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This book is an exposition of some important topics in stochastic analysis and
stochastic geometry. In reviewing the book, it is as well to start with Malliavin’s
main contribution to the field.

The Malliavin calculus, introduced in the mid-seventies in the papers [9] and
[10], was motivated by the following link between stochastic analysis and partial
differential equations: consider the Stratonovich stochastic differential equation

dxt =
n∑

i=1

Xi(xt) ◦ dwi(t) + X0(xt ) dt(1)

where X0, . . . ,Xn are smooth vector fields defined on R
d and w = (w1, . . . ,wn)

is a standard Wiener process. Let L denote the second-order differential operator

1
2

n∑
i=1

X2
i + X0.

It has been known since the early work of Itô that the solution process xt in (1) is
Markov and that its transition probabilities yield the fundamental solution (in the
sense of distributions) to the heat equation

∂u

∂t
= Lu.

Suppose now that the vector fields X1, . . . ,Xn, together with all the Lie brackets
generated by X0, . . . ,Xn, span R

d at every point [we’ll refer to this assumption
as (HC)]. Then an application of Hörmander’s hypoellipticity theorem implies
that the transition probabilities p(t, x, dy) of xt admit smooth densities p(t, x, y),
for all positive t . Malliavin reversed this flow of information from PDE theory to
probability by proving directly that condition (HC) implies the existence of smooth
densities for the process xt . From here standard techniques can be used to deduce
that the operator ∂/∂t − L is hypoelliptic, thus yielding a probabilistic proof of
Hörmander’s theorem.

Received April 2001.

474



BOOK REVIEW 475

A major obstacle is encountered in trying to implement this program. Let ν

denote the measure p(t, x, .). The natural way to establish the required regularity
of ν is to obtain estimates of the form

∣∣∣∣
∫

Rd
D(α)φ dν

∣∣∣∣ ≤ Cα‖φ‖∞(2)

for all test functions φ and multi-indices α, where Cα are constants depending
only on α. Now the measure ν is the image of Wiener measure on the space of
continuous paths P under the Itô map I :w ∈ P 	→ x, composed with evaluation
at time t (denote the composition by It ). The derivation of estimates such as
(2) necessarily requires an integration by parts calculation involving the map It .
However I , and hence It , are nonsmooth in the classical sense. Prior to Malliavin’s
work, the pathological nature of the Itô map had prevented probabilists from
directly obtaining regularity results for random variables arising from stochastic
differential equations. Malliavin solved this problem by constructing an extended
calculus for Wiener functionals based on the number operator, an object from
quantum mechanics.

Integration by parts in this setting produces a stochastic p × p matrix σt ,
now known as the Malliavin covariance matrix. The absolute continuity of the
measure ν follows from the condition

σt ∈ GL(d) a.s.(3)

It is relatively easy to prove that (3) holds under (HC). In order to show that ν has
a smooth density and thus prove Hörmander’s theorem probabilistically, one needs
the stronger quantitative result that

(HC) implies (detσt )
−1 ∈ ⋂

p≥1

Lp.(4)

The proof of (4) is difficult and requires intricate stochastic analysis. Kusuoka and
Stroock [8] first proved (4) in 1985.

After the appearance of Malliavin’s original papers, easier methods were
discovered to implement the program outlined above. Stroock [15] produced
a functional analytic treatment in which the operator used to effect the key
integration by parts step was explicitly identified as the number operator (it had
been introduced in Malliavin’s papers as the generator of a path-valued Ornstein–
Uhlenbeck process). Bismut [3] formulated an alternative variational approach,
based upon perturbation of the system (1) by a suitably chosen family of drifts.
The reviewer [1] found an elementary way to perform the integration by parts,
using classical finite-dimensional calculus. This approach exploits the fact that the
Itô map admits a smooth restriction to the Cameron–Martin space, the subspace
of P consisting of absolutely continuous paths with square integrable derivatives
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(Shigekawa [14] had independently used a similar idea to study the existence of
densities for multiple Wiener integrals).

A common theme emerged from the foregoing works: namely, the extended
calculus on Wiener space need only operate in the Cameron–Martin directions.
This idea had, in fact, appeared before Malliavin’s papers in the work of Krée and
Gross, but it had not previously been used to study the existence of densities.

Malliavin’s work inspired many new results in stochastic analysis. Examples
include filtering theorems (Michel [11]), a deeper understanding of the Skorohod
integral and the development of an anticipating stochastic calculus (Nualart
and Pardoux [12]), an extension of Clark’s formula (Ocone [13]), Bismut’s
probabilistic analysis of the small-time asymptotics of the heat kernel of the Dirac
operator on a Riemannian manifold [4] and his subsequent proof of the associated
index theorem [5], and a sharp hypoellipticity theorem for Hörmander operators
with hypersurfaces of infinite type (Bell and Mohammed [2]).

The book under review is divided into five parts. The objective of the first
part is to present what might be called the fundamental theorem of Malliavin
calculus. This is done in the setting of an abstract Gaussian space X with a
designated subspace of admissible directions H (ultimately X is chosen to be
the Wiener space and H the Cameron–Martin space). A functional f on X is
defined to be smooth if its derivatives exist a.s. in the H directions. This is
Gross’ H -derivative, introduced in the late sixties in the context of his theory of
abstract Wiener spaces [7]. Let F : X 	→ R

d denote a functional on X, smooth
in the aforementioned sense with H -derivative DF. The Malliavin covariance
matrix [σij ] corresponding to F is defined, where σij ≡ (DFi,DFj)H . Setting
aside some nontrivial technical considerations, the main result is as follows: if
σ is a.s. nondegenerate, then the law of F is absolutely continuous with respect
to Lebesgue measure on R

d . This part of the book also includes a discussion of
several related topics, for example, Hermite polynomials, the Ornstein–Uhlenbeck
process, abstract Wiener spaces, and the Krée–Meyer inequalities.

Part II deals with the subject of quasi-sure analysis, a theory initiated (in the
context of stochastic analysis) in the mid-eighties by Fukushima, Kaneko and
Takeda. The basic idea is to use the theory of capacity to define a class of negligible
sets in the Wiener space, called slim sets. The class of slim sets is smaller than
the usual class of sets of Wiener measure zero. A property that holds outside
of a slim set is said to hold quasi-surely. A number of technical results about
capacities are proved. It is then shown that if g is a smooth nondegenerate function
from the Wiener space into R

d and π is a property that holds quasi-surely, then,
conditioned on any nonempty level set {g = ξ}, property π holds almost surely.
Thus a nondegenerate Wiener functional g gives rise to a disintegration of the
Wiener measure into measures of finite energy supported on the fibers generated
by g. The coarea formula of Bouleau and Hirsch and a version of Stokes’ formula
are proved within this context.
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The theory of stochastic integration is discussed in Part III. The usual
introductory material to this topic is covered, including the definition of the
Wiener, Itô and Stratonovich integrals and Itô’s formula. Much additional
material is also presented, for example, a description of Wiener’s theory of
homogeneous chaos and Fock space, a brief discussion of anticipating stochastic
integration, and the relationship of this theory to a result of Gaveau and
Trauber identifying the Skorohod integral with the divergence operator on Wiener
space. Also included are a formula of Stroock that computes the action of
the number operator on the Itô integral, Ramer’s transformation theorem for
abstract Wiener measure (as extended by Kusuoka), and the Clark–Bismut–Ocone
formula.

Part IV treats stochastic differential equations. A result of Gaveau is presented
that gives an explicit formula for the solution of a Stratonovich equation when the
diffusion coefficients satisfy a second-level nilpotency condition (a more general
result of this nature has been proved by Kunita). The main result of Part IV is
a limit theorem which asserts that the flow on R

d defined by the sequence of
ordinary differential equations

dξ
(n)
t = A0

(
ξ
(n)
t

)
dt +

n∑
i=1

Ai

(
ξ
(n)
t

)
dw

(n)
i (t), t ∈ [0, T ],

converges uniformly on compact subsets of [0, T ] × R
d to the stochastic flow of

the Stratonovich equation

dξt = A0(ξt ) dt +
n∑

i=1

Ai(ξt ) ◦ dwi(t).

Here w
(n)
i are a sequence of piecewise linearizations of wi formed by linearly

interpolating on a sequence of partitions of [0, T ] with mesh tending to zero.
Malliavin first proves this for the torus, then extends the result to Euclidean space.
A brief discussion of stochastic differential equations on manifolds is given, and
their lifting to the diffeomorphism group in the spirit of Eells–Elworthy.

Part V returns to the problem of establishing probabilistically the regularity of
the heat kernel corresponding to a degenerate differential operator of Hörmander
type. It is shown that the map w 	→ xt defined by equation (1) is smooth in the
sense of Part I. The limit theorem in Part IV is used to compute the associated
matrix σt . A proof is then given that (HC) implies condition (3). Curiously,
Kusuoka and Stroock’s proof of the central result (4) is not included in the book.
The variational formulation of Bismut is briefly discussed and a summary of
Malliavin’s original approach is given.

In the last chapter of the book the integration theory associated with Wiener
measure γ on the path space P (M) of a Riemannian manifold is discussed. The
goal of this active line of research is to carry over the analysis that has been so
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fully developed for the classical Wiener space into the nonlinear manifold setting.
The stochastic development of Eells–Elworthy allows the Wiener measure on
Euclidean space to be intrinsically transferred to P (M). However, a major problem
exists in that the underlying geometric structure (i.e., the Cameron–Martin space)
is not preserved by this process. A breakthrough in this area was made by
Driver [6] who, in 1992, proved an integration by parts formula for Wiener measure
on P (M). The book closes with a discussion of such integration by parts formulae
and related results. The case where M is a Lie group, which had been addressed
by Shigekawa prior to Driver’s work, and the more general Riemannian manifold
setting, are treated separately.

In conclusion, Malliavin’s book is a good exposition of an interesting body of
work. It is written in a lively and engaging style and includes enough background
material to make it accessible to a (sophisticated) nonspecialist mathematical
audience. It will be a valuable addition to your bookshelves!
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