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Analogues of stepping-stone models are considered where the site-
space is continuous, the migration process is a general Markov process,
and the type-space is infinite. Such processes were defined in previous work
of the second author by specifying a Feller transition semigroup in terms
of expectations of suitable functionals for systems of coalescing Markov
processes. An alternative representation is obtained here in terms of a limit
of interacting particle systems. It is shown that, under a mild condition
on the migration process, the continuum-sites stepping-stone process has
continuous sample paths. The case when the migration process is Brownian
motion on the circle is examined in detail using a duality relation between
coalescing and annihilating Brownian motion. This duality relation is also
used to show that a tree-like random compact metric space that is naturally
associated to an infinite family of coalescing Brownian motions on the circle
has Hausdorff and packing dimension both almost surely equal to 1

2 and,
moreover, this space is capacity equivalent to the middle- 12 Cantor set (and
hence also to the Brownian zero set).

1. Introduction. Stepping-stone models originally arose in population ge-
netics. The simplest version can be described as follows. There is a finite or
countable collection of sites (the site-space). At each site there is a finite pop-
ulation. Each population is composed of individuals who can be one of two
possible genetic types, say A or B. At each site the genetic composition of the
population evolves via a continuous-time resampling mechanism. Indepen-
dently of each other, individuals migrate from one site to another according to
a continuous-time Markov chain (the migration chain) on the site-space.
If the number of individuals at each site becomes large, then, under appro-

priate conditions, the process describing the proportion of individuals of type
A at the various sites converges to a diffusion limit. This limit can be thought
of informally as an ensemble of Fisher-Wright diffusions (one diffusion at each
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site) that are coupled together with a drift determined by the jump rates of
the migration chain (see, e.g., [38]).
A natural refinement of this two-type diffusion model, considered in [26,

11], is the corresponding infinitely-many-types model. Here the Fisher-Wright
processes at each site are replaced by mutationless Fleming-Viot processes of
evolving random probability measures on a suitable uncountable type-space
(typically the unit interval �0�1�).
Much of the research on such interacting Fisher-Wright and Fleming-Viot

diffusion models (see, e.g., [5, 21, 22, 27]) has centered on their clustering
behavior in the case when the space of sites is either the integer lattice �d

or a discrete hierarchical group and the migration chain is a random walk.
That is, one asks how regions where “most of the populations are mostly of
one type” grow and interact with each other. The primary tool for analysing
this behavior is the duality (in the sense of duality of martingale problems)
between these models and sytems of delayed coalescing random walks that
was first exploited by [38].
One of the factors that lead to interesting clustering is the scaling behavior

of the migration process. However, because random walks on �d in the domain
of attraction of a stable law and their analogues on a discrete hierarchical
group only have approximate scaling, the role that scaling plays is somewhat
obscured. In order to make the effect of scaling clearer, related two-type mod-
els were considered in [16] in the hierarchical group setting. In essence, the
processes in [16] are the result of taking a further limit in which one “stands
back” from the site-space so that the discrete hierarchical group approaches
a continuous one and the random walk converges to a “stable” Lévy process
on the continuous hierarchical group that does have exact rescaling. These
continuum-sites, two-type stepping-stone models have as their state-space the
collection of measurable functions x from the site-space (i.e., the continuous
hierarchical group) into �0�1�. For a state x and site e, the value x�e� is in-
terpreted intuitively as the proportion of the population at the site that is of
type A.
One of the noteworthy features of [16] is that the limit models are defined

by specifying moment-like quantities for the associated Feller transition semi-
group in terms of systems of delayed or instantaneously coalescing Lévy pro-
cesses, using formulae that are analogues of the duality relations between the
discrete-sites models and delayed coalescing random walks mentioned above
(see Theorems 3 and 4 of [16]). In particular, the limit models are not defined
infinitesimally via a generator, SDE/SPDE, or martingale problem formula-
tion analogous to that of the discrete-sites models. We note, however, that it
should be possible to “stand back” in a similar manner from a discrete-sites
model where the migration chain is simple random walk on � and obtain the
process considered in [30, 39]: this process is constructed there as an SPDE on
� but is also dual to delayed coalescing Brownian motions via the same sort
of formulae considered in [16]. However, the processes in [16] that have their
semigroups defined in terms of instantaneously coalescing Lévy processes have
only a very informal interpretation as SPDE-like objects with infinite noise
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coefficient (the noise coefficient represents a resampling rate in the genetic
context). Indeed, a typical value for such a process is a function x such that
x�e� ∈ �0�1� for all sites e, and so such processes are more like continuum
analogues of particle systems (see Theorem 6 of [16]).
The programme of defining continuum-sites models in terms of “duality”

formulae using instantaneously coalescing Markov processes was continued
in [19] (see Section 4 below for a recapitulation). There the infinitely-many-
types case was considered and the process used to build the coalescing system
was taken to be a general Borel right process Z with semigroup �Pt�t≥0 on the
site-space E subject only to the condition that there is another E-valued Borel
right process Ẑ with semigroup �P̂t�t≥0 such that for some non-trivial, dif-
fuse, Radon measurem the equality

∫
m�de�Ptf�e�g�e� = ∫

m�de�f�e�P̂tg�e�
holds for all non-negative Borel functions f and g.
Now a state of the process, which we denote from now on by X, will be a

function µ from the site-space E into the collection of probability measures on
an uncountable type-space K. For a state µ, a site e ∈ E, and a measurable
subset B ⊆ K of the type-space, the value µ�e��B� is interpreted intuitively
as the proportion of the population at the site e possessing types from B.
Note that we can identify such a function µ with the measure A × B →∫
Am�de�µ�e��B� on E×K.
We leave the formal definition of X to Section 4 but, in order to give the

reader a flavor of the connection between X and a coalescing system of par-
ticles each evolving according to the dynamics of Z, we present two conse-
quences of the definition. Let �Z′�Z′′� be independent copies of Z each started
according to m some probability space ���� �P�. Write T �= inf�t ≥ 0 � Z′

t =
Z′′
t � for the first time that Z′ and Z′′ collide. Set

�Z∗
t �Z

∗∗
t � �=

{ �Z′
t�Z

′′
t �� if 0 ≤ t < T�

�Z′
t�Z

′
t�� otherwise�

(1.1)

When X is started in the initial state µ (with corresponding law �µ) we have
the first and second moment formulae

�µ
[∫
E
m�de�

∫
K
Xt�e��dk�F�e� k�

]
= P

[∫
K
µ�Z∗

t ��dk�F�Z∗
0� k�

]
(1.2)

and

�µ
[∫
E
m�de′�

∫
E
m�de′′�

∫
K
Xt�e′��dk′�

∫
K
Xt�e′′��dk′′�G�e′� e′′� k′� k′′�

]
= P

[∫
K
µ�Z∗

t ��dk′�
∫
K
µ�Z∗∗

t ��dk′′�G�Z∗
0�Z

∗∗
0 � k

′� k′′�
](1.3)

for non-negative Borel functions F and G on E×K and E2×K2, respectively.
We give a more concrete description of the infinitely-many-types, contin-

uum-sites process X in Section 5. For λ > 0 consider a process Xλ taking
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values in the space of discrete measure on E ×K that is defined as follows.
The push-forward of Xλ by the projection from E×K onto E is a stationary
measure-valued process. At any fixed time the atoms of the projected pro-
cess are distributed as a Poisson point process on E with (diffuse) intensity
λm, and each atom has mass 1/λ. The positions of the atoms of the projected
process evolve in E as independent copies of the process Ẑ. The K-valued
components (i.e., the types) of atoms of Xλ�0� are conditionally independent
given the initial ensemble of E-valued components (that is, locations), with
the conditional distribution of the type of an atom at location e ∈ E being
µ�e��·� for some measurable function from E into the probability measures
on K. When the locations of two or more atoms collide, a type is chosen at
random from the types of the atoms participating in the collision and the
types of all the participating atoms are changed to this randomly chosen
type. Under suitable conditions on Z and Ẑ, we show that as λ → ∞ the
finite-dimensional distributions ofXλ converge to those ofX, whereX is now
thought of as a process with values in the space of measures on E ×K and
X0�de�dk� = m�de�µ�e��dk�. In fact, we do more than establish such a limit
theorem, we also obtain a representation for X that is similar to the “look
down” construction of the Fleming-Viot process in [12]. As we note in vari-
ous places, this representation of X not only gives good intuition as to the
dynamics of X but also gives somewhat easier proofs of several of the results
presented here, provided one imposes the extra conditions on Z and Ẑ for it
to hold.
One of the open problems left by [19] was to determine conditions on Z

under which the process X (which is a Feller process) has continuous rather
than just càdlàg sample paths in a suitable topology. We show that a sufficient
condition is, in the notation introduced above, that there exists ε > 0 such that
for all ψ ∈ L1�m� ∩L∞�m�,

lim sup
t↓0

t−εP �ψ�Z∗
0�ψ�Z∗∗

0 �1�T ≤ t�� <∞(1.4)

(see Theorem 7.2). This condition holds, for example, for all Lévy processes
and “nice” diffusions on � or the circle �.
By the same argument as in the proof of Proposition 5.1 of [19], it is possible

to show that if Z is a stable process on � that hits points, then, for fixed t > 0,
there almost surely exists a random countable subset �k1� k2� � � �� of the type-
space such that for Lebesgue almost all e ∈ � the probability measureXt�e� is
a point mass at one of the ki. That is, rather loosely speaking, at each site all
individuals in the population have the same type and the total number of types
seen across all sites is countable. We improve this result in Theorem 10.2 for
the case when Z is Brownian motion on � by showing that the total number
of types is, in fact, almost surely finite and such a result holds simultaneously
at all positive times rather than just for fixed times.
The primary tool used in the proof of Theorem 10.2 is the following duality

relation between systems of coalescing and annihilating circular Brownian
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motions that is developed in Section 9. Given a finite subset A ⊆ �, letWA be
a coalescing system of Brownian particles on � withWA�0� = A. That is,WA

models the locations of finitely many particles in � that evolve as independent
Brownian motions except that when two particles collide they coalesce into a
single particle. We will think of a system of annihilating Brownian motions as
a process VB taking values in the collection � of open subsets of � that are
either empty or consist of a finite union of open intervals with distinct end-
points. GivenB ∈ � defineVB as follows. The initial value ofVB isVB�0� = B.
The end-points of the constituent intervals execute independent Brownian
motions on � until they collide, at which point they annihilate each other.
If the two colliding end-points are from different intervals, then those two
intervals merge into one interval. If the two colliding end-points are from the
same interval, then that interval vanishes (unless the interval was arbitrarily
close to � just before the collision, in which case the process takes the value
�). The process is stopped when it hits the empty set or �. The duality relation
is then

P�WA�t� ⊆ B� = P�A ⊆ VB�t���(1.5)

This duality relation for finite coalescing and annihilating systems enables
us to perform detailed computations with the system of coalescing Brownian
motions that is actually of interest in the study of X, namely the system that
begins with countably many particles independently and uniformly distributed
on �. For example, if N�t� is the number of particles surviving at time t > 0,
then we show in Section 9 that

P�N�t�� = 1+ 2
∞∑
n=1

exp
(

−
(n
2

)2
t

)
<∞(1.6)

and

0 < lim inf
t↓0

t
1
2N�t� ≤ lim sup

t↓0
t
1
2N�t� <∞ a.s.(1.7)

(we conjecture that the corresponding limit exists and is given by 2
√
π =

limt↓0 t
1
2P�N�t��).

The infinite coalescing Brownian system is an interesting object in its own
right. We define a random metric on the positive integers by declaring that
the distance between i and j is the time until the “lines of descent” of the
ith and jth particles present at time zero coalesce, and thereby identify the
positive integers with leaves of a random tree. In Theorem 11.2 we adapt the
methods of [20] to show that the completion of the positive integers in this
metric is almost surely compact, with Hausdorff and packing dimensions both
equal to 1

2 . Moreover, this space is capacity equivalent to the middle- 12 Cantor
set (and hence also to the Brownian zero set).

Notation 1.1. Write � �= �1�2� � � ��. We will adopt the convention through-
out that the infimum of a subset of � or � is defined to be ∞ when the subset
is empty.
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2. Coalescing Markov processes and labeled partitions. Suppose
that E is a Lusin space and that �Z�Pz� is a Borel right process on E with
semigroup �Pt�t≥0 satisfying Pt1 = 1, t ≥ 0, so that Z has infinite lifetime
(see [37] for a discussion of Lusin spaces and Borel right processes). Suppose
that there is another Borel right process �Ẑ� P̂z� with semigroup �P̂t�t≥0 and
a diffuse, Radon measurem �= 0 on �E�� � such that for all non-negative Borel
functions on f�g on E we have

∫
m�de�Ptf�e�g�e� = ∫

m�de�f�e�P̂tg�e� (our
definition of Radon measure is that given in Section III.46 of [13]). The space
E is the site-space and Ẑ is the migration process for the continuum-sites
stepping-stone model X, whereas Z will serve as the basic motion in the co-
alescing systems “dual” to X.
We remark that our assumption on the Markov processes Z and Ẑ is not

quite the usual notion of weak duality with respect to m (see, e.g., Section 9
of [25]); in order for weak duality to hold we would also require that Pm-a.s.
(resp. P̂m-a.s.) the left-limit Z�t−� [resp. Ẑ�t−�] exists for all t > 0.
The following notation will be convenient for us. Given e = �e1� � � � � en� ∈

En, for some n ∈ �, with ei �= ej for i �= j, let Ze = �Ze1� � � � �Zen� be an
En-valued process defined on some probability space ���� �	� such that Zei
has the distribution of Z under Pei and Ze1� � � � �Zen are independent.
We now define the system of coalescing Markov processes Že associated with

Ze. Adjoin a point †, the cemetery, to E to form E† �= E ∪ �†�. Construct the
�E†�n-valued process Že = �Že

1� � � � � Ž
e
n� inductively as follows. Suppose that

times 0 =� τ0 ≤ · · · ≤ τk ≤ ∞ and sets �1� � � � � n� =� '0 ⊇ � � � ⊇ 'k ⊇ �1�
have already been defined and that Že has already been defined on �0� τk�. If
τk = ∞, then just set τk+1 �= ∞ and 'k+1 �= 'k. Otherwise, put

τk+1 �= inf�t > τk � ∃i� j ∈ 'k� i �= j� Zei�t� = Zej�t���(2.1)

'k+1 �=


'k� if τk+1 = ∞�
�i ∈ 'k �� ∃j < i� j ∈ 'k� Zei�τk+1� = Zej�τk+1�� �

otherwise�

(2.2)

and

Že
i �t� �=

{
Zei�t�� τk ≤ t < τk+1� if i ∈ 'k�
†� τk ≤ t < τk+1� otherwise�

(2.3)

In other words, the coordinate processes of the coalescing Markov process
Že evolve as independent copies of Z until they collide. When two or more
coordinate processes collide (which happens at one of the times τ( with 0 <
τ( <∞), the one with the smallest index “lives on” while the other coordinates
involved in the collision are sent to the cemetery †. The set 'k is the set of
coordinates that are still alive at time τk. As the following lemma shows,
for m⊗n-a.e. e, almost surely only one coordinate process of Ze is sent to the



CONTINUUM-SITES STEPPING-STONE MODELS 1069

cemetery at a time in the construction of Že. (Recall that �Z�Pz� is said to be
a Hunt process if Z has càdlàg sample paths and is also quasi-left-continuous;
that is, if whenever T1 ≤ T2 ≤ · · · are stopping times for Z and T = supn Tn,
then Pz�limn Z�Tn� = Z�T�� T <∞� = Pz�T <∞� for all z ∈ E.)

Lemma 2.1. Let Y be an E-valued Markov process on some probability
space ��̄� �̄ � 	̄� with the same law as Z under Pq �= ∫

E q�dz�Pz, where q is
a probability measure on �E�� � that is absolutely continuous with respect to
m. Let �T�V� be a �0�∞�×E-valued random variable that is independent of
Y. Then 	̄�Y�T� = V� = 0. Moreover, if Z is Hunt process, then 	̄�Y�T−� =
V� = 0, also. A similar result holds with Y replaced by a process Ŷ with the

same law as Ẑ under P̂q �= ∫
E q�dz� P̂z.

Proof. For fixed t ≥ 0 and v ∈ E we have, writing h for the Radon-
Nikodym derivative of q with respect to m,

	̄�Y�t� = v� =
∫
E
m�dz�h�z�Pt1�v��z� =

∫
E
m�dz�1�v��z�P̂th�z� = 0(2.4)

by the duality assumption and the assumption that m is diffuse. Moreover,
under the Hunt assumption,

	̄�Y�t� �= Y�t−�� = 0�(2.5)

The result now follows by Fubini. ✷

It will be convenient to embellish Že somewhat and consider an enriched
process ζe defined below that keeps track of which particles have collided with
each other.
Let .n denote the set of partitions of �n �= �1� � � � � n�. That is, an element

π of .n is a collection π = �A1� � � � �Ah� of subsets of �n with the property
that

⋃
i Ai = �n and Ai ∩Aj = � for i �= j. The sets A1� � � �Ah are the blocks

of the partition π. Equivalently, we can think of .n as the set of equivalence
relations on �n and write i ∼π j if i and j belong to the same block of π ∈ .n.
An E-labeled partition of �n is a collection

λ = ��A1� eA1
�� � � � � �Ah� eAh���(2.6)

with �A1� � � � �Ah� ∈ .n, �eA1
� � � � � eAh� ⊆ E, and eAi �= eAj for i �= j. Let /n

denote the set of E-labelled partitions of �n. Put α�λ� �= �A1� � � � �Ah� and
ε�λ� �= �eA�A∈α�λ�.
For e ∈ En with ei �= ej for i �= j, we wish to define a /n-valued pro-

cess ζe (the process of coalescing Markov labelled partitions) with the fol-
lowing intuitive description. The initial value of ζe is the labelled partition
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���1�� e1�� � � � � ��n�� en��. As t increases, the corresponding partition α�ζe�t��
remains unchanged and the labels ε�ζe�t�� evolve as a vector of independent
copies of Z until immediately before two (or more) such labels coincide. At
the time of such a collision, the blocks of the partition corresponding to the
coincident labels are merged into one block (i.e., they coalesce). This new block
is labelled with the common element of E. The evolution then continues in
the same way.
More formally, we will take ζe to be defined in terms of Ze as follows

(using the ingredients τk and 'k that went into the definition of Že). The
corresponding partition-valued process ξe �= α�ζe� is constant on intervals
of the form �τk� τk+1� and ξe�τ0� �= ��1�� � � � � �n��. Suppose for k ≥ 0 that
ξe�τ0�� � � � � ξe�τk� have been defined and τk+1 < ∞. Let ξe�τk+1� be the par-
tition that is obtained by merging for each i ∈ 'k+1 those blocks of ξe�τk�
whose least elements j are such that Zei�τk+1� = Zej�τk+1�. Thus each block
A of ξe�τk+1� is such that the least element minA of A is the unique element
i ∈ A for which Že

i �τk+1� �= †. The definition of ζe is completed by labelling
each block A of the partition ξe�t� with Že

minA�t� = ZeminA�t�.
For 1 ≤ i ≤ n, put γe = �γe1� � � � � γen�, where

γei �t� �= min�j � j ∼ξe�t� i�(2.7)

and write

3e�t� �= �γei �t� � 1 ≤ i ≤ n� = �j � Že
j�t� �= †�(2.8)

for the set of surviving indices at time t. Note that 3e�τk� = 'k.

3. The state-space 4 of the stepping-stone process. We need some
elementary ideas from the theory of vector measures. A good reference is [15].
Recall the measure space �E�� �m� introduced in Section 2, and let B be a
Banach space with norm " · ". We say that a function φ � E → B is simple if
φ = ∑k

i=1 xi1Ei for x1� � � � � xk ∈ B and E1� � � � �Ek ∈ � for some k ∈ �. We say
that a function φ � E→ B is m-measurable if there exists a sequence �φn�n∈�
of simple functions such that limn→∞ "φn�e� −φ�e�" = 0 for m-a.e. e ∈ E.
Write K for the compact, metrisable coin-tossing space �0�1�� equipped

with the product topology, and let 
 denote the corresponding Borel σ-field.
Equivalently, 
 is the σ-field generated by the cylinder sets.
Write M�K� for the Banach space of finite signed measures on �K�
 �

equipped with the total variation norm " · "M�K�. Let L∞�m�M�K�� denote
the space of (equivalence classes of) m-measurable maps µ � E→M�K� such
that ess sup�"µ�e�"M�K� � e ∈ E� < ∞, and equip L∞�m�M�K�� with the
obvious norm to make it a Banach space.
Write C�K� for the Banach space of continuous functions on K equipped

with the usual supremum norm " ·"C�K�. Let L1�m�C�K��, denote the Banach
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space of (equivalence classes of) m-measurable maps µ � E→ C�K� such that∫
m�de� "µ�e�"C�K� < ∞, and equip L1�m�C�K�� with the obvious norm to

make it a Banach space.
From the discussion at the beginning of Section IV.1 in [15] and the fact

thatM�K� is isometric to the dual space of C�K� under the pairing �ν� y� →
#ν� y$ = ∫

ν�dk�y�k�, ν ∈ M�K�, y ∈ C�K�, we see that L∞�m�M�K�� is
isometric to a closed subspace of the dual of L1�m�C�K�� under the pairing
�µ�x� → ∫

m�de� #µ�e�� x�e�$, µ ∈ L∞�m�M�K��, x ∈ L1�m�C�K��. Write
M1�K� for the closed subset ofM�K� consisting of probability measures, and
let 4 denote the closed subset of L∞�m�M�K�� consisting of (equivalence
classes of) maps with values in M1�K�. From Corollary V.4.3 and Theorem
V.5.1 of [14] we see that, as L1�m�C�K�� is separable, 4 equipped with the
relative weak∗ topology is a compact, metrisable space. From now on, we al-
ways take 4 to be equipped with the relative weak∗ topology.
We think of the set K as the space of possible types in the infinitely-many-

types, continuum-sites, stepping-stone model X we will define in Section 4.
As we remarked in Section 1, the type-space for infinitely-many-types mod-
els is usually taken to be �0�1�. However, from a modelling perspective any
uncountable set is equally suitable, and, as pointed out in [19], the set K is
technically easier to work with. The set E is the corresponding space of sites.
The intuitive interpretation is that µ ∈ 4 describes an ensemble of popula-
tions at the various sites: µ�e��L� is the “proportion of the population at site
e ∈ E that has a type belonging to the set L ∈ 
 ”.

Remark 3.1. One can think of 4 as a subset of the space of Radon mea-
sures on E ×K by identifying µ ∈ 4 with the measure that assigns mass∫
Am�de�µ�e��B� to the set A × B, where A ∈ � and B ∈ 
 . The topology
we are using on 4 is not the same as the trace of the usual topology of vague
convergence of Radon measures. However, the corresponding Borel σ-fields do
coincide. In particular, we can think of 4-valued random variables as random
Radon measures on E×K.

For n ∈ � letM�Kn� [respectively, C�Kn�] denote the Banach space of finite
signed measures (respectively, continuous functions) on the Cartesian product
Kn with the usual norm " · "M�Kn� (respectively, " · "C�Kn�). With a slight abuse
of notation, write # · � · $ for the pairing between these two spaces.

Definition 3.2. Given φ ∈ L1�m⊗n�C�Kn��, define In� · %φ� ∈ C�4� (:= the
space of continuous real-valued functions on 4) by

In�µ%φ� �=
∫
En
m⊗n�de�

〈 n⊗
i=1
µ�ei�� φ�e�

〉

=
∫
En
m⊗n�de�

∫
Kn

n⊗
i=1
µ�ei��dki�φ�e��k�� µ ∈ 4�

(3.1)

Write I for I1.
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4. Definition of the stepping-stone process X. Theorem 4.1 below is
Theorem 4.1 of [19]. As discussed in Section 1, it is motivated by the char-
acterization of infinitely-many-types, discrete-sites stepping-stone processes
via duality with systems of delayed coalescing continuous-time Markov chains
(see [11] and [26]). Recall that ���� �	� is the probability space on which the
processes Ze, Že, ζe, ξe, etc. are defined.

Theorem 4.1. There exists a unique, Feller, Markov semigroup �Qt�t≥0 on
4 such that for all t ≥ 0, µ ∈ 4, φ ∈ L1�m⊗n�C�Kn��, n ∈ �, we have

∫
Qt�µ�dν�In�ν%φ�

=
∫
En
m⊗n�de�	

[∫ ⊗
j∈3e�t�

µ�Ze
j�t���dkj�φ�e��kγe1�t�� � � � � kγen�t��

]
�

(4.1)

Consequently, there is a Hunt process, �X��µ�, with state-space 4 and tran-
sition semigroup �Qt�t≥0.

Remark 4.2. The integrand 	�· · ·� in (4.1) should be interpreted as 0 on
the m⊗n-null set of e such that ei = ej for some pair �i� j�. The integral inside
the � � is over a Cartesian product of copies of K, with the copies indexed by
the elements of 3e�t�.

Remark 4.3. The following equivalent formulation of Theorem 4.1 will be
useful. For n ∈ � let Z�n� = �Z�n�

1 � � � � �Z
�n�
n � be an En-valued process defined

on a σ-finite measure space ���n��� �n��	�n��, with

	�n��Z�n� ∈ A� �=
∫
m⊗n�de�	�Ze ∈ A��(4.2)

Define Ž�n�, ξ�n�, γ�n� and 3�n� from Z�n� in the same manner that Že, ξe, γe and
3e were defined from Ze. The right-hand side of (4.1) is just

	�n�

∫ ⊗
j∈3�n��t�

µ�Z�n�
j �t���dkj�φ�Z�n��0��

(
k
γ

�n�
1 �t�� � � � � kγ�n�

n �t�
) �(4.3)

Remark 4.4. As we noted in Remark 3.1, we can think of the processX as
taking values in the space of Radon measures on E×K by identifyingXt with
the random measure that assigns mass

∫
Am�de�Xt�e��B� to the set A × B,

where A ∈ � and B ∈ 
 . A standard monotone class argument shows that if
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ψ is any non-negative Borel function on En ×Kn, then

�µ
[∫
En
m⊗n�de�

∫
Kn

n⊗
i=1
Xt�ei��dki�ψ�e�k�

]

=
∫
En
m⊗n�de�	

[∫ ⊗
j∈3e�t�

µ�Ze
j�t���dkj�ψ�e� kγe1�t�� � � � � kγen�t��

]

= 	�n�

∫ ⊗
j∈3�n��t�

µ�Z�n�
j �t���dkj�ψ�Z�n��0�� k

γ
�n�
1 �t�� � � � � kγ�n�

n �t��
 �

(4.4)

5. A particle construction for the stepping-stone model X. In this
section we first construct a finite particle model in which particles move
throughE×K, where we recall thatE is our site-space andK is our type-space.
TheE-valued components of the particles move independently according to the
dynamics of the migration process Ẑ. The particles interact only when they
are located at the same site in E, and the interaction that occurs is that the
type of one of the particles is replaced by the type of the other. The parti-
cle whose type “wins” is chosen at random from the two particles, with both
outcomes equally likely. For our purposes here, we assume that the types are
constant except for these replacement interactions, although we could allow
“mutation” of the types between the replacement interactions.
Under suitable conditions on the migration process, we then pass to a high-

density limit and obtain a process taking values in the space of Radon mea-
sures ρ onE×K with the property that ρ�A×K� =m�A� forA ∈ � . Recalling
Remark 3.1, we can think of the limit model as a 4-valued process, and we
establish that as such it has the same finite-dimensional distributions as the
continuum-sites stepping-stone process X.
Throughout this section we will work on a probability space ��̂� �̂ � 	̂� and

we will assume the following hypothesis (the definition of a Hunt process is
recalled in Section 2).

Assumption 5.1. The processes Z and Ẑ are Hunt.

For completeness, we recall the following definition and some of its conse-
quences.

Definition 5.2. Let �S�� � be a measurable space, and let ν be a σ-finite
measure on � . Say that a map N from �̂ into the collection of measures on
�S�� � is a Poisson random measure with mean measure ν if:

(a) For each A ∈ � , N�A� is a �0�1� � � � �∞�-valued random variable.
(b) For each A ∈ � with ν�A� <∞, the random variable N�A� is Poisson

distributed with parameter ν�A�.
(c) For A1�A2� � � � ∈ � disjoint, the random variables N�A1��N�A2�� � � �

are independent.
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Remark 5.3. Assume that ν is diffuse. Then for x ∈ S, N��x�� must be
zero or one, and so we can identify N with its support. We will write x ∈N if
N��x�� = 1. Note that

	̂

[∫
E
N�dx�f�x�

]
= 	̂

[ ∑
x∈N
f�x�

]
=

∫
E
ν�dx�f�x�� f ∈ L1�ν��(5.1)

and more generally, for f ∈ L1�ν⊗n�,

	̂

 ∑
x1�����xn∈N
xi �=xj� i�=j

f�x1� � � � � xn�

 =
∫
En
ν⊗n�dx�f�x1� � � � � xn��(5.2)

5.1. Finite particle systems. Fix a non-zero diffuse finite measure ν0 on E
and a probability kernel µ � E×
 → �0�1�. Write DE�0�∞� for the Skorohod
space of càdlàg E-valued paths and let M̂ denote a Poisson random measure
on DE�0�∞�×K with mean measure

F×G →
∫
ν0�dz� P̂z�F�µ�z�G�(5.3)

(recall that P̂z is the law of Ẑ starting at z ∈ E). Thus the push-forward
of M̂ by the map �ζ� k� → ζ�0� (�= the value of the path ζ at time 0) is a
Poisson random measure on E with mean measure ν0. More generally, the
push-forward of M̂ by the map �ζ� k� → ζ�t� is a Poisson random measure on
E with mean measure νt, where νt�H� = ∫

E ν0�dz� P̂t�z�H�. We assume that
νt is diffuse for each t ≥ 0. By our duality assumption, this will certainly be
the case if ν0 is absolutely continuous with respect to m.
Enumerate the atoms of M̂ as �Ẑ1� κ

0
1�� � � � � �ẐJ� κ0J� in such a way that

the conditional distribution of this collection given J = j is that of j i.i.d.
DE�0�∞�×K-valued random variables with common distribution

F×G → ν0�E�−1
∫
ν0�dz� P̂z�F�µ�z�G��(5.4)

We wish to define a collection κ1� � � � � κJ ofK-valued processes in such a way
that the collection �Ẑ1� κ1�� � � � � �ẐJ� κJ� has the dynamics described above:
that is, we think of κi�t� as the type of the particle Ẑi at time t, and, after two
or more such particles collide, the particles participating in the collision must
be of the same type with the common type selected at random from among
the types of the participating particles (with each possible outcome equally
likely).
Suppose that on the probability space ��̂� �̂ � 	̂� we also have defined for

each k ∈ � a collection �θik� i ∈ �� of i.i.d. random variables uniformly dis-
tributed on �0�1�. We will implement a specific construction of the θik below.
Define κ1� � � � � κJ and times τ̂0 ≤ τ̂1 ≤ · · · (with τ̂k < τ̂k+1 when τ̂k < ∞) as
follows.
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Put κi�0� = κ0i and τ̂0 = 0. Suppose that τ̂0� � � � � τ̂k have already been defined
and, for 1 ≤ i ≤ J, the processes κi have been defined on �0� τ̂k� (or �0�∞� if
τ̂k = ∞). If τ̂k = ∞, then the definition of κi, 1 ≤ i ≤ J, is complete and just
define τ̂( = ∞ for ( > k. Suppose, then, that τ̂k <∞. Put

τ̂k+1 �= inf�t > τ̂k � Ẑi�t� = Ẑj�t�� κi�τ̂k� �= κj�τ̂k�� some i �= j��(5.5)

Put κi�t� �= κi�τ̂k� for τ̂k ≤ t < τ̂k+1 and 1 ≤ i ≤ J. If τ̂k+1 = ∞, then this
completes the definition of κi, 1 ≤ i ≤ J. Otherwise, if τ̂k+1 < ∞, then define
κi�τ̂k+1�, 1 ≤ i ≤ J, as follows. Let 3̂i�τ̂k+1� �= �j � Ẑj�τ̂k+1� = Ẑi�τ̂k+1��,
and let γ̂i�τ̂k+1� ∈ 3̂i�τ̂k+1� satisfy θγ̂i�τ̂k+1��k+1 ≤ θj�k+1 for all j ∈ 3̂i�τ̂k+1�. We

set κi�τ̂k+1� = κγ̂i�τ̂k+1��τ̂k�. Note that if Ẑi�τ̂k+1� = Ẑj�τ̂k+1�, then 3̂i�τ̂k+1� =
3̂j�τ̂k+1�, γ̂i�τ̂k+1� = γ̂j�τ̂k+1�, and κi�τ̂k+1� = κj�τ̂k+1�.
Our requirement that the types of colliding particles be changed to a type

independently and uniformly selected from those of the participants in a col-
lision will be met if for k ∈ �, the collection �θik� i ∈ �� is independent
of � Ẑ

τ̂k
∨ � κ

τ̂k−1
, where �� Ẑ

t �t≥0 is the filtration generated by �Ẑ1� � � � ẐJ� and
�� κ
t �t≥0 is the filtration generated by �κ1� � � � � κJ�. In particular, the distribu-

tion of the process �Ẑ� κ� will be the same regardless of how we define the �θik�
as long as for each k, the conditional distribution of �θik� given � Ẑ

τ̂k
∨ � κ

τ̂k−1
is

i.i.d. uniform on �0�1�.
We note that 	̂-a.s. there exists ( ∈ � such that τ̂( = ∞, so that the above

construction does indeed lead to a value of κi�t�, 1 ≤ i ≤ J, for all t ≥ 0.
To see this, let Rh�t� = �1 ≤ j ≤ J � κj�t� = κh�t�� for 1 ≤ h ≤ J and
0 ≤ t < supk τ̂k. Since there are only finitely many particles, 	̂�Rh�τ̂k� ⊆
Rh�τ̂k+1� ⊂ · · · (� Ẑ

τ̂k
∨� κ

τ̂k
� ≥ 2−J > 0. Consequently, either there exists τ̂k <∞

such that Rh�τ̂k� = �1� � � � � J� or there exists a time after which Ẑh does not
collide with any particle having a different type.
Now we will give an explicit construction of the �θik� which leads to a useful

construction of our particle system �Ẑ1� κ1�� � � � � �ẐJ� κJ�. We assign to each
particle a distinct �0�1�-valued initial level U0

i , 1 ≤ i ≤ J, at time 0 and
use these initial levels to define a family of �0�1�-valued processes of levels
�Ui�t��t≥0, 1 ≤ i ≤ J. The �θik� will be defined using these level processes. We
will assume that the conditional distribution of �U0

i� given M̂ is that of J i.i.d.
random variables uniformly distributed on �0�1�. This assumption implies

J∑
i=1
δ�Ẑi�κ0i �U0

i �(5.6)

is a Poisson random measure with mean measure

F×G×H →
∫
E
ν0�dz� P̂z�F�µ�z�G� l�H��(5.7)

where l denotes Lebesgue measure on �0�1�. We define θi1 �= U0
i . For 0 ≤ t <

τ̂1, set Ui�t� �= Ui�0� �= U0
i . If τ̂1 < ∞ and (3̂i�τ̂1�( = 1, then put Ui�τ̂1� �=
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Ui�τ̂1−�. If τ̂1 < ∞ and 3̂i�τ̂1� = �i1� � � � � in�, n > 1, then put Uil�τ̂1� �=
Uiσl

�τ̂1−� where σ1� � � � � σn is a uniform random permutation of 1� � � � � n se-
lected independently of all other quantities. Observe that U1�τ̂1�� � � � �UJ�τ̂1�
are conditionally i.i.d. uniform on �0�1� given � Ẑ

τ̂2
∨ � κ

τ̂1
. Define θi2 �= Ui�τ̂1�.

Put Ui�t� �= Ui�τ̂1�, τ̂1 < t < τ̂2. We continue inductively, at each time
τ̂k <∞ randomly permuting the levels with indices in each 3̂i�τ̂k� and defining
θi�k+1 = Ui�τ̂k�.
Although the level assigned to a particle may change at the time of a col-

lision, since these changes only involve the permutation of the assignment of
the levels, the set of levels is the fixed random set � �= �U0

i�. Consequently,
we could index the particles and their types by their corresponding levels; that
is, for u ∈ �, define Ẑu�t� = Ẑi�t� and κu�t� = κi�t� if and only if Ui�t� = u.
Since the particle assigned to level u changes only when the newly assigned
particle is at the same location as the previously assigned particle, the strong
Markov property implies that the processes �Ẑu� u ∈ �� are conditionally
independent given � and �Ẑu�0�� u ∈ ��, and conditionally each Ẑu is a
Markov process with transition semigroup �P̂t�. Note that

τ̂k+1 = inf�t > τ̂k � Ẑu�t� = Ẑv�t�� κu�t−� �= κv�t−�� some u �= v��(5.8)

and if we define 3̂u�τ̂k� �= �v ∈ � � Ẑv�τ̂k� = Ẑu�τ̂k�� and γ̂u�τ̂k� �= min
�3̂u�τ̂k��, then κu�τ̂k� = κγ̂u�τ̂k��τ̂k−�. That is, if two or more particles collide,
the particles involved in the collision “look down” to the lowest level particle
at the same location, and change types to the type of that particle. (We note in
passing that this construction is reminiscent of the “look down” construction
of the Moran model in [12].) Consequently, if we start with a Poisson random
measure on DE�0�∞�×K× �0�1�∑

u∈�
δ�Ẑu�κ0u�u�(5.9)

with mean measure specified by (5.7), then a particle model

It = ∑
u∈�
δ�Ẑu�t��κu�t��u�(5.10)

is completely determined by the requirement that whenever two or more par-
ticles “collide” the types of the higher level particles involved in the collision
switches to the type of the lowest level particle in the collision. This obser-
vation allows us to extend the construction to systems with infinitely many
particles with mild additional assumptions.

5.2. Particle systems with stationary location processes. We now want to
extend the construction of the previous section to arrive at a model in which
the distribution of locations of particles is stationary in time, and we want to
allow for the possibility of there being infinitely many particles. We emphasize
that Assumption 5.1 is in force throughout this section.
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Consider a Poisson random measure∑
u∈�
δ�Ẑu�κ0u�u�(5.11)

on DE�0�∞�×K × �0�1� with mean measure specified by (5.7) with ν0 = m.
By the assumption that m is Radon, there exist open sets E1 ⊆ E2 ⊆ · · · such
that m�En� <∞ for all n ∈ � and E = ⋃

n En [of course, if m�E� is finite we
can take En = E for all n ∈ �]. Put �n = �u ∈ � � Ẑu�0� ∈ En�, and note that∑

u∈�n
δ�Ẑu�κ0u�u�(5.12)

is a Poisson randommeasure onDE�0�∞�×K×�0�1�with finite mean measure
specified by (5.7) with ν0 = m�· ∩En�. As in the previous subsection, we can
construct a corresponding finite particle model

I�n��t� = ∑
u∈�n

δ�Ẑu�t��κ�n�
u �t��u�(5.13)

and times τ̂�n�
0 ≤ τ̂

�n�
1 ≤ · · · � We would like to define It = limn→∞I�n��t�;

however, the type processes κ�n�
u may not converge without some additional

assumptions regarding the behavior of the migration processes �Ẑu� u ∈ ��.
Henceforth, we will also assume the following, which will ensure that for all

n ∈ � and t ≥ 0 the expectation 	̂� (�u ∈ � � Ẑu�s� ∈ En for some 0 ≤ s ≤ t�( �
is finite.

Assumption 5.4. The sequence �En� of open sets can be chosen so that
P̂m�σEn ≤ t� <∞ for all n ∈ � and t > 0�

where

σA �= inf�t ≥ 0 � Ẑ�t� ∈ A�� A ∈ � �

Remark 5.5. By our duality assumption, the measure m is stationary for
Ẑ. It follows easily that if for A ∈ � the condition P̂m�σA ≤ t� <∞ holds for
some t > 0, then it holds for all t > 0. Furthermore, the condition P̂m�σA ≤
t� < ∞ for all t > 0 is also equivalent to P̂m�exp�−λσA�� < ∞ for all (equiv-
alently, some) λ > 0. Using this equivalence, the question of whether or not
Asssumption 5.4 is satisfied becomes a standard question in capacity theory.
Under our duality assumption and the Assumption 5.1 that Z� Ẑ are Hunt,
Assumption 5.4 will certainly hold (with �En� any increasing sequence of
relatively compact open sets such that

⋃
n En = E) if the Lusin space E is

locally compact and λ-excessive functions for both semigroups �Pt� and �P̂t�
are lower semi-continuous (see, e.g., Remark 2.10 of [24]). In particular, As-
sumption 5.4 holds if E is locally compact and Z and Ẑ have strong Feller
λ-resolvent operators (see Exercise II.2.16 of [7]). Also, Assumption 5.4 holds
when Z and Ẑ are Lévy processes on �d and m is Lebesgue measure (see
Lemma II.6 of [6]).
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Fix t > 0 and u ∈ �n. Let

αn�u� t� �= 0 ∨ sup
{
0 < s < t � Ẑu�s� = Ẑv�s� some v < u� v ∈ �n

}
�(5.14)

and let βn�u� t� be the corresponding value of v ∈ �n, with βn�u� t� �= u
if αn�u� t� = 0. Lemma 2.1 implies that βn�u� t� is well-defined. In general,
αn�u� t� will not be one of the times �τ̂�n�

k �, but we will have
κ�n�
u �t� = κ�n�

u �αn�u� t�� = κ�n�
βn�u�t��αn�u� t���(5.15)

Define βtn�u�s� �= u for αn�u� t� < s ≤ t and βtn�u�s� �= βn�u� t� for αn�βn�u� t��
αn�u� t�� < s ≤ αn�u� t�. This definition extends iteratively to determine
βtn�u�s� on the interval 0 ≤ s ≤ t with the property that

κ�n�
u �t� = κ�n�

βtn�u�s��s��(5.16)

so, in particular, κ�n�
u �t� = κ0βtn�u�0�. Consequently, convergence of κ

�n�
u �t� is equiv-

alent to convergence of βtn�u.
For t > 0 and u ∈ � set

α�u� t� �= 0 ∨ sup�0 < s < t � Ẑu�s� = Ẑv�s� some v < u� v ∈ ���(5.17)

Let U be a �0�1�-valued random variable that is σ���-measurable and takes
values in the random set� [i.e.,U is a σ���-measurable selection from�]. By
the duality assumption and the Hunt hypothesis Assumption 5.1 (cf. Proposi-
tion 15.7 of [25]), t− α�U� t� has the same distribution as

inf�s > 0 � ZU�s� = Zv�s� some v < U� v ∈ �� ∧ t�(5.18)

where
∑
u∈� δ�Zu�u� is any Poisson random measure with mean measure

F×H →
∫
E
m�dz�Pz�F� l�H�(5.19)

constructed from � using suitable further randomisation. Let β�u� t� be the
corresponding value of v ∈ � in (5.17), with β�u� t� �= u if α�u� t� = 0. Define
βtu�s� �= u for α�u� t� < s ≤ t and βtu�s� �= β�u� t� for α�β�u� t�� α�u� t�� < s ≤
α�u� t�. Extending this definition iteratively, either we determine βtu�s� on the
interval 0 ≤ s ≤ t and there are only finitely many levels in the range of βtu
or there exists Ttu ≥ 0 such that lims↓Ttu β

t
u�s� = 0. We show that this latter

possibility cannot occur.
Suppose that the latter possibility does occur. As above, let U be a σ���-

measurable random variable taking values in �. Define TtU by analogy with
Ttu, with the convention that TtU �= t if there are only finitely many levels in
the range of βtU. Set

ZtU�r� �= lim
r′↓r
ẐβtU�t−r′��t− r′�� 0 ≤ r < t−TtU�(5.20)

Then by the strong Markov property, the duality assumption and Assumption
5.1, �ZtU�r�� 0 ≤ r < t−TtU� is a càdlàg Markov process with transition semi-
group �Pr�. In particular, the range of this process is almost surely relatively
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compact and is contained in one of the En for n sufficiently large. Now, by
Assumption 5.4, the cardinality of the set

�v ∈ � � v < U� Ẑv�s� ∈ En some 0 ≤ s ≤ t�(5.21)

is 	̂-a.s. finite for all n ∈ �. Consequently, 	̂-a.s. there are indeed only finitely
many levels in the range of βtU and hence only finitely many levels in the
range of βtu for all u ∈ �, as claimed.
It follows that 	̂-a.s. we have limn→∞ βtn�u = βtu and hence

lim
n→∞κ

�n�
u �t� = κ0βtu�0� =� κu�t�(5.22)

for all u ∈ �.
If βtu1�s� = βtu2�s� for some 0 ≤ s ≤ t, then βtu1�s′� = βtu2�s′� for all 0 ≤ s′ ≤ s.

Moreover, if we define

Ztu�r� = lim
r′↓r
Ẑβtu�t−r′��t− r′�� 0 ≤ r ≤ t�(5.23)

for each u ∈ �, then conditional on � each Ztu is a Markov process with tran-
sition semigroup �Pr�. In particular, �Ztu� u ∈ �� form a coalescing system of
Markov processes, and for 0 ≤ r ≤ t the equivalence relation defined by u ∼ v if
and only if βtu�t−r� = βtv�t−r� determines a partition ��t

k�r�� of the set of lev-
els �. For definiteness, assume that � is ordered � = �U1�U2� � � �� where the
Ui are�-measurable random variables, and let�t

1�r� be the equivalence class
containingU1, let�

t
2�r� be the equivalence class containing theUi with small-

est index not contained in �t
1�r�, etc. For each k, Ztu�r� has the same value for

all u ∈ �t
k�r�, which we denote by Ztk�r�. Then ��Zt1��t

1�� �Zt2��t
2�� � � �� forms

a coalescing Markov labelled partition of �.
Since the initial particle types �κ0u� are conditionally independent given

�Ẑu� u ∈ �� and �, and

	̂
[
g�κ0u1� � � � � κ0un� ( �Ẑu� u ∈ ��� �

]
=

∫
Kn
µ�Ẑu1�0�� dk1� · · ·µ�Ẑun�0�� dkn�g�k1� � � � � kn��

(5.24)

for u1� � � � � un ∈ �, we have

	̂
[
f�Ẑu1�t�� κu1�t�� � � � � Ẑun�t�� κun�t��

∣∣∣ �Ẑu�t��� �]
= Htf�Ẑu1�t�� � � � � Ẑun�t���

(5.25)

where, in the notation of Section 2,

Htf�e1� � � � � en� �= 	̂

[∫ ⊗
j∈3e�t�

µ�Ze
j�t�� dkj�f�e1� kγe1�t�� � � � � en� kγen�t��

]
(5.26)

for e1� � � � � en ∈ E with ei �= ej, i �= j.
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By (5.2) and (5.25) we have

	̂

 ∑
u1�����un∈�
ui �=uj� i�=j

f�Ẑu1�t�� κu1�t�� � � � � Ẑun�t�� κun�t��


=

∫
En
m⊗n�de�Htf�e��

(5.27)

for f a bounded measurable function on �E×K�n. This identity gives a duality
in the sense of (4.4.36) of [17] between the discrete-particle, continuum-sites
model and the corresponding coalescing Markov labelled partition process.
Write

I1
t = ∑

u∈�
δ�Ẑu�t��κu�t��u�(5.28)

and

X1
t = ∑

u∈�
δ�Ẑu�t��κu�t���(5.29)

Set � X1

t = σ�X1
s � s ≤ t�. The levels of the particles are independent of � X1

t ,
so if f�e� k� u� satisfies ∫

E×�0�1�m�de� l�du� supk∈K (f�e� k� u�( <∞, then

	̂

[∫
E×K×�0�1�

dI1
t f

∣∣∣� X1

t

]
=

∫
E×K×�0�1�

X1
t �de× dk� l�du�f�e� k� u��(5.30)

Moreover, if f�e� k� u� satisfies
∫
E×�0�1�m�de� l�du� �exp�supk∈K f�e� k� u�� −

1� <∞, then

	̂

[
exp

(∫
E×K×�0�1�

dI1
t f

) ∣∣∣� X1

t

]
= exp

(∫
E×K

X1
t �de× dk� log

∫
�0�1�
l�du� exp�f�e� k� u��

)
�

(5.31)

5.3. Measure-valued, continuum-sites, stepping-stone model. We empha-
size that Assumptions 5.1 and 5.4 are still in force. Consider λ > 1. We in-
crease the “local density” of particles in the above construction by replacingm
by λm and select the levels �λ to be i.i.d. uniform on �0� λ� rather than �0�1�.
Following the construction of I1 and X1 above, define

Iλt = ∑
u∈�λ

δ�Ẑu�t��κu�t��u�(5.32)

and

Xλt = 1
λ

∑
u∈�λ

δ�Ẑu�t��κu�t���(5.33)
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Note that κu only depends on locations and types of particles at levels v ≤ u
and we can construct Iλ

′
from Iλ simultaneously for all 1 ≤ λ′ ≤ λ by taking

Iλ
′
t to be the restriction of Iλt to the particles with levels in �0� λ′�; that is,

Iλ
′
t = ∑

u∈�λ� u≤λ′
δ�Ẑu�t��κu�t��u��(5.34)

Consequently, we may carry out the obvious construction to build I∞
t and �∞

with levels in �0�∞�. The initial locations and the levels are such that

I∞
0 = ∑

u∈�∞
δ�Ẑu�0��κu�0��u�(5.35)

is a Poisson random measure with mean measure given by

A×B×C →
∫
A
m�dz�µ�z�B� l�C��(5.36)

where l is now Lebesgue measure on �0�∞�, and for 1 ≤ λ < ∞ each of the
Iλt can now be defined via (5.32) with �λ �= �u ∈ �∞ � u ≤ λ�. The analogue
of (5.27) becomes

	̂

 ∑
u1�����un∈�λ

ui �=uj�i �=j

f�Ẑu1�t�� κu1�t�� � � � � Ẑun�t�� κun�t��


= λn

∫
En
m⊗n�de�Htf�e��

(5.37)

where Ht is defined as in (5.26).
Define � λ

t = σ�Xλs �I∞
s −Iλs � s ≤ t�, and note that, as in (5.30) and (5.31),

we have

	̂

[∫
E×K×�0�λ�

dIλt f
∣∣∣� λ
t

]
=

∫
E×K×�0�λ�

Xλt �de× dk� l�du�f�e� k� u�(5.38)

and

	̂

[
exp

(∫
E×K×�0�λ�

dIλt f

) ∣∣∣� λ
t

]
= exp

(∫
E×K

Xλt �de× dk�λ log

×
(
1+ 1

λ

∫
�0�λ�

l�du� �exp�f�e� k� u�� − 1�
))
�

(5.39)

Suppose that f�e� k� u� = 0 for u > λ0. Then for λ > λ0, the random vari-
ables on the left of (5.38) and (5.39) do not depend on λ. Since for fixed t ≥ 0
the σ-fields � λ

t are decreasing in λ, the left sides of (5.38) and (5.39) are pos-
itive, reverse martingales, and hence converge 	̂-a.s. as λ ↑ ∞. It follows that
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Xλt converges 	̂-a.s. to a random measure X∞
t satisfying

	̂

[∫
E×K×�0�∞�

dI∞
t f

∣∣∣� X∞
t

]
=

∫
E×K×�0�∞�

X∞
t �de× dk� l�du�f�e� k� u�

(5.40)

and

	̂

[
exp

(∫
E×K×�0�∞�

dI∞
t f

) ∣∣∣� X∞
t

]
= exp

(∫
E×K×�0�∞�

X∞
t �de× dk� l�du� �expf�e� k� u� − 1�

)
�

(5.41)

In particular, by (5.41), for each t ≥ 0, I∞
t is a doubly stochastic Poisson

process (i.e., a Cox process) with random mean measure given by X∞
t ⊗ l.

Dividing both sides of (5.37) by λn and letting λ→ ∞, we have

	̂

[∫
�E×K�n

X∞
t �de1 × dk1� · · ·X∞

t �den × dkn�f�e1� k1� � � � � en� kn�
]

=
∫
En
m⊗n�de�Htf�e��

(5.42)

Note also that

X∞
t �· ×K� =m�(5.43)

By Remark 3.1 we can regard the measure m�de�µ�e� dk� as an element of 4
(which we will also denote by µ) and the random measure X∞

t as a 4-valued
random variable. By Theorem 4.1, X∞

t has the same law as Xt under �µ for
each t ≥ 0. In fact, it is not difficult to show that �X∞

t � t ≥ 0� is a Markov
process with the same finite-dimensional distributions as X under �µ. We
stress, however, that we have only constructedX∞

t as an almost sure limit for
each fixed t ≥ 0 rather than as an almost sure limit in some space of càdlàg
paths.

6. Dissimilarity for the stepping-stone process X. Suppose in this
section that the reference measure m is finite. Without loss of generality, we
can take m to be a probability measure so that elements of 4 may be thought
of as probability measures on E×K.

Definition 6.1. Consider ν ∈ 4. For n = 2�3� � � � define the nth-order dis-
similarity of ν to be the quantity

Dn�ν� �=
∫
m⊗n�de�

n⊗
i=1
ν�ei�

(�k ∈Kn � kj �= k(� for all j �= (�) �(6.1)

In other words, Dn�ν� is just the probability that n independent, ν-distributed
picks from E×K results in points with distinct types. Note that 1 ≥ D2�ν� ≥
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D3�ν� ≥ · · · ≥ 0. Write D̆�ν� �= sup�n � Dn�ν� > 0� for the maximal dissimi-
larity of ν, where we set sup� = 1.

As we remarked in the Introduction, it is possible, by exactly the same
argument used in Proposition 5.1 of [19], to show that if Z (and hence also Ẑ)
is a symmetric α-stable process on the circle � with index 1 < α ≤ 2, then for
fixed t > 0 there �µ-a.s. exists a random countable subset �k1� k2� � � �� of the
type-space K such that for Lebesgue almost all e ∈ � the probability measure
Xt�e� is a point mass at one of the ki. Indeed, under suitable hypotheses a
similar argument should extend to certain other processes for which points
are regular. It is clear that ifXt also has finite maximal dissimilarity �µ-a.s.,
then the set �k1� k2� � � �� may, in fact, be taken to be finite �µ-a.s.
Theorem 6.4 below states that for t > 0 if ξ�t� has finitely many blocks 	�∞�-

a.s., then the maximal dissimilarity D̆�Xt� is finite �µ-a.s. for any µ ∈ 4. If Z
and Ẑ are both Hunt processes (i.e., if Assumption 5.1 holds), then the particle
representation of Section 5 can be used to give a somewhat more direct proof of
this fact (note that Assumption 5.4 holds becausem is a probability measure).
We can sketch the proof as follows. The set of levels �∞ in the construction
of Section 5 is the set of atoms of a Poisson random measure on �0�∞� with
Lebesgue intensity and hence �∞ is discrete. The dissimilarity Dn�X∞

t � is
just the conditional probability (conditioning on X∞

t ) that the particles with
the n lowest levels are all of different types. The argument that lead to (5.27)
establishes that the total number of types exhibited by all particles is just the
number of blocks in the corresponding coalescing Markov labelled partition.
It is easy to see that D̆�Xt� is almost surely finite for all t > 0 when Z

(and hence also Ẑ) is Brownian motion on the circle � and m is normalized
Lebesgue measure. Once again, we just sketch the argument as a more quan-
titative result will be obtained below (see Corollary 9.3 and the beginning of
the proof of Theorem 10.2). Almost surely, there will exist two particles, say
with the mth and nth lowest levels, m < n, such that by time t these two par-
ticles have collided and after the collision the first particle moved around the
circle clockwise while the second particle moves around anti-clockwise until
they collided again. The total number of types exhibited by all particles at
time t is then at most n− 1.
We note in passing that we suspect ξ�t� has finitely many blocks 	�∞�-a.s.

whenever Z is a Lévy processes on � for which points are not essentially polar
(see [18] for an indication that this might be so).
We need the following definition and remark to prepare for a proof of The-

orem 6.4 that does not use the particle representation of Section 5 and hence
does not require the Hunt condition Assumption 5.1.

Definition 6.2. Observe that if n′ > n, then

((
Z

�n′ �
1 � � � � �Z

�n′ �
n

)
�
(
γ

�n′ �
1 � � � � � γ�n′ �

n

)
� ξ

�n′ �
(�n

)
(6.2)
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has the same distribution as �Z�n�� γ�n�� ξ�n��, where we write ξ�n′ �
(�n �t� for the re-

striction of the partition ξ�n′ ��t� to �n. Consequently, on some probability space
���∞��� �∞��	�∞�� there is an E∞-valued process Z, an �∞-valued process γ,
and a process ξ taking values in the space of partitions of � such that, in an
obvious notation, ��Z1� � � � �Zn�� �γ1� � � � � γn�� ξ(�n� has the same distribution
as �Z�n�� γ�n�� ξ�n��.

Remark 6.3. Recall the definition of Z�n�, Ž�n� and ξ�n� from Remark 4.3.
Let Ž�n�, and ξ�n�, be defined from Z�n� in a similar manner to Ž�n� and ξ�n�,
with the difference that when two coordinate processes of Z�n� collide, rather
than the one with the higher index being killed, a colliding particle is killed
at random independently of the past (with both possibilities equally likely).
It is immediate from the strong Markov property that �Z�n�� ξ�n�,� has the
same distribution as �Z�n�� ξ�n�� for all n ∈ �. Consider t ≥ 0 and a bijection
β � � → � and define ξ�β��t�, a random partition of �, by i ∼ξ�β��t� j if and
only if β−1�i� ∼ξ�t� β−1�j�. Then ��Zβ�i��0��i∈�� ξ�β�� has the same distribution
as ��Zi�0��i∈�� ξ�. In particular, for each t ≥ 0 the random partition ξ�t� is
exchangeable in the sense of Kingman’s definition of exchangeable random
partitions (see Section 11 of [2]).

Theorem 6.4. For any µ ∈ 4 and t ≥ 0, the maximal dissimilarity D̆�Xt�
under �µ is stochastically dominated by the number of blocks in the partition
ξ�t�. In particular, if for some t > 0 the partition ξ�t� has finitely many blocks
	�∞�-a.s., then D̆�Xt� <∞, �µ-a.s.

Proof. Fix a diffuse probability measure κ onK (e.g., κ could be fair coin-
tossing measure). Given another probability measure ρ on K, let ρ→ denote
the push-forward of the measure ρ ⊗ κ on K ×K by the mapping �k�h� →
�k1� h1� k2� h2� k3� � � �� from K ×K into K. Let ρ← denote the push-forward
of ρ by the mapping k → �k1� k3� k5� � � �� from K into K. Thus the operations
ρ → ρ→ and ρ → ρ← are one-sided inverses of each other: we have �ρ→�← = ρ.
Given µ ∈ 4, define µ→� µ← ∈ 4 by µ→�e� �= µ�e�→ and µ←�e� �= µ�e�←. Of
course, the operations µ → µ→ and µ → µ← are also one-sided inverses of
each other. Note for any µ ∈ 4 that µ→�e� is diffuse for all e ∈ E.
Fix t ≥ 0. It is straighforward to check from the definition in Theorem 4.1

that the distribution of X←
t under �µ

→
coincides with the distribution of Xt

under �µ. (This is, of course, what we expect from the stepping-stone model
interpretation: a model that keeps track of the types for one trait should look
the same as a model that keeps track of the types for two traits if we don’t
look at one of the traits.) Clearly, Dn�ν←� ≤ Dn�ν� for any n and ν ∈ 4, so
D̆�ν←� ≤ D̆�ν�. Consequently, D̆�Xt� under �µ is stochastically dominated by
D̆�Xt� under �µ→

.
We can use Remark 4.4 to compute multivariate moments of the form

�ν
[{
Dn1�Xt�

}a1 � � � {Dn(�Xt�}a(] � ni ∈ �2�3� � � ��� ai ∈ �� 1 ≤ i ≤ (� ( ∈ ��
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and discover that they are independent of ν within the class of ν ∈ 4 with
the property that ν�e� is diffuse for all e ∈ E. Because 0 ≤ Dk�Xt� ≤ 1 for all
k ≥ 2, the multivariate moment problem for each of the vectors �Dn1�Xt�� � � � �
Dn(�Xt�� is well-posed and hence the joint distribution of �D2�Xt��D3�Xt��
� � �� under �ν is the same for all such ν. Consequently, the distribution of
D̆�Xt� under �ν is also the same for all such ν. In particular, if λ ∈ 4 is
defined by λ�e� �= κ for all e ∈ E, then the distributions of D̆�Xt� under �µ

→

and �λ are the same.
Putting the above observations together, we see that it suffices to show that

D̆�Xt� under �λ is stochastically dominated by the number of blocks of ξ�t�.
Let �L̃i�i∈� be an i.i.d. sequence of K-valued random variables (which we

suppose are also defined on ���∞��� �∞�� �∞��) that is independent of Z with
L̃i having distribution κ. Put Li = L̃γi�t�, so that Li = Lj if and only if i ∼ξ�t�
j, 	�∞�-a.s. It follows from Remark 6.3 that the sequence ��Zi�0��Li��i∈� of
E×K-valued random variables is exchangeable.
Let Ni denote the point mass at �Zi�0��Li�. By an extension of the standard

reverse martingale proof of de Finetti’s theorem, as n → ∞ the sequence
of random probability measures Yn �= n−1∑n

i=1 Ni converges 	�∞�-a.s. in the
weak topology to a random probability measureY onE×K. Moreover, if we let
� denote the permutation invariant σ-field corresponding to ��Zi�0��Li��i∈�
(that is, � �= ⋂

n σ�Yn�Yn+1� � � ��), then we have

	�∞� �φ ��Z1�0��L1�� � � � � �Zn�0��Ln�� (� � =
∫
dY⊗nφ(6.3)

for any bounded Borel function φ on �E×K�n. (See the proof of Theorem 2.4
of [12] for the details of this sort of argument.)
We claim that Y has the same distribution as Xt under �λ (recall from

Remark 3.1 that we can identify ν ∈ 4 with the probability measure m�de� ×
ν�e��dk� on E×K and that 4-valued random variables become random prob-
ability measures on E ×K when thought of in this way). If φ is a bounded
Borel function on �E×K�n for some n ∈ �, then, by (6.3),

	�∞�
[∫
dY⊗nφ

]
= 	�∞� �φ ��Z1�0��L1�� � � � � �Zn�0��Ln���

= 	�n�

∫ ⊗
j∈3�n��t�

κ�dkj�φ
((
Z

�n�
1 �0�� k

γ
�n�
1 �t�

)
� � � � �

(
Z�n�
n �0�� k

γ
�n�
n �t�

))
= 	�n�

∫ ⊗
j∈3�n��t�

λ
(
Z

�n�
j �t�

)
�dkj�φ

((
Z

�n�
1 �0�� k

γ
�n�
1 �t�

)
� � � � �

(
Z�n�
n �0�� k

γ
�n�
n �t�

)) �
Comparing this with the equivalent definition of �X��µ� in Remark 4.3 shows
that Y does indeed have the same distribution as Xt under �λ.
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Finally, by (6.3) we have

Dn�Y� =	�∞� {Li �= Lj� 1 ≤ i < j ≤ n (� }
≤	�∞�

{
∃(1� � � � � (n � L(i �= L(j� 1 ≤ i < j ≤ n (�

}
=1

{
∃(1� � � � � (n � L(i �= L(j� 1 ≤ i < j ≤ n

}
=1 �ξ�t� has at least n blocks� �

(6.4)

It is thus certainly the case that D̆�Xt� under �λ is stochastically dominated
by the number of blocks of ξ�t�.

7. Sample path continuity of the stepping-stone process X. Our aim
in this Section is to present a sufficient condition for X to have continuous
sample paths (Theorem 7.2) and use it to establish that if the migration
Markov process is a Lévy process or a “nice” diffusion, then X has contin-
uous sample paths (Corollary 7.3, Corollary 7.4 and Remark 7.5). The proof
of Theorem 7.2 is postponed to the next section. We remark that sample-path
continuity for the particular two-type counterpart of the processX considered
in [16] was established there rather easily by showing that the process arose
as a weak limit of an SPDE, but since we do not have such convergence re-
sults in any generality for X we proceed by the brute force route of checking
Kolmogorov’s criterion.
We emphasize that we are no longer assuming that the reference measure

m is finite.

Definition 7.1. For e = �e1� e2� ∈ E2 with e1 �= e2, let Te �= inf�t ≥ 0 �
Ze1�t� = Ze2�t�� denote the first time that Ze1 and Ze2 collide.

Theorem 7.2. Suppose there exists ε > 0 such that for all non-negative
ψ ∈ L1�m� ∩L∞�m�,

lim sup
t↓0

t−ε
∫
m⊗2�de�ψ⊗2�e�	�Te ≤ t� <∞�

Then X has continuous sample paths �µ-a.s. for all µ ∈ 4.

Corollary 7.3. Suppose that Z is a Lévy process on �d or the torus �d

for some d ∈ �, and m is Lebesgue measure. Then X has continuous sample
paths �µ-a.s. for all µ ∈ 4.

Proof. For d ≥ 2 we have that Te = ∞, 	-a.s. for m⊗2-a.e. e, and so
Theorem 7.2 certainly gives the result. In fact, it follows from the remarks
at the beginning of Section 5 in [19] that X evolves deterministically and
continuously in this case.
Now consider the case where Z is �-valued. The �-valued case is similar

and is left to the reader.
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Write �Z̄� P̄z� for the Lévy process that is the symmetrisation of Z. That
is, the distribution of Z̄ starting at 0 is the same as that of Z′ − Z′′, where
Z′�Z′′ are two independent copies of Z both started at 0. Put

T̄0 �= inf�t ≥ 0 � Z̄�t� = 0��(7.1)

Then for non-negative ψ ∈ L1�m� ∩L∞�m�,∫
m⊗2�de�ψ⊗2�e�P�Te ≤ t� =

∫
m⊗2�de�ψ⊗2�e�P̄e1−e2�T̄0 ≤ t�

=
∫
m�dx�ψ̄�x�P̄x�T̄0 ≤ t��

(7.2)

where ψ̄�x� �= ∫
m�dy�ψ�x+ y�ψ�y� ∈ L1�m� ∩L∞�m� and we are, of course,

using the shift invariance of m.
For α > 0 write C̄α, Ūα and ēα for the α-capacity, α-resolvent and α-energy

corresponding to Z̄ (see Sections I.2, II.3 and II.4 of [6] for definitions). Because
Z̄ is symmetric, these coincide with the corresponding dual objects. Write I
for the characteristic exponent of Z̄ (see Section I.1 of [6]). Note that I is
real-valued and non-negative.
Using the convention 1/∞ = 0, we have from Theorems II.7 and II.13 of [6]

that ∫
m�dx�ψ̄�x�P̄x�exp�−αT̄0�� = C̄α��0��Ūαψ̄�0� ≤ Ū

αψ̄�0�
ēα��0�� ≤ "ψ̄"∞

αēα��0�� �(7.3)

By Proposition I.2 of [6],

I�z� ≤ cz2� (z( ≥ 1�(7.4)

for a suitable constant c, and so, for α ≥ 1,

αēα��0�� = α

2π

∫ ∞

−∞
1

α+I�z� dz ≥ α

2π

∫
(z(≥1

1
α+ cz2 dz ≥ c′α 1

2(7.5)

for a suitable constant c′.
Use the inequality 1�0�t��x� ≤ e−αx + 1 − e−αt ≤ e−αx + αt and take α = t− 2

3

to get, for t ≤ 1,∫
m�dx�ψ̄�x�P̄x�T̄0 ≤ t� ≤ c′′"ψ̄"∞α

− 1
2 + "ψ̄"1αt ≤ c∗�"ψ̄"1 + "ψ̄"∞�t 13 �(7.6)

for suitable constants c′′ and c∗. Now apply Theorem 7.2 with ε = 1/3. ✷

Corollary 7.4. Let d be a metric inducing the topology of the Lusin space
E. Write B�x� r� �= �y ∈ E � d�x�y� ≤ r� for the closed ball of radius r > 0
centered at x ∈ E and Sr �= inf�t ≥ 0 � Z�t� /∈ B�Z�0�� r�� for the time taken
by Z to first travel distance r from its starting point. Suppose that there are
constants α�β� γ > 0 such that

lim sup
r↓0

r−α sup
x∈E
m�B�x� r�� <∞
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and

lim sup
r↓0

r−γ sup
x∈E
Px�Srβ ≤ r� <∞�

Then X has continuous sample paths �µ-a.s. for all µ ∈ 4.

Proof. For non-negative ψ ∈ L1�m� ∩L∞�m� and δ > 0 we have∫
m⊗2�de�ψ⊗2�e�	�Te ≤ t�

=
∫
m⊗2�de�ψ⊗2�e�1�d�e1� e2� ≤ δ�	�Te ≤ t�

+
∫
m⊗2�de�ψ⊗2�e�1�d�e1� e2� > δ�	�Te ≤ t�

≤ "ψ"1"ψ"∞ sup
x∈E
m�B�x� δ�� + 2"ψ"21 sup

x∈E
Px�Sδ/2 ≤ t��

(7.7)

Take δ = tβ to get that the hypothesis of Theorem 7.2 holds with ε = �αβ�∧γ.

Remark 7.5. The above result can be applied to the case where Z is a
regular diffusion on � in natural scale. In this case m is the speed measure
and Ẑ = Z. If m�dx� = a�x�dx with a bounded away from 0 and ∞ and
d is the usual Euclidean metric on �, then it is not difficult to see that the
conditions of the corollary hold for α = 1, β < 1/2, and any γ > 0. We leave
the details to the reader.

8. Proof of Theorem 7.2. The proof of Theorem 7.2 is carried out below
via a sequence of lemmas. It involves checking Kolmogorov’s criterion for the
sample path continuity of real-valued processes of the form �I�Xt%φ��t≥0 for
suitable φ ∈ L1�m�C�K��, where I�·% ·� is defined in Definition 3.2.
We can sketch the main ideas as follows. By the Markov property, it suffices

to show for some positive integer q that there exist constants c and δ > 0 that
only depend on φ and q such that

sup
µ∈4

�µ
[
�I�Xt%φ� − I�µ%φ��2q

]
≤ ct1+δ(8.1)

for all t ≥ 0. Given µ ∈ 4, define µt ∈ 4, t ≥ 0, by

I�µt%φ� �=
∫
m�de�	

[∫
µ�Ze�t���dk�φ�e��k�

]
=

∫
m�de�	

[∫
µ�e��dk�φ�Ẑe�t���k�

]
�

(8.2)

so that I�µt%φ� = �µ�I�Xt%φ��. For suitable φ it is straightforward to show
that

sup
µ∈4

∣∣I�µt%φ� − I�µ%φ�∣∣ < c′t(8.3)
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for some constant c′, and so the main difficulty lies in establishing that

sup
µ∈4

�µ
[
�I�Xt%φ� − I�µt%φ��2q

]
≤ c′′t1+δ(8.4)

for some constant c′′ that only depends on φ and q.
If we expand out the expectation on the left-hand side of (8.4), then we get

a sum of multiples of objects of the form

�µ�I�Xt%φ�i� I�µt%φ�2q−i(8.5)

with alternating signs. We can write the expression in (8.5) as an expecta-
tion for a system of particles that begins with 2q particles and evolves by i of
the particles undergoing the usual coalescing dynamics while the remaining
2q− i particles evolve independently without any interactions (see Definition
8.2 where such processes are defined more precisely and related notation is in-
troduced). We can further decompose the contribution from each such “mixed”
process into summands according to the order in which the various particles
collide with each other. The key observation is then that the same summands
appear with different signs in the decompositions coming from different mixed
processes. The terms that are left over after the resulting cancellations cor-
respond to situations in which a large number of collisions occur before time
t, and these terms can be shown to be small using the assumption of the
theorem.

Remark 8.1. In order to obtain the cancellations needed to establish (8.4)
and hence (8.1), we will repeatedly use the fact that if, for fixed i �= j, we
“swap” Zei�t� and Zej�t� immediately after a stopping time S for Ze at which
Zei�S� = Zej�S� to form a new process Z̃e, then Z̃e has the same distribution
as Ze. More precisely, if we define

Z̃e
i �t� �=

{
Ze
i �t�� for t ≤ S�
Ze
j�t�� for t > S�

(8.6)

Z̃e
j�t� �=

{
Ze
j�t�� for t ≤ S�
Ze
i �t�� for t > S�

(8.7)

and

Z̃e
h �= Ze

h� h /∈ �i� j��(8.8)

then, by the strong Markov property, Z̃e has the same distribution as Ze.

Definition 8.2. For n′� n′′ ∈ � consider e′ ∈ En
′
and e′′ ∈ En

′′
with

e′1� � � � � e
′
n′� e′′1� � � � e

′′
n′′ distinct. Define a process Pe′ (e′′

taking values in the col-
lection of finite sequences of two element subsets of �e′1� � � � � e′n′� e′′1� � � � e

′′
n′′ � and
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stopping times 0 = Te′ (e′′

0 ≤ Te′ (e′′

1 ≤ · · · as follows. For e′i ∈ �e′1� � � � � e′n′ �, write

S
e′ (e′′

e′i
�= inf

{
t ≥ 0 � Ze′i�t� = Ze′j�t� for some j �= i or Ze′i�t� = Ze′′k�t�

for some k such that Že′′
k �s� �= † for all s < t

}
�

For e′′i ∈ �e′′1� � � � � e′′n′′ � write

S
e′ (e′′

e′′i
�= inf

{
t ≥ 0 � Ze′′i �t� = Ze′j�t� for some j or Ze′′i �t� = Ze′′k�t�

for some k �= i such that Že′′
k �s� �= † for all s < t

}
�

Loosely put, we are thinking of the particles starting at coordinates of e′ as
evolving freely without coalescence whereas the particles starting at coordi-
nates of e′′ are undergoing coalescence among themselves. Moreover, Se

′ (e′′
e (if

it is finite) is the first time that the particle starting at e (where e is either
a coordinate of e′ or e′′) collides with a “living” particle starting at one of the
other coordinates.
Let Re′ (e′′

< n′ + n′′ denote the cardinality of the random set of time points{
Se

′ (e′′
e � e ∈ �e′1� � � � � e′n′� e′′1� � � � e

′′
n′′ � and Se′ (e′′

e <∞
}

(8.9)

and, if Re′ (e′′
> 0, write Te′ (e′′

1 < � � � < T
e′ (e′′

Re′ (e′′ for an ordered listing of this set.

Put Te′ (e′′

0 �= 0 and Te′ (e′′
( �= ∞ for ( > Re′ (e′′

.
Set Pe′ (e′′ �Te′ (e′′

0 � �= �. For 1 ≤ k ≤ Re′ (e′′
write

�xk� yk� ⊆ �e′1� � � � � e′n′� e′′1� � � � � e
′′
n′′ ��(8.10)

for the 	-a.s. unique unordered pair such that Zxk�Te′ (e′′

k � = Zyk�Te′ (e′′

k �. By
definition, at most one of xk and yk belong to �x1� y1� � � � � xk−1� yk−1�. Put
Pe′ (e′′ �Te′ (e′′

k � �= ��x1� y1�� � � � � �xk� yk��. Complete the definition of Pe′ (e′′
by

setting Pe′ (e′′ �t� �= Pe′ (e′′ �Te′ (e′′
( �, where ( ≥ 0 is such that Te′ (e′′

( ≤ t < Te′ (e′′

(+1 .

Definition 8.3. Given e ∈ En, n ∈ �, with e1� � � � � en distinct, define a
process Pe taking values in the collection of finite sequences of two element
subsets of �e1� � � � � en� and stopping times 0 = Te

0 ≤ Te
1 ≤ � � � by (with a

slight abuse) re-using the definitions of Pe′ (e′′
and Te′ (e′′

k with e′ = e and e′′ the
null vector. That is, all particles evolve freely with none of them killed due to
coalescence. Note that if n = 2, then Te

1 = Te, where Te is the first collision
time from Definition 7.1.

Notation 8.4. Given e′ ∈ En′
and e′′ ∈ En′′

, write e′ � e′′ for the concate-
nation of these two vectors. That is, e′ � e′ �= �e′1� � � � � e′n′� e′′1� � � � e

′′
n′′ � ∈ En′+n′′

.

Notation 8.5. For x ∈ � write /x0 for the greatest integer less than or
equal to x.
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Lemma 8.6. For non-negative ψ ∈ L1�m�∩L∞�m�, t ≥ 0, and q�n′� n′′ ∈ �
we have ∫

m⊗n′ ⊗m⊗n′′ �de′ ⊗ de′′�ψ⊗n′ �e′�ψ⊗n′′ �e′′�	�Te′ (e′′
q ≤ t�

≤
∫
m⊗n′ ⊗m⊗n′′ �de′ ⊗ de′′�ψ⊗n′ �e′�ψ⊗n′′ �e′′�	�Te′ �e′′

q ≤ t�

≤ c�n′ + n′′� q�ψ�
(∫
m⊗2�de�ψ⊗2�e�	�Te ≤ t�

)/ q3 0

(8.11)

for some constant c�n′ + n′′� q�ψ� that depends only on n′ + n′′, q and ψ.

Proof. By definition, Se
′ �e′′
e ≤ Se′ (e′′

e for any e ∈ �e′1� � � � � e′n′� e′′1� � � � e
′′
n′′ �, and

so Te′ �e′′
q ≤ Te′ (e′′

q for all q. It therefore suffices to show that for q�n ∈ �∫
m⊗n�de�ψ⊗n�e�	�Te

q ≤ t�

≤ c�n�q�ψ�
(∫
m⊗2�de�ψ⊗2�e�	�Te ≤ t�

)/ q3 0
�

(8.12)

We begin with some notation. For any sequence of pairs

H = ��x1� y1�� � � � � �x(� y(���with xi� yi ∈ E, and xi �= yi for 1 ≤ i ≤ (H( �= (�
and t > 0, define an event

AHt �= �T�x1�y1� ≤ T�x2�y2� ≤ · · · ≤ T�x(�y(� ≤ t��(8.13)

It is easy to see that AH
′

t ⊇ AHt for any subsequence H′ of H. Put H �=⋃(
i=1�xi� yi� ⊆ E. For z ∈ H, define ι�z�H� = �1 ≤ i ≤ (H( � z ∈ �xi� yi�� to

be the set of indices of the pairs in which z appears.
Now fix G = ��x1� y1�� � � � � �xq� yq��, with xi� yi ∈ E, xi �= yi, 1 ≤ i ≤ q,

and G �= ⋃q
i=1�xi� yi� ⊆ �e1� � � � � en�. We wish to estimate 	�AGt �.

Let �i1� � � � � ih� be the subsequence of �1�2� � � � � q� obtained by listing the
elements of �max ι�z�G�� z ∈ G� in increasing order. Define a subsequence G∗
of G by

G∗ �= ({
xi1� yi1�� � � � � �xih� yih

}) =� ({x0�1� y0�1�� � � � � �x0�(G∗(� y0�(G∗(
})

(8.14)

(the reason for the alternative indexing will become clear as we proceed).
Note that (G( = (G∗( because for all z ∈ G, z ∈ �xmax ι�z�G�� ymax ι�z�G�� ⊆
G∗� By definition, for 1 ≤ j ≤ (G∗( the inequalities max ι�xij�G∗� ≥ j and
max ι�yij�G∗� ≥ j hold, and at least one of these inequalities is an equality.
In other words,

min�max ι�x0�j�G∗��max ι�y0�j�G∗�� = j� 1 ≤ j ≤ (G∗(�(8.15)

Without loss of generality, we can assume that i1 = max ι�xi1� G� ≤
max ι�yi1�G�. Then xi1 �∈ �xr� yr� for i1 < r ≤ q, and, a fortiori, xi1 �∈ �xip� yip�
for 1 < p ≤ h. Hence, ι�x0�1�G∗� = ι�xi1�G∗� = �1� and we are now in one of
the following three cases:
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Case I. (ι�y0�1�G∗�( = 1. Let G1 be the subsequence of G∗ obtained by
deleting �x0�1� y0�1�. Then G1 ∩ �x0�1� y0�1� = �,

	�AGt � ≤ 	�AG∗
t � ≤ 	

(
�T�x0�1�y0�1� ≤ t� ∩AG1

t

)
= P�T�x0�1�y0�1� ≤ t�	�AG1

t �
(8.16)

and (G1( = (G∗( − 2 = (G( − 2.

Case II. (ι�y0�1�G∗�( = 2. Write ι�y0�1�G∗� = �1� j2�. Define a subse-
quence G1 of G∗ by deleting �x0�1� y0�1� and �x0�j2� y0�j2�� from G∗. Then
G1 ∩ �x0�1� y0�1� = �,

	�AGt � ≤ 	�AG∗
t � ≤ 	

(
�T�x0�1�y0�1� ≤ t� ∩AG1

t

)
= 	�T�x0�1�y0�1� ≤ t�	�AG1

t �
(8.17)

and (G1( ≥ (G∗( − 3 = (G( − 3.

Case III. (ι�y0�1�G∗�( > 2. Write ι�y0�1�G∗� = �1� j2� � � � � jp� where 1 <
j2 < · · · < jp and y0�1 = y0�j2 = · · · = y0�jp . Then max ι�x0�j2�G∗� = j2
because max ι�y0�j2�G∗� = jp > j2. Let

G∗∗ �= ({
x0�1� y

′
0�1�� � � � � �x0�(G∗(� y

′
0�(G∗(

})
�(8.18)

where

y′
0�j �=

{
y0�j� if j ≤ j2 or y0�j �= y0�1�
x0�j2� if j > j2 and y0�j = y0�1.

(8.19)

We then have G∗ = G∗∗ and, by switching Z
x0�j2 and Zy0�j2 at time T�x0�j2 �y0�j2 �

in the manner described in Remark 8.1, we also have 	�AG∗
t � = 	�AG∗∗

t �.
Moreover, ι�x0�1�G∗∗� = 1 because x0�1 /∈

⋃q
j=j2�x0�j� y0�j� = ⋃q

j=j2�x0�j� y′
0�j�.

Now (ι�y0�1�G∗∗�( = 2 and we are in Case II with G∗ replaced by G∗∗. From
the discussion in Case II we know that there exists a subsequence G1 of G∗∗
such that G1 ∩ �x0�1� y0�1� = ��

	�AGt � ≤ 	�AG∗
t � = 	�AG∗∗

t � ≤ 	
(
�T�x0�1�y0�1� ≤ t� ∩AG1

t

)
= 	�T�x0�1�y0�1� ≤ t�	�AG1

t �
(8.20)

and (G1( ≥ (G∗∗( − 3 = (G∗( − 3 = (G( − 3.

The reduction procedure that transformed G into G1 can be repeated at
least �/(G(/30 − 1�+ more times. That is, for 0 ≤ ( ≤ /(G(/30, there exist



CONTINUUM-SITES STEPPING-STONE MODELS 1093

sequences G( = ��x(�1� y(�1�� � � � � �x(�(G((� y(�(G((� such that G0 = G and for
0 ≤ ( ≤ /(G(/30 − 1

	�AG(t � ≤ 	
(
�T�x(�1�y(�1� ≤ t� ∩AG(+1t

)
= 	�T�xl�1�yl�1� ≤ t�	�AGl+1t ��(8.21)

with G(+1 ∩ �x(�1� y(�1� = �, Gl+1 ⊆ G(, and (Gl+1( ≥ (G(( − 3.
It follows that

	�AGt � ≤ 	�T�x0�1�y0�1� ≤ t�	�AG1
t � ≤ · · · ≤

/ (G(
3 0−1∏
i=0

	�T�xi�1�yi�1� ≤ t��(8.22)

where the sets �xi�1� yi�1�, i = 0�1� � � � � /(G(/30 − 1, are pairwise disjoint.
Write �e

t for the set of possible values of Pe�Te
q� on the event Te

q ≤ t. Note
that (G( > q for any G ∈ �e and so the rightmost product in (8.22) has at
least /q/30 terms. Therefore, if we let c�n�q�ψ� denote a constant that only
depends on n�q�ψ (but not t), we have from (8.22) that∫

m⊗n�de�ψ⊗n�e�	�Te
q ≤ t�

=
∫
m⊗n�de�ψ⊗n�e� ∑

G∈�e
t

	�Pe�Te
q� = G� Te

q ≤ t�

≤
∫
m⊗n�de�ψ⊗n�e� ∑

G∈�e
t

	�AGt �

≤ c�n�q�ψ�
(∫
m⊗2�de�ψ⊗2�e�	�Te ≤ t�

)/ q3 0
�

(8.23)

✷

Lemma 8.7. Consider µ ∈ 4, t ≥ 0, q ∈ �, and φ = ψ⊗χ with non-negative
ψ ∈ L1�m�∩L∞�m� and non-negative χ ∈ C�K�. There exists a constant c�φ�q�
that only depends on φ and q (and not µ or t) such that

�µ
[
�I�Xt%φ� − I�µt%φ��2q

]
≤ c�φ�q�

(∫
m⊗2�de�ψ⊗2�e�	�Te ≤ t�

)/ q3 0
�

Proof. Given n′� n′′ ∈ � and vectors f ′ ∈ En′
and f ′′ ∈ En′′

with f′
1� � � � � f

′
n′ ,

f′′
1� � � � f

′′
n′′ distinct, write

Lf ′ (f ′′ �t� �=
∫ n′⊗
i′=1
µ�Zf′

i′ �t���dk′
i′ � ⊗

n′′⊗
i′′=1
µ�Zf′′

i′′ �t���dk′′
i′ �

×χ⊗n′ �k′
1� � � � � k

′
n′ �χ⊗n′′

(
k′′
γf

′′
1 �t�� � � � � k

′′
γf

′′
n′′ �t�

)
�

(8.24)
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Then, by definition,

�µ
[
�I�Xt%φ� − I�µt%φ��2q

]
=

2q∑
i=0

�−1�i
(
2q
i

)
I2q−i�µt%φ��µ�Ii�Xt%φ��

=
2q∑
i=0

�−1�i
(
2q
i

) ∫
m⊗2q−i�de′� ⊗m⊗i�de′′�ψ⊗2q−i�e′�ψ⊗i�e′′�	

[
Le′ (e′′ �t�

]
�

Therefore, by Lemma 8.6, it suffices to show that

2q∑
i=0

�−1�i
(
2q
i

) ∫
m⊗2q−i�de′� ⊗m⊗i�de′′�ψ⊗2q−i�e′�ψ⊗i�e′′�

×	
[
Le′ (e′′ �t�1

{
T
e′ (e′′
p ≤ t < Te′ (e′′

p+1
}]

= 0

(8.25)

for 0 ≤ p ≤ q− 1.
For e′ ∈ E2q−i and e′′ ∈ Ei with e′1� � � � � e′2q−i� e′′1� � � � � e′′i distinct, write �

e′ (e′′

j�h ,
0 ≤ j ≤ 2q − i, 0 ≤ h ≤ i, for the collection of subsets of �e′1� � � � � e′2q−i� e′′1�
� � � � e′′i � with exactly j elements from �e′1� � � � � e′2q−i� and exactly h elements
from �e′′1� � � � � e′′i �. Put

Cij�h �= (�e′ (e′′

j�h ( =
(
2q− i
j

)(
i

h

)
� 0 ≤ j ≤ 2q− i� 0 ≤ h ≤ i�(8.26)

It is clear by construction that, recalling the transformationH →H from the
proof of Lemma 8.6,∫
m⊗2q−i�de′� ⊗m⊗i�de′′�ψ⊗2q−i�e′�ψ⊗i�e′′�	[

Le′ (e′′ �t�1{Te′ (e′′
p ≤ t < Te′ (e′′

p+1
}]

= ∑
j�h

∫
m⊗2q−i�de′� ⊗m⊗i�de′′�ψ⊗2q−i�e′�ψ⊗i�e′′�

× 	

[
Le′ (e′′ �t�1{Te′ (e′′

p ≤ t < Te′ (e′′

p+1
} ∑
S∈�e′ (e′′

j�h

1
{
Pe′ (e′′ �Te′ (e′′

p � = S}]

= ∑
j�h

Cij�h

∫
m⊗2q−i�de′� ⊗m⊗i�de′′�ψ⊗2q−i�e′�ψ⊗i�e′′�

× 	
[
Le′ (e′′ �t�1{Te′ (e′′

p ≤ t < Te′ (e′′

p+1 �Pe′ (e′′ �Te′ (e′′
p � = {

e′1� � � � � e
′
j� e

′′
1� � � � � e

′′
h

}}]
�

Note that (Pe′ (e′′ �Te′ (e′′
p �( ≤ 2p, and so a necessary condition on j�h for a sum-

mand in the last term to be non-zero is that j+ h ≤ 2p < 2q.
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For fixed e′ and e′′ write e∗ �= �e′
1� � � � �e

′
2q−i� e

′′
h+1� � � � � e

′′
i � and e∗∗ �= �e′′1�

� � � � e′′h�. Observe that{
T
e′ (e′′
p ≤ t < Te′ (e′′

p+1 � Pe′ (e′′ �Te′ (e′′
p � = �e′1� � � � � e′j� e′′1� � � � � e′′h�

}
=

{
T
e∗(e∗∗
p ≤ t < Te∗(e∗∗

p+1 � Pe∗(e∗∗�Te∗(e∗∗
p �

= �e′1� � � � � e′j� e′′1� � � � � e′′h�
}
�

(8.27)

Moreover, on this event the partition ξe
∗∗ �t� is the restriction of the parti-

tion ξe
′′ �t� to �h, and hence Le′ (e′′ �t� = Le∗(e∗∗�t� on this event. Therefore, the

quantity ∫
m⊗2q−i�de′� ⊗m⊗i�de′′�ψ⊗2q−i�e′�ψ⊗i�e′′�

×	
[
Le′ (e′′ �t�1

{
T
e′ (e′′
p ≤ t < Te′ (e′′

p+1 � Pe′ (e′′ �Te′ (e′′
p �

= �e′1� � � � � e′j� e′′1� � � � � e′′h�
}](8.28)

does not vary as i ranges from h to 2q− j.
The proof is complete once we note that for fixed h�j with h < 2q − j we

have
2q−j∑
i=h

�−1�i
(
2q
i

)
Cij�h

= �2q�!�−1�h
�2q− j− h�!j!h!

2q−j∑
i=h

�−1�i−h �2q− j− h�!
�i− h�!�2q− i− j�!

= �2q�!�−1�h
�2q− j− h�!j!h!�1− 1�2q−j−h

= 0� ✷

(8.29)

Completion of the Proof of Theorem 7.2. Because X (as a Hunt pro-
cess) has càdlàg paths �µ-a.s. for all µ ∈ 4, it suffices to show that I�X·%φ�
has continuous sample paths �µ-a.s. for all µ ∈ 4 and all φ belonging to
some countable subset of L1�m�C�K�� that is separating for 4. Moreover,
because I�X·%φ� already has càdlàg paths, verifying Kolmogorov’s criterion
establishes that these paths are, in fact, �µ-a.s. continuous. That is, verify-
ing Kolmogorov’s criterion does more than just establish the existence of a
continuous version of X, it establishes that the version we already have is
continuous.
Let �Ûα�α>0 denote the resolvent corresponding to the semigroup �P̂t�t≥0.

Suppose that� is a countable collection of bounded,m-integrable, continuous,
non-negative functions onE with dense linear span inL1�m� (such a collection
can be seen to exist by combining Lemma A.1 of [19] with Proposition 3.4.2
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of [17]). Note that if θ ∈ � , then αÛαθ converges to θ pointwise as α →
∞. Also,

∫
m�dx�αÛαθ�x� = ∫

m�dx�θ�x� < ∞ by the duality hypothesis for
the pair Z� Ẑ. By a standard extension of Lebesgue’s dominated convergence
theorem (see, e.g., Proposition 18 in Chapter 11 of [34]), if g ∈ L∞�m�, then
limα→∞

∫
m�dx�αÛαθ�x�g�x� = ∫

m�dx�θ�x�g�x�.
Write � �= �Ûαθ � θ ∈ � � α rational� ⊆ L1�m� ∩ L∞�m�. It follows easily

from what we have just observed that if C̃ is a countable dense subset of
�χ ∈ C�K� � χ ≥ 0�, then the countable collection of functions of the form
ψ⊗ χ, with ψ ∈ � and χ ∈ C̃, is separating for 4.
Fix ψ ∈ � (with ψ = Ûαθ for θ ∈ � and α rational), χ ∈ C̃, and q ∈ �

such that /q/30ε > 1, where ε > 0 is as in the statement of the theorem. In
order to show that I�X·%ψ⊗χ� has �µ-a.s. continuous sample paths for all µ,
it suffices by the Markov property of X and Kolmogorov’s continuity criterion
to show for some constants c and δ which depend only on ψ�χ� q that

�µ
[
�I�Xt%ψ⊗ χ� − I�µ%ψ⊗ χ��2q

]
≤ ct1+δ(8.30)

for all t ≥ 0 and µ ∈ 4. This, however, follows from Lemma 8.7 and the
observation that∣∣I�µt%ψ⊗ χ� − I�µ%ψ⊗ χ�∣∣ ≤

∫
m�dx�

∣∣∣P̂tψ�x� − ψ�x�
∣∣∣

=
∫
m�dx�

∣∣∣∣∫ ∞

t

(
e−α�s−t� − e−αs

)
P̂sθ�x�ds−

∫ t
0
e−αsP̂sθ�x�ds

∣∣∣∣
≤ 2α−1�1− e−αt�

∫
m�dx�θ�x� ≤ 2t

∫
m�dx�θ�x��

(8.31)

where we have used the consequence of the duality hypothesis on Z, Ẑ that∫
m�dx�αP̂tθ�x� = ∫

m�dx�θ�x�. ✷

9. Coalescing and annihilating circular Brownian motions. In this
section we develop a duality relationship between systems of coalescing Brow-
nian motions on �, the circle of circumference 2π, and systems of annihilating
Brownian motions on � (Proposition 9.1). This relation will be used in Section
10 to investigate the properties of the stepping-stone model X when the mi-
gration process is Brownian motion on �. It will also be used in Section 11 to
study the random tree associated with infinitely many coalescing Brownian
motions on �. We mention in passing that coalescing Brownian motion has
recently become a topic of renewed interest (see, e.g., [41] and [40]).
For the rest of this paper, Z (and hence Ẑ) will be standard Brownian

motion on �, and m will be normalized Lebesgue measure on �.
Given a finite non-empty set A ⊆ �, enumerate A as �e1� � � � � en�, put

e �= �e1� � � � � en�, and define a process WA, the set-valued coalescing circular
Brownian motion, taking values in the collection of non-empty finite subsets
of � by

WA�t� �= �Že
γe1�t��t�� � � � � Ž

e
γen�t��t�� = �Ze

γe1�t��t�� � � � �Z
e
γen�t��t��� t ≥ 0�(9.1)



CONTINUUM-SITES STEPPING-STONE MODELS 1097

Equivalently,WA�t� is the set of labels of the coalescing Markov labelled par-
tition process ζe�t�. Of course, different enumerations of A lead to different
processes, but all these processes will have the same distribution. In words,
WA describes the evolution of a finite set of indistinguishable Brownian par-
ticles with the feature that particles evolve independently between collisions
but when two particles collide they coalesce into a single particle.
Write � for the collection of open subsets of � that are either empty or con-

sist of a finite union of open intervals with distinct end-points. Given B ∈ � ,
define on some probability space �T�� ��� an � -valued process VB, the an-
nihilating circular Brownian motion as follows. The initial value of VB is
VB�0� = B. The end-points of the constituent intervals execute independent
Brownian motions on � until they collide, at which point they annihilate each
other. If the two colliding end-points are from different intervals, then those
two intervals merge into one interval. If the two colliding end-points are from
the same interval, then that interval vanishes (unless the interval was arbi-
trarily close to � just before the collision, in which case the process takes the
value �). The process is stopped when it hits the empty set or �.
We have the following duality relation between WA and VB.

Proposition 9.1. For all finite, non-empty subsets A ⊆ �, all sets B ∈ � ,
and all t ≥ 0,

	�WA�t� ⊆ B� = ��A ⊆ VB�t���

Proof. For N ∈ �, let �N �= �0�1� � � �N − 1� denote the integers modulo
N. Let �

1
2
N �= � 12 � 32 � � � � � 2N−1

2 � denote the half-integers modulo N. A non-
empty subset D of �N can be (uniquely) decomposed into “intervals”: an in-
terval of D is an equivalence class for the equivalence relation on the points
of D defined by x ∼ y if and only if x = y, �x� x + 1� � � � � y − 1� y� ⊆ D, or
�y�y+1� � � � � x−1� x� ⊆ D (with all arithmetic moduloN). Any interval other

than �N itself has an associated pair of (distinct) “end-points” in �
1
2
N: if the

interval is �a� a+1� � � � � b−1� b�, then the corresponding end-points are a− 1
2

and b+ 1
2 (with all arithmetic moduloN). Note that the end-points of different

intervals of D are distinct.
For C ⊆ �N, let W

C
N be a process on some probability space ��′�� ′�	′�

taking values in the collection of non-empty subsets of �N that is defined in
the same manner as WA, with Brownian motion on � replaced by simple,
symmetric (continuous time) random walk on �N (that is, by the continuous
time Markov chain on �N that only makes jumps from x to x + 1 or x to
x − 1 at a common rate λ > 0 for all x ∈ �N). For D ⊆ �N, let V

D
N be a

process taking values in the collection of subsets of �N that is defined on
some probability space �T′�� ′��′� in the same manner as VB, with Brownian
motion on � replaced by simple, symmetric (continuous time) random walk on

�
1
2
N (with the same jump rate λ as in the definition ofWC

N). That is, end-points

of intervals evolve as annihilating random walks on �
1
2
N.
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The proposition will follow by a straightforward weak limit argument if we
can show the following duality relationship between the coalescing “circular”
random walk WC

N and the annihilating “circular” random walk VDN:

	′�WC
N�t� ⊆ D� = �′�C ⊆ VDN�t��(9.2)

for all non-empty subsets of C ⊆ �N, all subsets of D ⊆ �N, and all t ≥ 0.
It is simple, but somewhat tedious, to establish (9.2) by a generator calcula-

tion using the usual generator criterion for duality (see, e.g., Corollary 4.4.13
of [17]). However, as Tom Liggett pointed out to us, there is an easier route.
A little thought shows that VDN is nothing other than the (simple, symmetric)
voter model on �N. The analogous relationship between the annihilating ran-
dom walk and the voter model on � due to [35] is usually called the border
equation (see Section 2 of [8] for a discussion and further references). The
relationship (9.2) is then just the analogue of the usual duality between the
voter model and coalescing random walk on � and it can be established in a
similar manner by Harris’s graphical method (again see Section 2 of [8] for a
discussion and references). ✷

Remark 9.2. We have been unable to find an explicit reference to Proposi-
tion 9.1 or its analogue for Brownian motion on �. However, it is observed in
[4] that rescaling limits of the simple voter model on � are related to coalesc-
ing Brownian flows and also satisfy an analogue of the border equation with
the borders executing annihilating Brownian motion.

Recall Z and γ from Definition 6.2. Define set-valued processesW�n�, n ∈ �,
and W by

W�n��t� �= �Zγ1�t��t�� � � � �Zγn�t��t�� ⊆ �� t ≥ 0(9.3)

and

W�t� �= �Zγ1�t��t��Zγ2�t��t�� � � �� ⊆ �� t ≥ 0�(9.4)

Thus, W�1��t� ⊆W�2��t� ⊆ � � � and ⋃
n∈�W�n��t� =W�t�. Recall that �W�n��t�t≥0

has the same law as ({
Z

�n�
γ

�n�
1 �t��t�� � � � �Z

�n�
γ

�n�
n �t��t�

})
t≥0
�

Put N�t� �= (W�t�(� the cardinality of the random setW�t�. Note that N�t� is
also the number of blocks in the partition ξ�t�, which is in turn the cardinality
of the random set 3�t�. It is clear that 	�∞�-a.s.N�t� is a non-increasing, right-
continuous function of t and if N�t0� <∞ for some t0 ≥ 0, then N�t� −N�t−�
is either 0 or −1 for all t > t0. By the following corollary, N�t� <∞, 	�∞�-a.s.,
for all t > 0.

Corollary 9.3. For t > 0,

	�∞� �N�t� � = 1+ 2
∞∑
n=1

exp
(

−
(n
2

)2
t

)
<∞
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and

lim
t↓0
t
1
2	�∞� �N�t� � = 2

√
π�

Proof. Note that if B is a single open interval (and hence for all t ≥ 0 the
set VB�t� is either an interval or empty) and we let L�t� denote the length
of VB�t�, then L is a Brownian motion on �0�2π� with VarL�t� = 2t that is
stopped at the first time it hits �0�2π�.
Now, forM ∈ � and 0 ≤ i ≤M−1 we have from the translation invariance

of Z and Proposition 9.1 that

	�∞� {W�n��t� ∩ �2πi/M�2π�i+ 1�/M� �= �
}

= 1− 	�∞� {W�n��t� ⊆�0�2π�M− 1�/M�}
= 1− 	�∞� {W�n��0� ⊆ V�0�2π�M−1�/M��t�} �(9.5)

where we take the annihilating process V�0�2π�M−1�/M� to be defined on the
same probability space ���∞��� �∞��	�∞�� as the process Z that was used to
constructW�n� andW, and we further take the processes V�0�2π�M−1�/M� and Z
to be independent. Thus,

	�∞� �W�t� ∩ �2πi/M�2π�i+ 1�/M� �= ��
= 1− 	�∞� {V�0�2π�M−1�/M��t� = �

}
= 1− 	̃

{
τ̃ ≤ 2t� B̃�τ̃� = 2π ( B̃�0� = 2π�M− 1�/M

}
�

(9.6)

where B̃ is a standard one-dimensional Brownian motion on some probability
space ��̃� �̃ � 	̃� and τ̃ = inf�s ≥ 0 � B̃�s� ∈ �0�2π��.
By Theorem 4.1.1 of [28] we have

	�∞� � (W�t�( �

= lim
M→∞

	�∞�
[
M−1∑
i=0

1 �W�t� ∩ �2πi/M�2π�i+ 1�/M� �= ��
]

= lim
M→∞

M
(
1− 	̃

{
τ̃ ≤ 2t� B̃�τ̃� = 2π ( B̃�0� = 2π�M− 1�/M

})
= 1− lim

M→∞
M

2
π

∞∑
n=1

�−1�n
n

sin
(
nπ

(
M− 1
M

))
exp

(
−

(n
2

)2
t

)

= 1+ 2
∞∑
n=1

exp
(

−
(n
2

)2
t

)

= θ
(
t

4π

)
<∞�
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where

θ�u� �=
∞∑

n=−∞
exp�−πn2u�(9.7)

is the Jacobi theta function (we refer the reader to [10] for a survey of many of
the other probabilistic interpretations of the theta function). The proof is com-
pleted by recalling that θ satisfies the functional equation θ�u� = u− 1

2 θ�u−1�
and noting that limu→∞ θ�u� = 1.
We conjecture that t

1
2N�t� → 2

√
π as t ↓ 0, 	�∞�-a.s. However, we are only

able to prove the following weaker result, which will be used in Section 11.
The proof will be given at the end of this section after some preliminaries.

Proposition 9.4. With 	�∞�-probability one,

0 < lim inf
t↓0

t
1
2N�t� ≤ lim sup

t↓0
t
1
2N�t� <∞�

For t > 0 the random partition ξ�t� is, by Remark 6.3 and Corollary 9.3,
exchangeable with a finite number of blocks. Let 1 = xt1 < xt2 < · · · < xtN�t�
be the list in increasing order of the minimal elements of the blocks of ξ�t�
(that is, a list in increasing order of the elements of the set 3�t�). Results
of Kingman (see Section 11 of [2] for a unified account) and the fact that ξ
evolves by pairwise coalescence of blocks give that 	�∞�-a.s. for all t > 0 the
asymptotic frequencies

Fi�t� = lim
n→∞n

−1(�j ∈ �n � j ∼ξ�t� xti�((9.8)

exist for 1 ≤ i ≤N�t� and F1�t� + · · · +FN�t��t� = 1.

Lemma 9.5. With 	�∞�-probability one,

lim
t↓0
t−

1
2

N�t�∑
i=1
Fi�t�2 = 2

π3/2
�

Proof. Put Tij �= inf�t ≥ 0 � Zi�t� = Zj�t�� for i �= j. Observe that

	�∞�
[
N�t�∑
i=1
Fi�t�2

]
= 	�∞�

[
lim
n→∞

1
n2

n∑
i=1

n∑
k=1

1
{
j ∼ξ�t� k

}]
= 	�∞��1 ∼ξ�t� 2�
= 	�∞��T12 ≤ t��
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From Theorem 4.1.1 of [28] we have

	�∞��T12 ≤ t�

= 1
2π

∫ 2π

0
1− 4

π

∞∑
n=1

sin
( �2n− 1�x

2

)
1

2n− 1
exp

(
−

(
2n− 1
2

)2

t

)
dx

= 8
π2

∞∑
n=1

1
�2n− 1�2

{
1− exp

(
−

(
2n− 1
2

)2

t

)}

= 2
π2

∫ t
0

∞∑
n=1

exp

(
−

(
2n− 1
2

)2

s

)
ds

= 2
π2

∫ t
0

1
2

{ ∞∑
n=−∞

exp
(
−n2 s

4

)
−

∞∑
n=−∞

exp
(−n2s)} ds

= 1
π2

∫ t
0

{
θ
( s
4π

)
− θ

( s
π

)}
ds�

where θ is again the Jacobi theta function defined in (9.7). By the properties
of θ recalled after (9.7),

lim
t↓0
t−

1
2	�∞�

[
N�t�∑
i=1
Fi�t�2

]
= lim

t↓0
t−

1
2	�∞��T12 ≤ t� = 2

π3/2
�(9.9)

Now

	�∞�

(
N�t�∑
i=1
Fi�t�2

)2


= 	�∞�
[
lim
n→∞

1
n4

n∑
i1=1

n∑
i2=1

n∑
i3=1

n∑
i4=1

1
{
i1 ∼ξ�t� i2� i3 ∼ξ�t� i4

}]
= 	�∞��1 ∼ξ�t� 2� 3 ∼ξ�t� 4��

and so

Var

(
N�t�∑
i=1
Fi�t�2

)
= 	�∞��1 ∼ξ�t� 2� 3 ∼ξ�t� 4� − 	�∞��T12 ≤ t�2(9.10)

= 	�∞��1 ∼ξ�t� 2� 3 ∼ξ�t� 4� − 	�∞��T12 ≤ t� T34 ≤ t��
Observe that

	�∞�{T12 ≤ t� T34 ≤ t� T13 > t� T14 > t� T23 > t� T24 > t
}

≤ 	�∞�{1 ∼ξ�t� 2� 3 ∼ξ�t� 4� ��1�2�3�4�� �= ξ�4��t�}
≤ 	�∞�{T12 ≤ t� T34 ≤ t}
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and

	�∞��T12 ≤ t� T34 ≤ t�
− 	�∞�{T12 ≤ t� T34 ≤ t� T13 > t� T14 > t� T23 > t� T24 > t

}
≤ ∑
i=1�2

∑
j=3�4

	�∞��T12 ≤ t� T34 ≤ t� Tij ≤ t��

Thus

Var

(
N�t�∑
i=1
Fi�t�2

)
≤ 	�∞�{1 ∼ξ�t� 2 ∼ξ�t� 3 ∼ξ�t� 4

}
+ ∑
i=1�2

∑
j=3�4

	�∞�{T12 ≤ t� T34 ≤ t� Tij ≤ t}�(9.11)

Put Dij �= (Zi�0� −Zj�0�(. We have

	�∞�{1 ∼ξ�t� 2 ∼ξ�t� 3 ∼ξ�t� 4
}

= 	�∞��T12 ≤ t� T13 ∧T23 ≤ t� T14 ∧T24 ∧T34 ≤ t�

= 	�∞�
(

�T12 ≤ t� T13 ∧T23 ≤ t� T14 ∧T24 ∧T34 ≤ t�

\ {
D12 ≤ t 25 � �D13 ∧D23� ≤ t 25 � �D14 ∧D24 ∧D34� ≤ t 25 })

+	�∞��D12 ≤ t 25 � �D13 ∧D23� ≤ t 25 � �D14 ∧D24 ∧D34� ≤ t 25 �

≤ ∑
1≤i<j≤4

	�∞��Tij ≤ t� Dij > t
2
5 � + 	�∞�

{
max

1≤i<j≤4
Dij ≤ 3t

2
5

}
�

(9.12)

where we have appealed to the triangle inequality in the last step. Because
2
5 <

1
2 , an application of the reflection principle and Brownian scaling certainly

gives that the probability 	�∞��Tij ≤ t� Dij > t
2
5 � is o�tα� as t ↓ 0 for any α > 0.

Moreover, by the translation invariance of m (the common distribution of the
Zi�0�), the second term in the rightmost member of (9.12) is at most

	�∞��(Z2�0� −Z1�0�( ≤ 3t
2
5 � (Z3�0� −Z1�0�( ≤ 3t

2
5 � (Z4�0� −Z1�0�( ≤ 3t

2
5 �

= 	�∞��(Z2�0�( ≤ 3t
2
5 � (Z3�0�( ≤ 3t

2
5 � (Z4�0�( ≤ 3t

2
5 �

= ct 65 �
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for a suitable constant c when t is sufficiently small. Therefore,

	�∞��1 ∼ξ�t� 2 ∼ξ�t� 3 ∼ξ�t� 4�
= 	�∞���T12 ≤ t� T13 ∧T23 ≤ t� T14 ∧T24 ∧T34 ≤ t�
= O�t 65 � as t ↓ 0.

(9.13)

A similar argument establishes that

	�∞��T12 ≤ t� T34 ≤ t� Tij ≤ t� = O�t 65 � as t ↓ 0�(9.14)

for i = 1�2 and j = 3�4.
Substituting (9.13) and (9.14) into (9.11) gives

Var

(
N�t�∑
i=1
Fi�t�2

)
= O�t 65 � as t ↓ 0.(9.15)

This establishes the desired result when combined with the expectation calcu-
lation (9.9), Chebyshev’s inequality, a standard Borel-Cantelli argument, and
the monotonicity of

∑N�t�
i=1 Fi�t�2.

We may suppose that on our probability space ���∞��� �∞��	�∞�� there is a
sequence B1�B2� � � � of i.i.d. one-dimensional standard Brownian motions with
initial distribution the uniform distribution on �0�2π� and that Zi is defined
by setting Zi�t� to be the image of Bi�t� under the usual homomorphism from
� onto �. For n ∈ � and 0 ≤ j ≤ 2n − 1, let In�j1 ≤ I

n�j
2 ≤ · · · be a list in

increasing order of the set of indices �i ∈ � � Bi�0� ∈ �2πj/2n�2π�j+ 1�/2n��.
Put Bn�ji �= BIn�ji

and Zn�ji �= ZIn�ji
. Thus �Bn�ji �i∈� is an i.i.d. sequence of

standard �-valued Brownian motions and �Zn�ji �i∈� is an i.i.d. sequence of
standard �-valued Brownian motions. In each case the corresponding initial
distribution is uniform on �2πj/2n�2π�j+ 1�/2n�. Moreover, for n ∈ � fixed
the sequences �Bn�ji �i∈� are independent as j varies and the same is true of
the sequences �Zn�ji �i∈�.
LetW (resp.Wn�j,Wn�j) be the coalescing system defined in terms of �Bi�i∈�

(resp. �Bn�ji �i∈�, �Zn�ji �i∈�) in the same manner that W is defined in terms of
�Zi�i∈�.
It is clear by construction that

N�t� = (W�t�( ≤
2n−1∑
i=0

(Wn�i�t�( ≤
2n−1∑
i=0

(Wn�i�t�(� t > 0� n ∈ ��(9.16) ✷

Lemma 9.6. The expectation 	�∞�� (W�1�( � is finite.

Proof. There is an obvious analogue of the duality relation Proposition 9.1
for systems of coalescing and annihilating one-dimensional Brownian motions.
Using this duality and arguing as in the proof of Corollary 9.3, it is easy to
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see that, letting L̄ and Ū be two independent, standard, real-valued Brownian
motions on some probability space ��̄� �̄ � 	̄� with L̄�0� = Ū�0� = 0,

	�∞��(W�1�(�

= lim
M→∞

∞∑
i=−∞

	�∞� �W�1� ∩ �2πi/M�2π�i+ 1�/M� �= ��

= lim
M→∞

∞∑
i=−∞

	̄

{
min
0≤t≤1

(�Ū�t� + 2π�i+ 1�/M� − �L̄�t� + 2πi/M�) > 0�

�L̄�1� + 2πi/M� Ū�1� + 2π�i+ 1�/M� ∩ �0�2π� �= �

}
≤ lim sup

M→∞
c′M	̄

[
1
{
min
0≤t≤1

(
Ū�t� − L̄�t�) > −2π/M

} (
Ū�1� − L̄�1� + c′′)]

for suitable constants c′ and c′′. Noting that �Ū− L̄�/√2 is a standard Brow-
nian motion, the result follows from a straightforward calculation with the
joint distribution of the minimum up to time 1 and value at time 1 of such a
process (see, e.g., Corollary 30 in Section 1.3 of [23]).

Proof of Proposition 9.4. By the Cauchy-Schwarz inequality,

1 =
(
N�t�∑
i=1
Fi�t�

)2

≤N�t�
N�t�∑
i=1
Fi�t�2�(9.17)

and hence, by Lemma 9.5,

lim inf
t↓

t
1
2N�t� ≥ π

3
2

2
� 	�∞�-a.s.(9.18)

On the other hand, for each n ∈ �, (Wn�i�2−2n�(, i = 0� � � � �2n − 1, are i.i.d.
random variables which, by Brownian scaling, have the same distribution as
(W�1�(. By (9.16),

t
1
2N�t� ≤ 1

2n−1

2n−1∑
i=0

(Wn�i�2−2n�((9.19)

for 2−2n < t ≤ 2−2�n−1�. An application of Lemma 9.6 and the following strong
law of large numbers for triangular arrays completes the proof. ✷

Lemma 9.7. Consider a triangular array �Xn�i � 1 ≤ i ≤ 2n� n ∈ �� of iden-
tically distributed, real-valued, mean zero, random variables on some probabil-
ity space ���� �	� such that the collection �Xn�i � 1 ≤ i ≤ 2n� is independent
for each n ∈ �. Then

lim
n→∞2−n (Xn�1 + · · · +Xn�2n

) = 0� 	-a.s.
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Proof. This sort of result appears to be known in the theory of complete
convergence. For example, it follows from the much more general Theorem A
in [1] by taking Nn = 2n and ψ�t� = 2t in the notation of that result (see also
the example following that result). For the sake of completeness, we give a
short proof that was pointed out to us by Michael Klass.
Let �Yn � n ∈ �� be an independent identically distributed sequence with

the same common distribution as theXn�i. By the strong law of large numbers,
for any ε > 0 the probability that (Y1 + · · · + Y2n ( > ε2n infinitely often is
0. Therefore, by the triangle inequality, for any ε > 0 the probability that
(Y2n+1 + · · · +Y2n+1 ( > ε2n infinitely often is 0; and so, by the Borel-Cantelli
lemma for sequences of independent events,∑

n

	�(Y2n+1 + · · · +Y2n+1 ( > ε2n� <∞(9.20)

for all ε > 0. The last sum is also∑
n

	�(Xn�1 + · · · +Xn�2n ( > ε2n��(9.21)

and an application of the “other half” of the Borel-Cantelli lemma for possibly
dependent events establishes that for all ε > 0 the probability of (Xn�1 + · · · +
Xn�2n ( > ε2n infinitely often is 0, as required.

10. Finitely many pure types for circular Brownian migration. Re-
call that Z and Ẑ are standard Brownian motions on the circle � and m is
normalized Lebesgue measure. Recall also that � is the collection of open
subsets of � that are either empty or the union of a finite number of disjoint
intervals.

Definition 10.1. Let 4o denote the subset of 4 consisting of ν such that
there exists a finite set �k∗

1� � � � � k
∗
N� ⊆K (depending on ν) with the property

that for m-a.e. e ∈ � we can take ν�e� = δk∗
i
for some i, and, moreover, we can

choose a version of ν such that the sets �e ∈ � � ν�e� = δk∗
j
� ∈ � for 1 ≤ j ≤N.

Theorem 10.2. For all µ ∈ 4, �µ�Xt ∈ 4o for all t > 0� = 1.

Proof. Fix µ ∈ 4 and t > 0. We will first show that

�µ�Xt ∈ 4o� = 1�(10.1)

By the same argument as in Proposition 5.1 of [19], �µ-a.s. there is a ran-
dom countable set of types K∗ such that Xt�e� ∈ �δk � k ∈ K∗� for m-a.e.
e ∈ �. We can also require that K∗ has been chosen “minimally” so that
m��e ∈ E � Xt�e� = δk�� > 0 for all k ∈ K∗, �µ-a.s., and this requirement
specifies K∗ uniquely, �µ-a.s. For n ∈ � it is clear that on the event where
K∗ has cardinality at least n the dissimilarity Dn�Xt� (recall Definition 6.1)
is strictly positive �µ-a.s. It follows from Theorem 6.4 and Corollary 9.3 that
K∗ is finite �µ-a.s.
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In order to show that a representative of the equivalence class of Xt in 4
may be defined so that �e ∈ � �Xt�e� = δk� ∈ � for all k ∈K∗, it suffices by the
device used in the proof of Theorem 6.4 to consider the case where the proba-
bility measure µ�e� is diffuse for all e ∈ � and to show in this case that �µ-a.s.
for all k ∈ K∗ the support of the measure 1�Xt�e� = δk�m�de� (which does
not depend on the choice of equivalence class representative) is a connected
set. For this, it in turn suffices to check that if a1� b1� c1� d1� a2� b2� c2� d2 are
arranged in anti-clockwise order around �, then we have∫

m⊗4�de�1{e1 ∈�a1� b1�� e2 ∈�a2� b2�� e3 ∈�c1� d1�� e4 ∈�c2� d2�
}

×
∫ 4⊗
i=1
Xt�ei��dki�1

{
k3 �= k1 = k2 �= k4

} = 0� �µ-a.s.
(10.2)

or, equivalently by Remark 4.4,

1
{
Z

�4�
1 �0� ∈�a1� b1�� Z�4�

2 �0� ∈�a2� b2��

Z
�4�
3 �0� ∈�c1� d1�� Z�4�

4 �0� ∈�c2� d2�
}

×1{γ�4�
3 �t� �= γ�4�

1 �t� = γ�4�
2 �t� �= γ�4�

4 �t�} = 0� 	�4�-a.s.

(10.3)

Write, for our fixed t > 0,

Tij = inf�0 ≤ s ≤ t � Z�4�
i �s� = Z�4�

j �s��� 1 ≤ i < j ≤ 4�(10.4)

for the first collision time of Z�4�
i and Z�4�

j before time t, with our standing
convention that inf � = ∞. We have 	�4��Tij = Tk( �= ∞� = 0 for �i� j� �=
�k� (�. Suppose that we have a realization with the properties

Z
�4�
1 �0� ∈�a1� b1��Z�4�

2 �0� ∈�a2� b2��Z�4�
3 �0� ∈�c1� d1��Z�4�

4 �0� ∈�c2� d2��(10.5)

γ
�4�
3 �t� �= γ�4�

1 �t� = γ�4�
2 �t� �= γ�4�

4 �t�(10.6)

and

Tij �= ∞ implies Tij �= Tk( for �i� j� �= �k� (��(10.7)

In order that γ�4�
1 �t� = γ

�4�
2 �t� holds, we must have T12 �= ∞. From the

continuity of the paths of circular Brownian motion and (10.7), in order that
(10.5) holds it must then be the case that

T13 ∧T14 ∧T23 ∧T24 < T12 ∧T34�(10.8)

By construction, this would imply that γ�4�
3 �t� = γ

�4�
1 �t� = γ

�4�
2 �t� or γ�4�

4 �t� =
γ

�4�
1 �t� = γ�4�

2 �t�, contradicting (10.6). Thus (10.3) holds and the proof of (10.1)
is complete.
In order to establish the claim of the theorem, it suffices by (10.1) and the

Markov property to consider the special case of µ ∈ 4o. Write �k∗
1� � � � � k

∗
N� ⊆
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K for the corresponding set of types k such that m��e ∈ � � µ�e� = δk�� > 0.
Fix 1 ≤ i ≤ N. Let G ⊆ K be a closed and open set such that k∗

i ∈ G and
k∗
j /∈ G for j �= i [writing k∗

i = �h1� h2� � � �� one can take G = ��h′
1� h

′
2� � � �� ∈

K � h′
1 = h1� � � � � h′

n = hn� for some sufficiently large n]. It suffices to show for
each such G that if we put Yt�e� �=Xt�e��G� ∈ �0�1�, then �µ-a.s. for all t ≥ 0
we can choose a representative of Yt ∈ L∞���m� such that Yt�e� ∈ �0�1� for
m-a.e. e ∈ � and �e ∈ � � Yt�e� = 1� ∈ � .
By the remarks at the end of Section 4 of [19], we have that Y is a Feller

process with state-space the subset L∞���m% �0�1�� of L∞���m� consisting of
�0�1�-valued functions (where L∞���m% �0�1�� is equipped with the relative
weak∗ topology). Put B �= �e ∈ � � µ�e� = δk∗

i
� ∈ � . By the definition of X in

Theorem 4.1 and Proposition 9.1, for ψ ∈ L1�m�,

�µ
[∫
m⊗n�de�ψ⊗n�e�

n∏
i=1
Yt�ei�

]

=
∫
m⊗n�de�	

[
ψ⊗n�e� ∏

j∈3e�t�
1B�Ze

j�t��
]

=
∫
m⊗n�de�	

[
ψ⊗n�e�1

{
W

�e1�����en�
t ⊆ B

}]
= �

[∫
m⊗n�de�ψ⊗n�e�1 {�e1� � � � � en� ⊆ VB�t�}]

= �

[∫
m⊗n�de�ψ⊗n�e�

n∏
i=1

1VB�t��ei�
]

(10.9)

[recall thatVB is defined on the probability space �T�� ���]. Consequently, the
L∞���m% �0�1��-valued processes Y and 1VB have the same finite-dimensional
distributions. Clearly, t → 1VB�t� is continuous (in the weak∗ topology). There-
fore, choosing our representative of Yt to be 1VB�t� for all t ≥ 0 establishes the
desired conclusion. ✷

11. The tree associated with coalescing circular Brownian motions.
Recall thatZ and Ẑ are standard Brownian motions on � andm is normalized
Lebesgue measure.

Definition 11.1. Given i� j ∈ �, let τij �= inf�t ≥ 0 � i ∼ξ�t� j� denote
the first time that i and j belong to the same block. By Remark 6.3, the τij
are identically distributed. Metrise � with the (random) metric ρ given by
ρ�i� j� �= τij. Observe that ρ is an ultrametric; that is, the strong triangle
inequality ρ�i� j� ≤ ρ�i� k� ∨ ρ�k� j� holds for all i� j� k. Let ��� ρ� denote the
completion of ��� ρ�. The space ��� ρ� is also ultrametric. We refer the reader
to Sections 18 and 19 of [36] for basic facts about ultrametric spaces.

Some discussion of the space ��� ρ� can be found in Section 4 of [3]. The
analogue of ��� ρ� for another process of coalescing exchangeable partitions of
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�, namely Kingman’s coalescent, is considered in [20] and the counterpart of
Theorem 11.2 below is obtained.
For background on Hausdorff and packing dimension see [29]. In order

to establish some notation, we quickly recall the definitions of energy and
capacity. Let �T�ρ� be a metric space. WriteM1�T� for the collection of (Borel)
probability measures on T. A gauge is a continuous, non-increasing function
f � �0�∞�→ �0�∞�, such that f�r� <∞ for r > 0, f�0� = ∞ and limr→∞ f�r� =
0. Given µ ∈ M1�T� and a gauge f, the energy of µ in the gauge f is the
quantity

�f�µ� �=
∫
µ�dx�

∫
µ�dy�f�ρ�x�y���

The capacity of T in the gauge f is the quantity

Capf�T� �= (
inf��f�µ� � µ ∈M1�T��)−1

(note by our assumptions on f that we need only consider diffuse µ ∈M1�T�
in the infimum).
Let C 1

2
⊆ �0�1� denote the middle- 12 Cantor set equipped with the usual

Euclidean metric inherited from �0�1�. One of the assertions of the following
result is, in the terminology of [32] (see, also, [9, 33, 31]), that � is a.s. capacity-
equivalent to C 1

2
. Hence, by the results of [33], � is also a.s. capacity-equivalent

to the zero set of (one-dimensional) Brownian motion.

Theorem 11.2. With 	�∞�-probability one, the ultrametric space ��� ρ� is
compact with Hausdorff and packing dimensions both equal to 1

2 . There exist

random variables K∗�K∗∗ such that 	�∞�-almost surely 0 < K∗ ≤ K∗∗ < ∞
and for every gauge f�

K∗ Capf�C 1
2
� ≤ Capf��� ≤K∗∗ Capf�C 1

2
��(11.1)

Proof. The proof is essentially a reprise of the proof of Theorem 1.1 in [20],
with our Proposition 9.4 and Lemma 9.5 playing the role of the statements
(2.1) and (2.2) in [20]. ✷
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