V1
4, let l be the minimal value satisfying the above and let q be

the unique integer in �−M�−1� such that

∑
j∈�i� i+l−1�� r∈�−M�−1�

Ŝ0
j� r +

q∑
u=−M

Ŝ0
i+l� u = ��V1

3 ∪U1� ∩Ail��

Leave Ŵ1 unchanged on V1
1 ∪V1

2 ∪V1
5 and for �i� k� ∈ V1

4, let Ŵ1
i� k = Ŵi+l� q

where l and q are as above. [We think of the unneeded variable Ŵi+l� q being
transported to space–time location �i� k�.] Note that in light of the earlier
remark that for each i ∈ Zd there is at most one k such that �i� k� ∈ V1

3, the
random variable Ŵi+l� q is “transported” to at most one space–time point. If
p = �i + l� q� ∈ T2 corresponds to some �i� k� ∈ V1

4 as above, then let Ŝ1
p = 0

and let Ŝ1
p = Ŝ0

p otherwise.
Stage 2(a). Let V2 = 
p ∈ T1� Ŵ1

p = ?� and U2 = 
p ∈ T1� Ŵ1
p = “n”�. On

T1\�V2 ∪U2�, let Ŵ2 = Ŵ1. We partition V2 into three sets V2
1, V2

2, V2
3 as fol-

lows: V2
1 = 
p ∈ V2� Cp∩�V2∪U2� �= ��, V2

2 = 
p ∈ V2\V2
1� p is not needed�

andV2
3 = 
p ∈ V2\V2

1� p is needed�. [As in Stage 1(a), note that, if p ∈ V2\V2
1,

we can determine from previous information whether p is needed, where
“needed” is defined in the analogous way as before.] Let Ŵ2 be “?” on V2

1,
“u” on V2

2 and “n’ on V2
3.

Stage 2(b). We next partition V2
3 ∪U2 into two sets V2

4 and V2
5 as follows.

Let V2
4 be{

�i� k� ∈ V2
3 ∪U2� ∃ l ∈ �0�2�� ∑

j∈�i� i+l�� r∈�−M�−1�
Ŝ1
j� r ≥ ��V2

3 ∪U2� ∩Ail�
}

and V2
5 = �V2

3 ∪U2�\V2
4.

For �i� k� ∈ V2
4, let l be the minimal value satisfying the above and let q be

the unique integer in �−M�−1� such that

∑
j∈�i� i+l−1�� r∈�−M�−1�

Ŝ1
j� r +

q∑
u=−M

Ŝ1
i+l� u = ��V2

3 ∪U2� ∩Ail��

Leave Ŵ2 unchanged on V2
1 ∪V2

2 ∪V2
5 and for �i� k� ∈ V2

4, let Ŵ2
i� k = Ŵi+l� q

where l and q are as above. Note again that the random variable Ŵi+l� q is
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“transported” to at most one space–time point. If p = �i + l� q� ∈ T2 cor-
responds to some �i� k� ∈ V2

4 as above, then let Ŝ2
p = 0 and let Ŝ2

p = Ŝ1
p

otherwise.
Stage n(a). Let Vn = 
p ∈ T1� Ŵn−1

p = ?� and Un = 
p ∈ T1� Ŵn−1
p = “n”�.

On T1\�Vn ∪ Un�, let Ŵn = Ŵn−1. We partition Vn into three sets Vn1 ,
Vn2 , Vn3 as follows: Vn1 = 
p ∈ Vn� Cp ∩ �Vn ∪ Un� �= ��, Vn2 = 
p ∈
Vn\Vn1 � p is not needed� and Vn3 = 
p ∈ Vn\Vn1 � p is needed�. Let Ŵn be
“?” on Vn1 , “u” on Vn2 and “n” on Vn3 .

Stage n(b). We partition Vn3 ∪Un into two sets Vn4 and Vn5 as follows. Let
Vn4 be

{
�i� k� ∈ Vn3 ∪Un� ∃ l ∈ �0� n��

∑
j∈�i� i+l�� r∈�−M�−1�

Ŝn−1
j� r ≥ ��Vn3 ∪Un� ∩Ail�

}

and Vn5 = �Vn3 ∪Un�\Vn4 .
For �i� k� ∈ Vn4 , let l be the minimal value satisfying the above and let q be

the unique integer in �−M�−1� such that

∑
j∈�i� i+l−1�� r∈�−M�−1�

Ŝn−1
j� r +

q∑
u=−M

Ŝn−1
i+l� u = ��Vn3 ∪Un� ∩Ail��

Leave Ŵn unchanged on Vn1 ∪Vn2 ∪Vn5 and for �i� k� ∈ Vn4 , let Ŵni� k = Ŵi+l� q
where l and q are as above. Note that as before, the random variable Ŵi+l� q
is “transported” to at most one space–time point. If p = �i+ l� q� ∈ T2 corre-
sponds to some �i� k� ∈ Vn4 as above, then let Ŝnp = 0 and let Ŝnp = Ŝn−1

p oth-
erwise. This completes the construction of the two processes 
Ŵnp�p∈T1∪T2� n≥0

and 
Ŝnp�p∈T2� n≥0.

The idea is now to use the 
Ŵnp�p∈T1∪T2� n≥0 variables to construct a σ̂∗

analogously to what we did earlier. In doing this, we need to know that for
all p ∈ T1, Ŵnp is either “u” or some value in A for sufficiently large n. To
do all this, it is useful to construct analogous processes to the above but with
respect to the original variables 
Wp�p∈T1∪T2

. This will allow a more precise
comparison.

We now define two processes 
Wnp�p∈T1∪T2� n≥0 and 
Snp�p∈T2� n≥0 which are
measurable with respect to 
Wp�p∈T1∪T2

and which are defined almost com-
pletely analogously to 
Ŵnp�p∈T1∪T2� n≥0 and 
Ŝnp�p∈T2� n≥0 but with one essen-
tial difference. The processes 
Wnp�p∈T1∪T2� n≥0 and 
Snp�p∈T2� n≥0 are defined

inductively over n exactly as 
Ŵnp�p∈T1∪T2� n≥0 and 
Ŝnp�p∈T2� n≥0 except that
when we are at some stage n(b) where we are about to assign a value from
A to a space–time location p ∈ T1, rather than transporting the value from
a space–time location in T2, we let Wnp simply be Wp; that is, we reveal
the value which was already there (but which we “did not know” before this
stage). Since transporting a variable tells us nothing about its value, it is clear
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that


Ŵnp� Ŝnp′ �p∈T1∪T2� p
′∈T2� n≥0 =� 
Wnp�Snp′ �p∈T1∪T2� p

′∈T2� n≥0�(3.4)

where =� means equal in distribution.
Next, note that it follows from the construction that for a fixed p ∈ T1 and

for every ω, Ŵnp as a function of n must behave in one of the following ways:

(i) Start off with value “?” and remain fixed forever.
(ii) Start off with value “?”, change to “u” at some point and then remain

fixed forever.
(iii) Start off with value “?”, change to a value in A at some point and then

remain fixed forever.
(iv) start off with value “?”, change to “n” at some point and then remain

fixed forever.
(v) Start off with value “?”, change to “n” at some point and then change

to a value in A at some later point and then remain fixed forever.

Lemma 3.7. For all p ∈ T1, behaviors (i) and (iv) above do not occur a.s.

Proof. First note that for every ω, if behavior (i) occurs for some p ∈ T1,
then behavior (iv) must occur for some p′. To see this, let p = �i� k� be a point
where Ŵnp is always in state “?” and where k is maximal with respect to this
property. Then p ∈ Vn1 for all n and so there must be a p′ ∈ Cp where Ŵnp′
remains fixed in state “n.” Hence we need only rule out behavior (iv) and we
do this for a fixed p0 = �i0� k0� ∈ T1.

In view of (3.4), it suffices to do this for 
Wnp0
�n≥0 instead. First, choose n0

such that Wn0
p0 = “n,” from which it immediately follows that p0 ∈ Vn0

3 ∪Un0 .
Now by (3.3), choose k0 such that

i0+k0∑
j=i0

�s�j� − n�j�� > n0M

and choose n′0 > max
n0� k0�. [Note that n0M is the maximum number of
space–time points p in �i0� i0+∞�×�−M�−1� which have been “transported”

to a point to the left of i0 by stage n0.] We claim that W
n′0
p0 ∈ A, which would

complete the proof. It is clear from the construction that no point in T2 at or
to the right of p0 can after time n0 be “transported” to something to the left of
p0 as long as p0 remains in state “n�” Therefore, if at the end of stage n′0 − 1,
p0 is still in state “n�” then it easily follows from the fact that

i0+k0∑
j=i0
s�j� > n0M+

i0+k0∑
j=i0
n�j�
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that

∑
j∈�i0� i0+k0�� r∈�−M�−1�

S
n′0−1
j� r ≥ ��Vn

′
0

3 ∪Un′0� ∩Ai0k0
��

which implies that W
n′0
p0 ∈ A, as desired. ✷

Letting

Ŵ∞
p �= lim

n→∞ Ŵ
n
p and W∞

p �= lim
n→∞W

n
p

(which are clearly well defined since all the sequences are eventually constant),
Lemma 3.7 implies that a.s. Ŵ∞

p is “u” or an element of A for all p ∈ T1 ∪T2,
while (3.4) immediately yields


Ŵ∞
p �p∈T1

=� 
W∞
p �p∈T1

�(3.5)

It is clear from the construction that W∞
p is Wp if p is needed and “u” other-

wise. Because of this and (3.5), it immediately follows that if we define σ̂∗ as
we defined σ∗ before but now with respect to the Ŵ∞

p variables, then σ̂∗ will
have the correct distribution µ. (Note that the Ŵ∞

p variables are not always
in A, since some of them take the value “u” but this obviously does not matter
since such a variable is unneeded in this case.)

The composition of first going from the 
Ŵj�j∈Zd random variables to the

Ŵp�p∈T1∪T2

random variables and then to σ̂∗ yields a stationary coding from

Ŵj�j∈Zd to µ and now we need only show that it is finitary. To do this, it
clearly suffices to show that for all ε > 0, there exists N such that the prob-
ability that σ̂∗0 is determined by 
Ŵj��j�≤N is > 1 − ε. For this, first choose
N1 such that P�τ0 > N1� < ε/2. Let SN1

= 
�i� t�� −N1 ≤ t ≤ −1� �i� ≤ �t��.
Hence σ∗0 is determined by the random variables 
Wp�p∈SN1

with probability
greater than 1 − ε/2 and so by the above, σ̂∗0 is determined by the random
variables 
Ŵ∞

p �p∈SN1
with probability greater than 1 − ε/2. Next, choose N2

such that with probability greater than 1 − ε/2, Ŵ∞
p = ŴN2

p for all p ∈ SN1
.

This would imply that the Ŵ∞
p variables for p ∈ SN1

are determined by stage
N2 with probability greater than 1− ε/2. Let N =N1 +N2. Clearly, by con-
struction, 
ŴN2

p �p∈SN1
is measurable with respect to 
Ŵj��j�≤N. Therefore the

random variables 
Ŵj��j�≤N determine σ̂∗0 with probability greater than 1−ε,
as desired. This completes the proof of Theorem 3.4. ✷

4. Application to the Ising model. We consider the ferromagnetic Ising
model on Zd, d ≥ 2, with interaction parameter J�J > 0, and zero external
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field; that is, we consider random fields 
σj�j∈Zd taking values ±1 with the
property that, for each i ∈ Zd, and α ∈ 
−1�+1�,

P�σi = α � σj� j �= i� = p
�σj� j∼i�
i �α��(4.1)

where we have used the following notation: j ∼ i means that i and j are
neighbors and

p
γ
i �α� =

exp�αJ∑
j∼i γj�

exp�αJ∑
j∼i γj� + exp�−αJ∑

j∼i γj�
� γ ∈ 
−1�+1�
j�j∼i��(4.2)

We call such distributions Ising distributions (with parameter J).
It is well known (see [25], pages 189 and 190) that there exists a critical

value Jc�d� ∈ �0�∞� such that if J < Jc�d�, then there is a unique Ising
distribution in d dimensions, while for J > Jc�d� there is more than one
Ising distribution in d dimensions. This corresponds with the occurrence of
a so-called phase transition. In particular, if we assign the value +1, respec-
tively −1, to each vertex outside Bn = �−n�n�d∩Zd and consider the (unique)
distribution which satisfies (4.1) for each i inside the cube, then, by letting
n→∞ and taking weak limits, we obtain two Ising distributions, called, re-
spectively, the “plus state” and the “minus state” of the Ising model, which
are equal when J < Jc�d� but distinct when J > Jc�d�. The existence of the
above limits follows from well-known stochastic monotonicity results (see [25],
page 189). We now restate Theorem 1.1.

Theorem 4.1. Consider the Ising model defined by (4.1).

(a) If J < Jc�d�, the plus state (which equals the minus state) of the Ising
model is a finitary factor of a finite-valued i.i.d. process.

(b) If J > Jc�d�, the plus state (and the minus state) of this model is not a
finitary factor of a finite-valued i.i.d. process.

Proof. (b) This follows immediately from Theorem 2.1.
(a) It is well known and can be easily proved by (now standard) mono-

tonicity and coupling arguments that, if J < Jc�d�, then under the following
continuous-time dynamics, the distribution at time t starting from any config-
uration converges to the (unique) Ising distribution. Each vertex has a clock
which rings after i.i.d. exponentially distributed (parameter 1) time intervals.
All these clocks behave independently of each other. When a clock rings (say,
at vertex i, at time t), then the spin value of i is updated, that is, is replaced
by a new value, which is drawn (independently of anything else) from the
distribution p

�σj�t��j∼i�
i . Here σj�t� denotes the spin value at j at time t. A

much deeper result, proved by Martinelli and Olivieri in [28], which, in turn,
involves a key result in [2] about the spatial mixing properties of the Ising
distribution (see also [18]) is that the above-mentioned convergence occurs
exponentially. This is of crucial importance for us. Instead of formulating the
Martinelli–Olivieri result precisely here, we will state its analog for the fol-
lowing, discrete-time dynamics, which corresponds with a cellular automaton
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to which Theorem 3.4 can be applied. (There are several other ways to set up
a discrete-time dynamics for the Ising model; see, e.g., [40] and [27], but for
our purpose we prefer the one below). At each discrete time step, each vertex
is, independently of the others, “activated” with probability 1/2. When a ver-
tex is activated, but none of its neighbors is, then its value is updated (where
“updating” means the same as in the continuous case). Again, one can easily
verify (by the same standard arguments referred to above) that if J < Jc�d�,
the distribution starting from any configuration converges to the unique Ising
distribution as t→∞. This discrete dynamics can be described in a semide-
terministic way (like the PCA in Section 3), which has the advantage that it
couples the time evolutions for all initial configurations. Such a coupling is
analogous to the so-called basic coupling (see [25], page 124). Let Ai� t, i ∈ Zd,
t ∈ N, be i.i.d. with P�Ai� t = 1� = 1 − P�Ai� t = 0� = 1/2. As before, let
∂i = 
j� j ∼ i�. Let U′i� t, i ∈ Zd, t ∈ N be i.i.d. uniformly distributed random
variables on the interval �0�1� and independent of the above A-process. Next,
define Ui� t = max
pγO�1�� γ ∈ 
−1�+1�∂O� pγO�1� < U′i� t� (the maximum here
is interpreted as 0 if pγO�1� ≥ U′i� t for all γ ∈ 
−1�+1�∂O). Finally, define
Wi� t = �Ai� t�Ui� t�.

Consider the following PCA with initial configuration ω

σ�ω�0� = ω�
σi�ω� t+ 1� = σi�ω� t� if Ai� t = 0 or Aj� t = 1 for some j ∼ i�

= +1 �−1� if Ui�t < �≥� p�σj�ω� t�� j∼i�i �1� otherwise�

(4.3)

One can easily verify that this PCA is monotone and corresponds with
the discrete dynamics described above. Next, the following proposition is the
discrete-time analog of Theorem 5.1 in [28]. The latter uses Theorem 3.1 in the
same paper, of which the statement and proof go essentially (and straightfor-
wardly) through step-by-step for the discrete-time dynamics described above.

Proposition 4.2. If J < Jc�d�, then the above PCA is exponentially er-
godic.

Theorem 4.1(a) now follows immediately from Theorem 3.4, Proposition 4.2
and the earlier observed facts that this PCA is monotone and has the Ising
distribution as its limit distribution. ✷

Remark (k). The Ising model is just one (important) example to illustrate
Theorem 3.4. It should be clear from this example that the combination of our
Theorem 3.4 with the before-mentioned Theorem 3.1 in [28] yields analogs
of Theorem 4.1(a) for a large class of random fields.

Remark (l). It has been proved (see [3] and pages 171 and 172 in [14]) that
for all dimensions except 3 (and is also certainly believed in 3 dimensions) for
J = Jc�d�, the plus state and the minus state of the Ising model are equal.
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However, it is well known that at the critical point the dynamics cannot be
exponentially ergodic, so that the question whether there exists a finitary
coding for the critical Ising model is left open. However, one can prove the
following result which was obtained jointly with Yuval Peres.

For a finitary mapping, for x ∈ Zd, we let Nx denote the random variable
which is the side length of the smallest hypercube about the point x, which
has the property that the value at x in the process we are mapping to is
determined by the values of the configuration that we are mapping from in
this hypercube. (Finitary means that Nx is finite a.s.) N0 is called the coding
length in one dimension.

Theorem 4.3. There does not exist a finitary factor map from a finite-
valued i.i.d. process to the plus state for the Ising model at the critical value
in d dimensions which has finite expected coding volume, that is, for which
E�Nd0 � <∞.

Proof. Let 
σx�x∈Zd denote the Gibbs state at the critical value in d di-
mensions. We may assume that it is unique, since otherwise there is no finitary
mapping at all to the plus state by Theorem 2.1. It is well known (and goes
back to [38] and [24]) that in this case

∑
j∈Zd E�σ0σj� = ∞. We will show that

if there is a finitary factor map with finite expected coding volume, then the
above sum is finite, which completes the proof. (Recall again that E�σxσy� ≥ 0
for all x�y ∈ Zd and so we do not need to take absolute values here.)

Fix j ∈ Zd. Then E�σ0σj� is equal to
∑
k� l≥0

max
k� l�≥!�j�/2"−1

E
[
σ0I
N0=k�σjI
Nj=l�

]

+ ∑
k� l≥0

max
k� l�<!�j�/2"−1

E
[
σ0I
N0=k�σjI
Nj=l�

]

≤ ∑
k� l≥0

max
k� l�≥!�j�/2"−1

P�
N0 = k� ∩ 
Nj = l��

+ ∑
k� l≥0

max
k� l�<!�j�/2"−1

E�σ0I
N0=k��E�σjI
Nj=l��

≤ 2
∑

k≥!�j�/2"−1

P�
N0 = k�� +
(!�j�/2"−2∑

k=0

E�σ0I
N0=k��
)2

= 2
∑

k≥!�j�/2"−1

P�
N0 = k�� +
( ∑
k≥!�j�/2"−1

E�σ0I
N0=k��
)2

≤ 3
∑

k≥!�j�/2"−1

P�
N0 = k���
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The equality above was based on the fact that E�σ0� = 0. Since it is clear that∑
j∈Zd

∑
k≥!�j�/2"−1

P�
N0 = k��

is bounded above by a constant times E��N0�d�, this completes the proof. ✷

This leaves open two questions.

Question 1. Does there exist a finitary factor map from a finite-valued
i.i.d. process to the plus state for the Ising model at the critical value in d
dimensions?

Question 2. Does the finitary coding we construct for the subcritical Ising
Model have finite expected coding volume and if not, does there exist such a
finitary coding?

Note that if the answer to both questions is yes, then the behavior (with
respect to finitary coding) at the critical value will be different from both the
subcritical and supercritical cases.

Although we feel that when studying finitary codings, one should primarily
be interested in the case where the i.i.d. process that one is mapping from is
finite-valued, we mention that in the larger category where the i.i.d. process
is not necessarily finite valued, we can already distinguish the critical Ising
model for d �= 3 from both the subcritical and supercritical cases. This is
because of the following. It is not hard to show (using similar ideas as earlier)
that the Ising model above the critical value is not a finitary factor of any i.i.d.
process (finite valued or otherwise). However, in the critical case, for d �= 3,
there is such a mapping by combining Lemmas 3.5, 3.6 and Remarks (i) and
(l), showing that the critical case is different from the supercritical case. Next,
it is clear that the finitary code given in Remark (i) (where the domain is an
uncountably valued i.i.d. process) has finite expected coding volume in the
subcritical case. On the other hand, the proof of Theorem 4.3 immediately
extends to the case where the i.i.d. process is not finite valued, showing that
the critical case is also different from the subcritical case.

5. Some further open questions. Here we mention a few open ques-
tions. In view of Theorem 2.1, one may ask whether ν being the unique trans-
lation invariant Markov random field with its conditional probabilities implies
that ν is a finitary factor of an i.i.d. process. This is not true, as we will indi-
cate below. As noted in the proof of the theorem, such a finitary factor satisfies
the blowing-up property. In [30], it is proved that in one dimension a process
satisfies the blowing-up property if and only if it is a Bernoulli shift, has the
“exponential rate of convergence property for frequencies” (which means that
the mean ergodic theorem for cylinder sets occurs at an exponential rate) and
has the “exponential rate of convergence property for entropy.” This proof ex-
tends to d ≥ 2 dimensions. So there are potentially three natural ways to look
for counterexamples, and we discuss two of them.
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We first mention that there exists a translation invariant Markov random
field which is the unique translation invariant Markov random field with its
conditional probabilities, but which is not a Bernoulli shift. For example, for
the antiferromagnetic Ising Model in two dimensions (see [17] for the defini-
tion of this) above the critical interaction parameter, there is a unique transla-
tion invariant Markov random field with the proper conditional probabilities,
but this field is not even totally ergodic and hence not a Bernoulli shift (it
splits as a convex combination of two periodic Markov random fields with
the proper conditional probabilities). This gives our first counter-example, as
mentioned above. What is happening here is that there may be nontranslation
invariant Markov random fields (even nonperiodic Markov random fields can
exist, e.g., the Ising model in three dimensions (see [13])) and one needs to
know whether the unique translation invariant Markov random field that one
is looking at is extremal within the class of all Markov random fields with
the given conditional probabilities, not just within the class of the translation
invariant ones. Further, if we do assume that in addition to ν being the unique
translation invariant Markov random field with its conditional probabilities,
it is also extremal in the class of all Markov random fields with its conditional
probabilities, then it is not known whether ν is necessarily a Bernoulli shift
(although it is in this case necessarily K; see [17]). In fact, even if ν is the
unique Markov random field with its conditional probabilities (unique among
all both translation invariant and nontranslation invariant Markov random
fields), which implies that ν is translation invariant andK, it is still not known
whether ν is necessarily a Bernoulli shift. Here it is very important to point
out that the example given in [19] has the property that it is not the unique
Markov random field with its conditional probabilities.

Next, for the second property of “exponential rate of convergence prop-
erty for frequencies,” a measure ν, which is the unique translation invariant
Markov random field with strictly positive conditional probabilities, does in
fact satisfy this property. This follows from Theorem 4.1 in [15], the lower
semicontinuity of relative entropy and Theorem 15.37 in [17], page 323.

The above discussion leads to the following question.

Question 3. If a translation invariant Markov random field µ is the
unique Markov random field (among both translation invariant and non-
translation invariant fields) with its conditional probabilities, is µ necessarily
a Bernoulli shift? (It is K by the above discussion).

Acknowledgments. We thank Ronald Meester for comments on an ear-
lier version of this paper, Yuval Peres for jointly proving Theorem 4.3 with us
and a referee for some suggestions.
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