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ABOUT THE CONSTANTS IN TALAGRAND’S
CONCENTRATION INEQUALITIES FOR

EMPIRICAL PROCESSES

By Pascal Massart

Université Paris-Sud

We propose some explicit values for the constants involved in the
exponential concentration inequalities for empirical processes which are
due to Talagrand. It has been shown by Ledoux that deviation inequali-
ties for empirical processes could be obtained by iteration of logarithmic
Sobolev type inequalities. Our approach follows closely that of Ledoux.
The improvements that we get with respect to Ledoux’s work are based on
refinements of his entropy inequalities and computations.

1. Introduction. The concentration of measure phenomenon for product
measures has been investigated in depth by Talagrand in a most remarkable
series of works (see in particular [20] for an overview and [21] for recent
advances). One of the first striking results illustrating this phenomenon was
obtained in the seventies. It is the concentration of the standard Gaussian
measure on �N. Consider some Lipschitz function ζ on the Euclidean space
�N with Lipschitz constant L, if P denotes the canonical Gaussian measure
on �N; then, for every x ≥ 0,

P��ζ −M� ≥ x� ≤ 2 exp
(
− x2

2L2

)
and

P�ζ −M+ x� ≤ exp
(
− x2

2L2

)
�(1)

whereM denotes either the mean or the median of ζ with respect of P. These
inequalities were independently established in [9] and [6] whenM is a median
and in [8] whenM is the mean (we refer to [15] for various proofs and numer-
ous applications of these statements). Usually the first inequality is called
a concentration inequality while the latter is called a deviation inequality.
A very interesting feature of these inequalities is that they do not depend on
the dimensionN which allows using them for controlling suprema of Gaussian
processes, for instance (see [15]). Extending such results to more general prod-
uct measures appears to be a very difficult task. Talagrand’s methods rely on
isoperimetric ideas in the sense that concentration inequalities for function-
als around their median are derived from probability inequalities for enlarge-
ments of sets with respect to various distances (or more general measures
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of proximity) which are proved by induction on the number of coordinates.
Due to the variety of applications of these concentration inequalities and the
high level of technicity of Talagrand’s proofs, several recent papers have been
devoted to the development of new approaches for deriving such results with
a view to simplify the proofs (as in [11] or [16]) or to extend them to Markov
chains (as in [18]). Among other fields of applications, Talagrand’s approach
can be used for controlling empirical processes.

1.1. Talagrand’s concentration inequalities for empirical processes. In [21]
(see Theorem 4.1), Talagrand obtained some striking concentration inequali-
ties for the suprema of empirical processes. His result can be stated as follows.

Theorem 1 (Talagrand [21]). Consider n independent and identically dis-
tributed random variables ξ1� 
 
 
 � ξn with values in some measurable space
���� 	. Let � be some countable family of real-valued measurable functions
on ���� 	, such that 
f
∞ ≤ b < ∞ for every f ∈ � . Let Z = supf∈�

∑n
i=1 f�ξi	

and v = Ɛ�supf∈�
∑n

i=1 f
2�ξi	�. Then for every positive number x,

��Z ≥ Ɛ �Z� + x� ≤ K exp
[
− 1

K′
x

b
log

(
1+ xb

v

)]
(2)

and

��Z ≥ Ɛ �Z� + x� ≤ K exp
[
− x2

2�c1v+ c2bx	
]
�(3)

where K�K′� c1 and c2 are universal positive constants. Moreover, the same
inequalities hold when replacing Z by −Z.

Of course, inequality (3) easily derives from (2) but it has its own interest.
Theorem 1 can be viewed as a functional version of Bennett’s or Bernstein’s
inequalities for sums of independent and bounded real-valued random vari-
ables. These classical inequalities (see [2]) apply under the assumptions of
Theorem 1 when � is reduced to a single function. Bennett’s inequality
ensures that

��Z ≥ Ɛ �Z� + x� ≤ exp
[
− v

b2
h

(
bx

v

)]
�(4)

where h�u	 = �1+u	 log�1+u	−u for all positive u, which in particular implies,
since 2h�u	 ≥ u log�1 + u	, the following bound which is directly comparable
to (2):

��Z ≥ Ɛ �Z� + x� ≤ exp
[
− x

2b
log

(
1+ xb

v

)]

(5)

Bernstein’s inequality, which follows from Bennett’s inequality by noticing
that 2h�u	 ≥ u2�1+ u/3	−1, ensures that

��Z ≥ Ɛ �Z� + x� ≤ exp
[
− x2

2�v+ bx/3	
]

(6)
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By analogy to the Gaussian case, it is natural to raise the following question.

(Q) Do Talagrand’s inequalities (2) and (3) hold with the same constants as
in the one-dimensional case; that is K = 1�K′ = 2� c1 = 1 and c2 = 1/3?
Talagrand’s proof of Theorem 1 is rather intricate and does not lead to

very attractive values for the constants K�K′� c1 and c2. It is the merit of
Ledoux’s work in [16] to provide a much simpler approach leading to deviation
inequalities which are close to Theorem 1. There is therefore some hope that
the answer to question (Q) could be given or at least that this question could
be better understood. To be precise, it should be noticed that Ledoux failed to
recover exactly Theorem 1, in the sense that his statement (see Theorem 2.5
in [16]) is analogous to that of Theorem 1 but with v taken as

v = Ɛ

[
sup
f∈�

n∑
i=1

f2�ξi	
]
+CbƐ �Z��(7)

where C is an adequate constant (C = 4/21 works). Moreover, he did not pro-
vide an analogous inequality for −Z, which means that his inequality allows
analyzing the concentration of Z around its means only from one side. How-
ever, although he did not pretend to present optimized computations, Ledoux
could give sensible values for some of the constants involved in his probability
bounds. In particular he could show that, taking v as in (7), (3) holds with
K = 2� c1 = 42 and c2 = 8. Ledoux’s approach is based on entropy inequalities
for product measures which are obtained by iteration of logarithmic Sobolev
type inequalities. We first would like to recall why such an approach leads to
the optimal deviation inequality (1) in the Gaussian framework.

1.2. Logarithmic Sobolev inequalities. The connection between the con-
centration of measure phenomenon and logarithmic Sobolev inequalities is
known as Herbst’s argument was apparently pointed out for the first time
by Davies and Simon in [10] (for more details on this topic we refer to [15]).
Let us state Gross’s logarithmic Sobolev inequality (see [12]) for the standard
Gaussian measure on �N and then show how it implies (1).

Theorem 2 (Gross [12]). Let P be the standard Gaussian measure on the
Euclidean space �N and u be any continuously differentiable function on �N.
Then

EP

(
u2� log u2�)−EP

(
u2

)
logEP

(
u2

) ≤ 2EP

(
∇u
2)
(8)

If we now consider some Lipschitz functional ζ on the Euclidean space �N

with Lipschitz constant L and if we furthermore assume ζ to be continuously
differentiable, we have for all x in �N� 
∇ζ�x	
 ≤ L and given λ > 0, we can
apply (8) to u = eλζ/2. Since for all x in �N we have


∇u�x	
2 = λ2

4

∇ζ�x	
2eλζ�x	 ≤ λ2L2

4
eλζ�x	�
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we derive from (8) that

λEP

[
ζeλζ

]−EP

[
eλζ

]
logEP

[
eλζ

] ≤ λ2L2

2
EP

[
eλζ

]

(9)

This inequality holds for all positive λ and therefore yields the differential
inequality

1
λ

F′�λ	
F�λ	 − 1

λ2
logF�λ	 ≤ L2

2
�

where F�λ	 = EP

[
exp�λ�ζ − EP�ζ			

]
. Setting H�λ	 = λ−1 logF�λ	, we see

that the differential inequality simply becomes H′�λ	 ≤ L2/2, which in turn
implies since H�λ	 tends to 0 as λ tends to 0, H�λ	 ≤ λL2/2. Hence for any
positive λ,

EP

[
exp�λ�ζ −EP�ζ			

] ≤ exp(λ2L2

2

)

(10)

Using a regularization argument (by convolution), this inequality remains
valid when ζ is only assumed to be Lipschitz and (1) follows by Markov’s
inequality.
As compared to Talagrand’s approach, Ledoux’s method which is based on

entropy inequalities, naturally produces probability controls for the deviation
of a functional from its mean rather than its median as is the case for the
isoperimetric approach. Another advantage is that the proofs are much sim-
pler, mainly because the induction argument is contained in a single ten-
sorization inequality for entropy (see Proposition 7 below). As a counterpart,
as mentioned by Ledoux himself in [16], his approach does not clearly lead
to concentration inequalities but only to a deviation inequality on the right
tail. Fortunately, as quoted for the first time by Samson (see [19] and, more
precisely, the logarithmic Sobolev inequality for separately concave function-
als, inequality (1.20) therein) in his study of the concentration of a separately
convex functional around its mean, Ledoux’s method also applies to deriving
deviation inequalities on the left tail and therefore concentration inequali-
ties. Although it could be possible to use Samson’s new logarithmic Sobolev
inequality to derive the type of concentration inequalities that we have in view
here, we shall avoid it in order to get better constants.

1.3. Some new results and their motivations. This paper is largely inspired
by Ledoux’s work [16]. Our approach will consist of refining his entropy inequ-
alities in order to get sharper probability bounds. The main argument is
Lemma 8, which plays the same role in the derivation of our probability bounds
as Gross’s logarithmic Sobolev inequality in the Gaussian case. In particular,
we exactly recover Theorem 1 and show that (3) holds with K = 1� c1 = 8
and c2 = 2
5
 Of course we are far from providing a positive answer to ques-
tion (Q) but it is of some interest to show that the constants K�c1 and c2
are not ridiculously large. Indeed, it turns out that precise deviation inequal-
ities from the mean are very useful for some statistical applications and
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in particular for model selection in density estimation (see [3] and [4] and
also [1] for an application of (2) to model selection for regression on a fixed
design). In such cases one needs a more tractable formulation of (3), involving
supf∈� Ɛ

[∑n
i=1 f

2�ξi	� instead of Ɛ
[
supf∈�

∑n
i=1 f

2�ξi	�. The following theorem
provides such a result.

Theorem 3. Consider n independent random variables ξ1� 
 
 
 � ξn with val-
ues in some measurable space ���� 	. Let � be some countable family of real-
valued measurable functions on ���� 	, such that 
f
∞ ≤ b < ∞ for every
f ∈ � . Let Z denote either

sup
f∈�

∣∣∣∣∣ n∑
i=1

f�ξi	
∣∣∣∣∣ or sup

f∈�

∣∣∣∣∣ n∑
i=1

f�ξi	 −E�f�ξi	�
∣∣∣∣∣


Let σ2 = supf∈�
∑n

i=1 Var�f�ξi		, then, for any positive real numbers ε and x,

�
[
Z ≥ �1+ ε	Ɛ �Z� + σ

√
2κx+ κ�ε	bx] ≤ exp�−x	�(11)

where κ and κ�ε	 can be taken equal to κ = 4 and κ�ε	 = 2
5+32ε−1. Moreover,
one also has

�
[
Z ≤ �1− ε	Ɛ �Z� − σ

√
2κ′x− κ′�ε	bx] ≤ exp�−x	(12)

where κ′ = 5
4 and κ′�ε	 = 2
5+ 43
2ε−1

It appears that for the statistical application we have in mind (see [3] or [4]
for illustrations), the crucial point is to have a minimal value for κ. It would
also be of interest, although it is comparatively of minor importance, to get a
better value for κ�ε	. It seems to us that κ = 1 is a reasonable conjecture, but
unfortunately we were not able to prove it.
It is important to understand that concentration inequalities like those

stated in Theorem 1 or Theorem 3 immediately derive from corresponding
inequalities for random vector via the following device. Indeed, since one has
to deal with a class of functions � which is at most countable, one can always
write � as � = �ft� t ∈ �∗� and setting Xi� t = ft�ξi	 for all i ≤ n and all
t ∈ �∗, one has

sup
f∈�

n∑
i=1

f�ξi	 = lim
N

↑ sup
1≤t≤N

n∑
i=1

Xi� t

and

sup
f∈�

∣∣∣∣∣ n∑
i=1

f�ξi	
∣∣∣∣∣ = limN ↑ sup

1≤t≤N

∣∣∣∣∣ n∑
i=1

Xi� t

∣∣∣∣∣

Hence, by monotone convergence it is enough to prove concentration inequal-
ities for the independent �N-valued random vectors X1� 
 
 
 �Xn, provided
that these inequalities involve absolute constants (i.e., constants which do not
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depend on the dimensionN). To be more concrete, using this device, one read-
ily sees that Theorem 3 is a consequence of the following result to be proved in
Section 4 (and which therefore should be considered as a more general result
than Theorem 3).

Theorem 4. Let X1� 
 
 
 �Xn be independent random variables with values
in �−b� b�N for some positive number b. Let Z denote either

sup
1≤t≤N

∣∣∣∣∣ n∑
i=1

Xi� t

∣∣∣∣∣ or sup
1≤t≤N

∣∣∣∣∣ n∑
i=1

Xi� t − Ɛ
[
Xi� t

]∣∣∣∣∣
and σ2 = sup1≤t≤N

∑n
i=1 Var�Xi� t	. Then, for any positive real numbers ε and

x the following inequality holds:

�
[
Z ≥ �1+ ε	Ɛ �Z� + σ

√
2κx+ κ�ε	bx] ≤ exp�−x	�(13)

where κ and κ�ε	 can be taken equal to κ = 4 and κ�ε	 = 2
5+32ε−1. Moreover,
one also has

�
[
Z ≤ �1− ε	Ɛ�Z� − σ

√
2κ′x− κ′�ε	bx] ≤ exp�−x	�(14)

where κ′ = 5
4 and κ′�ε	 = 2
5+ 43
2ε−1.

So from now on, we shall focus on the heart of the problem, that is, the
derivation of concentration inequalities for random vectors rather than empir-
ical processes.
The paper is organized as follows. In Section 2 we present the main entropy

inequality (Lemma 8) and derive a functional Hoeffding-type deviation ineq-
uality as a first illustration. Section 3 is devoted to the proof of Talagrand’s
concentration inequalities with explicit constants in the probability bounds,
while the proof of Theorem 4 is given in Section 4.

2. Entropy and tensorization. The purpose of this section is to estab-
lish a simple but powerful entropy inequality. It is based on a tensorization
argument which, as quoted in [16], is at the heart of Ledoux’s approach and
has been already used by Gross to prove his logarithmic Sobolev inequality
for the standard Gaussian measure on a Euclidean space. Before introducing
this argument, let us recall some well-known facts on entropy.

Definition 5. Let " denote the function defined on �+ by "�u	 = u log u.
Let �#�� 	 be some measurable space. For any nonnegative measurable func-
tion g on �#�� 	 and any probability measure P such that g is P-integrable,
we define the entropy of g with respect to P by

HP�g	 = EP�"�g	� −"�EP�g	�


Note that since " is bounded from below by −e−1 one can always give a
sense to EP�"�g	� even if "�g	 is not P-integrable and HP�g	 < ∞ if and
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only if "�g	 is P-integrable. Moreover, since " is a convex function, Jensen’s
inequality warrants that entropy is a nonnegative quantity. A classical alter-
native definition of entropy (see [14]) which derives from an elementary com-
putation will be helpful.

Proposition 6. Let �#�� �P	 be some probability space. For any nonneg-
ative measurable function g on �#�� 	 such that "�g	 is P-integrable, the
following identity holds:

HP�g	 = inf
u>0

EP�g�logg − log u	 − �g − u	�
(15)

HP is actually a convex functional. As pointed out by Bobkov in [5], this is
a key property for deriving the following tensorization inequality for entropy
(see [5] or [16] for a proof ).

Proposition 7. Let �#i��i� µi	1≤i≤n be probability spaces. We consider the
product probability space

�#�� �P	 =
( n∏

i=1
#i�

n⊗
i=1

�i�
n⊗

i=1
µi

)
�

and some nonnegative measurable function g on �#�� 	 such that "�g	 is
integrable with respect to P. Given x ∈ # and 1 ≤ i ≤ n, we denote by gi�x the

function defined on #i by gi�x�y	 = g�xi	, where xi
j = xj for any j �= i and

xi
i = y. Then

HP�g	 ≤
n∑

i=1

∫
#
Hµi

�gi�x	dP�x	
(16)

We are now in position to prove the entropy inequality for functionals on a
product probability space which is at the center of the present paper.

2.1. Functionals of independent random variables. It is worth mentioning
that a similar inequality is already present in [16] although not explicitly
stated.

Lemma 8. Let �#1��1	� 
 
 
 � �#n��n	 be some measurable spaces and
X1� 
 
 
 �Xn be independent random variables with values in #1� 
 
 
 �
#n, respectively. Let ζ be some real-valued measurable function on �#�� 	 =
�∏n

i=1×#i�⊗n
i=1�i	 and Z = ζ�X1� 
 
 
 �Xn	. Given some independent random

variables X′
1� 
 
 
 �X

′
n with values in #1� 
 
 
 � #n and independent of X1� 
 
 
 �

Xn, let for all 1 ≤ i ≤ n, Z∨i denote the random variable ζ�Xi
1� 
 
 
 �X

i
n	

where Xi
k = Xk, for k �= i and Xi

i = X′
i. Let for any real number z, φ�z	 =

exp�z	 − z − 1 and ψ�z	 = z�exp�z	 − 1	. If the Laplace transform λ → Ɛ�eλZ�
is finite on some nonempty open interval I then, for any λ ∈ I,

λƐ
[
ZeλZ

]− Ɛ
[
eλZ

]
log Ɛ

[
eλZ

] ≤ n∑
i=1

Ɛ
[
eλZφ

(−λ�Z−Z∨i	)]
(17)
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If, moreover �X′
1� 
 
 
 �X

′
n	 has the same distribution as �X1� 
 
 
 �Xn	, then one

also has for any λ ∈ I,

λƐ
[
ZeλZ

]− Ɛ
[
eλZ

]
log Ɛ

[
eλZ

] ≤ n∑
i=1

Ɛ
[
eλZψ

(−λ�Z−Z∨i	)�Z−Z∨i≥0
]

(18)

Proof. The main arguments of the proof are borrowed from [16]. The
first step consists in using the tensorization inequality (16) that we write
in a slightly different and somehow more probabilistic language. Let X =
�X1� 
 
 
 �Xn	, X′ = �X′

1� 
 
 
 �X
′
n	 and g be some nonnegative function on #

such that G = g�X	 satisfies to Ɛ�G� logG�� < ∞. For any 1 ≤ i ≤ n, let Ɛ∨i

denote the expectation operator conditionally to the σ-field �i generated by
the variables �Xk�1 ≤ k ≤ n�\�Xi�. Then, recalling that "�u	 = u log u,

Ɛ�"�G	� −"�Ɛ�G�	 ≤ Ɛ

[ n∑
i=1

Ɛ∨i�"�G	� −"
(
Ɛ∨i�G�)]
(19)

The second step consists of using the variational definition of entropy (15).
Namely, given 1 ≤ i ≤ n,

Ɛ∨i�"�G	� −"
(
Ɛ∨i�G�) = inf

u
Ɛ∨i�G�logG− log u	 − �G− u	]�

where the infimum in the identity above is extended to all nonnegative mea-
surable functions u of �Xk�1 ≤ k ≤ n�\�Xi�. Therefore, given ω ∈ # and
choosing u = g�Xi

1�ω	� 
 
 
 �Xi
n�ω		 whereXi

k�ω	 = Xk, for k �= i andXi
i�ω	 =

ωi, we get

Ɛ∨i�"�G	� −"
(
Ɛ∨i�G�) ≤ Ɛ∨i�G�logG− log u	 − �G− u	�


Applying the above inequality to the variable G = eλZ, with λ ∈ I and inte-
grating with respect to ω according to the distribution ofX′ we get by Fubini’s
theorem,

Ɛ∨i�"�G	� −"
(
Ɛ∨i�G�) ≤ Ɛ∨i

[
eλZφ�−λ�Z−Z∨i		]


Combining this inequality with (19) leads to

λƐ
[
ZeλZ

]− Ɛ
[
eλZ

]
log Ɛ

[
eλZ

] ≤ Ɛ

[ n∑
i=1

Ɛ∨i
[
eλZφ

(−λ�Z−Z∨i	)]]�(20)

which of course implies inequality (17). Moreover, for all i ≤ n we can write

eλZφ
(−λ�Z−Z∨i	) = eλZφ

(
λ�Z∨i −Z	)�Z∨i−Z≥0

+ eλZφ
(−λ�Z−Z∨i	)�Z−Z∨i≥0


However, if �X′
1� 
 
 
 �X

′
n	 has the same distribution as �X1� 
 
 
 �Xn	, then,

conditionally to �i�Z and Z∨i are independent and have the same distribu-
tion; hence

Ɛ∨i
[
eλZφ

(
λ�Z∨i −Z	)�Z∨i−Z≥0

] = Ɛ∨i
[
eλZ∨i

φ
(
λ�Z−Z∨i	)�Z−Z∨i≥0

]
�
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that we can also write

Ɛ∨i
[
eλZφ

(
λ�Z∨i −Z	)�Z∨i−Z≥0

]
= Ɛ∨i

[
eλZ exp

(−λ�Z−Z∨i	)φ(
λ�Z−Z∨i	)�Z−Z∨i≥0

]
and therefore, since for any x ∈ �, ψ�x	 = exφ�−x	 +φ�x	,

Ɛ∨i
[
eλZφ

(−λ�Z−Z∨i	)] = Ɛ∨i
[
eλZψ

(−λ�Z−Z∨i	)�Z−Z∨i≥0
]



Combining these identities with inequality (20) readily implies (18) and
achieves the proof of the Lemma. ✷

Let us develop a first example illustrating the power of Lemma 8.

2.2. A functional Hoeffding type inequality. The following result general-
izes on Ledoux’s inequality (1.9) in [16].

Theorem 9. Let X1� 
 
 
 �Xn be independent random variables with values
in �N. We assume that for some real numbers ai� t and bi� t such that ai� t ≤
Xi� t ≤ bi� t, for all i ≤ n and all t ≤ N. Let

Z = sup
1≤t≤N

n∑
i=1

Xi� t

and define L2 = sup1≤t≤N

∑n
i=1�bi� t − ai� t	2. Then, for any positive x,

��Z ≥ Ɛ�Z� + x� ≤ exp
(
− x2

2L2

)

(21)

Proof. We apply Lemma 8 with X′ = a, so that inequality (17) holds. Let
τ be defined as

τ = min
{
k ≤ N: max

1≤t≤N

n∑
i=1

Xi� t =
n∑

i=1
Xi�k

}
if Z = max

1≤t≤N

n∑
i=1

Xi� t


Then for any 1 ≤ i ≤ n, one has

0 ≤ Z−Z∨i ≤ Xi�τ − ai� τ ≤ bi� τ − ai� τ


Now the function u → φ�u	/u2 is nondecreasing on �, hence φ�u	 ≤ u2/2 for
u ≤ 0. Therefore, for every λ > 0, we derive that

n∑
i=1

Ɛ
[
eλZφ

(−λ�Z−Z∨i	)] ≤ n∑
i=1

λ2

2
Ɛ
[�bi� τ − ai� τ	2eλZ

]
�

which yields via inequality (17),

λƐ
[
ZeλZ

]− Ɛ
[
eλZ

]
log Ɛ

[
eλZ

] ≤ λ2L2

2
Ɛ
[
eλZ

]

(22)
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This differential inequality has the same structure as (9) so that we can derive
exactly as in the Gaussian case that, for any λ ≥ 0,

Ɛ
[
exp�λ�Z− Ɛ�Z�		] ≤ exp(λ2L2

2

)
and the result follows by Markov’s inequality. ✷

Let us make some comments about Theorem 9.

Remark 1. (i) This result in particular applies to the situation where the
variables ξi’s are valued in �−1�1�, �αi� t�1 ≤ t ≤ N� 1 ≤ i ≤ n� is a family of
real numbers and Xi� t = αi� tξi for all t ≤ N and all i ≤ n. Then the random
variable

Z = sup
1≤t≤N

n∑
i=1

αi� tξi

obeys the deviation inequality

��Z ≥ Ɛ�Z� + x� ≤ exp
(
− x2

8σ2

)
�

for any positive x, where σ2 = sup1≤t≤N�∑n
i=1 α

2
i� t	. We then recover Ledoux’s

inequality (1.9) in [16].
(ii) The classical Hoeffding inequality (see [13]) ensures that under the

assumptions of Theorem 9, when N = 1, then the variable Z = ∑n
i=1Xi

satisfies

��Z ≥ Ɛ�Z� + x� ≤ exp
(
−2x

2

L2

)
(23)

for every positive x. When we compare it to inequality (23), we see that a
factor 4 is lost in the exponent of the upper bound in (21). Whether inequal-
ity (23) holds in the general framework covered by Theorem 9 remains an
open problem.
We pass now to the main issue of the paper which consists in providing a

rather elementary proof of Theorem 1 with explicit values for the constants
in the probability bounds.

3. Talagrand’s concentration inequalities. As announced, the method
of proof that we present follows closely the approach proposed by Ledoux in
[16] but we add some new calculations with respect to Ledoux’s work in order
to get better constants in the probability bounds. We shall use the fundamental
entropy lemma (Lemma 8) twice. The first step consists in applying Lemma 8
to nonnegative variables.
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3.1. Nonnegative variables. It might seem useless to build deviation ineq-
ualities for sums of nonnegative random variables when the target is to deal
with centered random variables. However, the behavior of the supremum of
sums of centered random variables will turn out to depend heavily on that of
the associated sums of the squared variables. This is indeed the main moti-
vation for the following Poissonian bound (see also [7] for extensions of this
result to some other nonnegative functionals of independent variables with
applications to random combinatorics).

Theorem 10. Let X1� 
 
 
 �Xn be independent random variables with val-
ues in �0�1�N. We consider Z = sup1≤t≤N

∑n
i=1Xi� t and define the function h

as h�u	 = �1 + u	 log�1 + u	 − u, for u ≥ 0. Then, for every positive λ, setting
φ�λ	 = exp�λ	 − λ− 1,

log Ɛ
[
exp�λ�Z− Ɛ�Z�		] ≤ vφ�λ	�(24)

which implies that for any positive number x,

��Z ≥ Ɛ�Z� + x� ≤ exp
[
−Ɛ�Z�h

(
x

Ɛ�Z�
)]


(25)

Proof. We apply Lemma 8 withX′
i = 0 for all i ≤ n so that inequality (17)

holds for any positive λ. Now, defining

τ = min
{
k ≤ N max

1≤t≤N

n∑
i=1

Xi� t =
n∑

i=1
Xi�k

}
�

we have for any 1 ≤ i ≤ n,

0 ≤ Z−Z∨i ≤ Xi�τ ≤ 1
(26)

Since the function φ is convex, for any positive λ and any u ∈ �0�1�φ�−λu	 ≤
uφ�−λ	, it follows from (17) and (26) that for any positive λ,

λƐ
[
ZeλZ

]− Ɛ
[
eλZ

]
log Ɛ

[
eλZ

] ≤ Ɛ

[
φ�−λ	eλZ

n∑
i=1

Xi�τ

]
≤ φ�−λ	Ɛ[ZeλZ

]



If we introduce Z̃ = Z − Ɛ�Z�, then F�λ	 = Ɛ�eλZ̃� for any positive λ and
setting v = Ɛ�Z�, the preceding inequality becomes

�λ−φ�−λ	�F
′�λ	

F�λ	 − logF�λ	 ≤ vφ�−λ	�(27)

which in turn implies

�1− e−λ	3′�λ	 −3�λ	 ≤ vφ�λ	 with 3�λ	 = logF�λ	
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Now observe that the function30 = vφ is a solution of the ordinary differential
equation �1 − e−λ	3′�λ	 − 3�λ	 = vφ�−λ	. We want to show that 3 ≤ 30. In
fact, if 31 = 3−30, then

�1− e−λ	3′
1�λ	 −31�λ	 ≤ 0
(28)

Hence, defining f�λ	 = log�eλ − 1	 and g�λ	 = e−f�λ	31�λ	, we have
�1− e−λ	�f′�λ	g�λ	 + g′�λ	� − g�λ	 ≤ 0�

which means since f′�λ	�1 − e−λ	 = 1, that g′ is nonpositive and there-
fore that g is nonincreasing on �0�∞	. Now, since Z̃ is centered, 3′

1�0	 = 0.
Using the fact that λe−f�λ	 tends to 1 as λ goes to 0, we conclude that g�λ	
tends to 0 as λ goes to 0. This shows that g is nonpositive; therefore 3 ≤ 30
and inequality (24) is proved. This readily implies (25) by Markov’s inequality.
Indeed,

��Z− Ɛ�Z� ≥ x� ≤ exp
[
− sup

λ>0
�xλ− vφ�λ		

]
and we use the easy-to-check (and well-known) relation supλ>0 �xλ−vφ�λ	� =
vh�x/v	. ✷

Let us comment on this result.

Remark 2. (i) Theorem 10 provides a more explicit version of one of
Ledoux’s inequalities (see precisely Theorem 2.4 in [16]), which ensures that

��Z ≥ Ɛ�Z� + x� ≤ exp
[
−ηx log

(
1+ x

Ɛ�Z�
)]

�

where η is some numerical constant. As a matter of fact, since h�u	 ≥ �u/2	×
log�1 + u	 for any positive u, inequality (25) ensures that η can be taken as
1/2 in Ledoux’s inequality.
(ii) It is important to notice that inequality (25) is in some sense unimprov-

able. Indeed, let us consider the situation where N = 1 and X1� 
 
 
 �Xn are
independent Bernoulli trials with probability of success p = 1 − q. Then the
classical Bennett inequality [see inequality (4)] ensures that, setting

��Z ≥ Ɛ�Z� + x� ≤ exp
[
−npqh

( x

npq

)]
and since npq ≤ Ɛ�Z�, one gets

��Z ≥ Ɛ�Z� + x� ≤ exp
[
−Ɛ�Z�h

( x

Ɛ�Z�
)]

�

which is exactly (25). Given θ > 0, taking p = θ/n and setting x = θε, this
inequality can be written as

��Z ≥ θ + θε� ≤ exp�−θh�ε	� for any positive ε
(29)
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ButZ follows the binomial distribution	�n� θ/n	 and therefore follows asymp-
totically the Poisson distribution with parameter θ as n goes to infinity. More-
over the right-hand side of (29) is known to be the Cramér–Chernoff deviation
upper bound for a Poisson random variable with parameter θ. This implies
that the exponent in this upper bound cannot be improved since Cramér’s
large deviation asymptotic ensures that for any positive ε,

lim inf
θ→∞

lim
n→∞

1
θ
log��Z ≥ θ + θε� ≥ −h�ε	


Applying Lemma 8 again together with Theorem 10 it is possible to prove
concentration inequalities for sums of bounded (and possibly centered) random
vectors.

3.2. Explicit constants in Talagrand’s inequalities. We shall need the fol-
lowing technical result which might be of independent interest.

Lemma 11. Let V and Y be some random variables, some probability space
�#�� �
 	 and λ > 0 such that eλV and eλY are P-integrable. Then, one has

λƐ�VeλY�
Ɛ�eλY� ≤ λƐ�YeλY�

Ɛ�eλY� + log Ɛ�eλV� − log Ɛ�eλY�
(30)

Proof. Let Q be the probability distribution defined by

dQ = eλY

Ɛ�eλY�dP�

then by Jensen’s inequality,

λƐQ�V−Y� ≤ log ƐQ

[
eλ�V−Y	]�

which is exactly equivalent to (30). ✷

We begin by proving functional Bernstein-type inequalities.

Theorem 12. Let X1� 
 
 
 �Xn be independent random variables with val-
ues in �−b� b�N for some positive number b. Let Z denote either

sup
1≤t≤N

n∑
i=1

Xi� t or sup
1≤t≤N

∣∣∣∣ n∑
i=1

Xi� t

∣∣∣∣

Let �X′

1� 
 
 
 �X
′
n	 be independent from �X1� 
 
 
 �Xn	 and have the same distri-

bution as �X1� 
 
 
 �Xn	. Setting

v = Ɛ

[ ∑
1≤t≤N

n∑
i=1

(
Xi� t −X′

i� t

)2]
�

we get for any positive number x,

��Z ≥ Ɛ�Z� + 2√vx+ 2cbx� ≤ exp�−x	(31)
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and

��Z ≥ Ɛ�Z� + x� ≤ exp
(
− x2

4�v+ cbx	
)

(32)

where the constant c can be taken equal to 5/4. Moreover, setting c′ = 7/4 and
γ = √

c′�exp�1/c′	 − 1	, one also has
��Z ≤ Ɛ�Z� − 2γ√vx− 2c′bx� ≤ exp�−x	(33)

and

��Z ≤ Ɛ�Z� − x� ≤ exp
(
− x2

4�vγ2 + c′bx	
)

(34)

(Note that γ2 < 1
35).

Proof. By homogeneity we can take b = 1/2. Let τ be defined either as

τ = min
{
k ≤ N: max

1≤t≤N

n∑
i=1

Xi� t =
n∑

i=1
Xi�k

}
if Z = max

1≤t≤N

n∑
i=1

Xi� t

or as

τ = min
{
k ≤ N: max

1≤t≤N

∣∣∣∣ n∑
i=1

Xi� t

∣∣∣∣ =
∣∣∣∣ n∑
i=1

Xi�k

∣∣∣∣} if Z = max
1≤t≤N

∣∣∣∣ n∑
i=1

Xi� t

∣∣∣∣

We apply Lemma 8. Then inequality (18) holds for any λ ∈ � and we therefore
have to control

n∑
i=1

Ɛ
[
eλZψ

(− λ�Z−Z∨i	)�Z−Z∨i≥0
]

for any λ ∈ �, where we recall that ψ�x	 = x�ex − 1	. To do so, it is useful to
note the following crucial, though elementary, property of the function ψ:

the function x → x−2ψ�x	 is increasing on �(35)

(taking the value of this function at point 0 as 1).
Let us now first focus on the proof of the deviation inequalities (31) and (32)

and assume that λ > 0. We observe that property (35) implies that ψ�−u	 ≤ u2

for any u ≥ 0 and since for any 1 ≤ i ≤ n�Z − Z∨i ≤ �Xi�τ − X′
i� τ�, we derive

that

ψ�−λ�Z−Z∨i		�Z−Z∨i≥0 ≤ λ2
(
Xi�τ −X′

i� τ

)2
�

which leads via (18) to

λƐ�ZeλZ� − Ɛ�eλZ� log Ɛ�eλZ� ≤ λ2
n∑

i=1
Ɛ
[
eλZ

(
Xi�τ −X′

i� τ

)2]



This implies that, for any λ > 0,

λƐ�ZeλZ� − Ɛ�eλZ� log Ɛ�eλZ� ≤ λ2Ɛ�VeλZ��(36)
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with V = sup1≤t≤N

∑n
i=1

(
Xi� t −X′

i� t

)2. Setting Z̃ = Z− Ɛ�Z�, inequality (36)
becomes

λƐ
[
Z̃eλZ̃

]
Ɛ
[
eλZ̃

] − log Ɛ[eλZ̃
] ≤ λ2

Ɛ
[
VeλZ̃

]
Ɛ
[
eλZ̃

] 


We now have to control the quantity Ɛ�VeλZ̃�. To do so we use Lemma 11 and
get

λƐ
[
VeλZ̃

]
Ɛ
[
eλZ̃

] ≤ λƐ
[
Z̃eλZ̃

]
Ɛ
[
eλZ̃

] + log Ɛ[eλV
]− log Ɛ[eλZ̃

]



Hence

λ�1− λ	Ɛ
[
Z̃eλZ̃

]
Ɛ
[
eλZ̃

] − �1− λ	 log Ɛ[eλZ̃
] ≤ λ log Ɛ

[
eλV

]
and setting, for any positive λ�F�λ	 = Ɛ�eλZ̃�, this inequality means that for
any 0 < λ < 1,

λ−1F
′�λ	

F�λ	 − λ−2 logF�λ	 ≤ log Ɛ
[
eλV

]
λ�1− λ	 


Integrating this inequality (taking into account that λ−1 logF�λ	 tends to 0
as λ goes to 0) yields to

λ−1 logF�λ	 ≤
∫ λ

0

log Ɛ
[
euV

]
u�1− u	 du ≤ �1− λ	−1

∫ λ

0

log Ɛ
[
euV

]
u

du
(37)

Now recalling that b = 1/2, the results of Theorem 10 apply toV. In particular
we derive from (24) that, setting v = Ɛ�V�, one has log Ɛ�euV� ≤ vu + vφ�u	
which implies via (37) that

�1− λ	 logF�λ	 ≤ λ2v

[
1+ 1

λ

∫ λ

0

φ�u	
u

du

]

(38)

Let us now check that

B�λ	 =
[
1+ 1

λ

∫ λ

0

φ�u	
u

du

]
≤ �1− λ	�1− cλ	−1 = C�λ	

for any 0 < λ ≤ c−1. Expanding φ in power series easily yields the following
expansion for B:B�λ	 = ∑∞

k=0 bkλ
k, with b0 = 1 and

bk = 1
�k+ 1	�k+ 1	! for k ≥ 1


Moreover, the power series expansion of C can be written as C�λ	 = ∑∞
k=0 ckλ

k,
with c0 = 1 and for k ≥ 1� ck = ck�1 − c−1	. We note that b0 = c0 and that c
can be chosen in a way that b1 = c1, that is c = 5/4. This is in fact enough to
imply that bk ≤ ck for any k ≥ 1 because �bk	k≥1 is a nonincreasing sequence
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while �ck	k≥1 is nondecreasing. Therefore B�λ	 ≤ C�λ	 for any 0 < λ ≤ c−1

which implies by (38) that

logF�λ	 ≤ 2λ2v
2�1− cλ	 


Such a control for the Laplace transform of Z̃ = Z−Ɛ�Z� yields via Chernoff ’s
inequality,

��Z− Ɛ�Z� ≥ z� ≤ exp
[
− sup
0<λ<c−1

(
zλ− 2λ2v

2�1− cλ	
)]

�

for any positive z, with

sup
0<λ<c−1

(
zλ− 2λ2v

2�1− cλ	
)
= 2v

c2
h1

(
cz

2v

)
�

where h1�u	 = 1+ u−√
1+ 2u for u > 0. So we get

��Z− Ɛ�Z� ≥ z� ≤ exp
[
− 2v

c2
h1

(
cz

2v

)]

(39)

Now it is easy to check that on the one hand the inverse function of h1 is equal
to h−1

1 �u	 = u+√
2u for u > 0 and on the other hand 2h1�u	 ≥ u2/�1+ u	 for

u > 0. This immediately leads to (31) and (32) via (39). As for the deviation
inequality on the left tail, the preceding proof for the right tail needs to be
slightly modified. We use inequality (18) again (changing λ into −λ) and get
for any λ ≥ 0,

λƐ�−Ze−λZ� − Ɛ�e−λZ� log Ɛ�e−λZ� ≤ Ɛ

[
e−λZ

n∑
i=1

ψ
(
λ�Z−Z∨i	)�Z−Z∨i≥0

]



Recalling again that b = 1/2, we observe that Z−Z∨i ≤ �Xi�τ −X′
i� τ� ≤ 1 and

using the monotonicity property (35), we get for all 0 ≤ λ < c′−1,

ψ
(
λ�Z−Z∨i

)
�Z−Z∨i≥0 ≤ c′2ψ�c′−1	λ2(Xi�τ −X′

i� τ

)2



Hence, noting that γ = c′
√

ψ�c′−1	,

λƐ�−Ze−λZ� − Ɛ�e−λZ� log Ɛ�e−λZ� ≤ γ2λ2Ɛ

[
e−λZ

n∑
i=1

(
Xi�τ −X′

i� τ

)2]
and therefore

λƐ�−Ze−λZ� − Ɛ�e−λZ� log Ɛ�e−λZ� ≤ γ2λ2Ɛ�e−λZV� for 0 ≤ λ < c′−1


This inequality is the analogue to (36) apart from the extra factor γ2. We can
therefore use the previous computations to derive the following control on the
Laplace transform F of Z̃ = −Z+ Ɛ�Z� [which is the analogue of (37)]:

�1− γ2λ	 logF�λ	 ≤ γ2λ2v

[
1+ 1

λ

∫ λ

0

φ�u	
u

du

]

(40)
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Expanding in power series as before, we derive from (40) that

logF�λ	 ≤ 2λ2vγ2

2�1− c′λ	 for any 0 ≤ λ < c′−1

provided that c′ satisfies to the condition c′ − γ2 = c′ − c′2ψ�c′−1	 ≥ 1/4, which
actually holds true whenever c′ = 7/4. So we get, using the same arguments
as in the proof of the deviation inequality for the right tail,

��−Z+ Ɛ�Z� ≥ z� ≤ exp
[
− 2vγ2

c′2
h1

(
c′z
2vγ2

)]
�

which finishes the proof since the inverse function of h1 is equal to h−1
1 �u	 =

u+√
2u for u > 0 and 2h1�u	 ≥ u2/�1+ u	 for u > 0.

It is quite easy to derive Talagrand’s deviation inequalities (3) and (2) from
Theorem 10 and Theorem 12.

Corollary 13. Let X1� 
 
 
 �Xn be independent random variables with val-
ues in �−b� b�N, for some positive number b. Let Z denote either

sup
1≤t≤N

n∑
i=1

Xi� t or sup
1≤t≤N

∣∣∣∣ n∑
i=1

Xi� t

∣∣∣∣

Setting v = Ɛ

[
sup1≤t≤N

∑n
i=1X

2
i� t

]
, one has

��Z ≥ Ɛ�Z� + x� ≤ exp
[
− x2

4�4v+ cbx	
]

for x > 0(41)

and

��Z ≥ Ɛ�Z� + x� ≤ 2 exp
[
− η

x

b
log

(
1+ η

bx

v

)]
for x > 0�(42)

where c and η are numerical constants. In fact, one can take c = 5/4 and η =
�4�2+√

c	�−1 > 2/25. Moreover, setting c′ = 7/4� γ2 = c′�exp�1/c′	 − 1	 < 1
35
and η′ = �4�2+√

c′	�−1 > 1/14, one also has

��Z ≤ Ɛ�Z� − x� ≤ exp
[
− x2

4�4γ2v+ c′bx	
]

for x > 0(43)

and

��Z ≤ Ɛ�Z� − x� ≤ 2 exp
[
− η′x

b
log

(
1+ η′ bx

γ2v

)]
for x > 0
(44)

Proof. The proof of inequalities (41) or (43) is immediate. We simply start
from Theorem 12, write

Ɛ

[
sup
1≤t≤N

n∑
i=1

(
Xi� t −X′

i� t

)2] ≤ 4Ɛ
[
sup
1≤t≤N

n∑
i=1

X2
i� t

]
and get the result. The proof of inequality (42) is more involved. By homo-
geneity we can take b = 1. We use the truncation argument introduced in [21]
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in the same way as in [16]. Let ρ� z and z′ be positive numbers to be chosen
later. We define Zρ as

sup
1≤t≤N

n∑
i=1

Xi� t��Xi� t�≤ρ or sup
1≤t≤N

∣∣∣∣ n∑
i=1

Xi� t��Xi� t�≤ρ

∣∣∣∣
and

W = sup
t∈T

n∑
i=1

�Xi� t���Xi� t�>ρ


Then by definition �Z−Zρ� ≤ W, hence Z ≤ Zρ+W and Ɛ�Z� ≥ Ɛ�Zρ�−Ɛ�W	.
Therefore,

��Z− Ɛ�Z� ≥ z+ z′ + 2Ɛ�W�� ≤ ��Zρ − Ɛ�Zρ� ≥ z� + ��W− Ɛ�W� ≥ z′�(45)

and applying Theorem 12 to Zρ and Theorem 10 to W, we get

��Zρ − Ɛ�Zρ� ≥ z� ≤ exp
[
− ηx log

(
1+ η

x

v

)]
(46)

by setting

z = 4
√

vηx log
(
1+ η

x

v

)
+ 2cρηx log

(
1+ η

x

v

)
and

��W− Ɛ�W� ≥ z′� ≤ exp
[
− Ɛ�W�h

(
z′

Ɛ�W�
)]




Recalling that h�u	 ≥ �u/2	 log�1+ u	 and noting that Ɛ�W� ≤ v/ρ, we derive
that

��W− Ɛ�W� ≥ z′� ≤ exp
[
− z′

2
log

(
1+ z′ρ

v

)]



Since log�1+ u	 ≥ �1/2	 log�1+ u2	, it becomes

��W− Ɛ�W� ≥ z′� ≤ exp
[
− z′

4
log

(
1+

(
z′ρ
v

)2)]
and

��W− Ɛ�W� ≥ z′� ≤ exp
[
− z′

4
log

(
1+ z′

4v

)]
if ρ ≥

√
v/4z′


Let us choose z′ = 4ηx and ρ = �√c log�1+ηx/v	�−1 then, since log�1+u	 ≤ √
u

and
√

c < 4 one has ρ ≥ √
v/4z′ which yields

��W− Ɛ�W� ≥ z′� ≤ exp
[
− ηx log

(
1+ η

x

v

)]

(47)

Collecting inequalities (45), (46) and (47) we get

��Z− Ɛ�Z� ≥ z+ z′ + 2Ɛ�W�� ≤ 2 exp
[
− ηx log

(
1+ η

x

v

)]
�



CONCENTRATION INEQUALITIES WITH CONSTANTS 881

so that the proof will be completed if we can show that z + z′ + 2Ɛ�W� ≤ x.
Recalling that Ɛ�W� ≤ v/ρ and replacing z� z′ and ρ by their values we get

z+ z′ + 2Ɛ�W� ≤ 4
√

vηx log
(
1+ η

x

v

)
+ 2√cηx+ 4ηx

+ 2v√c log
(
1+ η

x

v

)
�

which yields z + z′ + 2Ɛ�W� ≤ 4�2 +√
c	ηx, since log�1 + u	 ≤ u. This allows

the conclusion since our choice of η implies that 4�2+√
c	ηx = x. The proof of

inequality (44) can be performed exactly in the same way, using (33) instead
of (31) to bound Zρ. ✷

We can now compare Corollary 13 with Talagrand’s deviation inequalities
as stated in Theorem 1.

Remark 3. (i) The interesting feature of (41) as compared to (3) is that it
proposes sensible numerical values for the unknown constants K�c1 and c2,
namely, K = 1, c1 = 8 and c2 = 2
5. Moreover, at the price of enlarging c1 to
8γ2 < 11 and c2 to 3.5, we know from (43) that (3) also holds when replacing
Z by −Z.
(ii) We do not pretend anything about the optimality of these values which

just come out from our calculations, and the question (Q) in Section 1 remains
open.
(iii) Although we did not try to actually optimize the constants η and η′

involved in (42) we have done our best to preserve legibility while trying to
convince the reader that one can hope that Talagrand’s deviation inequality (2)
holds with reasonable constants.

4. A ready to be used inequality. In order to make the use of Theo-
rem 12 or Corollary 13 more convenient, it would be desirable to replace

Ɛ

[
sup
1≤t≤N

n∑
i=1

�Xi� t −X′
i� t	2

]
or Ɛ

[
sup
1≤t≤N

n∑
i=1

X2
i� t

]

by sup1≤t≤N Ɛ�∑n
i=1X

2
i� t�. This can be done at the price of additional technical-

ities related to classical symmetrization and contraction inequalities that we
recall below. For a proof of these inequalities we refer to the book by Ledoux
and Talagrand (see [17], Lemma 6.3 and Theorem 4.12 therein). We first recall
that a map θ� � → � is called a contraction if

�θ�u	 − θ�v	� ≤ �u− v� for all u� v ∈ �


Lemma 14. Let F� �+ → �+ be convex and increasing. Let Y1� 
 
 
 �Yn be
independent random variables with values in �N and let ε1� 
 
 
 � εn be indepen-
dent Rademacher variables such that �εi	1≤i≤n is independent from �Yi	1≤i≤n.
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Assume that, for all i ≤ n�Yi is almost surely bounded. If

Z = sup
1≤t≤N

∣∣∣∣ n∑
i=1

Yi� t − Ɛ�Yi� t�
∣∣∣∣ and Z̃ = sup

1≤t≤N

∣∣∣∣ n∑
i=1

εiYi� t

∣∣∣∣�
then

Ɛ
[
F
( 1
2Z̃

)] ≤ Ɛ�F�Z	�(48)

and

Ɛ�F�Z	� ≤ Ɛ
[
F
(
2Z̃

)]

(49)

If, moreover, θ is a contraction such that θ�0	 = 0, then

Ɛ

[
F

(
1
2 sup1≤t≤N

∣∣∣∣∑n
i=1 εiθ�Yi� t	

∣∣∣∣)] ≤ Ɛ
[
F
(
Z̃
)]

(50)

Combining these inequalities we get the corollary.

Corollary 15. Let Y1� 
 
 
 �Yn be independent random variables with val-
ues in �−1�1�N such that Ɛ�Yi� t� = 0 for all t ≤ N and i ≤ n. Then

Ɛ

[
sup
1≤t≤N

n∑
i=1

Y2
i� t

]
≤ sup
1≤t≤N

Ɛ

[ n∑
i=1

Y2
i� t

]
+ 16Ɛ

[
sup
1≤t≤N

∣∣∣∣ n∑
i=1

Yi� t

∣∣∣∣]
(51)

If, moreover, the distribution of Yi� t is symmetric around 0 for all i ≤ n and
all t ≤ N, then this inequality can be improved and one has

Ɛ

[
sup
1≤t≤N

n∑
i=1

Y2
i� t

]
≤ sup
1≤t≤N

Ɛ

[ n∑
i=1

Y2
i� t

]
+ 8Ɛ

[
sup
1≤t≤N

∣∣∣∣ n∑
i=1

Yi� t

∣∣∣∣]
(52)

Proof. By the symmetrization inequality (49) we can write

Ɛ

[
sup
1≤t≤N

∣∣∣∣ n∑
i=1

Y2
i� t − Ɛ�Y2

i� t�
∣∣∣∣] ≤ 2Ɛ

[
sup
1≤t≤N

∣∣∣∣ n∑
i=1

εiY
2
i� t

∣∣∣∣]

Now the function θ� � → � defined by θ�u	 = �u2 ∧ 1	/2 is a contraction and
we get from (50),

Ɛ

[
sup
1≤t≤N

∣∣∣∣ n∑
i=1

εiY
2
i� t

∣∣∣∣] ≤ 4Ɛ
[
sup
1≤t≤N

∣∣∣∣ n∑
i=1

εiY
2
i� t

∣∣∣∣]�
which leads to the result either by symmetry or via the symmetrization
inequality (48). ✷

Inequality (51) in Corollary 15 can obviously be used to bound v in inequal-
ity (42) while combining inequality (52) with Theorem 12 leads to Theorem 4
which is the easy-to-use inequality announced in Section 1.



CONCENTRATION INEQUALITIES WITH CONSTANTS 883

4.1. Proof of Theorem 4. By homogeneity, we can assume that b = 1/2.
Applying inequality (31) of Theorem 12 and Corollary 15 if we set for all i ≤ n
and t ≤ N,

Yi� t = Xi� t −X′
i� t�

we get by (52),

Ɛ

[
sup
1≤t≤N

n∑
i=1

Y2
i� t

]
≤ 2σ2 + 16Ɛ�Z�

and therefore

�
[
Z ≥ Ɛ�Z� + 2

√
x�2σ2 + 16Ɛ�Z�	 + cx

]
≤ exp�−x	


Now we note that√
x�2σ2 + 16Ɛ�Z�	 ≤ σ

√
2x+ 4

√
xƐ�Z� ≤ σ

√
2x+ ε

2
Ɛ�Z� + 8

ε
x

and (13) follows. The proof of (14) can be performed exactly in the same way,
starting from (33) instead of (31) which leads to

�
[
Z ≤ Ɛ�Z� − 2γ

√
x�2σ2 + 16Ɛ�Z�	 − c′x

]
≤ exp�−x	�

which, combined with√
x�2σ2 + 16Ɛ�Z�	 ≤ σ

√
2x+ 4

√
xƐ�Z� ≤ σ

√
2x+ ε

2γ
Ɛ�Z� + 8γ

ε
x�

yields (14) since γ2 < 1
35. ✷

As mentioned in the Introduction, it would be desirable to know whether
(13) holds with a better value for the constant κ than κ = 4. Unfortunately,
we could not answer this question. In particular, we do not know whether the
natural candidate κ = 1 works or not.
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