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TYPICAL CONFIGURATIONS FOR ONE-DIMENSIONAL
RANDOM FIELD KAC MODEL1

BY MARZIO CASSANDRO, ENZA ORLANDI AND PIERRE PICCO

Universita di Roma, Universita di Roma Tre and CPT-CNRS´ ´
In this paper we study the typical profiles of a random field Kac

model. We give upper and lower bounds of the space scale where the
profiles are constant. The results hold almost surely with respect to the
realizations of the random field. The analysis is based on a block�spin
construction, deviation techniques for the local empirical order parame-
ters and concentration inequalities for the realizations of the random
magnetic field. For the upper bound, we exhibit a scale related to the law
of the iterated logarithm, where the random field makes an almost sure
fluctuation that obliges the system to break its rigidity. For the lower
bound, we prove that on a smaller scale the fluctuations are not strong
enough to allow this transition.

1. Introduction. In this paper we consider a one-dimensional spin sys-
tem with a ferromagnetic two-body Kac potential and a stochastic external
magnetic field. Problems where a stochastic contribution is added to the
energy of the system naturally arise in condensed matter physics where the
presence of impurities causes the microscopic structure to vary from point to
point. A lot of work has been dedicated to the subject of spin system with

� � � � � � � � � � � � � �random magnetic field; let us mention 1�6 , 9 , 11 , 13 , 15 , 16 , 17 ,
� � � � � �20 , 24 , 28 .

Ž .The Kac potentials are functions J r which depend on the scaling�

Ž . Ž .parameter � as J r � � J � r . The equilibrium statistical mechanics of�

these systems in the absence of stochastic external field are well known. In
the limit ��0, it is possible to explicitly derive the thermodynamic potentials,
prove the existence of a critical temperature and give a very natural and
transparent explanation of the phenomenon of spontaneous magnetization in

� � � �ferromagnetic systems 18 , 21 . It is also possible to analyze the limit Gibbs
states, but since direct interaction between any two given spins vanishes
when ��0, in order to get nontrivial limit distributions, it is useful to
introduce the so-called block�spins, which are the space average of spins over
regions whose size diverges as ��0 and which describe the configurations of
the system in terms of these magnetization profiles. In the one-dimensional

� � � �case, an analysis, 10 for Ising spin and 7 for more general spin, allows us
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to get a satisfactory description of the typical profiles. The results can be
summarized in the following way. The empirical spin average in blocks of size
��� , for any positive � , converges as ��0, to one of the two thermodynamic
magnetizations, uniformly in intervals of size 1�� p, for any given p � 1.
Furthermore, the intervals where the magnetization is approximately con-

ŽŽ . .stant have lengths of the order exp � f �� where � f is the activation
energy of the corresponding Curie�Weiss model.

In this paper we add a stochastic magnetic field and study how the
previous picture is modified. This is a particular case of the general problem
of stochastic perturbation of random systems. Random walk in random

� � � �environment is another famous example 29 , 30 . The general theory of such
systems is far from being complete; therefore it is important to have exam-
ples that can be rigorously treated, where the behavior of the perturbed
system is radically different from the unperturbed one. The first step in the
analysis of such systems is to find the right scale where new phenomena
occur. The rigorous analysis is in general delicate even if the heuristic
arguments are simple.

In our case, if we consider the system in a volume of order 1�� and let
� � � ���0, the model is equivalent to the random field Curie�Weiss model 1 , 3 ,

� � � � � � � � � �4 , 6 , 20 , 24 , 28 . It is possible to define a critical temperature and, if the
variance of the magnetic fields is small enough, only two distinct magnetiza-
tion profiles occur, the relative weight of each one being a random variable.
When we take first the infinite volume limit and then the limit ��0, new
phenomena occur that depend on the scale we are considering. If we consider
what happens in a large interval, say, centered at the origin and of length

�2 �Ž . p �� log 1�� for some p � 1, we start seeing new effects of the random
magnetic field. The profiles that were approximately constant on a scale

Ž�Ž . � .exp 1 � � � f �� and made a transition between the two equilibria on a
Ž�Ž . � .scale exp 1 � � � f �� when the random magnetic field was switched off,

�2 �Ž .Ž .2 �now make a transition on a scale at most � log 1�� log log 1�� and are
Ž . �2 � ��1constant on a scale at least l � � � log log 1�� . To be a little more

precise, for almost all the realizations of the random magnetic fields, for all
but a finite number of indices n, if �� 2�n, up to a translation of at most
Ž .l � , we meet a constant profile which is constant on an interval which is at

Ž . Ž .least l � . Note that for a given interval of scale l � , say, centered at the
origin, the system can be approximately constant around one of the two
equilibria or make just one transition between the two equilibria. That is,
there is at most one transition in such a fixed interval. Let us note that in a

� �recent paper 8 , the Kac�Hopfield model was considered and it was proved
that the system made at most one transition in an interval of scale

�2 � ��1 Ž .� log 1�� which is smaller than l � . Here it is possible to get results
Ž .on a scale l � mainly because the system we consider is simpler and this

allows us to make more accurate estimates. Moreover, to get the scale
�2 �Ž .Ž .2 �� log 1�� log log 1�� , a very special representation of the system is

used. It is possible to get similar results for the Kac�Hopfield model in the
Ž .regime where the number of patterns is bounded by log 1�� �log 2. This is
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just a tedious modification of what is done in this work and no new ideas are
needed.

The plan of the paper is the following. In Section 2 we introduce notation
and state the main results. In Section 3 we perform the block�spin represen-
tation, giving an explicit representation of the random part. A large deviation
principle in the strong form, that is, with estimates of the subexponential
terms, for a hypergeometric random variable is given there. In Section 4 we
prove the upper bound and in Section 5 we prove the lower bound for the
typical length of profiles.

Ž .2. The model and the main results. Let �, FF, � be a probability
� 4space. Let h � h be a family of independent, identically distributedi i� �

� �Bernoulli random variables defined on this space; that is � h � �1 �i
� � � 4� h � �1 � 1�2. We denote by � a function � � �1, �1 and call � ,i i

i � � the spin at site i. SS is the space of such functions, equipped with the
� 4product topology. Given �	 �, we denote by � a function �� �1, �1�

and the space of such functions is denoted by SS . We choose a Kac potential of�

Ž . Ž � �. Ž .the form J i � j � � J � i � j , �� 0, where J x � � . Note that� � x � 
1�2
more general ferromagnetic potentials could be used without changing the

Ž . Ž . Žbehavior of the model. The relevant conditions are 1 J x � 0 i.e., ferro-
. Ž . Ž . Ž . Ž . Ž .magnetism , 2 J x � J �x symmetry , 3 fast decay at infinity; that

Ž . Ž � �.could be short range or exponential J x � exp �2 x as in the original Kac
Ž .model. We assume that H J x dx � 1.

The Hamiltonian in a finite volume �	 � with free boundary conditions is
the random variable

1� � � �2.1 H � 	 � � J i � j � � � 
 h 	 � ,Ž . Ž . Ž .Ý Ý� � � i j i i2
Ž . i��i , j ����

where 
 is a strictly positive parameter. The interaction between the spins in
� and those outside � will be denoted by

2.2 W � , � c � � J i � j � � .Ž . Ž . Ž .Ý Ý� � � � i j
ci�� j��

We will usually drop the 	 dependence for all quantities we consider.
The Gibbs measure at inverse temperature �� 0 in the finite region �

with free boundary conditions is the probability measure-valued random
� 4�variable � on �1, �1 defined by�, 
 , � , �

1
2.3 � � � exp ��H � .Ž . Ž . Ž .� 4� , 
 , � , � � � �Z� , 
 , � , �

Here Z is the partition function, that is, the normalization factor to�, 
 , � , �
Ž .make � � into a probability measure on SS .�, 
 , � , � � �

If � is a spin configuration in SS , the Gibbs measure with boundary˜
�̃ c�condition � is the probability measure-valued random variable � on˜ �, 
 , � , �
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� 4��1, �1 defined by
1

� C�̃ c2.4 � � � exp �� H � � W � , � .Ž . Ž . Ž . Ž .˜Ž .½ 5� , 
 , � , � � � � � � �� c�̃Z� , 
 , � , �

�̃ c�Here Z , the partition function in the volume � with the boundary�, 
 , � , �
�̃ C�condition � , is the normalization factor to make � into a probability˜ �, 
 , � , �

measure on SS .�
Given a realization of h, �� 0, the infinite volume Gibbs measure ��, 
 , �

is obtained as the unique weak-limit of � along a family of volumes�, 
 , � , �
�̃ C�� �� � �L, �L , L � �. It is also the unique weak-limit of � for any �̃L � , 
 , � , �

that could depend on h. Note that different realizations of h give different
infinite volume Gibbs measures.

The free energy in the volume �, with free boundary conditions, is defined
by

1
2.5 F � , 
 , � � � log Z .Ž . Ž .� � , 
 , � , �� �� �

Ž .The infinite volume limit F �, 
 , � of the free energy with free boundary
conditions, for fixed � , exists �-almost surely by standard subadditive argu-

� � � �ment; see 34 , 19 . Being measurable with respect to the tail �-algebra of FF,
Ž .F �, 
 , � is a nonrandom quantity and it is equal to the limit of the average

Ž .of F �, 
 , � with respect to �.�

Given a volume �	 �, we define the sample magnetization in � by
1

2.6 m � � � .Ž . Ž .˜ Ý� i� �� i��

A relevant order parameter of this system is the limit, when ���, of the
infinite volume Gibbs average of m . Note that m can be written as˜ ˜� �

Ž . Ž . Ž .m � � m �, � � m �, � where˜ ˆ ˆ� � �

1 1 � hi
2.7 m �, � � �Ž . Ž .ˆ Ý� i ž /� �� 2i��

is the local sample magnetization on the random subset of � where the
Ž .magnetic field is positive resp. negative .

Ž . � �2Given �� 0 and m , m � �1, �1 , we define the constrained parti-1 2
tion function,

Ẑ m , m , �Ž .� , 
 , � , � 1 2

1
� exp ��H � � �Ž .Ž .Ý � � � � m Ž�, � .�m � 
 � 4 � � m Ž�, � .�m � 
 � 4ˆ ˆ�� � � 1 � 22 � �SS� �

2.8Ž .

and the constrained finite volume free energy
1ˆ ˆ2.9 F � , 
 , � , m , m , � � � log Z m , m , � .Ž . Ž . Ž .� 1 2 � , 
 , � , � 1 2� �� �

� � � �Using as before standard subadditive arguments 34 , 19 , �-almost surely,
ˆ ˆŽ . Ž .lim lim F �, 
 , � , m , m , � � F �, 
 , � , m , m exists and it is non-�� 0 �� � � 1 2 1 2
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Ž � �.random. Moreover, it follows from general arguments see 33 that it is a
ˆŽ . Ž . Ž .convex function of m , m and F �, 
 , � � inf F �, 
 , � , m , m .1 2 m , m 1 21 2

We want to give a precise description of the typical configurations in term
of profiles of local magnetizations in a given scale. This leads naturally to the
notion of block�spin transformations that will be defined later. Similar
analysis was done in the one-dimensional ferromagnetic Kac model without

� � � �external magnetic field in 10 , 7 .
Ž .We will not use m �, � to transform our system into a block�spinˆ �

system. We will use an equivalent set of two local averages. The main reason
is that the cardinality of the subset of � where h is positive is a random
number with mean ��2. The random fluctuations of this cardinality govern
the stochastic fluctuations of the system. We use another representation of
the system in term of a priori less physical quantities. They are the empirical
magnetizations over random sets with fixed length equal to ��2. However,
the local magnetization in a block is just one-half the sum of these two
empirical magnetizations. This allows us to extract from the random terms a
volume term ��2 which is deterministic. Moreover, with this choice some

Ž .important quantities, such as the logarithm of 4.8 , are symmetric random
variables.

The effect of the block�spin transformation is to transform our microscopic
system on � into a macroscopic system on �. Since the interaction length is
��1, we consider the system in a macroscopic scale where the interaction
length becomes 1. The volumes we consider will always be expressed in this
macroscopic scale; that is, a macroscopic volume V 	 � corresponds to a

Ž . �1microscopic volume ��� V � � V � �. Now, given 0 � �* � 1, we parti-
tion � into blocks of length �*. This will induce a partition of � into blocks of
length �*��1. We assume for convenience that �� 2�n for some integer n
and �* is a function of n such that �*��1 is an integer.

Ž .We denote by AA x a block of length �* centered at x. This corresponds in
�1 Ž . � �1 Ž .a microscopic scale to a block of length �*� , A x � i � �, � �* x � 1�2

�1 Ž .4 �Ž . � Ž .4 �Ž .
 i � � �* x � 1�2 . We denote by a x � inf i: i � A x and a x �
� Ž .4sup i: i � A x .

� � Ž � �. �Ž . �Given a realization of h: h 	 � h 	 , let us call A x � i �i i� �

Ž . � � 4 �Ž . � Ž . � � 4 Ž .A x , h 	 � �1 and A x � i � A x , h 	 � �1 . We denote by � xi i
Ž � �Ž . � Ž .�1 .� sgn A x � 2� �* , where sgn is the sign function, with the conven-

Ž . �1 Ž .tion that sgn 0 � 0. Note that if �*� is odd, � x is a Bernoulli symmetric
random variable. However, for convenience we assume �*��1 even. In this

Ž .case, the distribution of � x has the following mass at zero:

�1�*��1�� *�2.10 � � x � 0 � 2 .Ž . Ž . �1ž /�*� �2

Ž .We define, for a given realization of h such that � x � �1,

l
� �Ž x . � �1

�Ž x .2.11 l x � l x � inf l � a x : � j � �*� �2 .Ž . Ž . Ž . Ž . Ž .Ý � A Ž x .4½ 5�Ž .j�a x
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�Ž . � �Ž x .Ž . �Ž .4We denote the corresponding subset B x � i � A x , i 
 l x and
��Ž . Ž . �Ž . Ž . �Ž . �Ž . �Ž .B x � A x � B x . If � x � 0, we take B x � A x and B x �
�Ž . �Ž . �Ž . �Ž .A x . Let us call A x � B x � D x . Note that with this construction,

�1 � �Ž . � � �Ž . �since we have assumed �*� even, we have always B x � B x �
�*��1�2.

We define, for �� �1,

2�
�*2.12 m �, x , � � � .Ž . Ž . Ý i�* �Ž .i�B x

1 �* � *Ž . Ž Ž . Ž ..Notice that we have still ���* Ý � � m �, x, � � m �, x, �i� AŽ x . i 2

but now,
�

h �Ý i i�* Ž .i�A x

1 2�
�* � *� m �, x , � � m �, x , � � � x � .Ž . Ž . Ž .Ž . Ý i2 �* �Ž .i�D x

2.13Ž .

Given a microscopic volume �, we denote by
24� 8� 4�

2.14 MM � � �1, �1 � , �1 � , . . . , 1 � , 1 ,Ž . Ž . Ł�* �* �* �*Ž .x�CC ��*

Ž . �1where CC � is the set of the centers of the blocks of length �*� that we�*
Ž .get making a partition of � into such blocks. Namely, MM � is the set of�*

�*Ž . Ž �*Ž . �*Ž ..possible configurations of the pair m x, � � m �, x, � , m �, x, �
Ž .for x � CC � . We denote by�*

2.15 m�* � � m�* x � m�* x , m�* xŽ . Ž . Ž . Ž . Ž .Ž . Ž .Ž . Ž .x�CC � x�CC �1 2�* � *

Ž .an element of MM � .�*
We call a block�spin transformation the random map,

�� 4�1, �1 � MM � ,Ž .�*
2.16Ž .

� � m�* �, x , � , m�* �, x , � .Ž . Ž .Ž .Ž . Ž .x�CC �� �*

By abuse of notation, we denote by � the probability measure induced�, 
 , � , �
by the Gibbs measure through this map. The infinite volume limit
lim � will be denoted � .�� � � , 
 , � , � � , 
 , �

Ž .If lim �* � � 0, the induced Gibbs measure � will have a support�� 0 � , 
 , �
�Ž . �Ž .in the subset TT of L �, dx � L �, dx of all measurable functions

Ž Ž . Ž .. Ž � Ž . � � Ž . �.m x , m x , x � � such that max m x , m x 
 1. TT is a compact1 2 1 2
convex set with respect to the weak L2-loc topology.

We want to study the block�spin profiles which are typical with respect to
the Gibbs measure � when ��0. However, since the Gibbs measure is a�, 
 , �
random variable defined on �, we have also to specify in what �-probabilistic
sense this is true. In this paper we consider results that are true �-almost
surely.
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These typical configurations will have a spatial structure that will criti-
cally depend on the values of the parameters �, 
 and on the length scale we
are considering. As in all Kac models, the local behavior is related to the one
of the corresponding Curie�Weiss model. In our case it is the random field

Ž . Ž � � � � � � � �Curie�Weiss model RFCW . This model is well studied see 1 , 3 , 4 , 20 ,
� � � �. � �24 , 28 for various distributions of the random field h 	 . The Bernoulli
and the Gaussian distributions are the most commonly used. Note that even

Ž . � �if parameters similar to the m �, x were already introduced in 28 , in allˆ
the previously mentioned references, the results were given for the measure
induced by the Gibbs measure through magnetization.

Since our approach is slightly different, let us state some results for the
Ž .RFCW model in term of the parameters m �, x .

The random field Curie�Weiss model. This is the case where we assume
�� 1��� N, so that the thermodynamic limit and the limit ��0 are not
independent. The Hamiltonian of the random field Curie�Weiss model is
given by

N N1
� � � �2.17 H � 	� � � � � � 
 h 	� � ,Ž . Ž . Ý ÝN i j i i2 N i , j�1 i�1

where 
 is a strictly positive parameter.
Ž . Ž Ž ..The partition function is Z �, 
 � Ý exp ��H � and the finiteN � � SS NN

Ž . Ž . Ž .volume free energy is f �, 
 � � 1��N log Z �, 
 . We make the parti-N N
� 4tion of 1, . . . , N into two random blocks of equal length N�2 exactly as we

Ž . Ž .did between 2.11 and 2.12 . Considering the empirical pair of magnetiza-
Ž .tion over the previous blocks, we denote by Z �, 
 , m , m , � the con-N 1 2

Ž .strained partition function defined in a similar way to 2.8 and by
Ž . Ž . Ž .f �, 
 , m , m , � � � 1��N log Z �, 
 , m , m , � the associated freeN 1 2 N 1 2

energy.
Ž .It is easy to check that �-almost surely, uniformly with respect to m , m1 2

� �2� �1, �1 , we have

lim lim f � , 
 , m , m , �Ž .N 1 2
��0 N ��

2� m � m 
 1Ž .1 2� � m � m � I m � I mŽ . Ž . Ž .Ž .1 2 1 28 2 2�
2.18Ž .

� f m , m ;Ž .� , 
 1 2

Ž . ŽŽ . . ŽŽ . . ŽŽ . . ŽŽ . .here I m � � 1 � m �2 log 1 � m �2 � 1 � m �2 log 1 � m �2 . The
Ž .function f m , m is called the canonical free energy. Moreover, it can be�, 
 1 2

checked that, �-almost surely,

2.19 lim f � , 
 � f � , 
 � inf f m , m .Ž . Ž . Ž . Ž .N � , 
 1 2
2N �� Ž . � �m , m � �1, �11 2

Our first result relates the free energy of the random field Kac model to the
one of the random field Curie�Weiss model.
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THEOREM 2.1. For all positive �, for all positive 
 , �-almost surely we
have
2.20 lim lim F � , 
 , � � f � , 
 .Ž . Ž . Ž .�

��0 ���

The proof of this result, being straightforward although lengthy, will not
be given here. It is a consequence of the block�spin representation made in
Section 3 and modification of classical arguments that can be found, for

� �example, in 33 .
To state our next results, we need some results on the RFCW model. The

Ž . Ž .critical points of f m , m are the two-dimensional vectors m � m , m�, 
 1 2 1 2
solutions of the system of equations,

m � mŽ .1 2
m � tanh � � �
 ,1 ž /2

2.21Ž .
m � mŽ .1 2

m � tanh � � �
 .2 ž /2
We assume throughout this paper that �� 1 and �
 satisfies

1�2�1'2.22 tanh �

 min 1� 3 , 1 � � .Ž . Ž .ž /
Ž .This implies that the system 2.21 has only three solutions, two of them

Ž .being absolute minima and one the local maximum of f m , m . This can�, 
 1 2
be proved easily by considering

1 12.23 m � tanh � m � 
 � tanh � m � 
 .Ž . Ž . Ž .2 2

The previous condition implies that the derivative at the origin of the
Ž .function on the right-hand side of 2.23 is bigger than 1 and the function is

concave on the positive real, convex on the negative real number. Moreover, if
Ž .m is the largest positive solution of 2.23 , then the two absolute minima of˜�

Ž . Ž . Ž .f m , m are of the form m � m , m and Tm � �m , �m�, 
 1 2 � � , 1 � , 2 � � , 2 � , 1
Ž . Ž .where m � tanh � m � 
 and m � tanh � m � 
 .˜ ˜�, 1 � � , 2 �

Ž .It is easy to see that the function f m , m is quadratic around its�, 
 1 2
Ž .minima. Moreover, there exists a constant c �, 
 such that for all m �

Ž .m , m ,1 2

� � 2 � � 22.24 f m � f m � c � , 
 min m � m , m � Tm .Ž . Ž . Ž . Ž . 2 2ž /� , 
 � , 
 � � �

� � 2Here � is the Euclidean norm in � .2
�Our second result is the analogue of the Lebowitz�Penrose theorem 21,

�25 . It relates the canonical free energy of the random field Kac model to the
convex envelope of the canonical free energy of the random field Curie�Weiss
model. Recall that the convex envelope of a function f is the largest convex

Ž .function that is smaller than f. It will be denoted by Conv f .

THEOREM 2.2. For all positive �, for all positive 
 , �-almost surely,
Ž . � �uniformly with respect to m , m � �1, �1 , we have1 2

ˆ2.25 lim lim lim F � , 
 , � , m , m , � � Conv f m , m .Ž . Ž . Ž .Ž .� 1 2 � , 
 1 2
��0 � �0 ���
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The proof of this theorem will not be given here. It is a consequence of the
block�spin representation of Section 3 and can be done following step-by-step

� �the usual proof of the Lebowitz and Penrose theorem; see 33 .
To describe the asymptotic properties of the support of the measure � ,�, 
 , �

we need to introduce another scale. To avoid possible confusion, we empha-
size that we do not make a block�spin transformation on this scale. Given
�� �* and assuming that �� k�* for some positive integer k � 2, for l � �,

Ž .we denote by C l the set of centers of those blocks of length � that are in�
1 1� � Ž .the macroscopic interval l � , l � and given r � C l we denote by�2 2

Ž .C r the set of centers of those blocks of length �* that are in the interval�*��
of length � indexed by r. We define the notion of being near an equilibrium
with tolerance � . We impose that 0 � �
 m to separate the two equilibria� , 2
and define for l � �, the random variable

�*
�*� �1, if  Ý m x � m 
 � ,Ž . 1u� C Ž l . x � CC Žu. �� � *���

� , � �2.26 � l � �*Ž . Ž .
�*� ��1, if  Ý m x � Tm 
 � ,Ž . 1u� C Ž l . x � CC Žu. �� � *����

0, otherwise,

� � 1 2 � �where � is the l norm in � . In analogy with 10 , we expect that when1

��0, the typical profiles will be described by runs of �� , � � 1 followed by
� , � � �runs of � � �1. It was proved in 10 that, for the ferromagnetic Kac

model, the profiles make runs of �� , � � 1 on a scale which is of order
Ž .exp � f�� where � f is the activation energy of the Curie�Weiss model, that

is, the difference between the value of the canonical free energy at its saddle
point and at its minima. Roughly speaking, this means that on a scale

ŽŽŽ . ..exp 1 � � � f�� the profiles are nonconstant if �� 0 and are constant if
�� 0.

As we will see, the presence of the random magnetic field makes the
profiles nonconstant on a much smaller scale. To be more precise, given

� 4�� �1, �1 , l � �, l � � with l � l , we define1 2 1 2

2.27 RR� , � l , l , � � m�* : �� , � l � � , l ; l 
 l 
 lŽ . Ž . Ž .� 41 2 1 2

and

2.28 RR� , � l , l � RR� , � l , l , � � RR� , � l , l , � ,Ž . Ž . Ž . Ž .1 2 1 2 1 2

that is, the set of profiles that between l and l are near the equilibrium1 2
m , Tm , respectively, for �� �1, with tolerance � .� �

Given positive constants c, c, p � 1, L , we denote by N �ˆ ˜ 1 �

�Ž .Ž Ž .. pŽ Ž ..� � � Ž .c�c log 1�� log log 1�� , where x is the integer part of x, by l � �˜ ˆ ĉ
Ž .c�� log log 1�� and byˆ

p N�c log 1��Ž .Ž .˜
� , � � , �2.29 RR L , c, � RR kl � , L � kl � .Ž . Ž . Ž .Ž .ˆ �1 c 1 cˆ ˆž /� k��N�
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Ž Ž Ž .. p .That is, the set of profiles that in an interval of length 2 c log 1�� �� ,˜
centered at the origin, have at least one interval of length L that it is rigid.1
We have the following result.

THEOREM 2.3. Given c � 0, �� 1, p � 1, �� 0, c � 0, �
 small enough,˜ 0
Ž .for all x � 0, �� �* � c � log log 1�� , there exist an absolute constant c � 00

Ž . �nand a positive constant c � c �, 
 , x such that if �� 2 , �-almost surely,ˆ ˆ
for all but a finite number of indices n, if

2��log 1�� log log 1�� c x , � , �Ž . Ž . Ž .Ž . Ž .
2.30 L � ,Ž . 1 2 2� �
 m � mŽ . Ž .� , 1 � , 2

where
22 4 � xŽ .

c x , � , � � ,Ž . 3� log log log 1��Ž .
1 � 2 �ž /4 log log 1��Ž .

then
p

c log 1��Ž .Ž .˜
� , � �12.31 � RR L , c, 
 exp �� x� ,Ž . Ž .ˆ� , 
 , � 1ž /�

Ž . Ž .provided that for some function g 1�� , with lim g 1�� � �, slowly2 � � 0 2
varying at infinity,

'lim � g 1�� � 0Ž .2
� �0

and
2

� g 1�� � �
 m � m c� p � 2 .Ž . Ž . Ž .Ž .2 � , 1 � , 2

To make the previous theorem meaningful, we need a result in the
opposite direction, that is, to prove that the system is rigid with the same
tolerance � on a scale smaller than L . As we will see later, this will give a1
constraint from below on � . We introduce two different tolerance parameters
that we call � and � and the corresponding � and � . The parameter �4 1 4 1 4
plays the role of � in the previous theorem.

Given l � �, l � � with l � l , � � 0, � � 0, � � 0, � � 0, R � �,1 2 1 2 4 4 1 1 1
� � � 4x � l � 2 R � 1, l � 3R � 1 and �� �1, �1 , we define a front start-1 1 2 1

ing at the equilibrium � at the point x by

VV �1 , �1 , �4 , �4 l , l , � , xŽ .1 2

�* � � �4 , �4 �1 , �1� m :  l � l � R , x , � l � �� � x ,Ž . Ž .� 1 12.32Ž .
� � �4 , �4 �1 , �1 l � x � R � 1, l � R , � l � ��� � x � RŽ . Ž . 41 2 1 1

and the set of fronts in all possible starting points,

VV �1 , �1 , �4 , �4 l , l , � � VV �1 , �1 , �4 , �4 l , l , � , x .Ž . Ž .�1 2 1 2
l �2 R �1
x
l �3 R �11 1 2 1
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Let us note that we do not specify the configurations in a block of length R1
� �at the beginning and at the end of the interval l , l . Moreover, we specify1 2

the front by a starting point x and by a final point x � R where the other1
equilibrium is reached with a tolerance � . We do not specify what happens in1

Ž .the interval of length R in between. This length R � R � , � is the1 1 1 1 1
longest interval where the system can stay out of equilibrium with a toler-
ance � , a fact that will be proved in Corollary 5.2.1

� �We denote the set of fronts that occur within l , l by1 2

2.33 VV �1 , �1 , �4 , �4 l , l � VV �1 , �1 , �4 , �4 l , l , � .Ž . Ž . Ž .�1 2 1 2
� 4�� �1, �1

� Ž .�Moreover, to shorten notation we set see 2.28

2.34 RR�4 , �4 l , l , R � RR�4 , �4 l � 2 R , l � 2 R .Ž . Ž . Ž .1 2 1 1 1 2 1

Let us note that on this set, since we have not specified what happens in the
first two blocks of length R , we could have a configuration that looks like a1
front with a transition that occurs in these two first blocks and stays rigid

Ž .after. These events are not in the set defined in 2.32 .
We have the following result.

THEOREM 2.4. Given �� 1, �� 0 and c, there exists an � such that ifˆ 0
Ž .�

 � , we can find � � 0, c � 0 and constants c � c �, 
 for i � 1, 2, 3,0 0 0 i i

Ž .such that for all �
 � , for all � � � � 0, � � � � �* � c � log log 1��0 4 1 4 1 0
that satisfy

1
32.35 � � � c � �Ž . 4 4 1 1(ž /log log 1��Ž .

Ž 3.�1 � � � �for R � c � � , for any interval I � l , l such that 4R 
 l � l 
1 2 1 1 1 2 1 1 2
Ž Ž .. Ž . � �c�� log log 1�� , there exists � �� �, 
 , l , l , � such that � � � 1 �ˆ 1 1 1 2 1

Ž Ž Ž ..Ž ..exp � log log 1�� 1 � 2� and on � ,1

c � � 3
3 4 4� , � � , � , � , �4 4 1 1 4 42.36 � RR l , l , R � VV l , l � 1 � exp �Ž . Ž . Ž .Ž .� , 
 , � 1 2 1 1 2 ž /�

�n Ž .in particular, if �� 2 , �-almost surely, 2.36 occurs for all but a finite
number of indices n.

Ž Ž ..�1Roughly speaking, inside an interval of length c � log log 1�� cen-ˆ
tered, say, at the origin, the typical profiles are rigid with a tolerance �4
around one of the two equilibria or make only one transition between the two
equilibria. Note also that we have allowed a fuzzy region of length 2 R1
around the extremes of the intervals considered and also a region R around1
the front. However, using Corollary 5.4, it can be proved that in a fuzzy zone
there is at most one transition from one equilibrium to the other. Note that

Ž 3.�1R � c � � , the length of the fuzzy zones, is very small with respect to1 2 1 1
Ž Ž ..�1c � log log 1�� . As will be proved in Section 5, this R corresponds to theˆ 1

longest runs of ��1, �1 � 0 which is typical with respect to the Gibbs measure.
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Note that it is possible to take � in Theorem 2.4 and � in Theorem 2.3 equal.4
Theorem 2.4 suggests that a good notion of rigidity is not to fix all of those

intervals where the profiles are at equilibrium with a given tolerance but to
allow those intervals of rigidity to have a fuzzy zone of length 2 R at the1
extremes. To describe the typical profiles, we combine the results of the two
previous theorems. We can expect to give an upper and lower bound on the
distance between two fronts for the typical profiles in an interval of length,

�1Ž . psay, � log 1�� for some p � 1. Namely, this is the scale where we know
from Theorem 2.3 that such fronts exist. This corresponds to give an upper
and lower bound on the number of transitions from one equilibrium to the
other in such an interval. To be more precise, we need some more definitions.

� �Given an interval II � �j , j , centered at the origin, and positives integers1 1
� 4 �4 , �4Ž .k and L, we define, for l , l � �, �� �1, �1 , RR l , l , R , � �1 2 1 2 1

�4 , �4Ž . �4 , �4Ž . �4 , �4Ž .RR l � 2 R , l � 2 R , � , TT L, 1, � , II � RR �j , j , R , � and1 1 2 1 1 1 1

TT �4 , �4 L, k , � , IIŽ .
j j j k1 1 1

k �1� , � 14 4� ��� RR l , l , R , �1 � ;Ž .� � � � ž /k k �1 11 1
l ��j l �l l �l k �11 1 2 1 k k�1 1

l �l �L l �l �L2 1 k k�1

2.37Ž .

�4 , �4Ž .that is, the profiles in TT L, k, � , II change exactly k � 1 times equilib-
� �rium, starting from � somewhere within �j , �j � 2 R and remaining in a1 1 1

given equilibrium for a length at least L. We define also
k

� , � � , �4 4 4 42.38 TT L, 
 k , � , II � TT L, k , � , IIŽ . Ž . Ž .� 2
k �12

�4 , �4Ž . �4 , �4Ž . �4 , �4Ž .and TT L, 
 k, II � TT L, 
 k, �, II � TT L, 
 k, �, II . The pro-
�4 , �4Ž .files in TT L, 
 k, II change equilibrium at most k � 1 times, starting

� �from one equilibrium somewhere within �j , �j � 2 R and remaining in a1 1 1
given equilibrium for a length at least L.

THEOREM 2.5. Given �� 1 and �� 0, there exists � � 0 such that for all0
Ž . Ž .�

 � , we can find p � p �
 � 1, � �
 � 0, � � 0, c � 0, c � 0 andˆ0 4 0 0

Ž . Ž .constants c � c �, 
 for i � 1, 2, 3, such that for all �
 � , for all � �
i i 0 4
Ž .� � � � � 0, � � � � �* � c � log log 1�� that satisfy 2.35 , L that sat-4 1 4 1 0 1

Ž . Ž 3.�1isfies 2.30 and for R � c � � , for all given interval II of length1 2 1 1
Ž Ž .. p �1 �nc log 1�� � , for some positive constant c, if �� 2 , �-almost surely, for˜ ˜

all but a finite number of indices n,
pc 1 1˜

� , �4 4� TT l � , 
 log log log , II �Ž .� , 
 , � ĉ ž /ž /c � �ž ˆ
p�1c log 1��Ž .Ž .˜

� , �4 4TT L , 
 , II1 2��ž / /c log log 1��Ž .Ž .ˆ
2.39Ž .

c � � 3
3 4 4� 1 � exp � .ž /�
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Ž . 2 Ž .2Our estimates give the scaling relation p �
 � � � �
 . Following a0
typical profile starting from the left end of the interval II, we meet at least

Ž .�Ž .Ž .2�� �one transition, within a scale L � 1�� log 1�� log log 1�� , then1
after this transition, we are near an equilibrium on a scale which is at least
Ž .� ��11�� log log 1�� and at most L , then we meet another transition within1
a scale L and so on. This implies that the number of oscillations between the1

Ž . pequilibria in the interval II is bounded from above by log 1�� log log 1��
Ž . p�1Ž .�Ž2 �� .and from below by log 1�� log log 1�� .

3. Analysis of the block–spin representation. In this section we
perform the block�spin transformation on the scale �* mentioned in the
previous section and we make a rather precise analysis of the stochastic
contribution in order to prove our theorems.

� � �� �Given a macroscopic interval I � i , i 	 � with i � �, we denote by
Ž .CC I the set of centers of blocks of length �* that we get making a partition�*

of I into such blocks. Note that we are making a little abuse of notation since
� Ž .�a similar quantity was defined for a microscopic interval see after 2.14 and
Ž .�1there the partition was done into blocks of length �* � . However, we

Ž .consider the two sets equivalent. In particular, we identify MM I with�*
Ž �1 . �*MM � I . Let us denote by � the �-algebra of SS generated by the variables�* I

Ž �*Ž .. �*Ž . Ž �*Ž . �*Ž ..m x, � where m x, � � m �, x, � , m �, x, � For suchx � CC Ž I .�* � � � � 4 � �an interval I we denote by � I � x � �, i 
 x � i � 1 and by � I � x �
� �4�, i � 1 
 x � i the two macroscopic intervals of length 1 that are on the

right and on the left of I. We call � I � ��I � ��I.
If F �* is a ��*-measurable bounded function, we define the conditionalI

expectation of F �*, given the �-algebra ��*, as the real ��*-measurable� I � I
�*Ž . � �*Ž . Ž .4function that associates to m � I � m x , x � CC � I the value�*

� F �* � ��* m�* � IŽ .Ž .Ž .� , 
 , � � I

1
�*

�1� F �Ž .Ý � I� *Z m � IŽ .Ž .� , � , 
 , I �1� �SS �1� I � I

3.1Ž .

�*
�1 �1�exp �� H � � W � � m � I ,Ž . Ž .Ž .ž /� I � I

where

�*
�* �1 � *3.2 W � � m � I � J i � �*� x � m xŽ . Ž . Ž .Ž . ˜Ž . Ý ÝI � i� �1 Ž .x�CC � Ii�� I �*

�*Ž . Ž �*Ž . �*Ž .. Ž �*Ž ..with m x � m x � m x �2 and Z m � I is the normaliza-˜ 1 2 � , � , 
 , I
Ž �*.tion factor that gives � 1 � � � 1.�, 
 , � � I

Ž �* � * . Ž � � .�Given m , m in MM I � � I � � I let us denote byI � I � *

�*
�* � * � *3.3 E m � � J x � y m x m yŽ . Ž . Ž . Ž .˜ ˜Ž . ÝI � *2 2Ž . Ž .x , y �CC I�*
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and

3.4 E m�* , m�*
� � ��* J x � y m�* x m�* y .Ž . Ž . Ž . Ž .˜ ˜Ž . Ý ÝI � I � *

�Ž .x�CC I Ž .y�CC � I�* � *

�*Ž �*Ž .. � �1 � *Ž . �*Ž . Ž .4On the set M m I � �� � I: m x, � � m x  x � CC I , we�*
have

1
�* �1 � ��13.5 sup H � � 
 h � � E m 
 � *� I ;Ž . Ž . Ž .Ý� I i i I��* � * �1Ž Ž ..�1� �M m I i�� I� I

� �here I is the length of the macroscopic interval I. Moreover, we have also

1
�* � � * � * �1

�3.6 sup W � � m � I � E m , m 
 �*� .Ž . Ž . Ž .Ž .I I � I��* � *Ž Ž ..�1� �M m I� I

Ž . Ž . �The two estimates 3.5 and 3.6 follow from the fact that � ��� � i�j � 
1�24
�� 
 3� and an easy computation. There-�� * � x�y � 
1�24 ��� *�1�2 
 � * � x�y � 
 � *�1�24

Ž .fore, using 2.13 , we can write

� F �* � � m�* � IŽ .Ž .Ž .� , 
 , � � I

�1 � �exp ��*� IŽ .Ž .
�

�*Z m � IŽ .Ž .� , 
 , � , I

�
�* � * � * � * � *� F m exp � E m � E m , mŽ . Ž . Ž .Ý I I � Ižž ��*Ž . Ž .m I �MM I�*

3.7Ž .


�*
�* � *� m x � m xŽ . Ž .Ž .Ý 1 2 / /2 Ž .x�CC I�*

� � �* � * exp 2�
� x � ,Ž .Ý Ł Ý�m Ž x , � .�m Ž x . ,  x � CC Ž I .4 i�* ž /
Ž . �x�CC I�1� Ž .�* i�D x� I

where this equality has to be interpreted as an upper bound for �� 1 and a
�*Ž . Ž .lower bound for �� �1 and the first sum is over m x � MM I .x � CC Ž I . � *�*

Note that the random terms appear only in the last product Ł andx � CC Ž I .�*
Ž .that the last sum in 3.7 factors into a product over the intervals of length

�1 Ž .�*� indexed by CC I .�*
Ž . � 4�*��1

�1For all x � CC I , we introduce on �1, �1 � SS the measure�* � *�
denoted the canonical measure in physics literature,

Ý � � � �* � *Ž .�� SS �m Ž x , � .�m Ž x .4�1� *��*
�*3.8 � � � .Ž . Ž .x , m Ž x .

�* � *Ý ��� SS �m Ž x , � .�m Ž x .4�1� *�
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Ž .The denominator in 3.8 is

� �� � ��B B
�* � *1 � m x 1 � m xŽ . Ž .3.9 ,Ž . 1 2� �� � � �B B� 0 � 02 2

� �� � � Ž .�1where B � B � �* 2� . We set

ˆ �* � * � * � * � *FF m , m � E m � E m , mŽ . Ž . Ž .I � I I I � I


�*
�* � *� m x � m xŽ . Ž .Ž .Ý I 22 Ž .x�CC I�*3.10Ž .

� �� � ��B B
�

�* � *1 � m x 1 � m xŽ . Ž .� �* logÝ 1 2� �� � � ���* B B� 0 � 0Ž .x�CC I�* 2 2

We introduce the moment generating function

3.11 L�*
�* � x �
 , D� x � � �*

�* exp 2�
� x �Ž . Ž . Ž . Ž .Ž . Ýx , m Ž x . x , m Ž x . iž /ž /
�Ž .i�D x

and the cumulant generating function

3.12 GG �* � x � �log L�*
�* � x �
 , D� x ;Ž . Ž . Ž . Ž .Ž . Ž .x , m Ž x . x , m Ž x .

Ž .then 3.7 becomes

� F �* � � m�* � IŽ .Ž .Ž .� , 
 , � � I

�1 � �exp ��*� IŽ .Ž .
�* � *� F mŽ .Ý�*Z m � IŽ .Ž . �*� , 
 , � , I Ž . Ž .m I �MM I�*

3.13Ž .

1
�* � * � *ˆ�exp � �FF m , m � �GG m ,� 4Ž . Ž .1 � I Iž /�

where

3.14 GG m�* � GG �* � x ;Ž . Ž .Ž .Ž . ÝI x , m Ž x .
Ž .x�CC I�*

ŽŽ �1 � �..that is, up to the error terms exp �c�*� I , we have been able to describe
our system in terms of the block�spin variables, giving a rather explicit form
to the deterministic and the stochastic part.

Note that the stochastic dependence is given only by the fluctuations of the
Ž . Ž . � �Ž . �magnetic fields on each block, � x � sgn Ý h and by D x �i� AŽ x . i

Ž Ž . .� x �2 Ý h .i� AŽ x . i
Ž . Ž . �Ž . �Coming back to 3.11 , if � x � �1, then D x is a subset of B and

therefore the sum over the sites in B� factors out and it is cancelled by the
Ž . � Ž . Ž .�first combinatorial factor in 3.9 if � x � �1, it is the second term in 3.9 .
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Ž .In particular, this means that if � x � �1, we have

3.15 L�*
�* �
 , D� x � � �*

�* exp 2�
 � ,Ž . Ž .Ž . Ýx , m Ž x . x , m Ž x . i2 ž /ž /�Ž .i�D x

�*Ž . Ž .which depends only on the second coordinate of m x ; while if � x � �1,

3.16 L�*
�* �
 , D� x � � �*

�* exp �2�
 � ,Ž . Ž .Ž . Ýx , m Ž x . x , m Ž x . i1 ž /ž /�Ž .i�D x

�*Ž .which depends only on the first coordinate of m x .
We will need in the next section very precise estimates when � small, of

Ž Ž .. � Ž .��*GG � x see 3.12 , which is the cumulant generating function of ax, m Ž x .
hypergeometric. However, from the beginning we know that �
 is small and
to simplify the estimates, we will take �
 as small as we need. In fact, what

Ž .we need is a precise dependence in terms of the volume of D x and the
�*Ž .result we need has to be valid for all the possible values of m x , even those

ones very close to 1. Moreover, we cannot impose any conditions on the size of
D. We use large deviation estimates in the strong form with a good control of
the polynomial prefactors. We have to consider all the possible behaviors of
the fluctuations of a hypergeometric. It is well known in classical probability
that there are three possible regimes, namely a Gaussian one, a binomial and
a Poissonian one. Classical results are usually given in terms of convergence
in distribution. Since we are interested in controlling the error terms, we
need some extra work. We give a short proof of the estimates we need. The
statements of them are given in Proposition 3.4, for the Gaussian regime and
in Proposition 3.5 for the binomial and Poissonian regimes. Since it could be
of independent interest, we set the result in a general form. To do it, we set
�*Ž . Ž . Ž . �m x � m, D x � D, 2� x �
� z. We keep in mind that m � �1 �i

42�B, �1 � 4�B, . . . , 1 � 2�B, 1 . Denoting � the normalized symmetric�B
� 4 � B �Bernoulli measure on �1, �1 , we want to estimate

� exp z � �Ý� i �m Ž� .�m4ž /B B
i�D3.17 L z , D , B � ,Ž . Ž .m

� �� �m Ž� .�m4B B

where D is a subset of B. With a little abuse of notation we will denote
� � � �B � B and D � D when no confusion is possible. Moreover, we set ��
� � � �D � B . There are, roughly speaking, two regimes to consider, depending on

� �whether or not m is bounded away from 1. To be able to separate these two
Ž . Ž .possible cases, we introduce a real function g x such that lim g x � �x ��

Ž .but lim g x �x � 0. Here we will not specify more than this, since thex ��
Ž .choice of g x will be done at the end of the next chapter for reasons that will

� �become clear at that moment. The first case we consider is when m 
 1 �
Ž Ž . .g B �B . It is the Gaussian regime. We introduce � to be the grand�
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� 4 � B �canonical measure with chemical potential � , defined on �1, �1 ,

� � � exp � �Ž . Ý� iž /B
i�B3.18 � � � .Ž . Ž .�

� exp � �Ý� iž /B
i�B

Ž .Note that in classical probability theory and in large deviation theory �i i� B
� �under the law � are called associated random variables; see 12 . Following�

� �H. T. Yau 35 , we introduce two different chemical potentials and we write
the following identity: for all � , � � �,1 2

� exp z � �Ý� i �m Ž� .�m4ž /2 B 1i�DL z , D , B �Ž .m
� �� �m Ž� .�m41 B� exp z �Ý� iž /23.19Ž . i�D

� � � �B�D Dcosh � cosh � �zŽ . Ž .Ž . Ž .2 2
� ��exp m � �� B .� 4Ž .Ž .1 2 � �Bcosh �Ž .Ž .1

Ž .We choose � � � m such that m � tanh � , in which case the mean value1 1 1
Ž . Ž .of m � under � is m. Then � � � m, � , z is chosen such thatB � 2 21

3.20 m � � tanh � � z � 1 � � tanh � ,Ž . Ž . Ž .2 2

in which case

� m � exp z �Ž . Ý� B iž /2
i�Dm � .

� exp z �Ý� iž /2
i�D

� Ž . 4 �Ž � �.�1�2 Ž . 4Then writing simply m � � m � B Ý � � m � 0 , the twoB i� B i
Ž . Ž .first ratios in 3.19 can be estimated by a local central limit theorem LCLT ,
� �exactly as in 35 . Therefore, denoting

�1 �2� exp z � �Ý� i �Ž � B �. Ý Ž� �m.�04ž /2 i � B i
i�D3.21 � �Ž . z , � , m

� exp z �Ý� iž /2
i�D

and

exp zD m � � m, z , �Ž .Ž .ˆ
� � � �B�D Dcosh � cosh � � zŽ . Ž .Ž . Ž .2 2

� �� exp m � � � B ,� 4Ž .Ž .1 2 � �Bcosh �Ž .Ž .1

3.22Ž .
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we have

�z , � , m
3.23 L z , D , B � exp zD m � � m, z , � .Ž . Ž . Ž .Ž .ˆm �0, 0, m

The result in the Gaussian regime is the following.

PROPOSITION 3.1. There exist an �� 0 and positive constants c , c such1 2
� � � 4that if z � � , for all m � �1, �1 � 2�B, �1 � 4�B, . . . , 1 � 2�B, 1 such

� �that m � 1, then

�z , � , m
� �3.24 log L z , D , B � z D m � � m , z , � � log ,Ž . Ž . Ž .ˆm �0, 0, m

� Ž . � � �Ž � �. Ž .with sup � m, z, � 
 z 1 � c z . Moreover, for all g n such thatˆm: � m � �1 1
Ž . Ž . � �lim g n � � but lim g n �n � 0, for all m such that m 
 1 �n�� n��

Ž � �. � �g B � B ,

� 25z , � , m 23.25 � 1 
 c z � .Ž . 2 � �� g BŽ .0, 0, m

In the Poissonian and binomial regime we have the following.

PROPOSITION 3.2. There exist an �� 0 and a positive constant c such that1
� � Ž . Ž . 2Ž .if 0 � z � � , for all g n such that lim g n � � but lim g n �n �n�� n��

� 4 � �0, for all m � �1, �1 � 2�B, �1 � 4�B, . . . , 1 � 2�B, 1 such that m � 1
Ž � �. � �� g B � B , we have

� �3.26 log L z , D , B � z D m � � m , z , �Ž . Ž . Ž .ˆm 1

with

� � 2 � �g B g BŽ . Ž .
� � � �3.27 sup � m , z , � 
 c z � .Ž . Ž .ˆ1 1 ž /� � � � � �B z B� � Ž � �. � �m : m �1�g B � B

The remaining part of this section is devoted to the proofs of the last two
propositions and is quite technical. At first reading, this part could be
skipped. However, some of the estimates below will be used in a crucial way
in the next section.

We start proving Proposition 3.1.
Ž .First we give a lower bound for the variance of m � under � .B � 2

Ž .LEMMA 3.3. Let � be a solution of 3.20 and � given by2 z

1 1
23.28 � � � � 1 � � ,Ž . Ž .z 2 2cosh � � z cosh �Ž . Ž .2 2
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� � � �then for all m such that m � 1, for all �� 1, for all z such that z � � , for
� �some �� 0 small enough, for all �� 0, 1 ,

3.29 � 2 � 1 � m2 1 � cz 2Ž . Ž . Ž .z

for some positive constant c.

2 2 Ž .Ž Ž . Ž ..2PROOF. We have � � 1 � m � � 1 � � tanh � � z � tanh � .z 2 2
Now calling � � � � �, using m � tanh � , it is easy to see that2 1 1

1 � m2 tanh z � � � tanh �Ž . Ž . Ž .Ž .
3.30 tanh � � z � tanh � � .Ž . Ž . Ž .2 2 1 � m tanh z � � 1 � m tanh �Ž . Ž .Ž . Ž .

Ž . Ž . � Ž .�On the other hand, since � � � z and � 0 � � see 3.20 ,2 2 2 1

d� �z�2
3.31 � .Ž . 2 2dz � cosh � � zŽ .z 2

After an easy computation, we get
z d� 2

� � � � dz�H2 1 dz0

z 2� cosh � z�Ž .Ž .2� � dz�H 2 2� cosh � z� � 1 � � cosh z � � z�Ž . Ž . Ž .Ž . Ž .0 2 2

3.32Ž .

from which it is easy to get
� � � �3.33 � � � 
 z .Ž . 2 1

� Ž . Ž . � � 2Ž .��1 � Ž . �Therefore, we have tanh z � � � tanh � 
 1 � tanh z tanh z and
� Ž . � � Ž . �1 � m tanh z � � � 1 � tanh 2 z . Collecting, we get the lemma. �

Ž . � �PROPOSITION 3.4 LCLT . There exists an �� 0 such that if z � � , for all
� � � � � � Ž .given m such that m � 1, �� D � B and � given by 3.28 ,z

1 3
3.34 � � 1 �Ž . z , � , m 2ž /� �' B �� �2� B � zz

� � � �provided B is large enough. Moreover, for all m, such that m 
 1 �
Ž � �. � � Ž . Ž Ž . .g B � B for some g that satisfies lim g x � � but lim g x �x � 0,x �� x ��

we have
1 c

3.35 � � 1 �Ž . z , � , m ž /� �' g B� � Ž .2� B �z

for some positive constant c.

REMARK. The only reason to prove this proposition is to get in the error
Ž � �.term the explicit dependence on � through � and the g B dependence inz

Ž .3.35 . The proof is rather standard and follows the usual strategy to get
� �asymptotic expansions in LCLT. We have been influenced by 35 ; see also

� �Renyi’s book 26 , pages 460�466.
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PROOF OF PROPOSITION 3.4. We start with the following simple equation,

�1 sin� x 1, if x � 0,ik x3.36 e dk � �Ž . H ½ 0, if x 	 0, x � �,2� � x��

which implies after some algebra,

�1
� �3.37 � � exp ikm B � z , � , k dk ,Ž . Ž . Ž .Hz , � , m 2� ��

where
� � � �D B�Dcosh z � � � ik cosh � � ikŽ . Ž .2 2

3.38 � z , � , k � .Ž . Ž .
cosh z � � cosh �Ž . Ž .2 2

xŽ .�1 �yIntroducing the variable e 2 cosh x , using 1 � y 
 e , y � � and 1 �
2 Ž . 2cos k � k �2,  k � �, it is easy to check that for all x, k � � ,

2cosh x � ik kŽ .
3.39 
 exp � .Ž . 2½ 5cosh x 2 cosh xŽ . Ž .

Then we easily get

k 2
2� � � �3.40 � z , � , k 
 exp � B � .Ž . Ž . zž /2

If we denote

�1
� �3.41 EE m � � � z , � , k exp ikm B dk ,Ž . Ž . Ž . Ž .H� � �� � k � 
� 42� ��

then, after some standard tail Gaussian estimates, we get, for all �� 0,

1 8 � 2
2� � � �3.42 EE m 
 exp � � B .Ž . Ž .� zž /'ž /' ' 2� � � �2� B � 3 2� 1 � �� BŽ .z z

�1'Ž . Ž � � . Ž � �. Ž � �.Equation 3.42 suggests taking �� � B f B for some f B thatz
� �diverges with B but it is such that

� �f BŽ .
3.43 lim � 0Ž .

� �� � 'B �� g BŽ .
and we get

2 � �1 8 f BŽ .
� �3.44 EE 
 exp � .Ž . � ž /'ž /� �' 2� � 3 2� 1 � f BŽ .2� B � Ž .z

It remains to estimate

�1
� �3.45 � � � exp ikm B � z , � , k dk .Ž . Ž . Ž . Ž .Hz , � , m 2� ��
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� � � �Since we restricted the domain of k 
 � and � goes to zero when B ��,
using the Taylor formula with an integral rest for the term in k 4, cancelling
the linear term in k, we get

� �Ž .z , � , m

�
2 2 3 41 k � ik kz

� �� exp B � � RR 3 � RR 4, k dkŽ . Ž .H � �½ 5ž /2� 2 3 3��

3.46Ž .

� Ž . � Ž � . 2 � Ž . � 2with RR 4, k 
 1 � 16� e � and RR 3 
 � . Therefore, if� z � z
3Ž Ž � �. � � . Ž .'lim f B � g B � 0, f satisfies 3.43 as well and the terms ofŽ .� B � ��

3 4 Ž .order k and k in the exponent in 3.46 go to zero.
� i x � 2Therefore, using e � 1 � ix 
 x �2 for all x � � for the term of order

� x � � � � x � Ž .three in k and e � 1 
 x e for the term of order 4 in 3.46 , we get, after
Gaussian estimates,

2 2 3� � � ��1 k � B ik Bz
� � � exp � 1 � RR 3 dkŽ . Ž .Hz , � , m �½ 5ž /2� 2 3��

3.47Ž .
�1 1 � 32�eŽ .


 .2ž /� �' B �� �2� B � zz

3 Ž .The point is that the term in k in the left-hand side of 3.47 cancel by
Ž . Ž � �. � � ssymmetry. It is now easy to get 3.34 by taking, for example, f B � B

with s as small as we want.
Ž . Ž � �. � �'To get 3.35 , we just take f B � 2 log g B and we haveŽ .

1 8
� �3.48 EE 
Ž . � ' '� � � � � �2� B � '3 2� g B 1 � 2 log g BŽ . Ž .ž /z

Ž .and 3.35 is immediate. �

Ž .We come back to 3.23 and we estimate the second factor. We have from
Ž .3.22 ,

� m , z , �Ž .
cosh � � z cosh �Ž . Ž .2 2

� �� B � � � m � � log � 1 � � log .Ž . Ž .1 2ž /cosh � cosh �Ž . Ž .1 1

3.49Ž .

Ž . � Ž . � � �From 3.17 it is evident that � m, � � D is bounded from above by 2�
 .
Ž .Therefore there are some important cancellations that occur in 3.49 in order

� � � �to make it proportional to D instead of B as it looks at first sight. To
achieve this we first prove the lemma.

Ž .LEMMA 3.5. Let � be a solution of 3.20 , � a solution of m � tanh �2 1 1
Ž .and � given by 3.28 ; then there exists a constant c such that for all m suchz
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� � � �that m 
 1, for all z such that z � � for some �� 0 small enough,
2� � � �3.50 � � � 
 2 z � 1 � c zŽ . Ž . Ž .2 1

for some positive constant c.

Ž . Ž .PROOF. The proof is easy; starting from 3.31 , using the estimate 3.33 ,
we get

3.51 tanh � � z � m � 1 � m2 p m , �Ž . Ž . Ž . Ž .2

� Ž . � � �Ž � �.with p m, � 
 2 z 1 � c z for some positive constant c. Therefore, using
Ž . Ž .3.31 and 3.29 , we have

d� 2
� � � �3.52 
 z � 1 � c z ,Ž . Ž .

d


Ž .from which we get 3.50 . �

With this result, using the Taylor formula with an integral rest, we expand
Ž . Ž .around � the last two terms in 3.49 . Using m � tanh � , we get1 1

� m , �Ž .
� �B

1 � �Ž .12� z�m � � � � � � z d�Ž . H2 1 2cosh � � � � � � � zŽ .Ž .0 1 2 1
3.53Ž .

1 � �Ž .12� 1 � � � � � d� .Ž . Ž . H2 1 2cosh � � � � � �Ž .Ž .0 1 2 1

The only term which is not evidently proportional to � is the last one,
Ž . Ž . Ž . � Ž . �but using 3.50 and defining b z, � � � � � �z� we have b z, � 
2 1

� �Ž � �.z 1 � c z .
We denote by

� m, z , �Ž .ˆ
1 � �Ž .12

� 1 � �b z , � d�Ž .Ž . H 2cosh � � � � � � � zŽ .Ž .0 1 2 13.54Ž .
1 � �Ž .12� z� 1 � � b z , � d�Ž . Ž .H 2cosh � � � � � �Ž .Ž .0 1 2 1

� Ž . � � �Ž � �.and we have � m, z, � 
 � z 1 � c z , for some positive constant c.ˆ
Ž . � �� Ž .� Ž .At last � m, z, � � z D m � � m, z, � . Therefore, 3.17 takes the formˆ

�z , � , m
� �3.55 L z , D , B � exp z D m � � m, z , � .Ž . Ž . Ž .Ž .ˆm �0, 0, m

Ž . Ž .Collecting what we have done, recalling 3.12 and 3.23 , we end the proof of
Proposition 3.1. �
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Next we prove Proposition 3.2. It is simpler to start directly from the
Ž � � . Ž .explicit expression of L z, D , B given by 3.17 . By symmetry, it is enoughm

Ž � �. � �to consider the case where m � 1 � g B � B . To simplify the formulas, it is
� �better to set m � 1 � 2k� B and use the variable k instead of m. We set

Ž . Ž � �. Ž � �.L z, D, B � L z, D . We assume that 1 
 k 
 g B . It is easy toŽ1�2 k � B . k
check that

� �k� D�1
B B � D Dz � D � �2 zl3.56 L z , D � e e .Ž . Ž . Ýk ž / ž / ž /k k � l l

l�0

The first case to consider is when k 
 D. We are in the binomial regime. We
use the following standard estimates:

k� l k�lB � D � k B � DŽ . Ž .B � D3.57 
 
 .Ž . ž /k � lk � l ! k � l !Ž . Ž .
Ž .On the one hand, using the right part of 3.57 and some easy algebra, we

get

Bk B � k !Ž . kz � D � �2 � z �3.58 L z , D 
 e 1 � � � �e ,Ž . Ž . Ž .Ž .k B!
Ž .�1 Ž Ž ..where, as before, �� D�B. Using 1 � x 
 exp x 1 � x if 0 
 x 
 1�2,

we get
�k�1k 2B B � k ! k � 1 k kŽ . Ž .

3.59 
 1 � 
 exp 1 �Ž . ž /ž / ž /B! B B B

and this entails

g 2 B g BŽ . Ž .kz � D � �2 � z �3.60 L z , D 
 e 1 � � � �e exp 1 � .Ž . Ž . Ž .Ž .k ž /ž /B B

Ž .On the other hand, using the left part of 3.57 and calling � � k�B, wek
get

L z , DŽ .k

kk �2 � z �3.61Ž . B B�k ! 1�eŽ . kz � D � �2 � z �� e 1�� ��e 1�� .Ž .Ž . k �2 � z �ž /B! 1����e

Ž Ž .. � � Ž .Using 1 � x � exp �x 1 � x if 0 
 x 
 1�2, the left part of 3.59 and
some easy estimates, we get

2 � �g B 1 � exp 2 zŽ . Ž .Ž .kz D �2 � z �3.62 L z , D � e 1 � � � �e exp �Ž . Ž . Ž .Ž .k ž /B

After some computations, we get
kz D �2 � z � ˜3.63 e 1 � � � �e � exp zD m � 1 � m f z , �Ž . Ž . Ž . Ž .Ž . ž /

˜ � z ��Ž . Ž . � Ž Ž . . � � Ž � �.with 1 � m f z, � 
 g B �B z e 1 � c z .
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Ž . Ž . Ž .Collecting 3.60 , 3.62 and 3.63 , we get

3.64 L z , D � exp zD m � � m , z , �Ž . Ž . Ž .ˆŽ .m b

with

g B g 2 BŽ . Ž .
� � � �3.65 sup � m , z , � 
 c z � .Ž . Ž .ˆb 1 ž /� �B z B� � Ž .m : m �1�g B �B

Ž .It remains to consider the case where D 
 k 
 g B . This is the Poissonian
regime. It can be checked that

k lD1 � � 1 Dk
� �L z , D 
 exp zD exp �2 z lŽ . Ž . Ž .Ýk ž /ž /1 � � l! B � Dk l�0

3.66Ž .
k

�k 1 � �
� �
 exp zD exp exp �2 z .Ž . Ž .ž / ž /1 � � 1 � �k

Ž .The last factor in 3.66 is here to make a nice cancellation that will give
the correct behavior when z�0. We have

k 21 � � g BŽ .
3.67 
 exp ��k exp .Ž . Ž . ž /ž /1 � � Bk

Therefore after some computations, we get

3.68 L z , D 
 exp zD m � � z , m, �Ž . Ž . Ž .ˆŽ .m p

� Ž . � Ž 2Ž . . � � Ž .with � z, m, � 
 2 g B �B � z g B �B.ˆp
For the lower bound, we have

l lk DB � D � k 1 D � l k � lŽ . Ž .
z D �2 � z � l3.69 L z , D � e e .Ž . Ž . Ýk lž /B l! B � D � k � lŽ .l�0

Keeping the first two terms in the previous sum gives
kB � D � k D � 1 k � 1Ž . Ž .

z D �2 � z �3.70 L z , D � e 1 � e .Ž . Ž .k ž / ž /B B � D � kŽ .
After some computations, we get

3.71 L z , D � exp zD m � � z , m , �Ž . Ž . Ž .ˆŽ .k p

� Ž . � Ž 2Ž . . 4 � z �with � z, m, � 
 c g B �B e . �ˆp

4. Proof of Theorem 2.3 and some probability estimates. In this
section we prove Theorem 2.3. To study the properties of the system, uni-

ŽŽ . p .formly on an interval V of length c log 1�� �� , p � 1, we start consider-˜
Ž .Ž .Ž .2��ing a region V 	 V of scale L � 1�� log 1�� log log 1�� , with �� 0,1 1

Ž .and divide it in smaller intervals of scale l � � 1�� log 1�� . We reduce the
proof to the estimate of the upper bound of the ratio of two constrained
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partition functions over one of these intervals. We then write this ratio as the
product of two stochastic contributions and with �-probability 1, we prove the
following:

Ž .1. There is at least one interval of scale l � such that the first factor of the
Ž .stochastic part is smaller than exp �c�� , c � 0.

2. For all the above-mentioned intervals the contribution of the second factor
is negligible.

3. This can be done uniformly with respect to the choices of V in V.1

The choice of the relative sizes of the intervals involved is suggested by two
conflicting conditions: the existence of a large enough fluctuation of the
magnetic field, in at least one small interval, for the first factor and the
uniform control of the second factor over all intervals contained in V. In step
2 we need a deviation inequality for a Lipschitz function of symmetric
Bernoulli random variables, but our construction of the stochastic part, in

� �Section 3, does not allow checking the convexity hypothesis assumed in 22
� �or 32 . Therefore we give a simple proof of such deviation inequality without

� � � �any convexity hypothesis. See also 23 , 36 .
We start the proof of Theorem 2.3. Given c � 0, p � 1, it is enough to˜

prove that

� , � �14.1 � RR kl � , L � kl � , � 
 exp �� x�Ž . Ž . Ž . Ž .Ž .� , 
 , � c 1 cˆ ˆ

� �simultaneously for �� 1 and �� �1, and for any k such that k 

Ž .Ž . pc�c log 1�� log log 1�� , where c is a constant to be determined later.˜ ˆ ˆ

� � � Ž . Ž .�We take I � l , l 	 kl � , L � kl � and we start estimating12 1 2 c 1 cˆ ˆ
� � , � Ž .� � � Ž .� RR l , l , � , with l and l such that l � l � c�� log log 1�� �ˆ�, 
 , � 1 2 1 2 1 2

Ž .l � .ĉ
The first remark is that if � and � are two blocks of macroscopic length1 2

� Ž . � �1 Ž .1, then sup W � , � 
 � ; this follows from H J x dx � 1. There-� � � �� �� 1 21 2 � �fore, cutting all the interactions between l , l and its complementary, we1 2
have the estimate

� , �� RR l , l , �Ž .� , 
 , � 1 2


 exp 4���1 � RR� , � l , l , � � � 0 .Ž . Ž .Ž . Ž .� , 
 , � 1 2 � I12

4.2Ž .

Ž . � Ž .�We bound from below the partition function Z 0 see 3.1 by�, � , 
 , � l , l �1 2
� , � Ž .restricting the sum over all the spin configurations in RR l , l , �� .1 2

Taking into account that the two normalization factors cancel, we have

� , �� RR l , l , �Ž .� , 
 , � 1 2

� RR� , � l , l , � � � 0Ž . Ž .Ž .� , 
 , � 1 2 � I12�1
 exp 4�� .Ž .
� , �� RR l , l , �� � � 0Ž . Ž .Ž .� , 
 , � 1 2 � I12

4.3Ž .

Ž . � , � Ž .For simplicity, let us denote RR � � RR l , l , � .1 2
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Performing a block spin transformation on the scale �*��1 and using
Ž .3.13 we get

Z IŽ .� 12�1 � �4.4 � RR � 
 exp �� �* l � l � 4 ,Ž . Ž .Ž . Ž .� , 
 , � 2 1 Z IŽ .�� 12

where

Z IŽ .� 12

Z IŽ .�� 12

ˆ �* � *
�*Ý � exp � 1�� �FF m , 0 � �GG mŽ . Ž . Ž .½ 5m Ž I .� MM Ž I . � RRŽ� .4 I Iž /12 � * 12 12 12

� .
�* � *ˆ�*Ý � exp � 1�� �FF m , 0 � �GG mŽ . Ž . Ž .½ 5m Ž I .� MM Ž I . � RRŽ�� .4 I Iž /12 � * 12 12 12

4.5Ž .

Ž .We denote by T, the linear bijection on MM I defined by�* 12

4.6 T m x , m x � �m x , �m x  x � CC I ,Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .1 2 2 1 � * 12

Ž . Ž . Ž .then T RR � � RR �� . Moreover from 3.10 , it is immediate to check that
ˆ �* ˆ �*Ž . Ž .FF Tm , 0 � FF m , 0 by using the symmetry properties of the combinato-I I12 12

rial factors. Therefore, performing the change of variables induced by T in
Ž .the denominator in 4.5 , we get

Z IŽ .� 12

Z IŽ .�� 12

ˆ �* � *
�*Ý � exp � 1�� �FF m , 0 � �GG mŽ . Ž . Ž .½ 5m Ž I .� MM Ž I . � RRŽ� .4 I Iž /12 � * 12 12 12

� .
�* � *ˆ�*Ý � exp � 1�� �FF m , 0 � �GG TmŽ . Ž . Ž .½ 5m Ž I .� MM Ž I . � RRŽ� .4 I Iž /12 � * 12 12 12

4.7Ž .

By construction we note that changing h into �h makes the followingi i
Ž . Ž . � � � Ž . �changes: � x � �� x , B � B while D x is left invariant. Therefore we

get the following:

Z I Z IŽ . Ž .� 12 �� 12
4.8 �h � h ,Ž . Ž . Ž .

Z I Z IŽ . Ž .�� 12 � 12

Ž Ž . Ž ..Ž .which implies the nontrivial fact that log Z I �Z I h is a symmetric� 12 �� 12
random variable and therefore has mean zero. The next step is to extract

Ž .what we expect to be the leading term of the stochastic part coming in 4.7 .
Ž .Recalling 3.14 , we introduce

�* � * � *4.9 �GG m , � � � GG m � GG Tm ,Ž . Ž . Ž . Ž .� , I � , I � , I12 12 12

�* � *Ž . �* � *where m is the configuration of m x � m  x � I and m is any� , I � 12 �12� Ž .�1 �2point in �1, �1 � 4� �* , . . . , 1 which is among the nearest to m�

Ž .defined before 2.24 .



M. CASSANDRO, E. ORLANDI AND P. PICCO1440

We write

Z I Z IŽ . Ž .� 12 � , 0 12� *4.10 � exp �GG m , � ,Ž . Ž .ž /� , I12Z I Z IŽ . Ž .�� 12 �� , 0 12

where

Z IŽ .� , 0 12

Z IŽ .�� , 0 12

ˆ �* � � *
�*Ý � exp � 1�� �FF m , 0 � �� GG mŽ . Ž . Ž .½ 5m Ž I .� MM Ž I . � RRŽ� .4 I 0 Iž /12 � * 12 12 12

�
�* � � *ˆ�*Ý � exp � 1�� �FF m , 0 � �� GG TmŽ . Ž . Ž .½ 5m Ž I .� MM Ž I . � RRŽ� .4 I 0 Iž /12 � * 12 12 12

4.11Ž .

and

4.12 �� GG m�* � GG T Ž1�� .�2 m�* � GG T Ž1�� .�2 m�*Ž . Ž . Ž . Ž .0 I I � , I12 12 12

with T 0 � �, the identity.
Ž .Recall that m and m which are defined before 2.24 are bounded�, 1 � , 2

away from 1. For �� 1 and �
 small enough, we can use Proposition 3.1 to
Ž �* . Ž .control �GG m . Recall that this term has mean zero. Using 3.24 and the�, I12

Ž . Ž �* .definition of Tm given before 2.24 , we can write �GG m , � �� � , I12
Ž .��Ý X x withx � CC Ž I .�* 12

�* � *� �X x � �2�
� x D x m � m � x , �
 , �Ž . Ž . Ž . Ž .� , 1 � , 2

� �*� �*�
 , � Ž x . , m 0, 0, m� , 2 � , 1� � x logŽ .
�* � *� ��
 , � Ž x . , m 0, 0, m� , 1 � , 2

4.13Ž .

and

�* � *4.14  x , �
 , � � � m , � x �
 , � � � m , � x �
 , � .Ž . Ž . Ž . Ž .ˆ ˆŽ . Ž .� , 1 � , 2

The next step is to get a lower bound for the probability of
� Ž . 4 � ���Ý X x � u . We follow de Acosta 14 and write this sum as a sumx � CC Ž I .�* 12

� Ž . � � �over CC I �N blocks, each block having N elements, 1 
 N 
 I ��*.�* 12 12
2Ž . 2Ž Ž .. � 2Ž .� � � Ž .Calling V N � V N w � Ý � X x for 1 
 w 
 I � �*N ,x � N Žw . 12

we require that N satisfies also
� Ž . �CC I �N12� *N 1

4.15 � X x � X x .Ž . Ž . Ž .Ý Ý Ý� �CC I V NŽ . Ž .�* 12Ž . w�1 Ž .x�CC I x�N w12� *

Assuming that such N can be found, then we have
� Ž . �CC I �N12� * �

4.16 �� X x � u � X x � u .Ž . Ž . Ž .Ý � Ý½ 5 ½ 5V NŽ .Ž . w�1 Ž .x�CC I x�N w12� *

Using the fact that the events in the right-hand side are independent, we
apply the central limit theorem to estimate their individual probabilities.
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� � Ž .To check that we can find an 1 
 N 
 I ��* such that 4.15 is true, we12
use Proposition 3.1. On the one hand we have

�* �2
2 � * � *4.17 � X x � �
 m � m � c�
 1 � c�
Ž . Ž . Ž .ž / (� , 1 � , 2 ž /� �*

Ž � �.and on the other hand we get, if g B is large enough,

�* �2
2 � * � *4.18 � X x 
 �
 m � m � c�
 1 � c�
Ž . Ž . Ž .ž / (� , 1 � , 2 ž /� �*

Ž .for some positive constant c. Therefore using 4.15 , it is easy to check that N
must satisfy

2� �� � I2 12� * � *�
 m � m � c�
 1 � c�
Ž .ž / (� , 1 � , 2 ž /�* �*
4.19Ž . 2� �� � I2 12� * � *
 N 
 �
 m � m � c�
 1 � c�
 .Ž .ž / (� , 1 � , 2 ž /�* �*

� �Therefore, N 
 I ��* provided12

�11 ��2
� * � *� �4.20 I 
 �
 m � m � c�
 1 � c�
 .Ž . Ž .ž / (12 � , 1 � , 2 ž /� �*

Obviously N � 1 provided

�11�2�* �
�* � *� �4.21 I � �
 m � m � c�
 1 � c�
 .Ž . Ž . (12 � , 1 � , 2 ž /ž / ž /� �*

� � Ž . Ž �1 .�1 Ž . Ž .Therefore, since I � l � � c � log log � , 4.20 and 4.21 are satis-ˆ1, 2 ĉ
Ž . Ž .fied if � is small enough. To continue, using 4.17 and 4.19 we have

2�4 22 � * � * � �V N � �
 m � m � c�
 1 � c�
 IŽ . Ž .ž / (� , 1 � , 2 12ž /�*4.22Ž .
2 2� �� �
a � , 
 I .Ž .Ž . 12

� �Therefore, since lim I � �, it is clear that we are in the domain of�� 0 12
application of the central limit theorem and we have, for all �� 0 and u � 0,˜

�
� X x � uŽ .ÝV NŽ . Ž .x�N w

�
� � u 1 � � � X x � uŽ . Ž .˜ ÝV NŽ . Ž .x�N w

4.23Ž .

� exp �u2 1 � � �2 .Ž .˜Ž .
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� Ž .� Ž . � Ž .�Using the lower bound for N see 4.19 and for V N see 4.22 together
Ž .with 4.16 , we get

2u 1 � �Ž .˜
4.24 � �� X x � u � exp � .Ž . Ž .Ý 2ž /� �2 �
a � , 
 � IŽ .Ž .Ž .x�CC I 1212� *

Ž .Now to end the proof of Theorem 2.3, first we use 4.24 , for M consecutive
Ž . Ž . Ž .blocks of length l � , that we denote by L 1 , . . . , L M . Using independenceĉ

over disjoint blocks and 1 � x 
 e�x , considering the two cases �� 1 and
�� �1 separately, we get

� inf sup �� X x � uŽ .Ý
� 4�� �1, �1 1
l
M Ž Ž ..x�CC L l�*

2u 1 � �Ž .˜
� 1 � 2 exp �M exp � .2ž /2 �
a � , 
 � l �Ž . Ž .Ž . ĉ

4.25Ž .

� Ž .�Moreover, it follows from the next proposition see 4.28 that for all �� 0,
Ž .provided g 1�� is a diverging, slowly varying function at infinity,2

Ž .'lim � g 1�� � 0, then� � 0 2

Z L l �Ž .Ž .�, 0
� sup log 


Z L l �Ž .Ž .1
l
M �, 0
4.26Ž .

� 2

� 1 � 2 M exp � .ž /212� l � �
� g 1��Ž . Ž .c 2ˆ

Given �� 0 and x � 0 we make the following choice of parameters:
2 22 4 � x �Ž .

c x , � , � � ,Ž .
1 � 2 � 3��4 log log log 1���log log 1��Ž . Ž .

1 � �Ž .˜
c � c x , � , � ,Ž .ˆ 2

�
a � , 
Ž .Ž .
u � 2� 4 � x � c c ,Ž .ˆ0

4.27Ž . 3��1 1
M � log log log ,ž / ž /� �

4 � x �Ž .
�� ,

2
1 2

� g 1�� 
 �
 a � , 
 .Ž . Ž .Ž .2 8 � 212 p � 2 � �Ž .˜
Ž .An easy computation shows that the right-hand side of 4.25 is bounded

Ž Ž .1���4. Ž .below by 1 � exp � log log 1�� , and the one of 4.26 by 1 �
p�2��̃Ž . Ž . Ž . Ž . Ž .1� log 1�� . By 4.3 , 4.4 and 4.10 we obtain the estimate 4.1 .
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Moreover, it is immediate to see that we have also uniformity with respect to
Ž .Ž . p Ž .the 2 c�c log 1�� log log 1�� possible choices of k in 2.29 . Using the first˜ ˆ

Borel�Cantelli lemma and the fact that �� 2�n, we get Theorem 2.3. �

PROPOSITION 4.1. Given �� 1, �
� � for some � , let � small enough0 0
Ž . Ž .and g 1�� be a real function such that lim g 1�� � �, slowly varying2 � � 0 2

Ž .'at infinity that satisfies lim � g 1�� � 0, then for all �� 0, for all� � 0 2
integers l , l , if � is small enough,1 2

2Z I � �Ž .�, 0 12
4.28 � log � 
 exp � .Ž . ž /� �Z I � 212� l � l �
� g 1��Ž . Ž .�, 0 12 1 2 2

The proof of this proposition is rather long and technical. We first remark
Ž . Ž .that using the explicit expression 3.11 , 3.12 and the fact that

Ž . Ž . � Ž �* . Ž �* .�T m , m � �m , �m , we get � GG m � GG Tm � 0; us-�, 1 � , 2 � , 2 � , 1 � , I � , I12 12
Ž . � Ž . Ž .�ing 4.8 , we have also � log Z I �Z I � 0.�, 0 12 �, 0 12

Let us prove the above mentioned deviation inequality.

LEMMA 4.2. Let N be a positive integer and F be a real function on
� 4N � 4�� �1, �1 and for all i � 1, . . . , N let

˜� �F h � F hŽ . Ž .
� �4.29 � F � sup .Ž . �i ˜� �h � h˜ ˜ i iŽ .h , h : h �h ,  j	ij j

� Ž .� 2 N � Ž .� 2If � is the symmetric Bernoulli measure and � F � Ý � F then,� �i�1 i
for all t � 0,

t 2

4.30 � F � � F � t 
 exp �Ž . Ž . 2ž /� �4 � FŽ . �

and also

t 2

4.31 � F � � F 
 �t 
 exp � .Ž . Ž . 2ž /� �4 � FŽ . �

Ž . Ž .PROOF. We prove 4.30 ; the proof of 4.31 is exactly the same. As usual in
this kind of estimate, we start with the exponential Markov inequality. For
all �� 0, we have

4.32 � F � � F � t 
 exp ��t � exp � F � � F .Ž . Ž . Ž . Ž .Ž .Ž .
To estimate the last term, we introduce the family of increasing �-algebra,

�, � � � 	 � � � h 	 � � � h , h 	 ��� 	 �Ž . Ž . Ž .0 1 1 2 1 2 N

� � h , h , . . . , hŽ .1 2 N

4.33Ž .

Ž . � �and the martingale difference sequences,  1 
 k 
 N; � F � � F � � �k k
� �� F � � . If we prove thatk�1

N
22 � �4.34 � exp � � F 
 exp � � F ,Ž . Ž . Ž .Ž .Ý �kž /

k�1
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Ž . Ž . Ž � Ž .� 2 .�1 Ž .then 4.30 follows from 4.32 by taking �� t 2 � F . To prove 4.34 ,�

Ž .we perform the integrations in the left-hand side of 4.34 starting from h .N
˜Ž . Ž . Ž .The only term that depends on h is � F � F h , h � HF h , hN N � N N � N N

˜Ž . Ž .� dh where h � h , h , . . . , h . Therefore, using the Jensen in-N � N 1 2 N�1
equality, we get

exp �� F � dhŽ . Ž .Ž .H N N

4.35Ž .
˜ ˜
 exp � F h , h � F h , h � dh � dh .Ž . Ž .Ž . Ž .H ž /� N N � N N N N

For all fixed h , the term into the exponential is the symmetrized of F� N
with respect to the last variable. Then if we expand the exponential and

˜Ž . Ž .integrate with respect to the product measure � dh � dh , all the oddN N
terms vanish and we get  h ,� N

exp �� F � dhŽ . Ž .Ž .H N N

2 n� �Ž . 2 n˜ ˜
 F h , h � F h , h � dh � dhŽ . Ž .Ž . Ž .Ý H � N N � N N N N2n !Ž .n�0

2 n� � �� � FŽ .�N 2 n˜ ˜� �
 h � h � dh � dhŽ . Ž .Ý H N N N N2n !Ž .n�0

4.36Ž .

2 n� � �� � FŽ .� �N 2Ž2 n�1. 2 � �� 2 
 exp � � F ,Ž .Ž .Ý �N2n !Ž .n�0

Ž .� Ž . Ž2 n�1.� Ž .where x � max x, 0 and we have used 2 � 2n !
 1�n!.
A little difference for the successive integrations comes from the way to use

the Jensen inequality. We perform the next h integration. Since the termN� 1
Ž .� F is the only one that comes into play, we use the Jensen inequality asN�1

follows:

exp �� F � dhŽ . Ž .Ž .H N�1 N�1

ˆ
 exp � F h , h , hŽ .H H � N�1 N�1 Nž4.37Ž .

˜ ˆ ˆ ˜�F h , h , h � dh � dh � dh .Ž .Ž . Ž .ž /� N�1 N�1 N N N�1 N�1/
Now we can make exactly the same computations, since for fixed h ,� N�1

ˆ ˜ ˆ ˆ4.38 F h , h , h � F h , h , h � dhŽ . Ž . Ž .H ž /� N�1 N�1 N � N�1 N�1 N N
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˜Ž . Ž .is a symmetric random variable under � dh � dh and we can useN�1 N�1
Ž .4.29 to get

4.39 exp �� F � dh 
 exp �2� F .Ž . Ž . Ž . Ž .Ž . Ž .H N� 1 N�1 N�1

Ž .Iterating, we get 4.34 . �

It is clear that we have to estimate the corresponding Lipschitzian factors
� Ž .�see 4.29

Z IŽ .�, 0 12
4.40 � logŽ . i Z IŽ .�, 0 12 �

�1Ž .for all i � � I . Here there is a difficulty that comes from the fact that12
Ž . � , �definition 2.26 of � is given in term of a Cesaro average of blocks of

length �* that are contained in a block � of l norm. So we cannot assume1
that all the blocks of length �* are near an equilibrium; some but certainly

�*Ž .not all blocks of length �* can have m x very near 1. On the other hand,i
the correction to the leading behavior of � GG �* is dependent on the values0 x, m
of m�* and here we have to estimate a Lipschitz norm which certainly

�*Ž .becomes more and more singular as m x approaches 1. To solve thisi
Ž .problem, we localize the blocks which are near equilibrium the good ones

Ž .and their complementary the bad ones . We show that the fraction of the bad
blocks can be neglected provided we increase the ‘‘tolerance’’ � .

�1 Ž .We need to introduce some definitions. Given i � � I , let x i be the12
Ž .index of the block of length �* that contains the microscopic site i. Let u i be

Ž . Ž Ž .. Ž .the index of the block of length � that contains x i ; let CC u i � CC i��� * ��� *
be the set of the centers of blocks of length �* that are in the blocks of length

Ž .� indexed by u i . We have to estimate

Z I h Z I hŽ . Ž . Ž . Ž .�, 0 12 �, 0 12
4.41 log � log ,Ž . ˜ ˜Z I h Z I hŽ . Ž .Ž . Ž .�, 0 12 i �, 0 12 i

˜where the only discrepancy between h and h is at site i. To continue wei
need a simple lemma. Its proof is similar to a Markov inequality.

LEMMA 4.3. If

�
�*� �4.42 m x � m 
 � ,Ž . Ž .Ý 1� �*Ž .x�CC i��� *

Ž . Ž . Ž .then given g � such that lim g � � 0 but ��g � � 1 if �
 1, we1 � � 0 1 1
have

� �
�*4.43 � � 1 � .Ž . Ý �� m Ž x .�m � 
 g Ž � .4� 1 1 ž /�* g �Ž .1Ž .x�CC i��� *
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Ž .This suggests making a partition of CC i into two sets,��� *

�* � �* �AA m � x � CC i : m x � mŽ . Ž . Ž . 1��� * �½
4.44Ž .

� �g BŽ .
�* � *� � � �
 g � , sup m x , m x 
 1 �Ž . Ž . Ž .Ž .1 1 2 5� �B

Ž �*. Ž . Ž �*. Ž .and BB m � CC i � AA m . Let us call � m � 1 � m , recalling that��� * � � , 1
m 
 m . We assume that the parameters � , � , �* and the functions�, 2 � , 1
Ž . Ž � �. Ž .g � and g B are all chosen in such a way that for the given pair �, 
 we1

have

� �g BŽ .
4.45 g � � 
 � m .Ž . Ž . Ž .1 �� �B

Ž � �*Ž . � � �*Ž . �. Ž . Ž .This will imply that sup m x , m x 
 g � � 1 � � m 
 1 �1 2 1 b
Ž Ž � �.. � �g B � B and therefore the second condition in the definition of AA is
automatically satisfied. Let us note that since the two terms in the left-hand

Ž . Ž .side of 4.45 go to zero, we can assume that 4.45 is satisfied by taking � and
� small enough.

Ž .Let l i be the index of the block of length 1 containing the microscopic site
i. For all m�* � m�* we writelŽ i.

� � , � m�*Ž .�� Ž lŽ i..�14

� � m�* � c m�* � � , � m�* ,Ž . Ž . Ž .Ý � AA�X 4 � BB�X 4 �� Ž lŽ i..�14
Ž .X	CC i��� *

4.46Ž .

Ž . c Ž .where the sum is over all the subsets of CC i and X � CC i � X. Note��� * ��� *
Ž Ž .. � �that it follows from the previous lemma that � l i � 1 and X 
� , �

Ž .Ž Ž Ž ... � ����* 1 � ��g � are incompatible, therefore we can impose that X �1
Ž .Ž Ž Ž ... Ž .���* 1 � ��g � in 4.46 .1

Let us call

NN � � �Ž . Ý � � X � � Ž��� *.Ž1�Ž � � g Ž � ...41
Ž .X	CC i��� *

���� *

� .Ý �*� 0Ž .Ž Ž Ž ...k� ��� * 1� ��g �1 k

4.47Ž .

Ž .Then 4.41 is also equivalent to

Z I h Z I hŽ . Ž . Ž . Ž .�, 0 12 �, 0 12
4.48 log � log .Ž . ˜ ˜NN � Z I h NN � Z I hŽ . Ž . Ž . Ž .Ž . Ž .�, 0 12 i �, 0 12 i
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The two terms are estimated in the same way. We consider the first one. It is
easy to see that, with self-explanatory notation,

Z I h 1Ž . Ž .�, 0 12 ˜h hi4.49 � QQ exp � GG � � GG ,Ž . ž /0 x Ž i. 0 x Ž i.˜ NN �Ž .NN � Z I hŽ . Ž . Ž .�, 0 12 i

where QQ is the probability measure

� � �*QQ � � � m �Ž .Ý � RRŽ�.4
�*Ž . Ž .m I �MM I12 12� *

1 ˜�* h � *iˆ�exp � �FF m , 0 � �� GG mŽ . Ž .½ 5I 0 I12 12ž /ž /�

� �Ý � RRŽ�.4
�*Ž . Ž .m I �MM I12 12� *

4.50Ž .

�1
1 ˜�* h � *iˆ�exp � �FF m , 0 � �� GG m .Ž . Ž .½ 5I 0 I12 12ž /ž /�

Ž . Ž .Inserting 4.46 in 4.49 , we get

1 ˜h hiQQ exp � GG � � GGž /0 x Ž i. 0 x Ž i.
NN �Ž .

1 ˜h hi c� QQ exp � GG � � GG � �Ý ž /0 x Ž i. 0 x Ž i. � AA�X 4 � BB�X 4
NN �Ž . Ž .X	CC i��� *

� � Ž .Ž Ž Ž ...X � ��� * 1� ��g �1

4.51Ž .

Note that if we have an estimate of the form
˜h hi� �4.52 � GG � � GG 
 f � � � f � � ,Ž . Ž . Ž .0 x Ž i. 0 x Ž i. 1 �i� AA4 2 �i� BB4

then on the one hand, we get

1 ˜h hiQQ exp � GG � � GGž /0 x Ž i. 0 x Ž i.
NN �Ž .

1
c
 exp f � � � exp f � �Ž . Ž .Ž . Ž .Ý 1 �i� X 4 2 �i� X 4

NN �Ž . Ž .X	CC i��� *
� � Ž .Ž Ž Ž ...X � ��� * 1� ��g �1

4.53Ž .

and on the other hand

1 ˜h hiQQ exp � GG � � GGž /0 x Ž i. 0 x Ž i.
NN �Ž .

1
� exp �f � � .Ž .Ž .Ý 1 �i� X 4

NN �Ž . Ž .X	CC i��� *
� � Ž .Ž Ž Ž ...X � ��� * 1� ��g �1

4.54Ž .
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It is simple to check that
� 1

4.55 1 � 
 � 
 1.Ž . Ý �i� X 4g � NN �Ž . Ž .1 Ž .X	CC i��� *
� � Ž .Ž Ž Ž ...X � ��� * 1� ��g �1

Ž . Ž . Ž .Therefore, coming back to 4.49 and using 4.53 and 4.54 , we get

Z I h �Ž . Ž .�, 0 12
� �4.56 log 
 f � � exp f � � f � .Ž . Ž . Ž . Ž .Ž .1 2 1˜ g �Ž .NN � Z I hŽ . Ž . Ž . 1�, 0 12 i

Ž . Ž .Therefore, recalling 4.52 , even if we have a very poor bound f � on the2
Ž . Ž . Ž Ž ..set BB, 4.56 implies that by choosing g � in such a way that ��g � �0,1 1

we recover something small coming from the prefactor in the second term in
Ž .4.56 .

Ž .Let us prove something similar to 4.52 . There are two cases to consider;
˜ ˜h h h hi ithe first one is when � � �� and the second one is when � � � . In the

˜h hi� � � �first case, it is easy to check that we have D � D � 1. In this case, it is
Ž .simpler to use 3.56 directly, and after an easy computation we get, if

� Ž . �D x � 1,

4.57 GG �* � x � log cosh 2�
 � log 1 � � x m�* x tanh 2�
Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .x , m

� Ž . �from which it is immediate that, if D x � 1 and �
 is small enough,
˜�* h � *i� �� GG m x � � GG m xŽ . Ž .Ž . Ž .0 0

� �* �4 tanh 2�
 m x � mŽ . Ž . 1�

1 � m tanh 2�
Ž .� , 1

4.58Ž .

� �* �
 c � , 
 m x � mŽ . Ž . 1�

and this estimate is valid for all values of m�*.
In the second case, it is a rather long task to make all the estimates. We

have the following.

PROPOSITION 4.4. There exists an �� 0 and an absolute constant c such
Ž . Ž . Ž .that if �

 � , for all g n such that lim g n � � but lim g n �n � 0,n�� n��

˜h � * h � *i� �� GG m x i � � GG m x iŽ . Ž .Ž . Ž .0 0

� �B
�* � *� �
 2�
 1 � 16�
� m x i � mŽ .Ž . 1�2ž /� �g BŽ .4.59Ž .

c
�

� � � �'g B log g BŽ . Ž .
� � �*Ž Ž .. � Ž Ž � �.. � �4on the set m x i 
 1 � g B � B , while

˜h � * h � *i� �� GG m x i � � GG m x iŽ . Ž .Ž . Ž .0 0

2 � �g BŽ .
�* � *� �
 2�
 m x i � m � cŽ .Ž . 1� ž /� �B

4.60Ž .
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� � �*Ž Ž .. � Ž Ž � �.. � �4on the set m x i � 1 � g B � B .

Ž . Ž .PROOF. Formula 4.60 is immediate from Proposition 3.2. To prove 4.59 ,
Ž .remembering 3.24 , we have to study three terms. The first one is the

simplest,
1 � *� GG m x iŽ .Ž .0

˜ ˜h h h h � * � *i i� � � �� 2�
 � D � � D m x i � m x iŽ . Ž .Ž . Ž .Ž . !Ž x Ž i.. � , !Ž x Ž i..

4.61Ž .

and using
˜ ˜h h h hi i� � � � � �4.62 � D � � D � 1,Ž .

we get
1 � * � * � *� � � �4.63 � GG m x i 
 2�
 m x i � m .Ž . Ž . Ž .Ž . Ž . 10 �

Ž .The next one corresponds to � and we start from 3.49 and cancel from itˆ
the previously estimated term. That is, we consider

2 � *� GG m x iŽ .Ž .0

˜ ˜�* h h � * h hi i� � m x i , � x �
 , � � � m x i , h x �
 , �Ž . Ž . Ž . Ž .Ž . Ž .Ž . ž /!Ž x Ž i.. !Ž x Ž i..

� � m�* x i , �h x �
 , � hŽ . Ž .Ž .Ž .ž � , !Ž x Ž i..4.64Ž .
˜ ˜�* h hi i�� m x i , � x �
 , �Ž . Ž .Ž .ž / /� , !Ž x Ž i..

1 � *� � GG m x i .Ž .Ž .0

A simple way to estimate this term is to compute the double integral of its
second derivative with respect to � and m.

After easy estimates we get
2 � * 2 2 � *� � � �4.65 � GG m x i 
 32� 
 m � m .Ž . Ž .Ž . Ž . 10 �

Ž .It remains to consider the last term in 3.24 . We use that � does not0, 0, m
depend on � and define

�3 GG m�* x iŽ .Ž .Ž .0

˜ ˜h h � * h h � *� log � � log � i i� Ž x Ž i..�
 , � , m Ž x Ž i.. � Ž x Ž i..�
 , � , m Ž x Ž i..!Ž x Ž i .. !Ž x Ž i..4.66Ž .
˜ ˜h h � * h h � *� log � � log � .i iŽ .� Ž x Ž i..�
 , � , m Ž x Ž i.. � Ž x Ž i..�
 , � , m Ž x Ž i..� , !Ž x Ž i.. � , !Ž x Ž i..

The estimates are done in two different ways depending on whether the
Ž .blocks we consider belong to BB or to AA. In the first case, recalling 4.56 , we

Ž .do not need a sharp estimate. We use simply 3.25 , bounding the difference
Ž .in 4.66 by a sum of four terms, and we get immediately

20023 � *� �4.67 � GG m x i 
 c �
 �Ž . Ž . Ž .Ž .Ž .0 � �g BŽ .
for some positive constant c.

In the second case, as becomes clear in a moment, we need to use the fact
� �*Ž Ž .. �* � Ž .that m x i � m 
 g � and this makes the computations more in-1� 1

volved. �
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LEMMA 4.5. There exists an �� 0 and an absolute constant c such that if
Ž . Ž . Ž .�

 � , for all g n such that lim g n � � but lim g n �n � 0 for alln�� n��

� � Ž Ž � �.. � �m such that m 
 1 � g B � B ,

� �c�
 B c
3 � * � * � *� � � �� GG m x i 
 m � m 1 �Ž .Ž .Ž . 10 !Ž x Ž i.. � , !Ž x Ž i.. 2 ž /� �g B � �Ž . 'g BŽ .

c
� .

� � � �'g B log g BŽ . Ž .

4.68Ž .

Ž . Ž .PROOF. We use first 3.41 and 3.45 to write

EE �Ž .��
 , � , m
4.69 log � � log � � � log 1 �Ž . Ž .��
 , � , m ��
 , � , m ž /� �Ž .��
 , � , m

�1'Ž � � . � � Ž . Ž � �.'with �� � B 2 log g B and we use 3.44 , setting f B �Ž .��


� � Ž .'2 log g B together with 3.34 to control the last term. This leads toŽ .

EE � 5Ž .��
 , � , m
4.70 
 .Ž .

� �Ž . � � � �'3� g B 1 � 2 log g BŽ . Ž .��
 , � , m ž /
Ž .Therefore the four terms of this type in 4.66 will give a contribution

Ž .which corresponds to the last term in 4.68 . For the remaining terms, we
proceed as before, starting with

�3 GG m�* x i , �Ž .Ž .Ž .0

� 2� � 1h � * Ž .Ž Ž .. ��
 , � , m� m x i!Ž x Ž i..� d� dmH H
h̃ � *i ���m � �Ž .� m ��
 , � , m� , !Ž x Ž i..4.71Ž .

�� � �� � 1h � * Ž . Ž .Ž Ž .. ��
 , � , m ��
 , � , m� m x i!Ž x Ž i..� d� dm.H H 2h̃ � *i �� �m � �Ž .� m ��
 , � , m� , !Ž x Ž i..

Ž . Ž .We estimate separately the last two lines of 4.71 . We start from 3.5 . We
perform the derivative of the integral with respect to m. This gives a term

� �proportional to B , which is bad. Using the Taylor formula with an integral
rest, we expand in k up to order 1 the term in the integrand that comes from

Ž .deriving � ��
 , � , k . Then making computations similar to the ones that we
Ž .did in 3.47 , being aware of the cancellation of the previous linear term in k,

� � 2we get the leading term of order B k . Performing the Gaussian integral, we
get

1 � c�e � e �4 2 4Ž .
� �4.72 � � � 
 1 � .Ž . Ž .m ��
 , � , m 2 ž /' �� � � �'2� B � g BŽ .��
��
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' � �Let us note that in the denominator the term 2� B � will be cancelled��


Ž . � Ž .�out by the corresponding term in � � see 3.35 when estimating the��
 , � , m
Ž .ratios in 4.71 .

For the derivative with respect to � , we proceed in a similar way. It can be
checked that the linear term in k is not present here and the result is

1 � c� e � 8�
 e �4 c 1Ž .
� �4.73 � � � 
 1 � .Ž . Ž .� ��
 , � , m 2 ž /' �� � � �'2� B � g BŽ .��
��


� �For the second order derivative, we get a term proportional to B and
� � 2another to B , this last one being really dangerous. The one proportional to

� � � � 2B is treated as previously. For the one proportional to B , we expand up to
the fourth order in k all the integrand except the exponential terms. By

Ž .making explicit computations, similar to the one we did in 3.47 , all the
terms of order strictly less than 4 in k give a zero contribution. The result is

�
 c c
� �4.74 � � � � 
 1 �Ž . Ž .m � ��
 , � , m 4 ž /' �� � � �'2� B � g BŽ .��
��


Ž . Ž . Ž . Ž .for some positive constant c. Recalling 4.71 , and using 4.72 , 4.73 , 4.74
Ž .together with 3.35 we get, for some positive constant c,

�3 GG m�* x i , �Ž .Ž .Ž .0

c�
 c˜h h � * � *i� � � �
 � � � m � m 1 � .1!Ž x Ž i.. � , !Ž x Ž i.. 4 ž /� � �'g BŽ .��


4.75Ž .

˜ �1 �1h h 2i� � � � Ž � �. � �Using now the fact that � � � 
 B and that � � cg B B , we��


have

� �1 B
4.76 
 ;Ž . 4 2� � � �B � g BŽ .��


therefore,

� �c�
 B c
3 � * � * � *� �4.77 � GG m x i , � 
 m � m 1 �Ž . Ž .Ž .Ž . 10 !Ž x Ž i.. � , !Ž x Ž i.. 2 ž /� �g B � �Ž . 'g BŽ .

Ž .and this ends the proof of Lemma 4.5 . �

Ž .With Proposition 4.4, we get easily an estimate like 4.53 with

˜� �f � 
 h � hŽ .1 i

�
� �B c

2�
 g � 1 � 16�
� �Ž .1 2ž /� �g B � � � �Ž . 'g B log g BŽ . Ž .
4.78Ž .
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Ž .and recalling 4.67 ,

2 � �200 g BŽ .˜� �f � 
 h � h 8�
 1 � 17�
� � cŽ .2 i ž /� � � �g B BŽ .

c
�

� � � �'g B log g BŽ . Ž .

4.79Ž .

for some positive constant c.
� � 2Ž � �. 2Ž � �. � �The presence of both terms B �g B and g B � B suggests taking

Ž � �. � � Ž .g B � B �g 1�� for some function g x that diverges with x but is' Ž .2 2 '� �slowly varying at infinity. Assuming that � is such that 1� B 

Ž . Ž . Ž .g � g 1�� and choosing g � � ��2�
 g 1�� , recalling 4.56 , we' 'Ž . Ž .1 2 1 2

Ž .'get, if g satisfies also lim � g 1�� � 0,2 � � 0 2

Z IŽ .�, 0 12
4.80 � log 
 8 2�
� g 1�� .'Ž . Ž .i 2Z IŽ .�, 0 12 �

Then we apply Lemma 4.2 and we end the proof of Proposition 4.1. �

5. Some deviations estimates and proof of Theorems 2.4 and 2.5.
In the previous section, we have used the fact that the difference between the
stochastic contribution computed on the profiles constantly equal to one
minimum and the one computed on the other minimum has mean zero. In
this section, we consider profiles that are nonconstant and make arbitrary
oscillations so that in general we lose the mean zero property. Roughly
speaking, there are basically three kinds of possible oscillations that we
expect to be unlikely. The first one is when the system stays out of the
equilibria for a too long interval. The second one is when the system jumps
from one equilibrium to the other one, stays there for a too short interval and
comes back to the first equilibrium. The third one is when the system makes
too many oscillations around one equilibrium without reaching the other one.
We have to be careful since without ‘‘too long,’’ ‘‘too short’’ and ‘‘too many,’’
the previous oscillations could by typical of the Gibbs measure.

To prove Theorem 2.4, we first consider the case where such oscillations
'occur on macroscopic intervals � that are not bigger than log log 1�� . In

ˆthis case, our estimates will be true on a subset, say �	� of �-probability
1, uniformly with respect to all the possible positions of such intervals �
inside a bigger interval II centered at the origin, of macroscopic length ��k ,

� � �1Ž . pfor any given k. A priori we have to consider only the case II � � log 1�� ,
� � �2 �3p � 1; however, when it is possible, we consider II � � , that is, � in

microscopic units. However, while for the first and third type of oscillations, it
'will be enough to estimate them in an interval not bigger than log log 1�� ,

since being outside of equilibria or fluctuating around one equilibrium for
‘‘too long’’ is very unlikely and can be detected already in the scale
'log log 1�� , for the second type of oscillations we must be more careful.
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Namely, we have to distinguish when being close to one equilibrium is typical
and when it is not. This requires analyzing the system over longer intervals
and controlling the contribution of the magnetic field and the entropy terms

'over intervals where the estimates used in the scale log log 1�� will give a
too large contribution.

Let � be a macroscopic interval of length R � � and � , � be twoR 1 1
�1, �1Ž . � �1, �1Ž . 4positive real numbers. Let OO � � � l � 0, l � � � � , then our0 R R

first result is the following.

PROPOSITION 5.1. There exists an absolute positive constant c such that
Ž .given �� 1 and �
 that satisfies 2.22 , there exists a positive constant

Ž .c �, 
 , such that for all � � �* � 0, � � 0 and z � 0, we can find � �1 1 1 1
Ž .� � , �*, � , � , z , � 	� such that on � ,1 1 1 1 R 1

� OO �1 , �1 �Ž .Ž .� , 
 , � 0 R

� � �*
3
 exp � c � , 
 � � R � 4 � 2cR �* � logŽ . 1 1 ž /ž � �* �5.1Ž .

� '�2 R
 � R� 4
 z( 1 /�*

� � Ž 2 .and � � � 1 � exp �z �64 .1 1

Ž .PROOF. By the very same argument that leads to 4.2 we have

�
� , � � , �1 1 1 15.2 � OO � 
 exp 4 � OO � � � 0 .Ž . Ž . Ž . Ž .Ž . Ž .� , 
 , � 0 R � , 
 , � 0 R ��Rž /�

Ž .Performing a block spin transformation on the scale �*, recalling 3.13 , we
have

� OO �1 , �1 � � � 0Ž . Ž .Ž .� , 
 , � 0 R ��R

exp ���*��1RŽ .Ž .
� , �� � 1 1Ý �OO Ž� .40 RZ 0Ž . �*� , 
 , � , � Ž . Ž .R m � �MM �R R� *

5.3Ž .

1
�* � *ˆ�exp � �FF m , 0 � �GG m .Ž . Ž .½ 5� �R Rž /�

� Ž .To estimate the stochastic part, we make a rough upper bound see 3.15
Ž .� � Ž .Ž Ž .. � � Ž . ��*and 3.16 GG x � x 
 2�
 D x which corresponds to the situationx, m

�Ž . Ž .where all the spins in D x are equal to �� x . This gives us a factor,

� �5.4  2�
 , � � exp 2�
 D xŽ . Ž . Ž .ÝR ½ 5
Ž .x�CC �R� *

Ž .that we extract from the numerator in the left-hand side of 5.3 .
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ˆ � Ž .�To estimate the combinatorial factor that appears in FF see 3.10 , we use
� �the Stirling formula in the form given by Robbins 27 which is  N � 1,

N�1�2 �N �N' Ž .N!� 2�N e e with 1�12 N 
 � 
 1� 12 N � 1 . Let us denoteN

�* 2� * � * � *F̃F m � J x � y m x � m yŽ . Ž . Ž .˜ ˜ÝŽ .� � *R 2 2Ž . Ž .x , y �CC �R1�� *

� �* f m�* x ,Ž .Ž .Ý � , 

Ž .x�CC �R� *

5.5Ž .

� Ž .�where f is the canonical free energy of the RFCW model see 2.18 . It is�, 

easy to see that restricting the configurations to those that are constantly
equal to m�*, where m�* is the nearest point to m belonging to the set� � �

� �2�1, �1 � 4���*, �1 � 8���*, . . . , 1 � 4���*, 1 , we get a lower bound for
Ž .the normalization factor Z 0 . On the other hand, using the fact that�, 
 , � , �R

2 R�� *�* 2 R �*
5.6 1 
 � exp logŽ . Ý ž / ž /2� �* 2��*Ž Ž ..m �1, x x� CC Ž� .R� *

Ž .to control the number of terms that occurs in the sum in 5.3 , after the
cancellation of some constants, we get

� OO �1 , �1 � � � 0Ž . Ž .Ž .� , 
 , � 0 R ��R

� � �*

 exp R�* � 4 � 2 R log  4�
 , �Ž .Rž /ž /� �* �5.7Ž .

�
�*

�* � , �� exp � inf FF m ,1 1½ 5Ž .m � OO �� 0 Rž /R�

�* ˜ �* ˜ �*Ž . Ž . Ž .where FF m � FF m � FF m .� � � , �R R R

To give a lower bound on the previous infimum, we use the fact that if xi
are positive numbers, bounded from above by a constant c, then if the
arithmetic mean of N terms x is bounded from below by some � 
 c therei 1

Ž .are at least N� � 2c � � terms x among the N, such that x � � �2. Using1 1 i i 1
Ž .2.26 we get after some easy computations,

1
�* 3 35.8 inf FF m � Rc � , 
 � � � Rc � , 
 � � .Ž . Ž . Ž .½ 5Ž .� 1 1 12R� , �� * 1 1 4 4 � �Ž .m �OO� 0 1R

Ž . Ž .It remains to estimate  4�
 , � . Let us denote X � � 4� ÝR R x � CC Ž� .�* R
� Ž . � Ž Ž .. 'D x . It is easy to see that � X � 
 cR ���* . Using Lemma 4.2, settingR

Ž .t � 2 R� z , where z is a positive real number, and regrouping, we get 5.1 .' 1 1

�

With Proposition 5.1 we can control the Gibbs probability to have a run of
��1, �1 � 0 anywhere on intervals that are rather long. However, their lengths
depend on the parameters � , � , �*.1 1
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Ž .COROLLARY 5.2. Given �� 1 and �
 that satisfies 2.22 , then there exists
Ž . Ž .a constant c � c �, 
 such that, if �* log 1�� �0 when ��0, for all � � �*˜ ˜ 1

� 0, � � 0, that satisfy1

�
35.9 � � � c � , 
 � �*Ž . Ž .˜ (1 1 ž /�*

for all x � 0, for all intervals � of macroscopic length R that are included inR
� � �2a macroscopic interval I containing the origin, with I 
 � and satisfy

4� 1 � xŽ .
5.10 R � R �Ž . 1 3c � , 
 � �Ž . 1 1

if �� 2�n, with �-probability 1, for all but a finite number of indices n,

4� x
� , �1 1� � � �5.11 � " R : R 
 R 
 I "� 	 I : OO � 
 exp � .Ž . Ž .Ž .� , 
 , � 1 R 0 R ž /�

PROOF. Let us first remark that for a given R, the number of intervals �R
� � 2that are included in I is bounded from above by I ; therefore if we take

'z � 64 5 � � log 1�� for some positive � , we get, using Lemma 4.2,Ž . Ž .1

1
� sup sup X � � � X �Ž . Ž .Ž .R R'R� � � � � 	IR : R 
 R 
 I R1

1
1��� 64 5 � � � log 
 �Ž .( ž /�

5.12Ž .

The �-probabilistic statement follows from the first Borel�Cantelli lemma.
Let us consider the term in the bracket in the exponent in the right-hand side

Ž . Ž . 'of 5.1 . Notice first that, since � *�� �� when ��0, ��� * �
Ž . Ž .���* log �*�� , if � small enough, we can ignore the corresponding term in
Ž .5.1 and keep just the square root. To get a negative term in this exponent,
we impose, since �
 is small,

� 1
35.13 c � , 
 � � � 4 �* � � 256 5 � � �
 � log � 0.Ž . Ž . Ž .(1 1 (ž /�* �

Ž . Ž . 3 ŽUsing �* log 1�� �0 when ��0, this becomes c �, 
 � � � 4c �* �1 1
.'���* � 0 by enlarging the constant c if necessary. To cancel the constant

Ž . Ž . Ž .term 4�, in 5.1 and get the factor x in 5.11 we just impose 5.10 . �

The second family of events we consider are, roughly speaking, those
having two blocks, far apart but not too much, at the same equilibrium and
somewhere between them there is a block of macroscopic length at least 1,
close to the other equilibrium.
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� �Let � � l , l with l � � for i � 1, 2 be a macroscopic interval of lengthL 1 2 i
L, and � � 0, � � 0 be two real positive numbers; let us define for �� �12 2
or �� �1,

WW �2 , � 2 � , �Ž .L

�2 , � 2 �2 , � 2 ˜ ˜ �2 , � 2 ˜� � l � � l � � ," l , l � l � l , � l � ��Ž . Ž . Ž .½ 51 2 1 2

5.14Ž .

�2 , � 2Ž . �2 , � 2Ž . �2 , � 2Ž .and WW � � WW � , � � WW � , � . Our second result is theL L L
following.

Ž .PROPOSITION 5.3. Given �� 1 and �
 that satisfies 2.22 , � � �* � 0,2
Ž .� � 0 and z � 0, then there exists � �� � , �*, � , � , z , � 	� such2 2 2 2 2 2 2 L

that on � ,2

� WW �2 , � 2 �Ž .Ž .� , 
 , � L

� �*
�1
 exp �� �FF � 4�� � 2 L �* � log2 ž /ž �* �5.15Ž .

� '�2 L�
 � L� 4�
 z( 2 /�*

Ž .for a strictly positive constant �FF � �FF �, 
 and

� � 2� � � 1 � exp � z �64 .Ž .1 2

PROOF. The proof is similar to that of Proposition 5.1. We point out only
� � �the main differences. Let us call � � l � 1, l � 1 , and for �� �1,L 1 2

5.16 m � m�* x ; x � CC �� , m�* x � T 1���2 m�* ,Ž . Ž . Ž . Ž .� 4� , � , �� � * L �l

Ž . 0 1 Ž .where if m � m , m , T m � m and T m � Tm � �m , �m . An easy1 2 2 1
computation, using the fact that ��2 , � 2 � � leads to

� WW �2 , � 2 � , �Ž .Ž .� , 
 , � L


 exp 4�c� � WW �2 , � 2 � , � � � m .Ž . Ž . Ž .Ž .2 � , 
 , � L �� � , � , ��L L

5.17Ž .

Then making a block�spin transformation on the scale �* inside the volume
�� , denotingL

�*
�* � * � * � * � *

� �5.18 FF m , m � FF m � J x � y m x m yŽ . Ž . Ž . Ž .˜ ˜ÝŽ . Ž .� �� � � *L L L 2 �Ž .x�CC �L� *
Ž .y�CC ��L� *

Ž .and, using the same arguments that lead to 5.7 , give

� WW �2 , � 2 � , � � � mŽ . Ž .Ž .� , 
 , � L �� � , � , ��L L

� � �*

 exp L�* � 4� � 2 L log  4�
 , �Ž .2 Lž /ž /� �* �5.19Ž .

�
�*

�* � , �� exp � inf FF m , m .2 2 ½ 5Ž .m � WW Ž� , � . � � , � , ��� L L Lž /L�
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Ž .It is not too difficult to check that there exists a constant �FF � �FF �, 
 ,
depending neither on �� �1 nor on L, which is strictly positive if �� 1 and

Ž .�
 satisfies 2.22 , such that

5.20 inf FF m�* , m � �FF.Ž . ½ 5Ž .� � , � , ��L L� , �� * 2 2Ž .m �WW � , �� LL

Ž .Now  4�
 , � can be estimated as before and this ends the proof ofL
Proposition 5.3. �

By similar computations to the proof of Corollary 5.2, making the choice
z � z it is easy to check the following corollary.2 1

Ž .COROLLARY 5.4. There exists a constant c � c �, 
 such that, if˜ ˜
Ž .�* log 1�� �0 where ��0, for all � � �* � 0, � � 0, for all x � 0, that2 2

satisfies

5.21 �FF 1 � x � c � , 
 � � 0Ž . Ž . Ž .˜ 2

for all intervals � of macroscopic length L that are included in an interval IL
� � �2that contains the origin, with I 
 � and satisfy

�FF 1 � x � c � , 
 �Ž . Ž .˜ 2
5.22 L 
 L �Ž . 2 'c � , 
 �* � ���*Ž . Ž .

if �� 2�n, with �-probability 1, for all but a finite number of indices n,

� x�FF
� , �2 2� �5.23 � " L: 2 
 L 
 L "� 	 I : WW � 
 exp � .Ž . Ž .Ž .� , 
 , � 2 L L ž /�

The third family of events describes fluctuations around one equilibrium.
� �Let � � l , l with l � � for i � 1, 2 be a macroscopic interval of lengthL 1 2 i

L and � � � � 0, � � � � 0 be four real positive numbers. Let us define4 1 4 1
for �� �1 or �� �1,

�1 , �1 , �4 , �4 ˜RR � , LŽ .0, � L

� ��1 , �1 l � ��1 , �1 l � � , l � l , l , ��1 , �1 l � 0,Ž . Ž . Ž . Ž .½ 1 2 1 2

˜ ˜ ˜ ˜ ˜" l , l , l � l � L,1 2 2 1

5.24Ž .

˜ ˜ �4 , �4 ˜ ˜ ˜ ˜ ˜l � l � l 
 l , � l � 0 l : l 
 l 
 lŽ . 51 1 2 2 1 2

�1, �1, �4 , �4 ˜ �1, �1, �4 , �4 ˜ �1, �1, �4 , �4 ˜Ž . Ž . Ž .and RR � , L � RR � , L � RR � , L .0 L 0, � L 0, � L

Ž .PROPOSITION 5.5. Given �� 1 and �
 that satisfies 2.22 , � � � � �*,4 1
� � � � 0 and z � 0, then there exists4 1 3

˜� �� � , �*, � , � , � , � , z , � , LŽ .3 3 1 4 1 4 3 L
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such that on � ,3

�1 , �1 , �4 , �4 ˜� RR � , LŽ .ž /� , 
 , � 0, � L

�1 3 3˜ ˜
 exp �� c � , 
 � � L � � � L � L � 4��Ž . Ž .Ž .4 4 1 1 1ž5.25Ž .

� �* � '�2 L �* � log � 2 L�
 � L� 4�
 z( 3ž / /�* � �*

Ž . � � Ž 2 .for some positive constants c �, 
 and c and P � � 1 � exp �z �64 .3 3

The proof is similar to the proofs of Propositions 5.1 and 5.3.
An immediate consequence of this result is the following corollary.

Ž .COROLLARY 5.6. Given �� 1 and �
 that satisfies 2.22 , there exist two
Ž . Ž .constants c � c �, 
 for i � 1, 2 such that if �* log 1�� �0 when ��0, for˜ ˜i i

all � � � � �*, � � � � 0 that satisfy4 1 4 1

� 1
3 35.26 � � � � � � c � � logŽ . ˜ (4 4 1 1 1 ž /�* �

and � � 3 � c � , for all 1 � x � 0, for all intervals � of macroscopic length˜4 4 1 1 L
� � �2L that are included in an interval I that contains the origin, with I 
 � if

�� 2�n, with �-probability 1, for all but a finite number of indices n, for all
L̃ � 1,

�1 , �1 , �4 , �4 ˜� �� " L: 2 
 L 
 I "� 	 I : RR � , LŽ .ž /� , 
 , � L 0 L

˜ 3c � , 
 Lx� �Ž .2̃ 4 4
 exp � .ž /�

5.27Ž .

Therefore if we denote

5.28 OO �1 , �1 I � OO �1 , �1 � ,Ž . Ž . Ž .� �0 0 R
� � � 	IR : R 
R
 I R1

5.29 WW �2 , � 2 I � WW �2 , � 2 �Ž . Ž . Ž .� � L
L: 2
L
L � 	I2 L

and

�1 , �1 , �4 , �4 �1 , �1 , �4 , �4 ˜5.30 RR I � RR � , L ,Ž . Ž . Ž .� � �0 0 L
� � � 	IL : 2
L
 I ˜ ˜L L: 1
L
L

then, for an appropriate choice of various parameters, � , � for i: 1 
 i 
 4,i i
as a consequence of Corollaries 5.2, 5.4 and 5.6, all the previous sets have a
Gibbs probability that goes to zero, �-almost surely. It is convenient to make

�1, �1Ž .the choices � � � , � � � , � � � and � � � . We note that � l � �1 2 2 1 4 1 4 1
�4 , �4Ž .implies � l � �. Therefore, on the complementary of the unions of the
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previous sets we can only have runs of length at most R of ��1, �1 � 01
�4 , �4Ž .followed by runs of length at least L of equilibrium � l � �.2

�1, �1Ž .Namely, blocks � l � 0 between adjacent blocks of the same equilib-
�4 , �4 Ž .rium can be only � � �, since 5.27 .

The next step is to prove that the length of the previous run of ��4 , �4 � �,
which is at least L , is in fact bounded from below by a much larger quantity.2

˜ ˜ ˜� Ž .� � 4We define see 5.14 for �� �1, �1 , l � l � l � l with 2 
 l � l1 1 2 2 1 1
˜
 R , l � l 
 R ,1 2 2 1

˜ �4 , �4 ˜ ˜WW l , l , l , lž /� 1 1 2 2

�4 , �4 �4 , �4 �4 , �4 ˜� � l � � l � � , � l � 1Ž . Ž . Ž .½ 1 2 1

�4 , �4 ˜� � l � �� ,Ž .15.31Ž .
�4 , �4 ˜ ˜� l � � �  l : l � 1
l
l � 1,Ž . 1 2

�4 , �4 ˜ �4 , �4 ˜� l �� l �1 � � � .Ž . Ž . 52 2

˜In the following proposition we will show that, uniformly in the choices of l ,1
l̃ , l and l in a fixed interval II of suitable length, this set of events has2 1 2
small probability.

PROPOSITION 5.7. Given �� 1, 0 � x � 1, p � 1, c � 0, �� 0, if 

ˆ
2 'x �FF�48 c p � 1 � 2� then there exist � � 0 and c � 0 such that forŽ .ˆ 0 0

2Ž . Ž .Ž .'�
 � , if � g 1�� 
 x �FF�96 1 � �� c p � 1 � 2� , for all � � �*Ž .ˆ0 4 2 4 4
Ž . � � � � Ž� c � log log 1�� , for all intervals I � l , l such that I 
 c � log logˆ0 1 2

Ž ..�1 � � �1Ž . p1�� , and for any I 	 II, II � c� log 1�� for some positive constant˜
Ž .c, on a set � �� II, �, 
 , � that satisfies˜ 4 4

p��2c 1 1˜� �5.32 � � � 1 � log exp � log log p � 2�� 1 ,Ž . Ž .4 ž / ž /ž /c � �ˆ
˜ ˜� �we have, uniformly on all intervals l , l 	 I and uniformly on I 	 II,1 2

�
� , �4 4˜ ˜ ˜5.33 � WW l , l , l , l 
 exp � x 1 � x �FFŽ . Ž .ž /ž /� , 
 , � � 1 1 2 2 �

for �� �1.

PROOF. The first step is to restrict ourselves to a finite volume Gibbs
�4 , �4Ž . �4 , �4Ž .measure. Since � l � � l � �, we get1 2

˜ �4 , �4 ˜ ˜� WW l , l , l , lž /ž /� , 
 , � � 1 1 2 2

�4 � , �4 4˜ ˜ ˜
 exp 4� � WW l , l , l , l � � 0 .Ž .ž /ž /� , 
 , � � 1 1 2 2 �� Lž /�5.34Ž .

�4 , �4 ˜ �4 , �4 ˜ �4 , �4 ˜ �4 , �4 ˜Ž . Ž . Ž . Ž .Using the fact that � l � � l � 1 and � l � 1 � � l we1 1 2 2
˜ ˜� � � �can also decouple the interval l � 1, l � 1 from the interval l , l . This1 2 1 2

will produce three adjacent intervals. We associate, the interaction between
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the first and the second interval to the first term and the interaction between
the second and the third interval to the third term. This will give, up to a

Ž Ž ..factor exp 8� � �� , a product of three terms, each one being localized on4
one of the three intervals. We make a rough estimate for the random
magnetic field for the terms corresponding to the first and the third interval.
Applying an argument similar to the one given in Corollary 5.4, we get that,

˜ ˜� �with a �-probability 1, uniformly with respect to all intervals l , l included1 2
� � 2in an interval II containing the origin, with II 
 1�� ,

˜ �4 , �4 ˜ ˜� WW l , l , l , l � � 0Ž .ž /ž /� , 
 , � � 1 1 2 2 �� L

� � x�FF4
 exp 12� exp �ž / ž /� �5.35Ž .
˜Z IŽ .�� , � , � 124 4�1 ˜ ˜� exp �� �* l � l ,ž /2 1ž / ˜Z IŽ .� , � , � 124 4

Ž . Ž .where the last term is similar to the one defined in 4.5 , with RR � �
�4 , �4 ˜ ˜Ž . Ž .RR l , l , � . Writing in way similar to 4.10 , with self-explanatory nota-1 2

tions, we have

˜ ˜Z I Z IŽ . Ž .�� , � , � 12 �� , 0, � , � 124 4 4 4�*5.36 � exp �GG m , � .Ž . ˜ž /ž /� , I12˜ ˜Z I Z IŽ . Ž .� , � , � 12 � , 0, � , � 124 4 4 4

Ž .Using the estimate 4.28 we get

2˜Z I � �Ž .�� , 0, � , � 124 45.37 � log � 
 exp � .Ž . ž /˜˜ � � �212� I �
� g 1��Z I Ž .Ž . 12 4 2 4� , 0, � , � 124 4

˜To get a result which is true uniformly with respect to all subintervals I12
Ž .�1Ž . pof I, and for any I in a given interval II of length c � log 1�� contain-˜

� �ing the origin, we need a modification of the Ottaviani inequality 31 that
takes into account that we do not have a sum of random variables, that is, not
an additive process but merely an approximate additive process.

˜ ˜Ž .To simplify notations, given an interval I 	 I, let us call Y I �
˜ ˜Ž Ž . Ž ..log Z I �Z I .�� , 0, � , � � , 0, � , �4 4 4 4

LEMMA 5.8. For any given interval I,

� �4�� 12� � Y I � � ���Ž . Ž .4˜� �5.38 � max Y I � � 
 .Ž . Ž .12 ˜� � �˜ inf � Y I 
 � ���Ž .I 	I Ž .˜1, 2 I 	 I 1212

˜ ˜ ˜� � � �PROOF. Recall that l , l � I and intervals I � l , l . Using the fact1 2 12 1 2
˜ ˜ ˜ ˜� Ž . � � Ž� �. � � Ž� �. � Ž .that for all I 	 I, Y I 
 Y l , l � Y l , l � � 4� �� , we get12 12 1 1 1 2 4
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˜ ˜� Ž . � � Ž� �. � Ž .Y I 
 2 max Y l , l � � 4� �� . Therefore,˜12 l 
 l
 l 1 41 2

4�� 12�4˜� �� max Y I � �Ž .12 �Ĩ 	I1, 2

2�� 4�4˜� �
 � max Y l , l � � .ž /1 �˜l 
l
l1 2

5.39Ž .

� � Ž� �. � Ž .4 Ž .Let �� inf t � l ; Y l , t � � 2�� 4� �� , inf � � �. Since, for all k �1 1 4
� � � Ž . � � Ž� �. � � Ž� �. � Ž .l , l , Y I � Y l , k � Y k � 1, l � � 4� �� , we have1 2 1 2 4

� �
� � � �� �� 45.40 �� k � Y k � 1, l 
 � 	 Y I � � .Ž . Ž .Ž .2½ 5 ½ 5� �

Therefore, making a partition over the possible values of � and using
independence, we get

l2� �
� � � �� � � �5.41 � Y I � � � inf � Y k � 1, l 
 � � �� k .Ž . Ž . Ž . Ý2� �l 
k
l1 2 k�l1

Ž .Using the definition of � , we get 5.38 . �

We assume without loss of generality that II is centered at the origin and
� � Ž Ž ..that I � c 1�� log log 1�� for a given c. We make a block decomposition ofˆ ˆ

Ž Ž ..�1the interval II into blocks of length c 2� log log 1�� , that is, II �ˆ
ˆ p�Ž .Ž . Ž .�� I with 2 j � 1 � 2c�c log 1�� log log 1�� . Note that any˜ ˆ�j 
 j
 j j 11 1

interval I we consider is included in the union of three consecutive inter-
ˆ ˆ ˆ ˆvals I � I � I � I for some �j 
 j 
 j � 2. Therefore, we get,� j, j�2� j j�1 j�2 1 1


 � �denoting max the maximum over the intervals I such that I �I 	 II

Ž Ž ..�1c � log log 1�� that are in II, for all �� 0, setting �� 4�� 12� , weˆ ˜ 4
have

�̃˜� �� max* max Y I � �Ž .12 �I	II Ĩ 	I12

p
2c log 1�� log log 1�� �Ž . Ž .˜ ˜˜� �
 � max Y I � � .Ž .12c �ˆ ˜ ˆI 	I12 �0, 2�

5.42Ž .

Ž . Ž .Using 5.37 and 5.38 , we have

˜Z I �̃Ž .�� , 0, � , � 124 4
� max* max log � �˜ �I	II ˜ Z II 	I Ž .12 � , 0, � , � 124 45.43Ž .

p��
2c log 1�� exp �u log log 1��Ž . Ž .Ž . Ž .˜


 ,
c 1 � exp �u log log 1��Ž .Ž .ˆ

2 2 Ž .where u � � � �212c�
� g 1�� and �� 0 is small as we want. We as-˜ ˆ 4 2 4
sume for the moment that the various parameters are chosen such that
u � p � 1 � 2�. Using the first Borel�Cantelli lemma, recalling that �� 2�n,



M. CASSANDRO, E. ORLANDI AND P. PICCO1462

we get that with a �-probability 1, for all but a finite number of indices n,

˜Z I 4�� 12�Ž .�� , 0, � , � 12 44 45.44 max* max 
 exp � .Ž . ž /˜ �I	II ˜ Z II 	I Ž .12 � , 0, � , � 124 4

Ž .It remains to estimate the first term in the right-hand side of 5.36 .
Ž �* . Ž .We have �GG m � ��Ý X x where˜ ˜�, I x � CC Ž I .12 � * 12

�* � *� �X x � �2�
� x D x m � m � x , �
 , �Ž . Ž . Ž . Ž .� , 1 � , 2

� �*� �*�
 , � Ž x . , m 0, 0, m� , 2 � , 1� � x logŽ .
�* � *� ��
 , � Ž x . , m 0, 0, m� , 1 � , 2

5.45Ž .

Ž . � Ž �* Ž . . Ž �* Ž . .�with  x, �
 , � � � m , � x �
 , � � � m , � x �
 , � .ˆ ˆ�, 1 � , 2
Therefore we need to estimate from above the probability of

5.46 AA � max* max � X x � sŽ . Ž .Ý½ 5I	II Ĩ 	I12 ˜Ž .x�CC I12� *

Ž .for s � 0. For our purpose it is enough to prove 5.46 for s 
 s , for a given0
Ž .s . This will be done in two steps that are similar to the proof of 5.43 . First0

˜we give an estimate for a fixed I and then we make a block decomposition12
Ž Ž ..�1of II into blocks of length c 2� log log 1�� . Arguing as before, we applyˆ

the usual Ottaviani inequality. All of this is standard and it is just an
adaptation of the proof of the upper bound in the law of the iterated

� �logarithm given by de Acosta 14 . It follows from the exponential Markov
inequality and independence that, for all �� 0,

�s t5.47 � � X x � s 
 e � exp t�X x .Ž . Ž . Ž .Ž .Ý Ł
˜Ž .x�CC I˜Ž .x�CC I 12� *12� *

To estimate the previous Laplace transform, we use e x 
 1 � x �
Ž 2 . � x � Ž .x �2 e , x � �. Using the fact that � X � 0, we get

2� X xŽ .2 � �5.48 � exp t�X x 
 1 � t� exp t� X x .Ž . Ž . Ž . Ž .Ž . Ž .�2

Using Proposition 3.1, if � is small enough, and how small depends on �
 to
Ž . � Ž .�absorb the last term in 3.25 , we have for some positive constant c, X x �

Ž .Ž .
 4�
 �*�� 1 � c�
 . On the other hand, it is easy to check that, calling
� � Ž . � 2 � 2Ž .� D x � V x � �*�� , we have also for some positive constant c, if � is

� 2Ž .� Ž .2Ž .2Ž . xsmall enough, � X x 
 16 �
 1 � c�
 �*�� . Using 1 � x 
 e x �
˜ ˜� Ž . � � �� and CC I � I ��*, we easily get�* 12 12

� exp tX xŽ .Ž .Ł
˜Ž .x�CC I12� *

2 ˜� �
 exp �8 t�
 1 � c�
 I exp t�*4�
 1 � c�
 .Ž . Ž . Ž .Ž .12

5.49Ž .
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˜ ˜� � � � Ž . Ž .The choice of t depends on I . If � I � �*�g � with lim g � � 0 as12 12 3 � � 0 3
˜ 2 ˜� �Ž . Ž . � �slowly as we want, we choose t � s�16� I �
 1 � c�
 . If � I 
12 12

Ž . Ž Ž . Ž .2Ž ..�*�g � , we choose t � s log log 1�� �32c �
 1 � c�
 s. Assuming thatˆ3
Ž . Ž Ž ..2 Ž Ž ..2g � is such that � log log 1�� 
 g � , in both cases, we get3 3

� � X x � �sŽ .Ý
˜Ž .x�CC I12� *5.50Ž .

2s log log 1�� 1 � 2 s cg �Ž . Ž .Ž .0 3
 2 exp � 232c 
 1 � c�
Ž . Ž .ˆ

�for s 
 s and for some constant c. Note that, given s � 0, it is always0 0
Ž Ž ..possible to find � � 0 such that for �
 � , the quantity 1 � 2 s cg � is0 0 0 3

�strictly positive. To get uniformity with respect to all subintervals that are in
I, we write simply

l

5.51 max � X x 
 2 max � X x .Ž . Ž . Ž .Ý Ý
l 
l
lĨ 	I 1 2 x�l12 ˜Ž .x�CC I 112� *

Therefore, using the Ottaviani inequality

ll 2� �� �Ý X x � �sŽ .x� l15.52 � max � X x � 2�s 
 ,Ž . Ž .Ý l� �l 
l
l inf � �Ý X x 
 �sŽ .1 2 l 
 l
 l x�lx�l 1 2 11

Ž Ž .. Ž .2Ž .we get, setting u � 1 � 2 s cg � �32c 
 1 � c�
 by an argument simi-˜ ˆ0 3
Ž .lar to the one that gives 5.42 ,

� max* max � X x � 2�sŽ .Ý
I	II Ĩ 	I Ž .12 x�CC I�*5.53Ž .

p��
4c log 1�� 1Ž .Ž .˜

2
 exp �s u log log .˜ž /c �ˆ

Ž . Ž . Ž . Ž .We then collect 5.34 , 5.35 , 5.36 , 5.44 , obtaining

�1 , �1 , �4 , �4 ˜ ˜� WW l , l , l , lž /ž /� , 
 , � � 1 1 2 2

�
� �
 exp � x�FF � 24� � 4�� 4s � �* I .Ž .4�

5.54Ž .

12 2We make the following choices: s 
 s � x �FF�16, �� x �FF, c �0 016
2 2 Ž .x �FF�4c, � 
 x �FF�96; this will give us 5.33 . We take � such thatˆ 4 0

1 2Ž Ž ..1 � 2 s cg � � . To be able to satisfy s u � p � 2�� 1 and s 
 s , we˜0 3 0 02
2 ' 'impose 

x �FF�48 c p�2��1 and we can take s�16
 c p�2��1 .Ž . Ž .ˆ ˆ

Recalling that we need also u�p�2��1, we impose that � is such that4
2Ž . '� g 1�� 
 x ��FF�72 c p � 2�� 1 , that is, with the condition above weŽ .ˆ4 2 4
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2Ž . � � Ž .'assume � g 1�� 
 x �FF�96 1 � �� c p � 2�� 1 and we get 5.32 .Ž .ˆ4 2 4
This ends the proof of Proposition 5.7. �

PROOF OF THEOREM 2.4. We prove that the complementary of the set
�4 , �4Ž . �1, �1, �4 , �4Ž .RR l , l , R � VV l , l has Gibbs probability that goes to zero as1 2 1 1 2
Ž Ž . 3 .exp �c �, 
 � � �� . We decompose4 4 4

c c
� , � � , �4 4 4 4AA � RR l , l , R , � � RR l , l , R , �Ž . Ž .Ž . Ž .1 2 1 1 2 15.55Ž .

� AA � AA � AA � AA ,1 2 3 4

� Ž .� �1, �1, �4 , �4Ž� �. � Ž .�where see 5.30 AA � RR l � 2 R , l � 2 R and see 5.29 AA �1 0 1 1 2 1 2
�4 , �4Ž� �.WW l � 2 R , l � 2 R . While AA and AA refer to the behavior of the1 1 2 1 1 2

profiles in the bulk of the interval, AA and AA consider the behavior of the3 4
� 4profiles in a region close to the boundaries. Namely, for a given �� �1, �1 ,

Ž �4 , �4Ž ..c �4 , �4Ž .we can be in RR l , l , R , � just because we have � l � 2 R 	 �1 2 1 1 1
�4 , �4Ž .or � l � 2 R 	 �. Let us define2 1

5.56 AA� l � m�* : ��4 , �4 l 	 �� 4Ž . Ž . Ž .3

and

5.57 AA � AA� l � 2 R � AA�� l � 2 R .Ž . Ž . Ž .�3 3 1 1 3 2 1
2� 4� , ��� �1, �1

�Ž .Suppose that a profile is in AA l � 2 R ; then we can have four alterna-3 1 1
tives.

�4 , �4Ž . �4 , �4Ž .The block l � 2 R has � l � 2 R � 0 or � l � 2 R � �� and1 1 1 1 1 1
it is sandwiched at a distance smaller than 2 R by two blocks with the same1
� ’s or with different � ’s. In this last case, the profiles are fronts.

It is easy to see that

c
� , �1 1 � �AA � OO l � R , l � R � AAŽ .Ž .3 0 1 1 2 1

�1 , �1 , �4 , �4 � � �4 , �4 � �	 RR l � R , l � R � WW l � R , l � RŽ . Ž .0 1 1 2 1 1 1 2 15.58Ž .
�1 , �1 , �4 , �4 � �� VV l � R , l � R .Ž .1 1 2 1

It remains to consider what is left in AA. The presence of AA comes from the4
fact that in the definition of AA , there are four parameters � , � , � , � and1 4 4 1 1

3 Ž . �1, �1 �4 , �4since � � � c �, 
 � , we can have blocks such that � � 0 but � � 1.˜4 4 1 1
Let us define

5.59 AA� l � m�* : ��4 , �4 l � � , ��1 , �1 l � 0� 4Ž . Ž . Ž . Ž .4

and

5.60 AA � AA� l � 2 R � AA�� l � 2 R .Ž . Ž . Ž .�4 4 1 1 4 2 1
2� 4� , ��� �1, �1
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Arguing as before, we get

c
� , �1 1 � �AA � OO l � R , l � R � AAŽ .Ž .4 1 1 2 1

�1 , �1 , �4 , �4 � �	 RR l � R , l � RŽ .0 1 1 2 15.61Ž .
�1 , �1 , �4 , �4 � �� VV l � R , l � R .Ž .1 1 2 1

It is now clear that we have

c c
� , � , � , � � , �1 1 4 4 1 1 � �AA � VV l , l � OO l � R , l � RŽ . Ž .Ž . Ž .1 2 0 1 1 2 1

�1 , �1 , �4 , �4 � �	 RR l � R , l � RŽ .0 1 1 2 15.62Ž .
�4 , �4 � �� WW l � R , l � RŽ .1 1 2 1

Ž .and 2.36 follows immediately from Corollaries 5.2, 5.4, 5.6 and Proposition
5.7. �

Ž .PROOF OF THEOREM 2.5. Taking into account 2.36 , we must check that
for l 
 l 
 l that belongs to II, an event of the form1 2 3

5.63 VV �1 , �1 , �4 , �4 l , l , � � VV �1 , �1 , �4 , �4 l , l , �Ž . Ž . Ž .1 2 2 3

Ž . Ž .with l � l 
 l � and l � l 
 l � has small Gibbs probability and2 1 c 3 2 cˆ ˆ
moreover that this is true with a very high �-probability, uniformly for
l 
 l 
 l in II. But it is immediate to see that those events are controlled1 2 3
by Proposition 5.7.

� Ž . Ž .2Ž .2 � �Using Theorem 2.3, denoting by c � c x, �, � � �
 m � m see2 � , 1 � , 2
Ž .�2.30 , we end the proof of Theorem 2.5. �
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