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PRECISE ASYMPTOTICS IN THE LAW OF
THE ITERATED LOGARITHM

By Allan Gut And Aurel Spătaru

Uppsala University and Romanian Academy

Let X� X1� X2� � � � be i.i.d. random variables with mean 0 and posi-
tive, finite variance σ2, and set Sn = X1 + · · · +Xn, n ≥ 1. Continuing
earlier work related to strong laws, we prove the following analogs for the
law of the iterated logarithm:

lim
ε↘σ

√
2

√
ε2 − 2σ2

∑
n≥3

1
n
P�	Sn	 ≥ ε

√
n log log n+ an
 = σ

√
2

whenever an = O�√n�log log n
−γ
 for some γ ≥ 1/2 (assuming slightly
more than finite variance), and

lim
ε↘0

ε2
∑
n≥3

1
n log n

P�	Sn	 ≥ ε
√
n log log n
 = σ2�

1. Introduction and results. The aim of this paper is to continue the
investigations begun in Spătaru (1999), and in Gut and Spătaru (2000).
Throughout, let X� X1� X2� � � � be i.i.d. random variables with common dis-
tribution function F, mean 0 and positive, finite variance σ2, and set Sn =
X1 + · · · +Xn, n ≥ 1.

The following result was proved in Baum and Katz (1965).

Theorem A. Let p < 2 and r ≥ p. Then∑
n≥1

nr/p−2P�	Sn	 ≥ εn1/p
 <∞� ε > 0�(1.1)

if and only if E	X	r <∞ and, when r ≥ 1, EX = 0.

For r = 2 and p = 1, the result reduces to the theorem of Hsu and Robbins
(1947) (sufficiency) and Erdős (1949, 1950) (necessity). For r = p = 1, we
rediscover the famous theorem of Spitzer (1956).

In view of the fact that the sums tend to infinity as ε ↘ 0, it is of interest
to find the rate, that is, one would be interested in finding appropriate nor-
malizations in terms of functions of ε that yield nontrivial limits. Toward this
end, Heyde (1975) proved that

lim
ε↘0

ε2
∑
n≥1

P�	Sn	 ≥ εn
 = EX2�

Received June 1998; revised October 1999.
AMS 1991 subject classifications. Primary 60G50; secondary 60E15, 60F15.
Key words and phrases. Tail probabilities of sums of i.i.d. random variables, law of the iterated

logarithm, Davis law, Fuk–Nagaev type inequality.

1870



PRECISE LOGLOG-RATES 1871

whenever EX = 0 and EX2 < ∞ (thus corresponding to the result of Hsu,
Robbins and Erdős mentioned above). Remaining values of r and p were later
taken care of by Chen (1978), Spătaru (1999) and Gut and Spătaru (2000).

In view of the central limit theorem, there cannot be any analog for p = 2.
However, by replacing n1/p in (1.1) by

√
n log n, corresponding results have

been given in Gut and Spătaru (2000, Theorems 3 and 4).
A natural question at this point is to try to establish similar results related

to the law of the iterated logarithm. Sums analogous to those of (1.1) have
been considered by Davis (1968) and Gut (1980). The following result holds;
for the sufficiency, see Davis (1968, Theorem 4); for the necessity, see Gut
(1980, Theorem 6.2).

Theorem B. Suppose that EX = 0 and that EX2 = σ2 <∞. Then

∑
n≥3

1
n
P
(
	Sn	 ≥ ε

√
n log log n

)
<∞� ε > σ

√
2�(1.2)

Conversely, if the sum is finite for some ε, then EX = 0 and EX2 <∞.

Let � and ϕ denote the distribution function and the density function,
respectively, of the standard normal distribution. Since(

1
x
− 1
x3

)
ϕ�x
 < 1−��x
 < 1

x
ϕ�x
� x > 0�

[see, e.g., Feller (1968), page 175], it is easily seen that the sum diverges for
all ε < σ

√
2. Therefore, the asymptotics in terms of ε must involve limits as

ε↘ σ
√
2; a natural guess is that a normalizing function should be �ε− σ

√
2


raised to a suitable power or, equivalently, �ε2−2σ2
 raised to a suitable power.
Noting that the convergence of the series in (1.2) implies that

∑
n≥3

1
n
P
(
	Sn	 ≥ ε

√
n log log n+ an

)
<∞

whenever an = o�√n log log n
 and ε > σ
√
2� we are now ready to state our

first result.

Theorem 1. Suppose that EX = 0, that EX2 = σ2, that E �X2 ×
�log+ log+ 	X	
1+δ� < ∞ for some δ > 0� and that an = O�√n�log log n
−γ

for some γ > 1/2. Then

lim
ε↘σ

√
2

√
ε2 − 2σ2

∑
n≥3

1
n
P
(
	Sn	 ≥ ε

√
n log log n+ an

)
= σ

√
2�(1.3)

Remark 1.1. We do not know if the assumption that E�X2 ×
�log+ log+ 	X	
1+δ� < ∞ for some δ > 0 is necessary for the conclusion to
hold; cf. also Remark 2.1.
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Following is a result of the above kind assuming no more than finite
variance.

Theorem 2. Suppose that EX = 0 and that EX2 = σ2 <∞. Then

lim
ε↘0

ε2
∑
n≥3

1
n log n

P�	Sn	 ≥ ε
√
n log log n
 = σ2�(1.4)

Remark 1.2. It follows from Proposition 4.4 below that the sum in (1.4)
converges for all ε > 0 (for ε > σ

√
2, it follows immediately from Theorem B

above). It is, however, possible to show that the sum, in fact, converges under
the weaker assumption that E�X2�log+ log+ 	X	
−η� < ∞ for some 0 < η < 1
and EX = 0. Note, in particular, that finite variance is not necessary. We
do not know what the best necessary and sufficient condition for the sum to
converge might be.

Remark 1.3. By modifying the proofs in Section 2.1 below in the obvious
manner, one finds that if the summands are normal with mean 0 and variance
σ2, then, for α > −1, we have

lim
ε↘σ

√
2�α+1


√
ε2−2�α+1
σ2

∑
n≥3

�logn
α
n

P�	Sn	≥ε
√
nloglogn
=σ

√
2

α+1
�(1.5)

We leave it to the interested reader to find the appropriate conditions for (1.5)
to hold for general distributions (for α = 0, see Theorem 1). For α = 1, it
was shown in Gut [(1980), Theorem 6.1] that the sum in (1.5) converges for
ε > 2σ , provided E�X2�log+ 	X	
�log+ log+ 	X	
−1� <∞, and, conversely, that
if the sum is finite for some ε, then this moment condition must be satisfied
(and the mean equal 0).

It would also be of interest to find conditions for one-sided versions (in terms
of moments of max�X�0�) of the above results, that is, for limits of sums
like

∑
n≥3

1
n
P�Sn ≥ ε

√
n log log n
 and

∑
n≥3�1/n log n
P�Sn ≥ ε

√
n log log n
,

properly normalized, as ε tends to the corresponding critical value.

The proofs consist essentially of two stages. The validity of �1�3
 and �1�4

is verified first under the assumption that F is the normal distribution, after
which the general case is treated via the central limit theorem. Theorem 1 is
proved in Section 2 and Theorem 2 in Section 3.

Throughout the rest of the paper we assume, without restriction, that
σ2 = 1. Since ε ↘ √

2 in Theorem 1, we suppose throughout the proof that
2 < ε2 < 3 (say). Similarly, since ε↘ 0 in Theorem 2, we suppose that 0 < ε <
1/2 (say) throughout that proof. Finally, C and K will denote absolute posi-
tive constants and absolute real constants, respectively, possibly varying from
place to place, �x� shall denote the largest integer ≤ x , log+ x = max�log x�1�
(this has already been used) and γ > 1/2.
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2. Proof of Theorem 1.

2.1. F is normal. We thus assume, throughout this subsection, that F
is the standard normal distribution function �, and set ��x
 = 1 − ��x
 +
��−x
� x ≥ 0. For x ≥ 3, put K�x
 = K�log log x
−γ. (To simplify the exposi-
tion, we assume throughout this section that ε

√
log log x+K�x
 ≥ 0, x ≥ 3.)

Proposition 2.1. We have,

lim
ε↘√

2

√
ε2 − 2

∑
n≥3

1
n
P�	Sn	 ≥ ε

√
n log log n+√

nK�n



= lim
ε↘√

2

√
ε2 − 2

∑
n≥3

1
n
��ε

√
log log n+K�n

 =

√
2�

Proof. We obtain, via the Euler-MacLaurin sum formula [see Cramér
(1946), page 124],

∑
n≥3

1
n
��ε

√
log log n+K�n



=
∫ ∞

3

1
x
��ε

√
log log x+K�x

dx+ 1

6
��ε

√
log log 3+K�3



−
∫ ∞

3
P1�x
d

[
1
x
��ε

√
log log x+K�x



]
�

where P1�x
 = �x� − x + 1/2. Continuing as in Spătaru (1997) and Gut and
Spătaru (2000) yields

∣∣∣∣
∫ ∞

3
P1�x
d

[
1
x
��ε

√
log log x+K�x



]∣∣∣∣
≤

∫ ∞

3
	P1�x
	

1
x2
��ε

√
log log x+K�x

dx

+ε
2

∫ ∞

3
	P1�x
	

1

x2 log x
√
log log x

	�′�ε
√
log log x+K�x

	dx

+	K	γ
∫ ∞

3
	P1�x
	

1
x2 log x�log log x
γ+1

	�′�ε
√
log log x+K�x

	dx

≤ 1
2

∫ ∞

3

dx

x2
+C

∫ ∞

3

dx

x2 log x
√
log log x

+C ≤ C�
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from which it follows that

lim
ε↘√

2

√
ε2 − 2

∫ ∞

3
P1�x
d

[
1
x
��ε

√
log log x+K�x



]
= 0�

For the remaining part of the proof we first consider the case K = 0. By
putting y = ε

√
log log x� and then by partial integration, we obtain

lim
ε↘√

2

√
ε2 − 2

∑
n≥3

1
n
��ε

√
log log n
 = lim

ε↘√
2

√
ε2 − 2

∫ ∞

3

1
x
��ε

√
log log x
dx

= lim
ε↘√

2

√
ε2 − 2 · 2

ε2

∫ ∞

ε
√

log log 3
y��y
ey2/ε2dy

= lim
ε↘√

2

√
ε2 − 2

[
−��ε

√
log log 3
 log 3−

∫ ∞

ε
√

log log 3
�′�y
ey2/ε2dy

]

= lim
ε↘√

2

√
ε2 − 2 · 2√

2π

∫ ∞

ε
√

log log 3
e−

y2�ε2−2

2ε2 dy

= lim
ε↘√

2
2ε�1−��

√
�ε2 − 2
 log log 3

 =

√
2�

In the general case we similarly obtain

lim
ε↘√

2

√
ε2 − 2

∑
n≥3

1
n
��ε

√
log log n+K�n



= lim
ε↘√

2

√
ε2 − 2

∫ ∞

3

1
x
��ε

√
log log x+K�x

dx

= lim
ε↘√

2

√
ε2 − 2 · 2

ε2

∫ ∞

ε
√

log log 3
y��y+K�y2/ε2
−γ
ey2/ε2dy�

The conclusion now follows by Lagrange’s theorem, since

lim
ε↘√

2

√
ε2 − 2 · 2

ε2

∫ ∞

ε
√

log log 3
y
[
��y+K�y2/ε2
−γ
 −��y


]
ey

2/ε2dy = 0� ✷

2.2. The general case. We thus assume that X� X1� X2� � � � are i.i.d. ran-
dom variables with mean 0 and variance 1. For n ≥ 1, put Zn�k =XkI�	Xk	 <
ε
√
n�, 1 ≤ k ≤ n,Un = Zn�1+· · ·+Zn�n� σ

2
n = EZ2

n�1−�EZn�1
2 = E�X2I�	X	 <
ε
√
n�� − �E�XI�	X	 < ε

√
n��
2 and ρn = σ−3

n E	Zn�1 −EZn�1	3� The following
two propositions are technical steps.
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Proposition 2.2. Assume that E �X2�log+ log+ 	X	
1+δ� < ∞ for some δ >
0. Then

lim
ε↘√

2

√
ε2 − 2

∑
n≥3

1
n

(
�

(
ε
√
log log n+ K

�log log n
γ
)

−�
(
ε
√
log log n
σn

+ K

�log log n
γ
))

= 0�

Proof. We begin by noticing that, since EX = 0,

	EZn�1	 ≤ E�	X	I�	X	 ≥
√
2n�� ≤ E�X2�log+ log+ 	X	
1+δ�√

2n�log+ log+ √
2n
1+δ

≤ C√
n�log log n
1+δ � n ≥ 3�

(2.1)

Also we see that σ2
n → 1 uniformly with respect to ε. Indeed, we have

E�X2I�	X	 <
√
2n�� − �E�	X	I�	X	 ≥

√
2n��
2 ≤ σ2

n ≤ 1�

Next, choose n0 > 3 (independent of ε) such that σn�1 + σn
 ≥ 1 for n ≥ n0.
By Lagrange’s theorem, for n ≥ n0, we then have

�
(
ε
√
log log n+K�log log n
−γ

)
−�

(
εσ−1

n

√
log log n+K�log log n
−γ

)
= ε�1− σ−1

n 

√
log log n�′�θn


= Cε
1− σ2

n

σn�1+ σn

√
log log n exp�−θ2n/2
�

(2.2)

where ε
√
log log n + K�log log n
−γ ≤ θn ≤ εσ−1

n

√
log log n + K�log log n
−γ.

Since

θ2n
2

≥ ε2 log log n
2

+Kε�log log n
1/2−γ ≥ ε2 log log n
2

− 	K	ε�

(2.2) shows that

�
(
ε
√
log log n+K�log log n
−γ)−�

(
εσ−1

n

√
log log n+K�log log n
−γ)

≤ C�1− σ2
n

√
log log n�log n
−ε2/2� n ≥ n0�

Recalling that EX2 = 1, and noticing that 	EZn�1	 ≤ 1/
√
2n, an application of

Fubini’s theorem yields

∑
n≥3

1
n

(
�
(
ε
√
log log n+K�log log n
−γ)

−�(
εσ−1

n

√
log log n+K�log log n
−γ))
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≤ n0 +C
∑
n≥n0

√
log log n

n�log n
ε2/2E�X2I�	X	 ≥ ε
√
n�� +C

∑
n≥n0

√
log log n

n2�log n
ε2/2

≤ n0 +CE

[
X2I�X2 ≥ ε2n0�

�X2/ε2�∑
n=n0

√
log log n

n�log n
ε2/2
]
+C

∑
n≥n0

1
n2

≤ C+CE

[
X2I�X2 ≥ 8�

�X2/2�∑
n=4

√
log log n

n�log n
ε2/2
]

≤ C+CE

[
X2I�X2 ≥ 8�

∫ �X2/2�

3

√
log log x

x�log x
ε2/2 dx
]
�

Now, by putting
√
log log x = y, we get∑

n≥3

1
n

(
��ε

√
log log n+K�log log n
−γ)

−�(
εσ−1

n

√
log log n+K�log log n
−γ))

≤ C+CE

[
X2I�X2 ≥ 8�

∫ √log log�X2/2�
√

log log 3
y2 exp

(−y2�ε2 − 2
/2)dy]�
Further, assuming without any loss of generality that δ < 1/2, the substitution
y
√
ε2 − 2 = z yields∑

n≥3

1
n

(
��ε

√
log log n+K�log log n
−γ


−��εσ−1
n

√
log log n+K�log log n
−γ


)
≤ C+ C

�ε2 − 2
3/2

×E
[
X2I�X2 ≥ 8�

∫ √�ε2−2
 log log�X2/2�
√

�ε2−2
 log log 3
z2 exp�−z2/2
dz

]
(2.3)

≤ C+ C

�ε2 − 2
3/2E
[
X2I�X2 ≥ 8�

∫ √�ε2−2
 log log�X2/2�

0
z1+2δ dz

]

= C+ C

�ε2 − 2
1/2−δE
[
X2I�X2 ≥ 8�(log log�X2/2�)1+δ]

≤ C+ C

�ε2 − 2
1/2−δE
[
X2(log+ log+ 	X	)1+δ]�

Hence we have√
ε2−2

∑
n≥3

1
n

(
�

(
ε
√
loglogn+ K

�loglogn
γ
)
−�

(
ε
√
loglogn
σn

+ K

�loglogn
γ
))

≤C
√
ε2−2+C�ε2−2
δE[

X2�log+ log+	X	
1+δ]→0 as ε↘
√
2� ✷
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Since σ2
n→1 uniformly with respect to ε, the next corollary is immediate.

Corollary 2.1. We have

lim
ε↘√

2

√
ε2−2

∑
n≥3

1
n

(
�

(
ε
√
loglogn+ K

�loglogn
γ
)

−�
(
ε
√
loglogn
σn

+ K

σn�loglogn
γ
))

=0�

Remark 2.1. In case the additional assumption “E�X2�log+ log+	X	
1+δ�<
∞ for some δ>0” in Proposition 2.2 does not hold, we still have (see (2.3))

√
ε2−2

∑
n≥3

1
n

(
�

(
ε
√
loglogn+ K

�loglogn
γ
)
−�

(
ε
√
loglogn
σn

+ K

�loglogn
γ
))

≤C
√
ε2−2+ C

ε2−2
E

[
X2I�X2≥8�

∫ √�ε2−2
loglog�X2/2�

0
z2exp�−z2/2
dz

]
�

Therefore,

lim
ε↘√

2

√
ε2−2

∑
n≥3

1
n

(
�

(
ε
√
loglogn+ K

�loglogn
γ
)

−�
(
ε
√
loglogn
σn

+ K

�loglogn
γ
))

(2.4)

≤C lim
ε↘√

2
E

[
X2I�X2≥8� 1

ε2−2

∫ √�ε2−2
loglog�X2/2�

0
z2exp�−z2/2
dz

]
�

Now, by l’Hôpital’s rule, for X2≥8,

lim
ε↘√

2

1
ε2−2

∫ √�ε2−2
loglog�X2/2�

0
z2exp�−z2/2
dz

= lim
ε↘√

2

�loglog�X2/2�
3/2
2

√
ε2−2exp

(
−�ε2−2
loglog�X2/2�

2

)
=0�

This means that if “lim” and “E” could be interchanged in (2.4), then
Proposition 2.2 would hold under the weaker assumption that EX2<∞. We
have, however, not been able to justify the interchange.

Proposition 2.3. Set U∗
n=Un−EUn. We have

lim
ε↘√

2

√
ε2−2

∑
n≥3

1
n

∣∣∣∣P
(
	U∗

n	≥ε
√
nloglogn+ K

√
n

�loglogn
γ
)

−�
(
ε
√
loglogn
σn

+ K

σn�loglogn
γ
)∣∣∣∣=0�
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Proof. First, choose n0>2 (independent of ε) such that σ2
n≥1/2 for n≥n0.

By the Berry–Esseen inequality [see, e.g., Petrov (1995), page 149], for n≥n0,
we have∣∣∣∣P

(
	U∗

n	≥ε
√
nloglogn+ K

√
n

�loglogn
γ
)
−�

(
ε
√
loglogn
σn

+ K

σn�loglogn
γ
)∣∣∣∣

≤C ρn√
n
≤ C√

n
E	Zn�1−EZn�1	3

≤ C√
n
�E	Zn�1	3+	EZn�1	3


≤ C√
n
E	Zn�1	3+

C

n2
�

where the last inequality comes from (2.1). Hence, by making use of Fubini’s
theorem, we may write∑
n≥3

1
n

∣∣∣∣P
(
	U∗

n	≥ε
√
nloglogn+ K

√
n

�loglogn
γ
)
−�

(
ε
√
loglogn
σn

+ K

σn�loglogn
γ
)∣∣∣∣

≤n0+C
∑
n≥n0

1
n3/2

E�	X	3I�	X	<ε√n��+C ∑
n≥n0

1
n3

≤C+C ∑
n≥n0

1
n3/2

E�	X	3I�	X	<ε
√
2��

+C ∑
n≥n0

1
n3/2

E�	X	3I�ε
√
2≤	X	<ε√n��

≤C+Cε3+CE
[
	X	3I�X2≥2ε2� ∑

n≥n0�n>X
2/ε2

1
n3/2

]

≤C+CE
[
	X	3I�X2≥2ε2� ∑

n>X2/ε2

1
n3/2

]

≤C+CE
[
	X	3I�X2≥2ε2�/��X2/ε2�
1/2

]

≤C+CεEX2=C�1+ε
�
which proves the proposition. ✷

We are now prepared to complete the proof of Theorem 1.

Proof of Theorem 1. From Propositions 2.1 and 2.3 and Corollary 2.1, it
follows that

lim
ε↘√

2

√
ε2−2

∑
n≥3

1
n
P�	Un−EUn	≥ε

√
nlog logn+K√

n�log logn
−γ
=
√
2�(2.5)

Put γ′ =�1+δ
∧γ>1/2� On account of (2.1), we have

	EUn	+	an	≤C
√
n�log logn
−1−δ+C√n�log logn
−γ≤C√n�log logn
−γ′ �
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Therefore, we get

P�	Un−EUn	≥ε
√
nlog logn+C√n�log logn
−γ′ 


≤P�	Un−EUn	≥ε
√
nlog logn+	EUn	+	an	


≤P�	Un	≥ε
√
nlog logn+an
(2.6)

≤P�	Un−EUn	≥ε
√
nlog logn−	EUn	−	an	


≤P�	Un−EUn	≥ε
√
nlog logn−C√n�log logn
−γ′ 
�

Now, from (2.5) and (2.6), we see that

lim
ε↘σ

√
2

√
ε2−2

∑
n≥3

1
n
P�	Un	≥ε

√
nlog logn+an
=

√
2�

which concludes the proof of the theorem, since

∑
n≥3

1
n
P�Sn �=Un
≤

∑
n≥3

P�	X	≥ε√n
≤EX2

ε2
= 1
ε2
� ✷

3. Proof of Theorem 2.

3.1. F is normal. We thus assume, once again, that F is the standard
normal distribution function �, and set ��x
=1−��x
+��−x
�x≥0.

Proposition 3.1. Equation �1�4
 holds.

Proof. We have∑
n≥3

1
nlogn

P
(
	Sn	≥ε

√
nlog logn

)

=
∫ ∞

3

1
xlogx

�
(
ε
√
log logx

)
dx+ 1

6log3
�
(
ε
√
log log3

)

−
∫ ∞

3
P1�x
d

[
1

xlogx
�
(
ε
√
log logx

)]
�

where P1�x
=�x�−x+1/2. Continuing as above yields∣∣∣∣
∫ ∞

3
P1�x
d

[
1

xlogx
�
(
ε
√
log logx

)]∣∣∣∣
≤
∫ ∞

3
	P1�x
	

(
1

x2logx
+ 1
x2�logx
2

)
�
(
ε
√
log logx

)
dx

+ ε

2

∫ ∞

3
	P1�x
	

1

x2�logx
2√log logx

∣∣∣�′
(
ε
√
log logx

)∣∣∣dx
≤
∫ ∞

3

dx

x2
+εC

∫ ∞

3

dx

x2�logx
2√log logx
≤C�1+ε
�
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from which it follows that

lim
ε↘0

ε2
∫ ∞

3
P1�x
d

[
1

xlogx
�
(
ε
√
log logx

)]
=0�

By putting y=ε√log logx, we finally get

lim
ε↘0

ε2
∑
n≥3

1
n logn

P�	Sn	≥ε
√
n log logn


= lim
ε↘0

ε2
∫ ∞

3

1
xlogx

��ε
√
log logx
dx

= lim
ε↘0

ε2
∫ ∞

ε
√

log log3

2
ε2
y��y
dy=1� ✷

3.2. The general case. Now we assume that X�X1�X2���� are i.i.d. ran-
dom variables with mean 0 and variance 1. Put b�ε
=exp�exp�M/ε2
�, where
M> 1. We first establish the following fact.

Proposition 3.2. We have

lim
ε↘0

ε2
∑

n≤b�ε


1
n logn

∣∣∣P�	Sn	≥ε
√
n log logn
−��ε

√
log logn


∣∣∣=0�

Proof. Notice first that

1
log logm

m∑
n=1

+n
n logn

→0 as m→∞�(3.1)

where +n=supx 	P�	Sn	≥
√
nx
−��x
	→0 as n→∞. Hence, using (3.1), we

obtain

ε2
∑

n≤b�ε


1
n logn

∣∣∣P�	Sn	≥ε
√
n log logn
−��ε

√
log logn


∣∣∣
≤ε2 ∑

n≤�b�ε
�

+n
n logn

=ε2 log log�b�ε
�· 1
log log�b�ε
�

∑
n≤�b�ε
�

+n
n logn

≤M· 1
log log�b�ε
�

∑
n≤�b�ε
�

+n
n logn

→0 as ε↘0� ✷

Proposition 3.3. We have, uniformly with respect to all sufficiently small
ε>0,

lim
M→∞

ε2
∑

n>b�ε


1
n logn

��ε
√
log logn
=0�
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Proof. There is an absolute constant c>0 such that b�ε
−1≥√
b�ε
 for

ε≤c. Thus, for ε≤c, we have

∑
n>b�ε


1
n logn

��ε
√
log logn
 ≤

∫ ∞

b�ε
−1

1
x logx

��ε
√
log logx
dx

≤
∫ ∞
√
b�ε


1
x logx

��ε
√
log logx
dx�

Hence, by putting y=ε√log logx, for sufficiently small ε, we get

ε2
∑

n>b�ε


1
n logn

��ε
√
log logn
 ≤ 2

∫ ∞

ε
√

log�1/2
+M/ε2
y��y
dy

≤ 2
∫ ∞
√
M−1

y��y
dy�

and the conclusion follows. ✷

Proposition 3.4. We have, uniformly with respect to all sufficiently small
ε>0,

lim
M→∞

ε2
∑

n>b�ε


1
n logn

P�	Sn	≥ε
√
n log logn
=0�

Lemma 3.1. For any constant c>0, we have

∑
n>b�ε


1
logn

P�	X	≥cε
√
n log logn
≤M−1c−2<∞�

Proof. Since k>b�ε
 if and only if k<M−1ε2klog logk, it follows that

∑
n>b�ε


1
logn

P�	X	≥cε
√
nloglogn


= ∑
n>b�ε


1
logn

∑
k≥n

P

(
cε

√
kloglogk≤	X	<cε

√
�k+1
loglog�k+1


)

= ∑
k>b�ε


[ ∑
b�ε
<n≤k

1
logn

]
P

(
cε

√
kloglogk≤	X	<cε

√
�k+1
loglog�k+1


)

≤ ∑
k>b�ε


exp�−M/ε2��k−b�ε



×P(
ε2kloglogk≤c−2X2<ε2�k+1
loglog�k+1
)

≤ ∑
k>b�ε


M−1ε2kloglogkP
(
ε2kloglogk≤c−2X2<ε2�k+1
loglog�k+1
)

≤M−1c−2EX2=M−1c−2� ✷
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Another important tool is the following lemma due to Spătaru (1999); see
Lemma 2 there. It is, in turn, based on an inequality by Fuk and Nagaev
(1971).

Lemma 3.2. For 1<β≤2 and x�y>0, we have

P�	Sn	≥x
 ≤ nP�	X	≥y
+2ex/y
(

nE	X	β
nE	X	β+xyβ−1

)x/y

≤ nP�	X	≥y
+2nx/y
(
eE	X	β
xyβ−1

)x/y
�

Proof of Proposition 3.4. Lemma 3.2 with x=ε√n log logn, y=
ε
√
n log logn/2 and β=2 yields

∑
n>b�ε


1
n logn

P�	Sn	≥ε
√
n log logn


≤ ∑
n>b�ε


1
logn

P�	X	≥ε
√
n log logn/2
+ 8e2

ε4
∑

n>b�ε


1
n logn�log logn
2 �

which, in view of Lemma 3.1, shows that, for small ε>0 (recall, in particular,
that ε<1/2
,

ε2
∑

n>b�ε


1
n logn

P�	Sn	≥ε
√
n log logn


≤ 4ε2

M
+ C

ε2log log�b�ε
� ≤
1
M

+ C

M
= C

M
�

and we are done. ✷

Theorem 2 now follows from the propositions and the triangle inequality.
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