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ASYMPTOTIC DENSITY IN A COALESCING
RANDOM WALK MODEL

By J. van den Berg and Harry Kesten1

CWI and Cornell University

We consider a system of particles, each of which performs a continuous
time random walk on �d. The particles interact only at times when a parti-
cle jumps to a site at which there are a number of other particles present.
If there are j particles present, then the particle which just jumped is
removed from the system with probability pj. We show that if pj is in-
creasing in j and if the dimension d is at least 6 and if we start with one
particle at each site of �d, then p�t� �= P�there is at least one particle at
the origin at time t� ∼ C�d�/t. The constant C�d� is explicitly identified.
We think the result holds for every dimension d ≥ 3 and we briefly discuss
which steps in our proof need to be sharpened to weaken our assumption
d ≥ 6.

The proof is based on a justification of a certain mean field approxima-
tion for dp�t�/dt. The method seems applicable to many more models of
coalescing and annihilating particles.

1. Introduction. Annihilating and coalescing random walks were stud-
ied as simple interacting particle systems by Bramson and Griffeath (1980),
and Arratia (1981). They considered the following systems. Particles move ac-
cording to a continuous time random walk on �d. The particles only interact
when a particle at some site x jumps to a site y which already contains a
particle. At this time, the two particles annihilate each other and disappear
from the system, or they coalesce to only one particle at y, which contin-
ues with its random walk until it again coincides with another particle. The
former system is called annihilating random walk and the latter system is
called coalescing random walk. In this paper we shall call the above models
the basic models. These systems first arose as duals to the “antivoter model”
and the “voter model” and were used as tools to analyze the voter model [see
Holley and Liggett (1975), Harris (1976) and Liggett (1985), Section V.1 and
Examples III.4.16, 17]. Further motivation comes from models for chemical re-
actions. For chemical reactions one often considers particles of two types and
allows only particles of different types to annihilate each other (or to form an
inert compound). Such systems have received considerable attention in the
literature [see Bramson and Lebowitz (1991a, b), (1999) and Lee and Cardy
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(1995), (1997)]. Here we shall restrict ourselves to systems with particles of
one type only.
Usually one starts at time 0 with one particle at each site of �d, although

some results are valid for more general translation invariant initial states.
It is further common to let the particles move according to continuous time
simple random walk. That is, the particle jumps at the times of a rate 1 Poisson
process, and when it jumps from position x, then it jumps to any one of the 2d
neighbors of x with probability 1/�2d�. For this version of the model, Bramson
and Griffeath and Arratia found the asymptotic behavior of

p�t� �= P�0 is occupied at time t�


For the coalescing random walk in dimension d ≥ 3 one has [Bramson and
Griffeath (1980)]

p�t� ∼ 1
γdt

�(1.1)

where

γd = P
{
simple random walk on �d never returns

to the origin after first leaving it
}



For annihilating random walk in d ≥ 3, Arratia (1981) shows

p�t� ∼ 1
2γdt


(1.2)

These articles also find the asymptotic behavior of p�t� for d = 1 or 2, but we
shall only be concerned with d ≥ 3 here. In fact, the proof of our principal
result requires d ≥ 6. Bramson and Griffeath and Arratia base their proof
on an ingenious derivation by Sawyer (1979) of the limit distribution of the
number of particles in the voter model at time twhich have taken their opinion
from the same individual as the origin (the so-called patch size). Bramson and
Griffeath use the so-called duality between the basic coalescing random walk
and the voter model to deduce (1.1) from Sawyer’s result. It is not clear how
robust Sawyer’s derivation is. If one wants to consider small variations in
the interaction rules for the particles, then proving an analogue of (1.1) and
(1.2) via Sawyer’s methods seems very difficult [see also Remark (iv) after
the theorem]. On the other hand, there is an intuitively appealing, heuristic
derivation of (1.1) and (1.2), which will be shown below. The main purpose
of this paper is to turn those heuristic arguments into a rigorous and quite
robust proof. We first give this heuristic explanation.
It is not hard to see that the forward equation for p�t� is

d

dt
p�t� = −P�0 and e1 are occupied at time t�
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for the coalescing random walk, and

d

dt
p�t� = −2P�0 and e1 are occupied at time t�

for the annihilating random walk; here e1 denote the site �1�0� 
 
 
 �0�. For
brevity we only discuss the coalescing random walk. Now if 0 and e1 are
occupied at time t, then the particles at these two sites must have been at
some sites x and y, respectively, at the earlier time t−�, and the paths of the
particles from x to 0 and from y to e1 must not have coincided during 
t−�� t�.
One can expect that if � becomes large with t, then only the contributions
from pairs x�y far apart will play a role. Note that, in principle, there may be
several choices for x�y; we will have to choose � = o�t� in order to make the
probability of the existence of several choices for x�y negligible. When x and
y are far apart, particles which are at x and y at time t− � should not have
“felt each other” before time t − �. It therefore seems reasonable to believe
that in this case the events

�x is occupied at time t− �� and �y is occupied at time t− ��

are nearly independent, so that for � chosen properly as a function of t, the
dependence between

�0 is occupied at time t� and �e1 is occupied at time t�(1.3)

is almost entirely due to the requirement that the paths from x to 0 and
from y to e1 do not coincide during 
t− �� t�. Let �Ss�s≥0� �S′s�s≥0� �S′′s�s≥0 be
independent copies of a continuous time simple random walk starting at 0.
Then one is led to approximate

P�0 and e1 are occupied at time t�

by

∑
x�y

P�x is occupied at t− ��P�y is occupied at t− ��

×P{x+S′� = 0� y+S′′� = e1� x+S′s �= y+S′′s for 0 ≤ s ≤ �
}

= p2�t− ��∑
x�y

P
{
x+S′� = 0� y+S′′� = e1�

x+S′s �= y+S′′s for 0 ≤ s ≤ �
}



Let �S̃′s�s≥0 and �S̃′′s�s≥0 be independent copies of the time-reversed random
walk. For simple random walk these are again simple random walks, but in
general S̃′ satisfies for 0 = s0 < s1 < · · · < sl = �, and Borel sets Bi,

P�S̃′si − S̃′si−1 ∈ Bi�1 ≤ i ≤ l� = P�S�−si−1 −S�−si ∈ −Bi�1 ≤ i ≤ l�
(1.4)
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The same relation holds when S̃′ is replaced by S̃′′. By time reversal one then
has

P
{
x+S′� = 0� y+S′′� = e1� x+S′s �= y+S′′s for 0 ≤ s ≤ �

}
= P

{
S̃′� = x� e1 + S̃′′� = y� S̃′s �= e1 + S̃′′s for 0 ≤ s ≤ �

}



It is an exercise in random walk to show that the right-hand side here is well
approximated by

P�S̃′� = x�P�e1 + S̃′′� = y�P�S̃′s �= e1 + S̃′′s for 0 ≤ s ≤ ���
and of course, for large � and simple random walk,

P�S̃′s �= e1 + S̃′′s for 0 ≤ s ≤ �� ∼ P�S̃′s �= e1 + S̃′′s for s ≥ 0� = γd


We will explicitly estimate the errors in Lemmas 11–14, but for now we shall
just ignore them. This leads to

P�0 and e1 are occupied at time t�
≈ γd

∑
x

P�S̃′� = x�p�t− ��∑
y

P�e1 + S̃′′� = y�p�t− ��

= γd
∑
x

P�S′� = −x and x is occupied at t− ��

×∑
y

P�S′′� = e1 − y and y is occupied at t− ��

≈ γdP�0 is occupied at t�P�e1 is occupied at t� = γdp
2�t��

where A ≈ B means that A − B is negligible for our purposes. From these
relations we can expect p�t� to behave asymptotically like the solution of the
equation

d

dt
y�t� = −γdy2�t�

which vanishes at ∞, namely,

y�t� = 1
γdt


(1.5)

This is the heuristic reason for (1.1).
It is precisely these approximations which our paper makes rigorous. To

show the power of our method we treat the model in which the particles per-
form a continuous time random walk, but in which particles only coalesce with
a probability which may be less than 1. As far as we know this model has not
been analyzed before. Specifically, let �St�t≥0 be a continuous time random
walk starting at 0. We denote by q�y� the probability that S. has a jump of
size y when it jumps; thus,

q�0� = 0
(1.6)
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Throughout we assume that the random walk is genuinely d-dimensional,
that is,

the support of q�·� contains d linearly independent vectors.(1.7)

Assume that the motion of a particle starting at x is distributed like �x+St�,
independent of the motion of all other particles. However, if a particle jumps
to a site which already contains j particles, then it coalesces with one of these
j particles with a certain probability pj. For our purposes, it is simpler to
say that the particle which jumps is removed from the system, and (with the
exception of the proofs of Lemmas 9 and 14) we shall follow this convention.
(Of course there are other problems for which one wants to keep track of the
mass of particles. One then assumes that when two particles of masses m1
and m2 coalesce, they form a particle of mass m1+m2. However, we shall not
do this and only consider the number of particles at a site.)
Our principal result is the following theorem.

Theorem. Assume that

p0 = 0� p1 > 0(1.8)

and that

pj is increasing in j
(1.9)

Assume further that the particles perform continuous time random walks which
are distributed as translates of �St�� that (1.6) and (1.7) are satisfied and that

ESt = t
∑
y∈�d

yq�y� = 0 and
∑
y∈�d

�y�2q�y� <∞
(1.10)

Finally, assume d ≥ 6. Then in the above coalescing model there exists a ζ =
ζ�d� > 0 such that

p�t� − 1
C�d�t = O

(
1
t1+ζ

)
� t→∞�(1.11)

with

C�d� = p1

∞∑
m=0

�1− p1�m

×P{Sσ. returns exactly m times to 0 after first leaving it
}

= p1γ

1− �1− p1��1− γ�
�

(1.12)

where Sσ. is the difference of two independent copies of S., and γ is the proba-
bility that Sσ. never returns to the origin after first leaving it. Also

E
{
number of particles at 0 at time t

}− 1
C�d�t = O

(
1
t1+ζ

)
(1.13)
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and

P
{
there are at least 2 particles at 0 at time t

}
= O

(
1
t2

)
� t→∞


(1.14)

Remarks. (i) It is crucial for our theorem that (1.8) holds. If p0 > 0, then
p�t�will usually decrease exponentially in t. If p0 = p1 = 0, then p�t�will usu-
ally decrease like t−ρ for some ρ < 1. Models with p0 = p1 = 0 are presently
being investigated by D. M. Stephenson.

(ii) Although we think that the global structure of our proof is “what it
should be,” certain steps are not optimal and therefore our proof works only
when d ≥ 6. We believe that the conclusion of our theorem is valid for d ≥ 3.
This is known for the basic coalescing model with p0 = 0� pj = 1� j ≥ 1 [see
Bramson and Griffeath (1980)]. For the basic coalescing model our proof, too,
can be improved (and even shortened) to work for all d ≥ 3. If p0 = 0 < p1 ≤
p2 ≤ · · · ≤ pM = pM+j = 1 for some finite M and all j ≥ 1, then (with a lot
of extra work) (1.11) can still be proved for d ≥ 4. We hope to return to these
improvements in a separate paper; see also Remark (vii) in Section 3.
(iii) The heuristics above form a basic outline of our proof. The principal

technical tool to estimate the correlation between events such as in (1.3) is a
bound on the variance of ∑

x

β�x�ξt�x�

for suitable β�·�. This variance estimate is derived in Section 3 by what is
sometimes called the “method of bounded differences.”
(iv) We point out that we only consider the expected number of particles

at the origin at time t, or the probability that there is at least one such par-
ticle. We do not keep track of how many particles have coalesced to form the
particles at 0 at time t. More specifically, one can define the mass of a surviv-
ing particle by taking the mass of each particle at time 0 equal to 1, and by
taking the mass of a particle which arises when two particles of masses m1
and m2 coalesce equal to m1 +m2. IfM�t� denotes the total mass of the par-
ticles at 0 at time t, then the result of Sawyer (1979) for the basic coalescing
model is equivalent to an exponential limit law for p�t�M�t�, conditioned on
�M�t� > 0� = �0 is occupied at time t� (when d ≥ 2). For our more general
models we do not know how to prove such a conditional limit law for p�t�M�t�,
even though we believe that such a conditional limit theorem still holds. How-
ever, even if we could prove such a limit law, we do not see how to use the
method of Bramson and Griffeath (1980) to deduce the asymptotic behavior
of E�t� and p�t� from this. This is so because Bramson and Griffeath use the
Markov property for the dual model of the coalescing random walk (see their
Lemma 2). We do not know how to construct a useful dual to our more general
model. We therefore have not pursued limit laws for M�t�, even though this
is an interesting problem in its own right.
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Another related interesting problem is the spatial structure of the collection
of particles at time 0 which—through coalescence—end at the origin at time t.
For the basic model this is investigated by Bramson, Cox and LeGall (1998).

2. Description and construction of the Markov process. Before we
start any work we point out that there is no loss of generality in assuming
that

the group generated by the support of q�·� is all of �d .(2.1)

Spitzer (1976) calls a random walk with this property “aperiodic.” To see that
we may indeed take our random walk aperiodic, note that Proposition 7.1 of
Spitzer (1976) shows that [under (1.7)] there exist linearly independent vectors
v1� 
 
 
 � vd in �d such that the group generated by supp�q�·�� is precisely the
group G generated by v1� 
 
 
 � vd, that is G = �k1v1 + · · · + kdvd� ki ∈ ��. If a
random walk with jump probabilities q�·� starts at a point v0 ∈ �d then it will
stay in v0 +G forever. Thus, p�t� and E�t� = E�number of particles at 0 at
time t� are not influenced by any of the particles starting outside G. We may
therefore start with a particle at each site of G only. If we then express the
positions of all particles in the basis v1� 
 
 
 � vd, then in this new system (2.1)
holds.
Since in our system of random walks there can be arbitrarily many particles

at a given site, the standard existence theorems do not seem to cover the
present set-up. We therefore prove in this section that there exists a Markov
process which corresponds to the intuitive description given just before the
Theorem in Section 1. After Lemma 1 our arguments closely follow Liggett and
Spitzer (1981) or Liggett [(1985), Section IX.1]. A reader who is not worried
about existence questions can safely skip the material in this section after
Lemma 1.
Throughout the pj are fixed. For the mere construction of the Markov pro-

cess the monotonicity condition (1.9) is not needed. However, we do use (1.9)
to establish some desirable properties of our Markov process. On the initial
state and the random walks by which the particles move, we only put the
weak restriction that ξ0 ∈ % [see (2.10)] plus the dimension condition (1.7).
The state space of our Markov process will be a subset of

%0 �= �0�1� 
 
 
��d 

A generic point of %0 is denoted by ξ = �ξ�x�� x ∈ �d�. Here ξt denotes the
state of our system at time t. Its x-coordinate is denoted by ξt�x� or some-
times as ξ�x� t�; it represents the number of particles at position x at time
t. The most useful construction of the process for our purpose is essentially
one based on a graphical representation, as discussed in Griffeath (1979). Let
τ1�x� k� < τ2�x� k� < · · · be the jumptimes of a Poisson process ��t�x� k��t≥0
(with �0�x� k� = 0). Set τ0�x� k� = 0. We assume that

all processes � �x� k�� x ∈ �d� k ≥ 1� are independent
(2.2)
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Without the interaction, each particle would perform a continuous time ran-
dom walk which jumps at the times of a rate 1 Poisson process, and when it
jumps from position x, then it jumps to y with probability q�y−x� ≥ 0�q�0� =
0�

∑
z q�z� = 1�. We denote a random walk with these jump probabilities and

which starts at the origin by �St�t≥0.
We now attach to each jump time τn�x� k� of the Poisson process � �x� k� a

position y = yn�x� k� and a collection of random variablesX�n�x� k� j�, j ≥ 0.
The y here will specify the position to which a particle will jump from x [if
any particle will jump from x at time τn�x� k�]. X�n�x� k� j� takes the value
1 or 0, and specifies whether a particle which jumps from x at time τn�x� k�
is removed from the system or not. If there are j particles present at yn�x� k�
at time τn (that is, ξ�y� τn−� = j), then the particle which jumps from x to y
at τn is removed from the system if and only if X�n�x� k� j� = 1. We take our
sample paths right continuous, so if a particle is removed at τ, then it is not
counted in ξτ. We assume that

all yn�x� k� and X�n�x� k� ·� for different �n�x� k�
are independent of each other and of all Poisson processes


(2.3)

Further, for fixed �n�x� k�,
yn�x� k� and X�n�x� k� ·� are independent�(2.4)

but the X�n�x� k� j� for different j are coupled. We let U�n�x� k�� x ∈ �d� n,
k ≥ 1, be a family of uniform random variables on 
0�1� which are independent
of all y’s and of all Poisson processes � . We then define the joint distribution
of yn�x� k� and U�n�x� k� by

P
{
yn�x� k� = y�U�n�x� k� ≤ λ} = q�y− x�λ� 0 ≤ λ ≤ 1
(2.5)

Further,

X�n�x� k� j� = 1 if and only if U�n�x� k� ≤ pj
(2.6)

In particular,

P
{
X�n�x� k� j� = 1

} = pj
(2.7)

To make the description of our Markov process complete we have to tell when
particles jump. The intuitive description is that if there are l particles at x at
a certain time t, then the next jump from x occurs at the first jump of one of
the processes� �x� k� with 1 ≤ k ≤ l. If that jump is at time τn�x� k�, then the
particle jumps to y = yn�x� k� and is removed if and only if X�n�x� k� j� = 1,
where j = ξ�y� τn�x� k�−� is the number of particles at y at time τn�x� k�−.
If our initial state is a finite state, that is, a state with only finitely many

particles present, then there is no difficulty in formalizing the above descrip-
tion. Indeed if we start with n0 particles, then at all times there are at most
n0 particles present, and therefore with probability 1 the times at which any
of the existing particles jumps have no finite accumulation point. On the null
set on which there is an accumulation point we can give any value to ξt; for
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instance we can take ξt�x� = 0 for all x and t greater than or equal to the first
accumulation point of the jump times for the existing particles. We do not give
any further details but take it for granted that for any finite initial state, the
Markov process �ξt� is completely specified by the description in the preceding
paragraph. In fact, this gives us a definition of ξt as a function of the initial
state ξ0, all the τn�x� k�� yn�x� k� and theX�n�x� k� j�� x ∈ �d� n� k ≥ 1� j ≥ 0.
ξt is with probability 1 defined simultaneously for all finite initial states (note
that there are only countably many finite states). It will be necessary on occa-
sion to consider ξt for various initial states. If we have to indicate the initial
state explicitly we shall write ξt�η� for the process with initial state η. Of
course ξt�η� is also a function of the � � yn and the X’s, but we do not indi-
cate this in the notation. In accordance with this notation, Ef�ξt�η�� is the
expectation of f�ξt� over all the � � yn�X�n�x� k� j� when the initial state
ξ0 = η. For the time being this is only meaningful for a finite state η.
Extra work is needed to define the ξ-process when we allow infinitely many

particles in the system. To describe the state space when we allow infinitely
many particles, we introduce the norms

Nt�ξ� �=
∑
x∈�d

�ξ�x��αt�x�� t > 0�(2.8)

where

αt�x� = P�St = −x�(2.9)

(this makes sense for any ξ ∈ ��d ). We take as state space for our process the
space

% �= �ξ ∈ %0� Nt�ξ� <∞ for all t > 0�
(2.10)

For any η ∈ % we let η�N� be the finite state given by

η�N��x� = η�x�I
�x� ≤N�
(2.11)

For ξ0 ∈ % we can then form the process ξt�ξ�N�0 � (that is, we first truncate
ξ0 to a finite state and then construct the Markov process with the truncated
state as its initial state). We are going to show that the process with the initial
state ξ0 can be defined as ξt = limN→∞ ξt�ξ�N�0 �. The principal estimate used
to show that this makes sense is based on a comparison lemma of chains with
different finite initial states. Let ξ′0� ξ

′′
0 and ξ

#
0 be finite initial states which

satisfy

ξ′0�x� ≤ ξ#0�x� ≤ ξ′0�x� + ξ′′0�x� for all x
(2.12)

We now take �ξ′t� and �ξ#t � to be the processes �ξt�ξ′0�� and �ξt�ξ#0��, respec-
tively. We also introduce a process �ξ′′t �. This will not be the process �ξt�ξ′′0��,
but an equivalent process which is coupled with the ξ′-process and the ξ#-
process in such a way that

the ξ′-process and the ξ′′-process are independent
(2.13)
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The three processes are coupled in that they use the same� , yn andU�n� ·� ·�,
as we now specify. In order to describe the three processes together we keep
track of the system to which a particle belongs, so that we distinguish
#-particles, ′-particles and ′′-particles. However, we do not distinguish the
particles in a single system, so we really only keep track of the number of
particles of each type at each site. These numbers at x at time t are ξ′t�x�,
ξ′′t �x� and ξ#t �x�, respectively. If ξ′t�x� = l′, ξ′′t �x� = l′′ and ξ#t �x� = l#, then a
′-particle jumps from x at the next jump of any of � �x� k��1 ≤ k ≤ l′, and
a ′′-particle jumps at the next jump of any of � �x� k�� l′ < k ≤ l′ + l′′. Also
a #-particle jumps at the next jump of any of � �x� k��1 ≤ k ≤ l#. If a particle
jumps at time τn�x� k�, then it jumps to yn�x� k�. If it is a ′-particle, then it is
removed if and only ifX�n�x� k� ξ′τn−�yn�� = 1. The corresponding rules with ′′

and # instead of ′ hold for ′′-particles and #-particles. Note that a ′-particle and
a #-particle may jump at the same time. However, with probability 1 there are
no times at which both a ′-particle and a ′′-particle jump. Thus the ′-process
and the ′′-process never use the same yn�x� k� or U�n�x� k� and therefore are
independent as claimed in (2.13).

Lemma 1. Assume (1.9). If ξ′0, ξ
′′
0 and ξ#0 are finite states which satisfy (2.12),

then, under the above coupling, it holds with probability 1 that for all t ≥ 0,

ξ′t�x� ≤ ξ#t �x� ≤ ξ′t�x� + ξ′′t �x� for all x ∈ �d
(2.14)

The left-hand inequality remains valid even without (1.9).

Proof. We shall assume (1.9) and leave it to the reader to verify that this
is only needed when proving the right-hand inequality in (2.14).
Let s0 = 0 and define si� i ≥ 1, recursively as follows. First let x�i�1 �

x
�i�
2 � 
 
 
 � x

�i�
p�i� be the finitely many sites with

ξ′si�x� + ξ′′si�x� + ξ#si�x� > 0


Then define

si+1 = first jump time > si of any � �x� k�
with x ∈ {x�i�1 � x�i�2 � 
 
 
 � x�i�p�i�}� k ≤ ξ′si�x� + ξ′′si�x�


Now assume that the coupling is such that (2.14) holds for all t ≤ si for some
i. We shall prove that (2.14) also holds for t ≤ si+1. By our construction,
ξ′t�x�� ξ′′t �x� and ξ#t �x� are all constant for all x and si ≤ t < si+1. [Note that

ξ#t
(
x
�i�
r

) ≤ ξ′t(x�i�r )+ ξ′′t (x�i�r )
for t = si, so ξ#t

(
x
�i�
r

)
indeed does not jump for si < t < si+1.] If

si+1 = τn�i+1�
(
x
�i�
r � k�i+ 1�

)
�
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then some particle jumps at time si+1 from x
�i�
r to yn�i+1��x�i�r � k�i+1��, but for

x �= x
�i�
r � yn�i+1��x�i�r � k�i+1��, none of ξ′t�x�� ξ′′t �x�� ξ#t �x� change at t = si+1. In

order to prove (2.14) for t ≤ si+1, we therefore only have to, check that (2.14)
again holds right after the jump at t = si+1 for x = x

�i�
r and for x = yn�i+1�

�x�i�r � k�i+ 1�
)
. We distinguish three cases:

(a) 1 ≤ k�i+ 1� ≤ ξ′si�x
�i�
r �;

(b) ξ′si�x
�i�
r � < k�i+ 1� ≤ ξ#si�x

�i�
r �;

(c) ξ#si�x
�i�
r � < k�i+ 1� ≤ ξ′si�x

�i�
r � + ξ′′si�x

�i�
r �.

By (2.14) for t = si, these are the only possibilities.

Case (a). In this case a ′-particle and a #-particle jump simultaneously
from x

�i�
r to yn�i+1� = yn�i+1��x�i�r � k�i + 1�� [because we also have k�i + 1� ≤

ξ#si
(
x
�i�
r �, by virtue of (2.14)]. However, no ′′-particle jumps. The particle which

jumps is removed from the system in the ′-system if and only if

X′ �=X
(
n�i+ 1�� x�i�r � k�i+ 1�� ξ′si�yn�i+1��

) = 1(2.15)

and similarly in the #-system. Therefore,

ξ′si+1
(
x
�i�
r

) = ξ′si
(
x
�i�
r

)− 1�
ξ′′si+1

(
x
�i�
r

) = ξ′′si
(
x
�i�
r

)
�

ξ#si+1
(
x
�i�
r

) = ξ#si
(
x
�i�
r

)− 1

Also

ξ′si+1
(
yn�i+1�

) = ξ′si
(
yn�i+1�

)+ 1−X′�

ξ′′si+1
(
yn�i+1�

) = ξ′′si
(
yn�i+1�

)
�

ξ#si+1
(
yn�i+1�

) = ξ#si
(
yn�i+1�

)+ 1−X#


It is clear from the first set of these relations that (2.14) still holds at t = si+1,
x = x

�i�
r . From the second set of relations we see immediately that the left-

hand inequality in (2.14) also holds at t = si+1, x = yn�i+1� if ξ#si �yn�i+1�� >
ξ′si�yn�i+1��. And if ξ#si �yn�i+1�� = ξ′si �yn�i+1�� = ξ′si say, for short, then

X′ =X
(
n�i+ 1�� x�i�r � k�i+ 1�� ξ′si

)
=X

(
n�i+ 1�� x�i�r � k�i+ 1�� ξ#si

) =X#�
(2.16)

so that even in this case the left-hand inequality of (2.14) holds at t = si+1,
x = yn�i+1�.
The right-hand inequality in (2.14) follows by noticing that under (1.9),

X�n�x� k� j� is increasing in j(2.17)
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[see (2.6)]. Thus, (2.14) at t = si and the definition of X′�X# [compare (2.15)]
show that X′ ≤X#. Hence (2.14) holds for t ≤ si+1 in Case (a).

Case (b). Now no ′-particle jumps, but a #-particle and a ′′-particle jump
from x

�i�
r to yn�i+1� = yn�i+1��x�i�r � k�i+1�

)
. The #-particle will be removed from

the system if X# = 1 and similarly for the ′′-particle. This time we therefore
have

ξ′si+1
(
x
�i�
r

) = ξ′si
(
x
�i�
r

)
�

ξ′′si+1
(
x
�i�
r

) = ξ′′si
(
x
�i�
r

)− 1�
ξ#si+1

(
x
�i�
r

) = ξ#si
(
x
�i�
r

)− 1

Also

ξ′si+1
(
yn�i+1�

) = ξ′si
(
yn�i+1�

)
�

ξ′′si+1
(
yn�i+1�

) = ξ′′si
(
yn�i+1�

)+ 1−X′′�

ξ#si+1
(
yn�i+1�

) = ξ#si
(
yn�i+1�

)+ 1−X#


The right-hand inequality in (2.14) at t = si+1, x = x
�i�
r is clear from the for-

mer set of equations. The left-hand inequality can only go wrong if ξ′si�x
�i�
r � =

ξ#si�x
�i�
r �, but this is impossible in Case (b). The left-hand inequality in (2.14)

at t = si+1, x = yn�i+1� is immediate from the last set of equations. Finally,
the right-hand inequality in (2.14) at t = si+1, x = yn�i+1� is again obvi-
ous if ξ′si�yn�i+1�� + ξ′′si�yn�i+1�� > ξ#si�yn�i+1��. If we have equality here, then
ξ′′si�yn�i+1�� ≤ ξ#si�yn�i+1�� and therefore X′′ ≤ X# by (2.17). Thus (2.14) at
t = si+1, x = yn�i+1� again holds in this case.

Case (c). Now only a ′′-particle jumps from x
�i�
r to yn�i+1�. We leave the

simple verification of (2.14) at t = si+1 in this case to the reader.
We now have proved that (2.14) holds for t ≤ si+1 in all cases and therefore

(2.14) holds by induction for all t ≤ limi→∞ si. However, let

�s = σ-field generated by all �u�x� k� for u ≤ s and all yn�x� k�
and U�n�x� k� attached to some τn�x� k� ≤ s


(2.18)

Then the conditional distribution of si+1 − si given �si is exponential with
mean

1∑
x∈�d

[
ξ′si�x� + ξ′′si�x�

] ≥ 1∑
x∈�d

[
ξ′0�x� + ξ′′0�x�

] 

Consequently, with probability 1, si →∞ and (2.14) holds for all t ≥ 0. ✷
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The same argument as for the right-hand inequality of (2.14) shows that
if (1.9) holds and if we have finite initial states ξ0�·�� ξ0�·�1�� 
 
 
 � ξ0�·� r� such
that

ξ0�x� ≤
r∑
i=1

ξ0�x� i� for all x�(2.19)

then there exist independent processes ξt�·�1�� 
 
 
 � ξt�·� r� so that �ξt�·��t≥0,
�ξt�·� i��t≥0 have the same distribution as �ξt�ξ0�·���t≥0 and
�ξt�ξ0�·� i���t≥0, respectively, and so that

ξt�x� ≤
r∑
i=1

ξt�x� i�
(2.20)

In particular, (2.19) implies

Eξt

( r∑
1

ξ0�·� i�
)
�x� ≤

r∑
1

Eξt�ξ0�·� i���x�
(2.21)

The next lemma compares processes with the same initial states, but with
different collections of pj. We shall not need the full strength of (1.9) but
instead that

p0 = 0
(2.22)

The largest and smallest pj which satisfy this side condition are

p∗j �=
{
0� if j = 0,
1� if j > 0

(2.23)

and

p̄j �= 0 for all j�

respectively. Correspondingly, we take

X∗�n�x� k� j� =
{
0� if j = 0,
1� if j > 0

and

X̄�n�x� k� j� = 0� j ≥ 0


Based on these X∗ and X̄ we can now define processes �ξ∗t �ξ0��t≥0 and
�ξ̄t�ξ0��t≥0 for any finite initial state ξ0. These will use the same � and
yn as the process �ξt�ξ0��t≥0 which we have already defined [and which uses
X�n�x� k� j� in its construction]. The following lemma compares the coupled
processes ξ∗, ξ̄ and ξ.

Lemma 2. Assume that (2.22) holds. Then with probability 1 for any finite
initial state ξ0 and any x ∈ �d� t ≥ 0,

ξ∗t �x� ≤ ξt�x� ≤ ξ̄t�x�

The right-hand inequality remains valid even without (2.22).
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The intuitive content of this lemma is fairly clear. In the ξ∗-process we
always remove a particle which jumps to a site which is already occupied.
In this process there can be at most one particle at a site and we remove
particles at a maximal rate. This yields the smallest process. In the ξ̄-process
we remove as few particles as possible; that is, we never remove a particle
and this process is simply a process of noninteracting random walks. It is the
largest process of the type considered here. We shall not prove Lemma 2. The
general outline of its proof is the same as for Lemma 1 and, in fact, various
cases are easier in this lemma.
We can now show that limN→∞ ξt

(
ξ
�N�
0

)
exists with probability 1.

Lemma 3. Assume that (1.9) holds and that ξ0 ∈ %. With probability 1 it
holds that for all x ∈ �d� t ≥ 0,

ξt
(
ξ
�N�
0

)�x� increases to a finite limit, ξt�x� say
(2.24)

Since ξt�ξ�N�0 ��x� is integer valued, this actually means that with probability

1, for fixed x and t, ξt�ξ�N�0 ��x� is eventually constant in N.
For η�λ ∈ %,

E
{�ξt�η��x� − ξt�λ��x��} ≤∑

y

�η�y� − λ�y��P�y+St = x�(2.25)

and

ENs

(
ξt�η� − ξt�λ�

) ≤Ns+t�η− λ�
(2.26)

The special case η = ξ0, λ�x� ≡ 0 gives

ENs

(
ξt�ξ0�

) ≤Ns+t�ξ0� <∞
(2.27)

Finally,

P�ξt�ξ0� ∈ % for all t ≥ 0� = 1
(2.28)

Proof. By Lemma 1 we have for N <M with probability 1 that

ξt
(
ξ
�M�
0

)�x� ≥ ξt(ξ�N�0

)�x� for all x� t�

because this inequality holds for t = 0. Thus ξt
(
ξ
�N�
0

)�x� is increasing in N
and we only have to prove that its limit ξt�x� is with probability 1 finite for all
t simultaneously, and also satisfies (2.27) and (2.28). We shall not prove that
almost surely ξt�x� < ∞ and the event in (2.28) holds simultaneously for all
t ≥ 0. Instead, we only prove (2.27), which implies that for each fixed t and s,
almost surely ξt�x� < ∞ and Ns�ξt�ξ0�� < ∞. We then appeal to the simple
inequality

αu�x�≥αs+t�x�P�Su−s−t=0� ≥ exp�−u+ s+ t�αs+t�x�� u≥ s+ t
(2.29)

In particular, this shows that

Ns+t�ξ� ≤ exp�u− s− t�Nu�ξ�� ξ ∈ %�u ≥ s+ t
(2.30)
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Thus, if for each fixed s, Ns�ξt� < ∞ a.s., then it is even true that almost
surely Ns�ξt� < ∞ for all s. Thus, (2.27) will also imply ξt�ξ0� ∈ % a.s., and
(2.27) will be sufficient for our purposes.
For inequality (2.25) we go back to Lemma 1. First let η and λ be finite

states. We take ξ′0�x� = η�x� ∧ λ�x�, ξ#0�x� = η�x� and ξ′′0�x� = 
η�x� − λ�x��+.
We then construct the processes �ξ′t�, �ξ#t � and �ξ′′t � from these initial states
as in Lemma 1. We also take ξ̄ = ξ̄�ξ′′0� to be a system of noninteracting
particles which starts with ξ̄0�x� = ξ′′0�x� as in Lemma 2 (with ξ0 replaced by
ξ′′0). Lemma 1 then shows that

E
∣∣ξt�η��x� − ξ′t�x�∣∣ = E

[
ξ#t �η��x� − ξ′t�x�

] ≤ Eξ′′t �x� ≤ Eξ̄t�x�
=∑

y


η�y� − λ�y��+αt�y− x�


Similarly,

E
∣∣ξt�λ��x� − ξ′t�x�∣∣ ≤∑

y


λ�y� − η�y��+αt�y− x�


Adding the last two inequalities gives (2.25), for finite initial states η�λ. In
particular (2.25) holds when η and λ are replaced by η�N� and λ�N�, respec-
tively. Then (2.25) for general η�λ ∈ % follows from Fatou’s lemma if we let
N→∞.
We obtain (2.26) by multiplying (2.25) by αs�x� and summing over x.
As mentioned in the lemma, (2.27) is a special case of (2.26), and it gives

us the promised weaker version of (2.28). ✷

Now define

�n = σ-field of subsets of % generated by the

coordinate functions ξ�x� with �x� ≤ n
and

� =∨
�n


Further, for η ∈ %, B ∈ � , define

Kt�η�B� = P�ξt�η� ∈ B�

We also write

Ktf�η� =Kt�η�f� =
∫
%
Kt�η�dξ�f�ξ��

when f is a � -measurable function on % which is nonnegative or for which∫
%
Kt�η�dξ��f�ξ�� <∞


We want to show that the Kt�·� ·� are transition probability kernels which
form a semigroup with the “correct” generator. For fixed η� t�Kt�η� ·� is a
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probability measure on � . If B is of the form B = �ξ ∈ %� �ξ�x���x�≤n ∈ C�
with C a subset of �M withM = the number of x with �x� ≤ n, then
Kt�η�B� = P

{�ξt�η��x���x�≤n ∈ C} = lim
N→∞

P
{
ξt
(
η�N�

) ∈ B} (by Lemma 3).

Since η�N� can take on only countably many values, P�ξt
(
η�N�

) ∈ B� is clearly
a � -measurable function of η. Therefore, for any fixed B ∈ �n� η �→Kt�η�B�
is � -measurable. Standard monotone class arguments show then that this
remains valid for all B ∈ � .
Following Liggett (1985), Section IX.1 or Liggett and Spitzer (1981) we now

introduce a class � of Lipschitz functions. For f� %→ � we set

Lt�f� �= sup
x
sup
η∈%

�f�η+ ex� − f�η��
αt�x�

�

where ex is the vector with ex�y� = 1 if y = x and 0 otherwise (here we
interpret %0 as a vectorspace in the obvious way). Note that this definition
implies

�f�η� − f�λ�� ≤ Lt�f�
∑
x

αt�x��η�x� − λ�x��

= Lt�f�Nt�η− λ�� η� λ ∈ %

(2.31)

The class � is now defined as

� = �f� f is � -measurable and Lt�f� <∞ for some t > 0�

It is not hard to check that � contains all bounded cylinder functions. We
also note that for f ∈ � with Ls0

�f� <∞,∫
%
Kt�η�dξ��f�ξ�� ≤ Ls0

�f�
∫
%
Kt�η�dξ�Ns0

�ξ� + f�0� [by (2.31)]

≤Ns0+t�η� + f�0� [by (2.27)] <∞

The following simple lemma shows that Kt does preserve � .

Lemma 4. Assume that (1.9) holds. Let s0 > 0 and f ∈ � such that
Ls0

�f� <∞ and let t ≥ 0. Then the following hold:

(a)

Ktf�η� = lim
N→∞

Ef
(
ξt�η�N��

)
� η ∈ %�(2.32)

(b)

�Ktf�η� −Ktf�λ�� ≤ Ls0
�f�Ns0+t�η− λ�� η� λ ∈ %�(2.33)

(c) if u ≥ t+ s0, then

Lu�Ktf� ≤ Ls0
�f� exp�u− t− s0�
(2.34)
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Proof. (a) By definition of Ls0
�f�,

∣∣Ktf�η� −Ef
(
ξt�η�N��

)∣∣
= ∣∣E
f�ξt�η�� − f�ξt�η�N����∣∣
≤ Ls0

�f�ENs0

(
ξt�η� − ξt�η�N��

)
[by (2.31)]

≤ Ls0
�f�Ns0+t

(
η− η�N�) [by (2.26)] .

(2.35)

Since Ns0+t
(
η− η�N�)→ 0 as N→∞, (2.32) follows.

(b) Analogously to (2.35), the left-hand side of (2.33) is equal to∣∣Ef�ξt�η�� −Ef(ξt�λ�)∣∣
≤ Ls0

�f�ENs0

(
ξt�η� − ξt�λ�

)
[by (2.31)]

≤ Ls0
�f�Ns0+t�η− λ� [by (2.26)] .

(2.36)

(c) The estimate (2.34) now follows from (2.33) and (2.30). ✷

The main fact now is that Kt defines a semigroup, as shown in the next
lemma.

Lemma 5. Assume (1.9). If η ∈ % and f ∈ � , then

Ks+t�η�f� =
∫
%
Ks�η�dξ�Kt�ξ� f�
(2.37)

Proof. By (2.32) the left-hand side equals

lim
N→∞

Ks+t
(
η�N�� f

)



Also, by the Markov property for the process �ξt�η�N��� (which has a bounded
number of particles) we have

Ks+t
(
η�N�� f

) = ∫
%
Ks

(
η�N�� dξ

)
Kt�ξ� f�


However, ξ �→Kt�ξ� f� is a function in � [by (2.34)], and therefore, by (2.32)
again,

lim
N→∞

∫
%
Ks

(
η�N�� dξ

)
Kt�ξ� f� =

∫
%
Ks�η�dξ�Kt�ξ� f�
 ✷

Remarks. (v) The preceding lemma shows that the Kt� t ≥ 0, have the
semigroup property. Therefore, there exists a Markov process which has the
Kt as transition probability operators. Note that the present Lemma 5 does
not quite show that the process �ξt� defined in (2.24) has the Markov property.
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For this we would need to show that for 0 < t1 < t2 < · · · < tk and bounded
fi ∈ � ,

E

{ k∏
i=1

fi
(
ξti�η�

)} = ∫
%
Kt1

�η�dλ1�f1�λ1�
∫
%
Kt2−t1�λ1� dλ2�f2�λ2� · · ·

×
∫
%
Ktk−tk−1�λk−1� dλk�fk�λk�


This can be shown to be the case by a slight extension of the proof of Lemma 5
plus induction on k, but we shall not carry this out here.
(vi) We have not made explicit which statements can be proved without

condition (1.9). However, the monotonicity and hence the existence of the limit
(asN→∞) of ξt�ξ�N�0 � does not rely on (1.9). Also (2.27) can be proved without
(1.9) by using the right-hand inequality in Lemma 2 instead of the right-hand
inequality in Lemma 1 [which is now used in the proof of (2.26)]. Therefore,
the finiteness of ξt and (2.28) can be proved without (1.9). The same is true for
Lemmas 4(a) and 5, but this requires a somewhat more elaborate argument.

In order to show that a Markov process with theKt as transition probability
operators corresponds to the description given before the theorem in Section 1
we also show that the semigroup of operatorsKt has the “correct” generator, at
least when applied to functions in � . Formally, the description of our process
before the theorem in Section 1 corresponds to the generator

5f�η� =∑
x

η�x�∑
y

q�y− x� {pη�y�
f�η− ex� − f�η��
+ �1− pη�y��

[
f�η+ ey − ex� − f�η�

]}



(2.38)

We shall define 5f�η� by (2.38) whenever∑
x

η�x�∑
y

q�y− x� {pη�y��f�η− ex� − f�η��
+ �1− pη�y���f�η+ ey − ex� − f�η��

}
converges. We now indicate how to prove a proposition which is an analogue
of Lemma 2.16 in Liggett and Spitzer (1981) and Theorem IX.1.14 in Liggett
(1985).

Proposition 6. Assume that (1.9) holds and that f ∈ � satisfies Ls0
�f� <

∞ and that η ∈ %. Then the following relations hold:

(a) Ks+tf =Ks�Ktf��
(b) 5�Ktf��η� is well defined and

Ktf�η� = f�η� +
∫ t
0
5�Ksf��η�ds�

(c) �Kt+sf�η� −Ktf�η�� ≤ set+1Ls0
�f�
Ns0+t+1�η� + 2eNs0+t+2�η���

for 0 ≤ t ≤ t+ s ≤ t+ 1�
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(d) t �→ 5�Ktf��η� is continuous on 
0�∞��

(e)
d

dt
Ktf�η� = 5�Ktf��η�


[Of course, at t = 0 this derivative is the right derivative only.] Moreover,
t−1�Ktf�η� −f�η�� is bounded for 0 < t ≤ 1 and Nt+s0+1�η� ≤ A, for any fixed
A <∞;

(f) 5�Ktf��η� =Kt�5f��η� = E�5f��ξt�η��


Proof. (a) is immediate from Lemma 5. For (b) we use the Markov prop-
erty for the ξ-process starting in a finite state (and which consequently has a
bounded number of particles at all times). This gives [compare Dynkin (1965),
I, equations I.2.1.4 and I.2.1.5]

Ef
(
ξt�η�N��

) = f
(
η�N�

)+ ∫ t
0
5
(
Ef�ξs�η�N���

)
ds�(2.39)

where 5
(
Ef�ξs�η�N���

)
stands for 5

(
Ef�ξs�·��

)
evaluated at η�N�. We now

want to take the limit N→∞ in (2.39). Note that

5
(
Ef�ξs�η�N���

)
= ∑

�x�≤N
η�x�∑

y

q�y− x�

× {pη�N��y�
Ef�ξs�η�N� − ex�� −Ef�ξs�η�N����
+ �1− pη�N��y��
Ef�ξs�η�N� + ey − ex�� −Ef�ξs�η�N����

}



(2.40)

It follows fromLs0
�f� <∞ and (2.32) that the left-hand side of (2.39) converges

to Ef�ξt�η��, and of course f�η�N�� → f�η� and N → ∞. Similarly, for each
fixed x�y,

pη�N��y�
[
Ef�ξs�η�N� − ex�� −Ef�ξs�η�N���

]
+ �1− pη�N��y��

[
Ef�ξs�η�N� + ey − ex�� −Ef�ξs�η�N���

]
→ pη�y�
Ef�ξs�η− ex�� −Ef�ξs�η���
+ �1− pη�y��

[
Ef�ξs�η+ ey − ex�� −Ef�ξs�η��

]



From (2.33), (2.29) and (2.30) we further have the following bound for (2.40)
(when s ≤ t):∑

x

η�x�∑
y

q�y− x�Ls0
�f��αs0+s�x� + αs0+s�y��

≤ Ls0
�f�et

{
Ns0+t�η� +

∑
x

η�x�∑
y

q�y− x�αs0+t�y�
}



(2.41)

This is even an upper bound for (2.40) if we replace the differences between ex-
pectations in square brackets in the right-hand side of (2.40) by their absolute
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values. Furthermore,

P
{
x+Su = 0 for some u ∈ 
s0 + t� s0 + t+ 1�

}
≥∑

y

P�Ss0+t = −y�P{Su = y− x for some 0 ≤ u ≤ 1
}

≥∑
y

αs0+t�y�P
{
first jump of S. occurs during


0�1� and is from 0 to y− x}
=∑

y

αs0+t�y��1− e−1�q�y− x� ≥ 1
2

∑
y

αs0+t�y�q�y− x�


(2.42)

Consequently,

∑
y

q�y− x�αs0+t�y�

≤ 2P
{
x+Su = 0 for some u ∈ 
s0 + t� s0 + t+ 1�

}
≤ 2eP

{
x+Ss0+t+1 = 0

} = 2eαs0+t+1�x�


(2.43)

Substituting this estimate into (2.41) we find that (2.40) is at most

Ls0
�f�et�Ns0+t�η� + 2eNs0+t+1�η��


Essentially the same estimates as used to bound (2.40) show that the formal
series for 5�Ksf� converges and that∣∣5�Ksf��η�

∣∣ ≤ Ls0
�f�et�Ns0+t�η� + 2eNs0+t+1�η��� s ≤ t
(2.44)

With these bounds and the dominated convergence theorem it is easy to justify
that

lim
N→∞

∫ t
0
5
(
Ef�ξs�η�N���

)
ds =

∫ t
0
5
(
Ef�ξs�η��

)
ds


This proves (b).
(c) follows from (b) and (2.44).
We obtain (d) by taking the limit t → some t0 in the explicit expression

for 5�Ktf��η�, which is given by (2.40) with η�N� replaced by η and s by t,
and with the sum over x extended over all x. The estimates used to obtain
(2.41)–(2.43) and the dominated convergence theorem justify taking the limit
t→ t0 inside the double sum over x�y.
(e) is immediate from (b), (d).
Finally, (f) is proved in essentially the same way as part (e) of Lemma (2.16)

in Liggett and Spitzer (1981) or part (g) in Theorem IX.1.14 in Ligget (1985). ✷
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3. A variance estimate. Throughout this section we take the initial state
to be ξ0 = �, that is,

ξ0�x� = 1� x ∈ �d�

although the argument works for any ξ0 with ξ0�x� bounded. We also use for
the first time the hypothesis ∑

x∈�d
�x�2q�x� <∞
(3.1)

To simplify notation somewhat, we write just ξt for ξt��� and ξN�t for ξt���N��.
The following estimate is the basic result of this section.

Proposition 7. Assume (1.9) and (3.1). Then there exists a constant C0,
which is independent of β�K� t and the pj, such that for β�x� ∈ � and K <∞
it holds that

Var
{ ∑
�x�≤K

β�x�ξt�x�
}
≤ C0 log�t+ 2�

∑
x∈�d

β2�x�
(3.2)

If ∑
x∈�d

�β�x��Eξt�x� <∞�(3.3)

then also

Var
{ ∑
x∈�d

β�x�ξt�x�
}
≤ C0 log�t+ 2�

∑
x∈�d

β2�x�
(3.4)

Remark. (vii) The estimate (3.4) can, by quite a lot of extra work, be im-
proved to

Var
{ ∑
x∈�d

β�x�ξt�x�
}
≤ C0t

−1/4 log�t+ 2� ∑
x∈�d

β2�x�
(3.5)

If this improved estimate is used throughout Section 4, then one obtains that
(1.11) remains valid even in d = 5. This improvement is obtained by directly
comparing the ξ′ and the ξ′′-processes, rather than comparing each one sepa-
rately with the ξ̃-process [these processes are introduced a little before (3.20)
below]. As we have already stated in Remark (ii), one can even prove (1.11)
for d = 4 if one assumes that pM = 1 for some M. To deal with the special
case where pM = 1, one needs not only (3.5), but also an improved version of
Lemma 10 which shows that if pM = 1 for someM, then

E6t�u1� 
 
 
 � up� ≤ C2�p�t−p
(3.6)

[6t is defined in (4.6).] In turn, (3.6) is obtained by comparing the process with
pM = 1 with a process which has pj replaced by p

′
j = �j/M′� ∧ 1 for some
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large M′ so that p′j ≤ pj for all j. It can be shown that the process with
parameters p′j satisfies the analogue of Lemma 1 of Arratia (1981), to wit,

P�ξt�xi� ≥mi�1 ≤ i ≤ r�

≤
r∏
i=1

P�ξt�xi� ≥mi�� xi ∈ �d�mi ≥ 1� r ≥ 1

(3.7)

For such processes our proof even works for d ≥ 3. (Note that the model with
M′ = 1 is the basic model mentioned in the beginning of this paper.)
We hope to discuss the somewhat lengthy proofs of these improvements

elsewhere.
Before we can start on the proof proper of Proposition 7 we need an a priori

estimate for

E�t� �= Eξt�x�(3.8)

(this is independent of x).

Lemma 8. Assume (1.8) and (3.1). Then, for d ≥ 3, there exist constants
0 < C1 ≤ C2 <∞ such that

C1

t
≤ E�t� ≤ C2

t
� t ≥ 1
(3.9)

Proof. These estimates basically come from Arratia (1983) and Bramson
and Griffeath (1980). By Lemma 2,

E�t� ≥ E∗�t� �= Eξ∗t �0��

where ξ∗t is the process with removal probabilities p∗j, given by (2.23) (and
initial state �). This ξ∗-process is the basic coalescing random walk model,
except that S. does not have to be a simple random walk. We can therefore
not simply use (1.1). However, by Lemma 1 of Arratia (1983) one has for S.
an arbitrary random walk,

E∗�t� ≥ C1

t

(3.10)

Thus the left-hand inequality of (3.9) holds.
The right-hand inequality of (3.9) is proved in exactly the same way as the

case d ≥ 3 of Theorem 1 of Bramson and Griffeath (1980), but we nevertheless
need three comments about this. The first, rather trivial comment is that
for the inequality three lines below (25) in Bramson and Griffeath, we need
the right-hand inequality of (2.14), or better yet, (2.20). The second comment
concerns Lemma 3 of Bramson and Griffeath. Their proof is based on the fact
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that in the basic model, when pj = p∗j [see (2.23)] one has for any finite initial
state ξ0 that

∑
x∈�d

ξ0�x�−E
{ ∑
x∈�d

ξs�ξ0��x�
}
≥
[ ∑
x∈�d

ξ0�x� − 1
]

min
ξ0�u�� ξ0�v�>0

Hs�u− v��(3.11)

where

Hs�z� = P
{
Sσt = z for some t ≤ s}

and �Sσt � is as in the Theorem of Section 1. The min of Hs is taken over all
u� v with ξ0�u� > 0, ξ0�v� > 0. We need the analogue of (3.11) (with a factor
p1 in the right-hand side) for general pj satisfying (1.8) and (1.9), not just for
pj = p∗j.
In order to show that (3.11) remains valid for such pj we have to use a

construction for ξt other than the one used in Section 2. In this construction
we distinguish the different particles and keep track of the position of the
individual particles, not merely of the number of particles at each site. For
the present purposes it is also better to let a particle coalesce with another
particle after a jump, rather than removing it. At time 0 we label the par-
ticles at any given site x as �x� k� with 1 ≤ k ≤ ξ0�x� (in some arbitrary
ordering of the particles at x). We further pick for each such particle a ran-
dom walk path �S�x�k�t �t≥0. The �S�x�k�t �t≥0 are i.i.d., each with the distribution
of �St�t≥0. We further attach to each particle �x� k� further random variables
�U�x�k�

n �V
�x�k�
n�j � j ≥ 1� n ≥ 1�. Random variables with different values of �x� k�

or n are independent. Also, for fixed �x� k�, all U�x�k�
n are independent of all

V
�x�k�
m�j . All the U

�x�k�
n are uniform on 
0�1� and each V

�x�k�
n�j takes values in

�1� 
 
 
 � j� with

P
{
V
�x�k�
n�j = l

}
= 1
j
� 1 ≤ l ≤ j


Now the particle labeled �x� k� moves along the path t �→ x + S
�x�k�
t until it

first jumps to a site, y, say, which already contains another particle. At such
a jump the �x� k�-particle may coalesce with one of the particles present at
the site y. Whether the �x� k�-particle does coalesce, and with which particle,
is a function of the �U�x�k�

n �V
�x�k�
n�j �. Suppose that the �x� k�-particle did not

coalesce with another particle at one of the first n − 1 jumps of S�x�k� and
that at its nth jump this particle jumps to y. Suppose at that time there are
j particles at y. Number these particles in some order, say in the order of
their arrival times at y. Then the �x� k�-particle coalesces with one of the j
particles at y if and only if U�x�k�

n ≤ pj. If this is the case, then it coalesces
with the particle with the numberV�x�k�

n�j . After this coalescing event, the �x� k�-
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particle no longer follows the path t �→ S
�x�k�
t , but follows the path of the

particle with which it coalesced. Note that it is always the variables associated
with the particle which has just jumped which determine whether coalescence
takes place. It is also the particle which has just jumped which “gives up” its
own trajectory and starts following the trajectory of the particle with which it
coalesced.
If we start with finitely many particles, then the construction of the preced-

ing paragraph assigns with probability 1 a unique trajectory to each particle. If
the �x� k�-particle and the �y� l�-particle have coalesced, then they both move
according to one of the trajectories t �→ z + S

�z�m�
t ; �z�m� may be �x� k� or

�y� l� or yet another particle with which both the �x� k�-particle and the �y� l�-
particle have coalesced. This allows us to define ξt�x� again as the number of
particles present at x at time t.
We shall not prove that the preceding construction is equivalent to the one

of Section 2, in the sense that the joint distribution of the �ξt�x��t≥0, x ∈ �d, is
the same under both constructions (we need this only for finite initial states). It
is further left to the reader to verify that the proof of Bramson and Griffeath’s
lemma 3 for (3.11) (with an extra factor p1 in the right-hand side) goes through
for the newly constructed �ξt�. But if (3.11) holds for one of the constructions
of �ξt�, then it holds for all constructions, since (3.11) depends only on the
joint distribution of the �ξt�x��t≥0, x ∈ �d.
Our final comment concerns the lower bound for inf �z�≤r Hr2�z� which

Bramson and Griffeath (1980) derive in their Lemma 5 when S. is simple
random walk. This lemma remains valid under condition (3.1) only, because
as Bramson and Griffeath argue, in order to obtain the desired lower bound
for inf �z�≤r Hr2�z�, one merely needs a lower bound (of size C1r

2−d) on

inf
�z�≤r

∫ r2
0
P�Sσs = z�ds

≥
∫ r2
r2/2

ds
2r2∑

k=r2/4
P
{
Sσ. has k jumps during 
0� s�

}
inf
�z�≤r

q∗kσ �z��

where qσ�z� = 
q�z� + q�−z��/2 = P�Sσ. jumps from 0 to z at its first jump�.
The required lower bound follows directly from the local central limit theorem.
[See Spitzer (1976), Proposition 7.9. Note that this may require some care,
because qσ is not necessarily strongly aperiodic (in the terminology of Spitzer).
However, because q∗2σ �0� > 0, the proof of Proposition 5.1 in Spitzer (1976)
shows that q∗2σ is strongly aperiodic on some additive subgroup G1 of �d, of
index 1 or 2. Moreover, when z �∈ G1 and qσ�w� > 0, then z + w ∈ G1. For
each z ∈ G1 we can therefore apply the local central limit theorem to find
a lower bound for q∗kσ �z� when k is even. For z �∈ G1 we use q

∗�2l+1�
σ �z� ≥∑

w qσ�−w�q∗�2l�σ �z+w�.]
In all other respects the proof of the right-hand inequality in (3.9) follows

Bramson and Griffeath (1980). ✷
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Proof of Proposition 7. First choose a K <∞ and let

Z = ∑
�x�≤K

β�x�ξt�x��

ZN = ∑
�x�≤K

β�x�ξN�t�x�


(Recall that ξN� t is the state at time t if we start with ξ0�y�I
�y� ≤ N� =
I
�y� ≤N� particles at y.) Now

EZN = ∑
�x�≤K

β�x�EξN� t�x�

and, as N→∞,

EξN� t�x� ↑ Eξt�x� ≤
∑
y

P�y+St = x� = 1

by Lemma 3 and the monotone convergence theorem. Hence

EZN → EZ� N→∞
(3.12)

By Fatou’s lemma we then get

Var�Z� = EZ2 − �EZ�2 ≤ lim inf
N→∞

Var�ZN�
(3.13)

It therefore suffices for (3.2) to prove

Var
( ∑
�x�≤K

β�x�ξN� t�x�
)
≤ C0 log�t+ 2�

∑
x

β2�x�
(3.14)

Now let �s be as in (2.18) and define

�l = �l�p� = �l�p�N� t� = E�ZN ��lt/p� −E�ZN ���l−1�t/p�

Then for each integer p ≥ 1,

ZN −EZN =
p∑
1

�l

and

Var�ZN� =
p∑
1

E�2l �p� = lim inf
p→∞

p∑
1

E�2l �p�

= lim inf
p→∞

p∑
1

E
{
E��2l �p� ���l−1�t/p�

}



We fixN and writeWl =Wl�p�N� for the random elements which summarize
all the information which becomes available between time �l−1�t/p and lt/p.
More precisely, Wl stands for all the increments �u�x� k� −��l−1�t/p�x� k� of
the Poisson processes with �l− 1�t/p < u ≤ lt/p, and the yn�x� k��U�n�x� k�
associated to jump times during ��l − 1�t/p� lt/p� of any of these processes.
We skip the tedious explicit construction of a probability space on which these
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random variables are defined. Whatever this probability space for the W is,
we shall have

�lt/p = σ�W1� 
 
 
 �Wl�
and the Wl for different l are independent. Also, Wl has a distribution
which we denote by µl (that is, µl�dw� = P�Wl ∈ dw�). Now ZN = f�W1�W2�

 
 
 �Wp� for a suitably measurable function f = fN and therefore

E�ZN��lt/p� =
∫ p∏
i=l+1

µi�dwi�f�W1� 
 
 
 �Wl�wl+1� 
 
 
 �wp�

=
∫ p∏
i=l
µi�dwi�f�W1� 
 
 
 �Wl�wl+1� 
 
 
 �wp�


Note that the last member also includes an integration with respect to µl�dwl�;
this integration can be added because the integrand does not depend on wl.
Therefore

�l =
∫ p∏
i=l
µi�dwi�
f�W1� 
 
 
 �Wl�wl+1� 
 
 
 �wp�

−f�W1� 
 
 
 �Wl−1�wl�wl+1� 
 
 
 �wp��

(3.15)

Note that �l is a function of W1� 
 
 
 �Wl, and that therefore

E
{
�2l ���l−1�t/p

} = ∫
µl�dWl��2l

and

E�2l =
∫ ∏
j≤l

µj�dWj��2l 


By Schwarz’s inequality applied to (3.15) we find

�2l ≤
∫ p∏
i=l
µi�dwi�

[
f�W1� 
 
 
 �Wl�wl+1� 
 
 
 �wp�

−f�W1� 
 
 
 �Wl−1�wl� 
 
 
 �wp�
]2
�

and we now turn to an estimate for[
f�W1� 
 
 
 �Wl�wl+1� 
 
 
 �wp� − f�W1� 
 
 
 �Wl−1�wl� 
 
 
 �wp�

]2

(3.16)

The expression in square brackets here is the change in ZN due to the change
from wl to Wl in the time interval ��l − 1�t/p� lt/p�, while keeping all other
random elements in 
0� �l − 1�t/p� fixed at W1� 
 
 
 �Wl−1 and the random el-
ements in �lt/p� t� fixed at wl+1� 
 
 
 �wp. We shall use that at all times the
number of particles present in the ξ���N��-process is at most∑

x

ξN�0�x� =
∑
�x�≤N

1 = �2N+ 1�d
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The location of these particles at time �l−1�t/p is determined byW1� 
 
 
 �Wl−1
and is therefore ��l−1�t/p-measurable. We shall write Il
≥k jumps� for the in-
dicator function of the event that the particles present at time �l−1�t/p have
at least k jumps during ��l− 1�t/p� lt/p�. (Repeated jumps by the same par-
ticle are counted as different jumps; we anyway only keep track of the ξ’s
so do not know which particle jumps.) Il
1 jump� and Il
no jump� have sim-
ilar self-evident definitions. If Il
≥ 2 jumps��W1� 
 
 
 �Wl−1�wl� 
 
 
 �wp� = 1
or if Il
≥ 2 jumps��W1� 
 
 
 �Wl� wl+1� 
 
 
 �wp� = 1, then we simply estimate
(3.16) by

[
2 sup �ZK�

]2 ≤ [
2 sup
�x�≤K

�β�x��∑
x

ξN�0�x�
]2

= 4�2N+ 1�2d
[
sup
�x�≤K

�β�x��
]2



(3.17)

The same bound applies when there is at least one jump in both the con-
figurations W1� 
 
 
 �Wl−1� wl� 
 
 
 �wp and W1� 
 
 
 �Wl� wl+1� 
 
 
 �wp. We shall
soon see that the contributions to

∑
E�2l in all these configurations go to

0 as p → ∞. When in both configurations W1� 
 
 
 �Wl−1� wl� 
 
 
 �wp and
W1� 
 
 
 �Wl� wl+1� 
 
 
 �wp no particle at all jumps during ��l − 1�t/p� lt/p�,
then the particle locations at time lt/p are the same in the configurations
W1� 
 
 
 �Wl and W1� 
 
 
 �Wl−1� wl, and (3.16) equals 0. Therefore (3.16) is at
most equal to the sum of the following three terms:

4�2N+ 1�2d
[
sup
�x�≤K

�β�x��
]2

× [Il
≥ 2 jumps��W1� 
 
 
 �Wl−1�wl� 
 
 
 �wp�
+ Il

[≥ 2 jumps
]�W1� 
 
 
 �Wl�wl+1� 
 
 
 �wp�

+ Il
≥ 1 jump��W1� 
 
 
 �Wl−1�wl� 
 
 
 �wp�
× Il
≥ 1 jump��W1� 
 
 
 �Wl�wl+1� 
 
 
 �wp�

]2�

(3.18)

[
f�W1� 
 
 
 �Wl�wl+1� 
 
 
 �wp� − f�W1� 
 
 
 �Wl−1�wl� 
 
 
 �wp�

]2
× Il
1 jump��W1� 
 
 
 �Wl�wl+1� 
 
 
 �wp�
× Il
no jump��W1� 
 
 
 �Wl−1�wl� 
 
 
 �wp�

(3.19)

and (3.19) with Wl and wl interchanged.
We first show that the contribution of (3.18) to

∑
E�2l becomes negligible

as p→ ∞. The square of the sum of the indicator functions between square
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brackets in (3.18) is at most

3Il
≥ 2 jumps��W1� 
 
 
 �Wl−1�wl� 
 
 
 �wp�
+ 3Il
≥ 2 jumps��W1� 
 
 
 �Wl�wl+1� 
 
 
 �wp�
+ 3Il
≥ 1 jump��W1� 
 
 
 �Wl−1�wl� 
 
 
 �wp�
× Il
≥ 1 jump��W1� 
 
 
 �Wl�wl+1� 
 
 
 �wp�


We only estimate the contribution of the last term here. The other terms can
be estimated in the same way (but are actually easier to treat). Note that
Il
≥1 jump��W1� 
 
 
Wl−1� wl� 
 
 
 �wp� depends on W1� 
 
 
 �Wl−1 and wl only,
while Il
≥ 1 jump��W1� 
 
 
Wl� wl+1� 
 
 
 �wp� depends on W1� 
 
 
 �Wl only.
Therefore,∫

µl�dWl�
∫
µl�dwl�

∫ p∏
i=l+1

µi�dwi�Il
≥1 jump��W1� 
 
 
Wl−1�wl� 
 
 
 �wp�

× Il
[
≥ 1 jump��W1� 
 
 
Wl�wl+1� 
 
 
 �wp�
=
∫
µl�dWl�Il
≥ 1 jump��W1� 
 
 
Wl�wl+1� 
 
 
 �wp�

×
∫
µl�dwl�Il
≥ 1 jump��W1� 
 
 
Wl−1�wl� 
 
 
 �wp�

= [
P
{
at least one jump occurs during ��l− 1�t/p� lt/p]∣∣

W1� 
 
 
 �Wl−1
}]2

≤
[∑
x

ξ�l−1�t/p���N���x� t
p

]2

≤ t2

p2
�2N+ 1�2d


If we finally integrate the left-hand side also with respect to
∏l−1
1 µ�dWj� and

then sum over l from 1 to p we find a contribution to
∑p

1 E�
2
l of at most

t2

p
�2N+ 1�2d12

[
sup
�x�≤K

�β�x��
]2
�

and this tends to 0 as p→∞. Thus the contribution of (3.18) can be ignored.
Because of the symmetry betweenWl andwl in our estimates, (3.19) and the

term with Wl and wl interchanged give the same contribution. We therefore
only have to estimate (3.19). To this end let us write ξ′t for the ξ���N��-process
in the configuration W1� 
 
 
 �Wl� wl+1� 
 
 
 �wp and ξ′′t for the ξ���N��-process
in the configuration W1� 
 
 
 �Wl−1� wl� 
 
 
 �wp. Through time �l− 1�t/p these
two processes agree, so that

ξ′�l−1�t/p = ξ′′�l−1�t/p


Suppose there is exactly one jump during ��l − 1�t/p� lt/p� in the configu-
ration W1� 
 
 
 �Wl�wl+1� 
 
 
 �wp, that is, in the ξ′-process. Let this jump be
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from x′ to y′. Assume further that there is no jump in the configuration
W1� 
 
 
 �Wl−1�wl� 
 
 
 �wp. Then

ξ′′lt/p�x� = ξ′′�l−1�t/p�x� = ξ′�l−1�t/p�x� for all x�

ξ′′lt/p�x� = ξ′lt/p�x� if x �= x′� y′�

ξ′lt/p�x′� = ξ′�l−1�t/p�x′� − 1�
ξ′lt/p�y′� = ξ′�l−1�t/p�y′� or ξ′�l−1�t/p�y′� + 1


In any case, ξ′lt/p and ξ′′lt/p differ at most on the two sites x′, y′ and there
they differ by at most 1. Rather than compare ξ′t directly with ξ

′′
t , we compare

each of them with a third process ξ̃t which we define as the process which
behaves like ξ′ except that the particle which jumps from x′ to y′ during
��l − 1�t/p� lt/p� is removed immediately after the jump in the ξ̃-process.
After time lt/p, it develops by the prescribed rules in the configurations
wl+1� 
 
 
 �wp. Of course it may be that ξ̃ ≡ ξ′, namely, if the particle which
jumps from x′ to y′ is also removed in the ξ′-process. If this particle is not
removed in the ξ′-process, then the ξ′-process has one particle more than the
ξ̃-process at time lt/p, and this extra particle is located at y′. Therefore, by
Lemma 1,

ξ̃t�x� ≤ ξ′t�x� ≤ ξ̃t�x� + ξ̄t�y′��x��(3.20)

where ξ̄�y′� is a process which starts with a single particle at y′ at time lt/p
which moves according to the random walk but does not interact with any-
thing. This process is not defined for times < lt/p. However, ξ̃. and ξ̄.�y′� are
coupled and are defined as functions of y′ and the Poisson processes�s�x� k�−
�lt/p�x� k�, x ∈ �d� k ≥ 1� s ≥ lt/p, as well as the yn�x� k��U�n�x� k� cor-
responding to jumps at or after time lt/p, as described for the ξ′, and ξ′′-
processes just before Lemma 1. (Note that the present ξ′� ξ′′ do not have the
same meaning as in Lemma 1.) Thus

ξ̄t�y′��x� = I
[
extra particle in ξ′ which is at y′ at lt/p

moves to x at time t
]



(3.21)

Similarly,

ξ̃t�x� ≤ ξ′′t �x� ≤ ξ̃t�x� + ξ̄t�x′��x��

where ξ̄�x′� is a process which starts with a single particle at x′ at time lt/p
and which does not interact with anything. Therefore, if there is exactly one
jump in the ξ′-process and no jump in the ξ′′-process, then

∣∣f�W1� 
 
 
 �Wl�wl+1� 
 
 
 �wp� − f�W1� 
 
 
 �Wl−1�wl� 
 
 
 �wp�
∣∣
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is at most∑
�x�≤K

�β�x���ξ′t�x� − ξ′′t �x��

≤ ∑
�x�≤K

�β�x�� ∑
x′� y′

Il
a single jump from x′ to y′ occurs

during ��l− 1�t/p� lt/p]
�W1� 
 
 
 �Wl�wl+1� 
 
 
 �wp�

[
ξ̄t�y′��x� + ξ̄t�x′��x�

]



(3.22)

Let us estimate the contribution of the term involving ξ̄t�y′�. Note that[ ∑
�x�≤K

�β�x��∑
x′� y′

Il
[
a single jump from x′ to y′ occurs during ��l−1�t/p� lt/p]

�W1� 
 
 
 �Wl�wl+1� 
 
 
 �wp�ξ̄t�y′��x�
]2

= ∑
x′� y′

Il
a single jump from x′ to y′ occurs during��l− 1�t/p� lt/p�

�W1� 
 
 
 �Wl�wl+1� 
 
 
 �wp�
[ ∑
�x�≤K

�β�x��ξ̄t�y′��x�
]2
�

because only for one pair x′, y′ do we have

Il
[
a single jump from x′ to y′ occurs during ��l− 1�t/p� lt/p]
�W1� 
 
 
 �Wl�wl+1� 
 
 
 �wp� �= 0


This yields the following contribution to E�2l :

∫ ∏
j≤l−1

µj�dWj�
∫
µl�dWl�

∫
µl�dwl�

∫ p∏
i=l+1

µi�dwi�

× ∑
x′� y′

Il
a jump from x′ to y′ occurs during ��l− 1�t/p� lt/p�

�W1� 
 
 
 �Wl�wl+1� 
 
 
 �wp�
[ ∑
�x�≤K

�β�x��ξ̄t�y′��x�
]2



(3.23)

[Note that integrating over wi, l + 1 ≤ i ≤ p, in (3.23) includes taking the
expectation over ξ̄t�y′�, since ξ̄t is a function of the processes �s�x� k� −
�lt/p�x� k�� s ≥ lt/p, as described after (3.20).] The same method will work
for the term involving ξ̄t�x′��x� in (3.22). We can handle (3.23) by noting
that ξ̄t�y′��x� �= 0 for exactly one x. Let us denote this position by zt. Then
ξ̄t�y′��zt� = 1 and[ ∑

�x�≤K
�β�x��ξ̄t�y′��x�

]2
= �β�zt��2I
�zt� ≤K�
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Moreover, conditionally on �lt/p� zt is just the position of a random walk at
time t which starts at y′ at time lt/p. Thus

∫ p∏
i=l+1

µi�dwi�
[ ∑
�x�≤K

�β�x��ξ̄t�y′��x�
]2
≤∑

z

�β�z��2P�y′ +St−lt/p = z�


Therefore [by (2.43)] (3.23) is at most∫ ∏
j≤l−1

µj�dWj�
∑
x′� y′

ξ�l−1�t/p�x′�
t

p
q�y′ − x′�

×∑z �β�z��2P�y′ +St−lt/p = z�

≤
∫ ∏
j≤l−1

µj�dWj�
∑
x′
ξ�l−1�t/p�x′�

t

p

×∑z �β�z��22eP�St−lt/p+1 = z− x′�


(3.24)

But, if �l− 1�t/p ≥ 1, then by Lemma 8,∫ ∏
j≤l−1

µj�dWj�ξ�l−1�t/p�x′� = Eξ�l−1�t/p�x′� ≤ C2
p

�l− 1�t 


Also, by (2.25) with λ = 0, for any �l− 1�t/p�Eξ�l−1�t/p�x′� ≤
∑
y P�S�l−1�t/p =

x′ − y� = 1. Substituting these estimates into (3.24) shows that (3.23) is at
most

C3
t

p
min

{
p

�l− 1�t �1
}∑

z

�β�z��2


With a similar estimate for the other term in (3.22) we finally obtain after
summing over l the estimate

lim inf
p→∞

P∑
1

E�2l ≤ 4C3
∑
z

�β�z��2t lim inf
p→∞

1
p

[ ∑
1≤l<p/t+1

1+ ∑
p/t+1≤l≤p

p

�l− 1�t
]

≤ C0
∑
z

�β�z��2 log�t+ 2�

for some constant C0, which is the desired inequality (3.2).
Once we have (3.2) we can obtain (3.4) under (3.3) exactly as in (3.12),

(3.13). Indeed, we have

E
∑
�x�≤K

β�x�ξt�x� → E
∑
x∈�d

β�x�ξt�x�� K→∞

and

Var
{ ∑
x∈�d

β�x�ξt�x�
}
≤ lim inf

K→∞
Var

{ ∑
�x�≤K

β�x�ξt�x�
}

 ✷
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4. An approximate differential equation for the expected number
of particles per site. Again we start with one particle at each site �ξ0 = ��
and we write ξt instead of ξt���. Also ξN� t stands for ξt���N��. We define

γt�k� = P�ξt�x� = k�

Here γt is independent of x. Note that

p�t� =
∞∑
k=1

γt�k� = P�ξt�x� > 0�(4.1)

and

E�t� =
∞∑
k=1

kγt�k�
(4.2)

We first derive a differential equation for E�t�.

Lemma 9. E(t) is differentiable and

d

dt
E�t� = − ∑

x∈�d
E�ξt�0�q�x�pξt�x��
(4.3)

Proof. A simple calculation, using (2.38) and (1.6) shows that for f�ξ� =
ξ�0� one has

5f�η� = −η�0� + ∑
x �=0

η�x�q�−x��1− pη�0��

= −η�0� + ∑
x∈�d

η�x�q�−x� − ∑
x∈�d

η�−x�q�x�pη�0�


Therefore,

E5�f�ξt�� = − ∑
x∈�d

E�ξt�−x�q�x�pξt�0�� = − ∑
x∈�d

E�ξt�0�q�x�pξt�x���

and (4.3) follows from Proposition 6(e) and (f) applied to f�ξ� = ξ�0�. ✷

The remainder of this section is devoted to showing that (4.3) can be re-
placed by

d

dt
E�t� = −C�d��1+ o�1��E2�t��(4.4)

where o�1� → 0 and t→∞. To this end we follow the heuristic outline of the
introduction to approximate E�ξt�0�pξt�x�� for x �= 0. Throughout we assume
(1.8), (1.9) and d ≥ 6. (For most lemmas d ≥ 5 is enough.) We want the
estimates to be uniform in x �= 0. Ci� i ≥ 1, will be used for various strictly
positive, finite constants whose precise value is of no importance to us. The
same Ci may take different values in different formulas.
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Let u1� 
 
 
 � up ∈ �d (not necessarily distinct). Define

p∑
i=1

∗ξt�ui�(4.5)

to be the sum of the ξt�ui� only over the distinct ui in �u1� 
 
 
 � up�. Thus if a
given u appears several times among the ui, there is still only one summand
ξt�u� in (4.5). Define further

6t�u1� u2� 
 
 
 � up�

=
( p∑
i=1

∗ξt�ui�
)( p∑

i=1
∗ξt�ui� − 1

)

 
 


( p∑
i=1

∗ξt�ui� − p+ 1
)



(4.6)

Here 6t�u1� 
 
 
 � up� represents the number of ordered p-tuples of distinct par-
ticles which we can select from the

∑ ∗ξt�ui� particles present at the sites
u1� 
 
 
 � up at time t.

Lemma 10. Assume (1.8), (1.9) and d ≥ 5. Then for any u� v ∈ �d,

E6t�u� v� ≤ C1t
−2
(4.7)

Also, for any p ≥ 3� u1� 
 
 
 � up ∈ �d and 0 < ε < 1/2,

E6t�u1� 
 
 
 � up� ≤ C2�ε�p�
t−p ∨ t−d�1−ε�/2�
(4.8)

Proof. Without loss of generality we may take u �= v in (4.7) because
6t�u�u� ≤ 6t�u� v� for any v. Similarly, we may take the ui distinct in (4.8).
We note further that it suffices to prove (4.7) and (4.8) when ξt�ui� is replaced
by ξN� t�ui� (with constants C1, C2 which are independent of N). We shall
write 6N� t instead of 6t when this replacement is made.
To estimate the terms ξN� t which appear in 6t, we shall apply (2.20) to

the process �ξN� t/2+s�s≥0, conditioned on �t/2. Let z1� 
 
 
 � zr be the positions
at time t/2 of the particles present at time t/2 in ξN� t/2. Here each position
occurs with the proper multiplicity; if ξN� t/2�x� = k, for some x, then k of the
zi equal x. Hence r =

∑
x ξN� t/2�x�. According to (2.20) there exist independent

processes �ξ̄s�zi��·��s≥0, 1 ≤ i ≤ r, such that ξ̄0�zi��x� = 1 for x = zi and = 0
otherwise and such that �ξ̄s�zi��x��x∈�d has the distribution of �I
zi + Ss =
x��x∈�d . Moreover, these processes are coupled with ξN� t/2+s so that

ξN� t/2+s�x� ≤
r∑
i=1

ξ̄s�zi��x�


In particular,

ξN� t�x� ≤
r∑
i=1

ξ̄t/2�zi��x�
(4.9)
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With the help of this relation we can prove (4.7). We have

6N� t�u� v�

≤
(

r∑
i=1

ξ̄t/2�zi��u� + ξ̄t/2�zi��v��

)(
r∑
i=1

ξ̄t/2�zi��u� + ξ̄t/2�zi��v�� − 1

)

=
r∑
i=1

r∑
j=1
j �=i


ξ̄t/2�zi��u� + ξ̄t/2�zi��v�� 
ξ̄t/2�zj��u� + ξ̄t/2�zj��v��


The right-hand side equals the number of ordered pairs of distinct particles
starting at some zi at time t/2 and ending at u or v at time t. These particles
are the ones counted by the ξ̄t/2�zj� and they just move according to random
walks without interaction. At time t/2 we have ξN� t/2�z� particles at z to
choose from (for any z ∈ �d). The number of choices for starting pairs, one from
z and one from z′ (with z = z′ allowed), is 6N� t/2�z� z′� ≤ ξN� t/2�z�ξN� t/2�z′�.
The probability that the two different particles of the pair end at u or v at
time t is (

αt/2�z− u� + αt/2�z− v�
)(
αt/2�z′ − u� + αt/2�z′ − v�

)



We now sum over all possible z� z′ and take the conditional expectation given
�t/2 to find

E�6N� t�u� v� ��t/2�

≤
r∑
i=1

r∑
j=1
j �=i

(
αt/2�zi − u� + αt/2�zi − v�

)(
αt/2�zj − u� + αt/2�zj − v�

)

≤
[ ∑
x∈�d

ξN� t/2�z�
(
αt/2�z− u� + αt/2�z− v�

)]2



(4.10)

Finally, by virtue of (3.9) and (3.14) and the fact that ξN� t/2�z� ≤ ξt/2�z�, we
have for d ≥ 5, and uniformly in u,

E

{[∑
z

αt/2�z− u�ξN� t/2�z�
]2}

≤
[∑
z

αt/2�z− u�EξN� t/2�x�
]2
+ Var

(∑
z

αt/2�z− u�ξN� t/2�z�
)

≤
[
2C2

t

]2
+C0 log�t/2+ 2�

∑
x

α2t/2�x�

≤ 4C2
2

t2
+C0 log�t+ 2� sup

x
αt/2�x�

≤ C3
[
t−2 + t−d/2 log�t+ 2�]�

(4.11)
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where in the last inequality we used the estimate

sup
y
αs�y� = sup

y
P�y+Ss = 0� ≤ C4

�s+ 1�d/2 �(4.12)

which, in turn, follows from the local central limit theorem [see Spitzer (1976),
Proposition 7.9 and the remark following it]. Now (4.7) is immediate from
(4.10) and (4.11) (plus its analogue with u replaced by v).
The argument for (4.8) begins in the same way as for (4.7). By an application

of (4.9) we can bound 6N� t�u1� 
 
 
 � up� by the number of p-tuples of distinct
particles which start at some zi at time t/2 and end at one the uj at time t.
Therefore, we get as in (4.10) that

E6N�t�u1� 
 
 
 � up� ≤ E
{[∑

z

ξN� t/2�z�
p∑
j=1

αt/2�z− uj�
]p}




It therefore suffices for (4.8) to show that, uniformly in u ∈ �d,

E

{[∑
z

ξN� t/2�z�αt/2�z− u�
]p}

≤ C2�ε�p�
[
t−p ∨ t−d�1−ε�/2]� p ≥ 3
(4.13)

To prove (4.13) let us use the abbreviation

U =∑
z

αt/2�z− u�ξN� t/2�z�
(4.14)

Note that U ≥ 0. We further know from Lemma 8 that

EU ≤ C2t
−1�(4.15)

and from Proposition 7 and (4.11) that

Var�U� = E��U−EU�2� ≤ C3t
−d/2 log�t+ 2�� E�U2� ≤ C4t

−2
(4.16)

Now use

Up ≤ C5�p�
[�U−EU�p + �EU�p]

≤ C5�p��U−EU�2−ε�U−EU�p−2+ε +C6�p�t−p

Combined with Hölder’s inequality, this shows that

E�Up� ≤ C5
[
E��U−EU�2�]�1−ε/2�[E��U−EU�2�p−2+ε�/ε�]ε/2

+C6�p�t−p

(4.17)

Assume for the moment that we have proven for any integer q ≥ 1,

E�Uq� ≤ C7�q��(4.18)

(with C7 independent of N). Then by Jensen’s inequality this holds for any
q ≥ 1 and also

E
{�U−EU�q} ≤ C8�q�(4.19)
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follows. Together with (4.17) this shows

E�Up� ≤ C9�ε�p�
Var�U���1−ε/2� +C6t
−p


In view of (4.16) this implies (4.13) and hence (4.8).
The proof of (4.8) has therefore been reduced to (4.18). We now turn to its

proof. We note that
∑
z αt/2�z− u� = 1, so that by Jensen’s inequality,

Uq ≤∑
z

αt/2�z− u�ξqN� t/2�z�

and hence

E�Uq� ≤ sup
x
Eξ

q
N� t/2�x�


Next we again use (2.20) [compare also with (4.9)]. Then

E�Uq� ≤ sup
x
Eξ

q
N� t/2�x� ≤ sup

x
E

[∑
z

ξ̄t/2�z��x�
]q

= E

[∑
z

ξ̄t/2�z��0�
]q

(by translation invariance)

≤ C10�q�
q∑
k=1

∑
n1�


�nk

∑
z1�


�zk
distinct

E
{
ξ̄
n1
t/2�z1��0�

} · · ·E{ξ̄nkt/2�zk��0�}�
where n1� 
 
 
 � nk runs over the partitions of q into k nonzero integers. Since
ξ̄t/2�z��0� can take on only the values 0 or 1 and P�ξ̄t/2�z��0� = 1� = P�z +
St/2 = 0� = αt/2�z�, we find that

E�Uq� ≤ C10�q�
q∑
k=1

∑
n1�


�nk

∑
z1�


�zk

k∏
i=1

P�zi +St/2 = 0� ≤ C11�q��

as desired. ✷

Lemma 11. Assume (1.8) and (1.9). Then for d ≥ 5,

0 ≤ E�t� − p�t� ≤ E�t� −P�ξt�0� = 1� ≤ C1

t2

(4.20)

Proof.

E�t� − p�t� =
∞∑
k≥2
�k− 1�P�ξt�0� = k� ≥ 0

[see (4.1) and (4.2)]. On the other hand, by (4.7),

E�t� − p�t� ≤ E�t� −P�ξt�0� = 1� = E�ξt�0�� ξt�0� ≥ 2�

≤ E�ξt�0�
ξt�0� − 1�� = E6t�0�0� ≤
C1

t2

 ✷
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The next lemma is an estimate for noninteracting random walks. If s �→
u + S

�u�k�
s and s �→ v + S

�v�l�
s are two random walk paths, then we shall say

that they meet at least m times during a time interval J if there exist m times
s1 < s2 < · · · sm in J such that each si is a jumptime of one of these paths
for which u + S�u�k�si = v + S�v�l�si . We say that the paths meet exactly m times
during J if they meet at leastm times during J but not at least �m+1� times.
(The k and l in the superscripts are introduced because we will have to allow
u = v, and we still want to distinguish the random walk paths in this case.)

Lemma 12. Let d ≥ 3 and let �S�u�k�t �t≥0, �u�k� ∈ �d × �1�2� 
 
 
�, and

�S�u�t �t≥0, u ∈ �d, be independent copies of �St�t≥0. Also let � ≥ 1. Define for

u� v� y ∈ �d, k� l ≥ 1,

� �u�k� v� l�m� = �
(
u�k� v� l�m���y

)
= {

u+S�u�k�� =0� v+S�v�l�� =y and the paths s �→u+S�u�k�s �

s �→ v+S�v�l�s meet exactly m times during �0� ��}

Then, there exists a δ = δ�d� with 0 < δ�d� ≤ 1 such that uniformly in y and
m, ∑

u� v∈�d

∣∣∣P�� �u�k� v� l�m���y��
−P{s �→ S

�0�
s and s �→ −y+S�−y�s meet

exactly m times during �0�∞�} α��u�α��v− y�∣∣∣
≤ C12�

−δ


(4.21)

Remark. (viii) We can take

δ�d� = d− 2
3d2 − 3d− 4 
(4.22)

Proof. Let �S′s�s≥0 and �S′′s�s≥0 be two independent copies of �Ss�s≥0. Also
let �S̃′s�s≥0 and �S̃′′s�s≥0 be two independent copies of the corresponding time
reversed random walk which satisfies (1.4). We first use time reversal to write
P�� �u�k� v� l�m�� as

P
{
S̃′� = u�y+ S̃′′� = v and the paths s �→ S̃′s� s �→ y+ S̃′′s

meet exactly m times during �0� ��}

If we put

α̃s�u� = P�S̃s = −u� = P�Ss = u� = αs�−u��
then

α��u�α��v− y� = α̃��−u�α̃��y− v�
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Moreover,

P
{
s �→ S

�0�k�
s and s �→ −y+S�−y�l�s meet exactly m times during �0�∞�

}
= P

{{
S
�0� k�
s −S�−y� l�s

}
s≥0 = −y for exactly m jump times of

�S�0�k�s −S�−y�l�s �s≥0
}

= P
{
�−S�0�k�s +S�y�l�s �s≥0 = y for exactly m jump times of

�−S�0�k�s +S�y�l�s �s≥0
}

= P�s �→ S̃′s and s �→ y+ S̃′′s meet exactly m times during �0�∞��

Therefore, the summand in the left-hand side of (4.21) equals∣∣∣P{S̃′� = u�y+ S̃′′� = v and the paths s �→ S̃′s� s �→ y+ S̃′′s

meet exactly m times during �0� ��}
−P{s �→ S̃′s and s �→ y+ S̃′′s

meet exactly m times during �0�∞�}α̃��−u�α̃��y− v�∣∣∣

To simplify notation we drop the tildes and introduce

ν�J� �= number of times s �→ S′s and s �→ y+S′′s meet during J

We shall prove, merely from assumption (1.10), that

∑
u� v

∣∣∣P�S′� = u�y+S′′� = v� ν��0� ��� =m�

−P�ν��0�∞�� =m�α��−u�α��y− v�
∣∣∣ ≤ C12�

−δ

(4.23)

If we apply this to the random walk �S̃s� [which also satisfies (1.10)] and
reverse time we obtain (4.21).
The estimate (4.23) will be obtained by estimating various pieces. For the

time being we fix an arbitrary δ > 0. First we drop the sum over the terms
with �u� > ��1+δ�/2 or �v− y� > ��1+δ�/2. Since

E�S��2 =
∞∑
k=0

e−�
�k

k!
k
∑
x

�x�2q�x� ≤ C13�

for some constant C13 <∞, we see from Chebyshev’s inequality that the terms
with such u� v add up to at most

P��S′�� > ��1+δ�/2� +P��S′′�� > ��1+δ�/2� ≤ 2C13�
−δ
(4.24)
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Next we fix 1 ≤ A ≤ �/2. For the time being, A is otherwise arbitrary. We next
replace

P
{
S′� = u�y+S′′� = v� ν��0� ��� =m

}
by

P
{
S′� = u�y+S′′� = v� ν��0� A�� =m

}
�

and

P�ν��0�∞�� =m�
by

P�ν��0� A�� =m�

This changes the left-hand side of (4.23) by at most

2P�s �→ S′s and s �→ y+S′′s meet at least once during �A�∞��
≤ 4E�amount of time in �A�∞� that S′s = y+S′′s�

≤ 4
∫ ∞
A
P�S′s −S′′s = y�ds ≤ C14

∫ ∞
A

ds

sd/2
[by (4.12)] ≤ C15A

1−d/2


(4.25)

Combining (4.24) and (4.25) we see that the left-hand side of (4.23) is at most

2C13�
−δ +C15A

1−d/2

+ ∑
�u�∨�v−y�≤��1+δ�/2

∣∣∣P{S′� = u�y+S′′� = v� ν��0� A�� =m
}

−P{ν��0� A�� =m
}
α��−u�α��y− v�

∣∣∣

(4.26)

Next we fix a γ > 0 and write

P�S′� = u�y+S′′� = v� ν��0� A�� =m
}

= ∑
a� b∈�d

P
{
S′A = a�y+S′′A = b� ν��0� A�� =m

}
α�−A�a− u�α�−A�b− v�

= ∑
�a�� �b−y�≤A�1+γ�/2

P
{
S′A = a�y+S′′A = b� ν��0� A�� =m

}
× α�−A�a− u�α�−A�b− v� +E1�

where the error E1 = E��u� v� satisfies
0 ≤ E1 =

∑
�a�∨�b−y�>A�1+γ�/2

P�S′A = a�y+S′′A = b� ν��0� A�� =m�

× α�−A�a− u�α�−A�b− v�
≤ P

{�S′A� > A�1+γ�/2 or �S′′A� > A�1+γ�/2
}
sup
z1� z2

α�−A�z1�α�−A�z2�

≤ C16A
−γ�−d [by Chebyshev, (4.12) and A ≤ �/2]


(4.27)
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Similarly,

P�ν��0� A�� =m�α��−u�α��y− v�
= ∑

�a�� �b−y�≤A�1+γ�/2
P�ν��0� A�� =m�

× αA�−a�αA�−b+ y�α�−A�a− u�α�−A�b− v� +E2�

for an error E2 = E2�u� v� with

0 ≤ E2 ≤ C16A
−γ�−d
(4.28)

Finally we note that

∣∣∣∣ ∑
�a�� �b−y�≤A�1+γ�/2

P�S′A = a�y+S′′A = b� ν��0� A�� =m�

− ∑
�a�� �b−y�≤A�1+γ�/2

P�ν��0� A�� =m�αA�−a�αA�−b+ y�
∣∣∣∣

≤
∣∣∣∣ ∑
�a�� �b−y�≤A�1+γ�/2

P�S′A=a�y+S′′A= b� ν��0� A��=m�−P�ν��0� A��=m�
∣∣∣∣

+
∣∣∣∣ ∑
�a�� �b−y�≤A�1+γ�/2

P�ν��0� A��=m�αA�−a�αA�−b+y�−P�ν��0� A��=m�
∣∣∣∣

≤ 2P��S′A� > A�1+γ�/2 or �S′′A� > A�1+γ�/2� ≤ 4C13A
−γ


Now for any positive measures µ1� µ2 of total mass less than or equal to A
on some space 5 and a function f� 5 �→ �, one has the general and simple
inequality

∣∣∣∣
∫
µ1�dω�f�ω� −

∫
µ2�dω�f�ω�

∣∣∣∣
≤ �µ1�5� − µ2�5�� sup

ω
�f�ω�� +A sup

ω1�ω2

�f�ω1� − f�ω2��


We apply this with

µ1�a� b�=P
{
S′A = a�y+S′′A = b� ν��0� A�� =m

}
�

µ2�a� b�=P
{
ν��0� A�� =m

}
αA�−a�αA�−b+ y�
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We then obtain∣∣∣∣ ∑
a� b∈�d

P
{
S′A = a�y+S′′A = b� ν��0� A�� =m

}
α�−A�a− u�α�−A�b− v�

− ∑
a� b∈�d

P�ν��0� A�� =m�αA�−a�αA�−b+ y�α�−A�a− u�α�−A�b− v�
∣∣∣∣

≤ E1 +E2 +C17A
−γ�−d

+ sup
�a1−a2�≤2A�1+γ�/2
�b1−b2�≤2A�1+γ�/2

∣∣∣∣ α�−A�a1 − u�α�−A�b1 − v�
− α�−A�a2 − u�α�−A�b2 − v�

∣∣∣∣


(4.29)

We now sum (4.29) over �u�, �v − y� ≤ ��1+δ�/2. Since there are at most
C18�

d�1+δ� points u� v satisfying these restrictions, we find by means of (4.26)–
(4.29) that the left-hand side of (4.23) is at most

2C13�
−δ +C15A

1−d/2 +C19�
dδA−γ

+C18�
d�1+δ� sup �a1−a2�≤2A�1+γ�/2

�b1−b2� ≤
u� v

2A�1+γ�/2

∣∣∣ α�−A�a1 − u�α�−A�b1 − v�
− α�−A�a2 − u�α�−A�b2 − v�

∣∣∣

(4.30)

Finally, denote by Et�θ� = E�exp�iθSt��, θ ∈ �d, the characteristic function of
St. Then standard arguments [compare Spitzer (1976), Propositions 7.7, 7.8]
show that there exists some C20�C21 > 0, η > 0 such that

�Et�θ�� ≤ exp�−C20t�θ�2� for �θ� ≤ η
and

�Et�θ�� ≤ exp�−C21t� for η < �θ�� θ ∈ 
−π�π�d

Consequently,

sup
�a1−a2�≤2A�1+γ�/2
�b1−b2� ≤

u� v
2A�1+γ�/2

∣∣∣α�−A�a1 − u�α�−A�b1 − v� − α�−A�a2 − u�α�−A�b2 − v�∣∣∣

≤ 2 sup
�c1−c2�≤2A�1+γ�/2

�α�−A�c1� − α�−A�c2�� sup
v
α�−A�v�

≤ C22�
−d/2 sup

�c1−c2�≤2A�1+γ�/2

∫
θ∈
−π�π�d

� exp�−iθc1� − exp�−iθc2�
∣∣

× �E�−A�θ�
∣∣dθ

≤ C23�
−d/2A�1+γ�/2�−�d+1�/2


(4.31)
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Substituting this estimate into (4.30) yields the upper bound

C24

[
�−δ + A1−d/2 + �dδA−γ + �dδ−1/2A�1+γ�/2

]
for the left-hand side of (4.23). It remains to choose

A = �1/�1+3γ��

γ = �d+ 1�δ
1− 3�d+ 1�δ =

�d+ 1��d− 2�
2

�

δ = d− 2
3d2 − 3d− 4 �

to find that (4.23) holds for the given δ. ✷

We define

ρ�m�y� = P
{
s �→ S

�0�
s and s �→ −y+S�−y�s

meet exactly m times during 
0�∞�}(4.32)

and

D�y� = p1

∞∑
m=0

�1− p1�mρ�m�y�
(4.33)

We also define 6∗t �u� v� as the number of ordered pairs of distinct particles,
the first particle being present at u at time t and the second particle at v at
time t. Comparison with (4.6) shows immediately that 6∗t �u� v� ≤ 6t�u� v�.

Lemma 13. Let 1 ≤ � ≤ t/2. Then for d ≥ 5, 0 < ε < 1/2, and uniformly in
y �= 0, ∣∣∣E�ξt�0�pξt�y�� −D�y� ∑

u� v∈�d
E�6∗t−��u� v��α��u�α��v− y�

∣∣∣
≤ C25�
t−3 ∨ t−d�1−ε�/2� +C25�

−δ�d�t−2


(4.34)

Proof. First we observe that, by virtue of (4.6) and (4.8), it holds for y �= 0
that ∣∣E�ξt�0�pξt�y�� − p1P�ξt�0� = ξt�y� = 1�∣∣

≤ E{ξt�0�ξt�y�I
ξt�y� ≥ 2�}+E{ξt�0�I
ξt�0� ≥ 2�ξt�y�
}

≤ E6t�0� y� y� +E6t�0�0� y�
≤ C2�ε�3�

[
t−3 ∨ t−d�1−ε�/2]


(4.35)

Next we approximate

P
{
ξt�0� = ξt�y� = 1

}

(4.36)

It is easiest to carry out this part of the proof if we construct ξt as in Lemma 8,
so that we can speak of the trajectory of a particle. We only know how to
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carry out such a construction for a system with a finite initial state. Formally,
the remaining estimates in this lemma must therefore be carried out for the
process ξN, and then the limit N → ∞ must be taken in the final estimates
(4.39) and (4.41) below. For simplicity we have written the proof as if it applies
directly to the full process ξ. Here we want to condition on �t−�, so that we
think of t−� as the origin of the time axis. Thus, the label �x� k� refers to the
kth particle at position x at time t−�. Then s �→ �x+S�x�k�s �s≥0 describes the
motion of this particle until it coalesces; that is, its position at time t−�+s is
x+S�x�k�s , if it did not coalesce during �t−�� t−�+ s�. Of course we take the
�S�x�k�s �s≥0 to be independent copies of �Ss�s≥0. If ξt�0� = ξt�y� = 1, then there
must be two different particles, π ′ and π ′′, say, in the system at time t − �
which move to 0 and y, respectively, at time t, without coalescing with another
particle during �t−�� t�. Let the positions of these particles at time t−� be u
and v, respectively. Then there must exist 1 ≤ k ≤ ξt−��u�, 1 ≤ l ≤ ξt−��v� and
random walk paths s �→ S

�u�k�
s � s �→ S

�v�l�
s with u+S�u�k�� = 0, v+S�v�l�� = y.

As a first step in approximating (4.36) we bound the probability of the event
� that there exist two different particles π ′� π ′′ with labels �u�k� and �v� l�,
which move along the trajectories s �→ u+ S�u�k�s , s �→ v+ S�v�l�s for 0 ≤ s ≤ �,
satisfying u+S�u�k�� = 0, v+S�v�l�� = y, and that there exists another particle π
such that π coincides with π ′ or π ′′ at some time s ∈ 
0� ��. In order to estimate
P��� we write � as the union of several subevents. The first subevent, �1,
is the event that there are at least two particles present at u at time s = 0,
one of which is the particle π ′ and the other is distinct from π ′ and π ′′. The
conditional probability of �1 given �t−� is at most∑

u� v

6t−��u�u� v�α��u�α��v− y�


Taking expectations and using (4.8) we find that

P��1� ≤
∑
u� v

E
{
6t−��u�u� v�

}
α��u�α��v− y� ≤ C2

[
t−3 ∨ t−d�1−ε�/2]


Similarly, the subevent �2 of � on which there are two particles starting at
v, one of which is the particle π ′′, has probability at most

C2
t−3 ∨ t−d�1−ε�/2�

Another way in which � can occur is that at some time during 
0� �� a particle
π, which was at some vertex w at time 0, jumps onto the trajectory of π ′ or of
π ′′. Let �3 be the subevent that such a jump occurs. Decomposing with respect
to the time of the jump and the positions z′ and z just before and after the
jump we find that the conditional probability of �3 given �t−� is at most∑
u� v�w

6t−��u� v�w�
∫ �
0

[∑
z� z′

αs�u− z�αs�w− z′�q�z− z′�α�−s�z�α��v− y�

+ α��u�
∑
z� z′

αs�v− z�αs�w− z′�q�z− z′�α�−s�z− y�
]
ds




346 J. VAN DEN BERG AND H. KESTEN

Taking expectation we find

P��3� ≤
∑

u� v�w

E�6t−��u� v�w��

×
∫ �
0

[∑
z� z′

αs�u− z�αs�w− z′�q�z− z′�α�−s�z�α��v− y�

+ α��u�
∑
z� z′

αs�v− z�αs�w− z′�q�z− z′�α�−s�z− y�
]
ds

≤ C2
[
t−3∨ t−d�1−ε�/2]

× ∑
u� v�w

∫ �
0

[∑
z� z′

αs�u− z�αs�w− z′�q�z− z′�α�−s�z�α��v− y�

+ α��u�
∑
z� z′

αs�v− z�αs�w− z′�q�z− z′�α�−s�z−y�
]
ds


by �4
8��

= C2
[
t−3 ∨ t−d�1−ε�/2] ∫ �

0
2ds = 2C2�

[
t−3 ∨ t−d�1−ε�/2]


Finally, the same estimate holds for the probability of the subevent �4 that at
some time during 
0� �� the particle π ′ or the particle π ′′ jumps to a position
which is already occupied by a particle π which started at some position w at
time s = 0. Thus, if � ≥ 1,

P��� ≤
4∑
i=1

P��i� ≤ 4C2�
t−3 ∨ t−d�1−ε�/2�
(4.37)

Now on the complement of � , �ξt�0� = ξt�y� = 1� occurs if and only if the
following two events occur:

1. There exist u� v ∈ �d and a pair of particles π ′� π ′′ located at u� v, respec-
tively, at time t− �, which move to 0 and y, respectively, at time t.

2. At each of the jumptimes of π ′ or π ′′ at which these two particles meet
during �t − �� t�, the corresponding Uπ ′

n or Uπ ′′
n exceeds p1 (see proof of

Lemma 8 for Uπ
n ).

In explanation of (2) we point out that we do not want π ′ and π ′′ to coalesce.
However, on � c, neither π ′ nor π ′′ coincide with a third particle π during

t − �� t�. Thus, when π ′ jumps to the position of π ′′, then it jumps to a site
which contains exactly one particle. If this is the nth jump of π ′, then no
coalescence takes place if and only if Uπ ′

n > p1. A similar statement holds
for π ′′.
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Conditionally on �t−�, the probability of (1) and (2) is

∞∑
m=0

�1− p1�m

×P
{ ⋃
u� v∈�d

⋃
1≤k≤ξt−��u�
1≤J≤ξt−��v�
�u�k��=�v� l�

{
u+S�u�k�� = 0� v+S�v�l�� = y

and s �→ u+S�u�k�s and s �→ v+S�v�l�s

meet exactly m times during �0� ��
}}



(4.38)

Now (4.38) (with � as in Lemma 12) shows that

P�ξt�0� = ξt�y� = 1��t−��

≤ P�� ��t−�� +
∞∑
m=0

�1− p1�m
∑

u�k� v� l

P�� �u�k� v� l�m�

= P�� ��t−�� +
∞∑
m=0

�1− p1�m
∑
u� v

6∗t−��u� v�

× [P�� �u�1� v�1�m���y�� − ρ�m�y�α��u�α��v− y�]
+

∞∑
m=0

�1− p1�mρ�m�y�
∑
u� v

6∗t−��u� v�α��u�α��v− y�


(4.39)

Taking expectation once more and using (4.37) and Lemmas 10 and 12 we find

p1P
{
ξt�0� = ξt�y� = 1

}
≤ 4p1C2�
t−3 ∨ t−d�1−ε�/2� + p1

∞∑
m=0

�1− p1�m
C1

�t− ��2

×∑
u� v

∣∣P�� �u�1� v�1�m���y� − ρ�m�y�α��u�α��v− y�∣∣

+p1
∞∑
m=0

�1− p1�mρ�m�y�
∑
u� v

E�6∗t−��u� v��α��u�α��v− y�

≤ 4p1C2�
t−3 ∨ t−d�1−ε�/2� + 4C1C12�
−δ�d�t−2

+D�y�∑
u� v

E�6∗t−��u� v��α��u�α��v− y�


(4.40)
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In the other direction, we have from the inclusion–exclusion principle that

P
{
ξt�0� = ξt�y� = 1 ��t−�

}
≥ −P�� ��t−�� +

∞∑
m=0

�1− p1�m

×P
{ ⋃
u� v∈�d

⋃
1≤k≤ξt−��u�
1≤J≤ξt−��v�
�u�k��=�v�l�

{
u+S�u�k�� = 0� v+S�v� l�� = y and

s �→ u+S�u�k�s and s �→ v+S�v� l�s meet

exactly m times during 
0� ��
}}

≥ −P�� ��t−�� +
∞∑
m=0

�1− p1�m
∑

u�k� v� l

P�� �u�k� v� l�m��

−
∞∑
m=0

�1− p1�m
∑
ui� ki

P
{
� �u1� k1� u2� k2�m� ∩ � �u3� k3� u4� k4�m�

}
�

(4.41)

where the last sum is over all 4-tuples �u1� k1�� 
 
 
 � �u4� k4� with ui ∈ �d, 1 ≤
ki ≤ ξt−��ui� and �u1� k1� �= �u2� k2�, �u3� k3� �= �u4� k4�, ��u1� k1�� �u2� k2�� �=
��u3� k3�� �u4� k4��. Let us first estimate the contribution to this sum from
the 4-tuples with all four �ui� ki� distinct. Then for given u1� 
 
 
 � u4 we get a
contribution ∑

k1�


�k4
with all �ui�ki� distinct

P
{
� �u1� k1� u2� k2�m� ∩ � �u3� k3� u4� k4�m�

}

≤ 6t−��u1� u2� u3� u4�α��u1�α��u2 − y�α��u3�α��u4 − y�


After taking the expectation and multiplying by �1−p1�m and summing over
ui�m these terms contribute at most

1
p1

∑
u1�


�u4

E
{
6t−��u1� u2� u3� u4�

}
α��u1�α��u2 − y�α��u3�α��u4 − y�

≤ 1
p1
C2�ε�4�

[�t/2�−4 ∨ �t/2�−d�1−ε�/2]
× ∑

u1�


�u4

α��u1�α��u2 − y�α��u3�α��u4 − y�

≤ C26
[�t/2�−4 ∨ �t/2�−d�1−ε�/2]


Similarly the sum of the P�� �u1� k1� u2� k2�m� ∩ � �u3� k3� u4� k4�m�� over
the �ui� ki� with only three distinct pairs contributes at most C26

[�t/2�−3 ∨
�t/2�−d�1−ε�/2]. Combining these estimates and taking expectation again, we
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obtain

P�ξt�0� = ξt�y� = 1�

≥ −P���+
∞∑
m=0

�1−p1�m
∑

u�k� v� l

P�� �u�k� v� l�m��−C27
[
t−3 ∨ t−d�1− ε�/2]


Continuing as in (4.39) and (4.40) this yields

p1P�ξt�0� = ξt�y� = 1� ≥ D�y�∑
u� v

E�6∗t−��u� v��α��u�α��v− y�

−C28�
[
t−3 ∨ t−d�1−ε�/2]−C29�

−δ�d�t−2


(4.42)

Together with (4.35) and (4.40) this gives (4.34). ✷

Proof of theorem. Let d ≥ 6. Then choose � = t1−η with 0 < η < 1 so
small that, for all large t,

log�t+ 2��−d/2 ≤ t−5/2
(4.43)

After that choose ε ∈ �0�1/2� so small that

�t−d�1−ε�/2 ≤ t−2−η/2
(4.44)

Lemmas 9 and 13 then show that there exists some ζ = ζ�d� ∈ �0� η ∧ 1
2� and

some constant C30 <∞ such that

∣∣∣∣ ddtE�t� +
∑
y

q�y�D�y�∑
u� v

E�6∗t−��u� v��α��u�α��v− y�
∣∣∣∣

≤ C30t
−2−ζ


(4.45)

In addition, by the definition of 6∗t−��u� v�,

∑
u� v

6∗t−��u� v�α��u�α��v− y�

=∑
u

α��u�ξt−��u�
∑
v

α��v− y�ξt−��v� −
∑
u

α��u�α��u− y�ξt−��u�
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Therefore, by (3.9), (3.4) and (4.12), there exists a constant C31, independent
of y such that

∣∣∣∣∑
u� v

E�6∗t−��u� v��α��u�α��v− y�

−E
{∑
u

α��u�ξt−��u�
}
E

{∑
v

α��v− y�ξt−��v�
}∣∣∣∣

≤ σ
(∑

u

α��u�ξt−��u�
)
σ

(∑
v

α��v− y�ξt−��v�
)

+C2

t

∑
u

α��u�α��u− y�

≤ C0 log�t+ 2�
∑
u

α2��u� +
C2

t
sup
u
α��u�

≤ C31
log�t+ 2�
�d/2




(4.46)

Substitution of this estimate into (4.45) and use of (4.43) yields

∣∣∣∣ ddtE�t� +
∑
y

q�y�D�y�E
{∑
u

α��u�ξt−��u�
}
E

{∑
v

α��v− y�ξt−��v�
}∣∣∣∣

≤ C30t
−2−ζ +C31

log�t+ 2�
�d/2

≤ 2C30t
−2−ζ


(4.47)

Moreover,

∑
y

q�y�D�y� = C�d�
(4.48)

Now for ξt�y� �= 0 to occur, there must be at least one particle in the system
at time t−� which moves to y during 
t−�� t� without coalescing. The same
arguments as in Lemma 13 (but easier) now show that

∣∣∣∣Eξt�y� −E
{∑

v

α��v− y�ξt−��v�
}∣∣∣∣

≤∑
v

E
{
number of particles π ′ which are at v at time t− �
and reach y at time t, but which do coincide with

some other particle π during 
t− �� t�}
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≤∑
v

E�6t−��v� v��α��v− y�

+ 2∑
v

∫ �
0

∑
z� z′�w

E�6t−��v�w��αs�v− z�αs�w− z′�

× q�z− z′�α�−s�z− y�ds
≤ C32�t

−2 = C32t
−1−η ≤ C32t

−1−ζ


(4.49)

This estimate is uniform in y ∈ �d, by translation invariance. Combined with
(4.47), (4.48) and (3.9) this yields∣∣∣ d

dt
E�t� +C�d�E2�t�

∣∣∣ ≤ C33t
−2−ζ ≤ C34t

−ζE2�t�� t ≥ 1


Integration now gives

1
E�t� −

1
E�0� = −

∫ t
0
E−2�s�dE�s�

ds
ds = C�d�t+O�t1−ζ��

from which (1.13) follows. Then (1.11) and (1.14) follow from Lemma 11. ✷
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