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RESCALED VOTER MODELS CONVERGE TO
SUPER-BROWNIAN MOTION

By J. Theodore Cox,1 Richard Durrett2 and Edwin A. Perkins3

Syracuse University, Cornell University and University of British Columbia

We show that a sequence of voter models, suitably rescaled in space
and time, converges weakly to super-Brownian motion. The result includes
both nearest neighbor and longer range voter models and complements a
limit theorem of Mueller and Tribe in one dimension.

1. Introduction. Super-Brownian motion and its close relatives have
been studied by many authors [see Dawson (1993), Dynkin (1994), Dawson
and Perkins (1991, 1998), Le Gall (1994), and the references therein]. These
processes originally arose as weak limits of rescaled branching random walks
[see Watanabe (1968) and Theorem 1.0 below]. It has recently been shown
that a broad range of more complex interacting spatial models, when suit-
ably rescaled, converge to super-Brownian motion (or a process closely related
to it). Examples include rescaled limits of random trees [Derbez and Slade
(1997)] and limits of long-range contact processes in dimensions d ≥ 2 [Dur-
rett and Perkins (1999)]. Ongoing work of Derbez, van der Hofstad and Slade
(1998) will almost certainly add oriented percolation at the critical probability
in high dimensions to this list.

Our goal in this work is to show that rescaled voter models (to be defined
in a moment) in dimensions two or more converge to super-Brownian motion.
This convergence will be established in a variety of scenarios. First in the case
of long-range interactions and then, more surprisingly, for nearest neighbor
interactions. To explain this in more detail we have to give the definition of
the two main processes we will consider.

1. The rate one voter model on Zd with symmetric voting kernel p�x�y� =
p�y − x� = p�x − y� is a Markov process ξt:Zd → �0�1�, where ξt�x�
gives the “opinion” (either 0 or 1) of the voter at site x ∈ Zd at time t. At
exponential times with rate 1, a given individual selects a site at random
according to the kernel p�·�, and then adopts the opinion of the selected
site. Here, the successive waiting times of all the sites, and all the choices
according to p�·�, are taken to be independent. Clearly, if a site x selects a
site y with the same opinion, no change occurs.

Received January 1999.
1Supported in part by NSF Grant DMS-96-26675 and by a NSERC Collaborative Grant. Part

of the research was done while the author was on sabbatical from Syracuse University and in
residence at University of British Columbia.

2Supported in part by NSF Grant DMS-96-26201.
3Supported in part by a NSERC Research grant and a NSERC Collaborative Grant.
AMS 1991 subject classifications. Primary 60K35, 60G57; secondary 60F05, 60J80.
Key words and phrases. Voter model, super-Brownian motion.

185



186 J. T. COX, R. DURRETT AND E. A. PERKINS

2. The rate γ critical branching random walk on Zd with kernel p�·�, is a
Markov process ζt:Zd → �0�1�2� 
 
 
�, where ζt�x� gives the number of
particles at site x ∈ Zd at time t. A particle at x dies with rate γ, that
is, it lives for an exponentially distributed time with mean 1/γ, and with
rate γp�y − x� produces a new particle at y for each y ∈ Zd. Again, the
successive waiting times for each site and each possible pair of sites are
independent.

To compare these two processes it is useful to think of the voter model as
a branching random walk in which the birth rate from x to y and the death
rate at x depend on the number of vacant neighbors. We now reformulate our
description of the voter model ξt in terms of such a state dependent branching
random walk. To do this, we first note that the dynamics of the voter model
are clearly equivalent to the following: for each �x�y� ∈ Zd × Zd satisfying
x �= y, the individual at x imposes its opinion on the individual at y with rate
p�y−x�. Now consider sites with opinion 1 as occupied and sites with opinion 0
as unoccupied. With this interpretation the process behaves as follows: at time
t each occupied site x produces an offspring at ywith rate p�y−x�1�ξt�y� = 0�,
and dies with rate

Vt�x� ≡
∑
y

p�y− x�1�ξt�y� = 0�
(1.1)

This corresponds to a state dependent branching rate from x to y of p�y −
x�1�ξt�y� = 0�, which implies a total branching rate from x also equal to
Vt�x�, the “local density” of 0’s near x.

To get a measure-valued limit process, we will speed up time byN and scale
space down by

√
N. If, after this rescaling, the local densities of 0’s at distinct

sites separated by a positive distance on the resulting “macroscopic” scale
are approximately independent, then we can expect a mean-field simplifica-
tion, and the rescaled voter models should behave like the rescaled branching
random walks, but now with γ equal to the mean local density of 0’s near a
typical 1.

Our task in each of the examples we consider will be to justify this mean-
field simplification and calculate the effective branching rate γ. Intuitively,
this should be very easy if the kernels pN�·� become sufficiently spread out as
N→∞. For, in this case, the effective local density of 0’s should approach 1,
and thus the rescaled voter models should behave like the rescaled branching
random walks with γ = 1. The asymptotic behavior of the latter is well known:
it approaches super-Brownian motion (see Theorem 1.0 below). Inspired by our
heuristic, we will begin with this case, denoted (1) below.

To prove Theorem 1.1, we need a characterization of the limiting super-
Brownian motion. Let �F�Rd� denote the space of finite measures on Rd,
endowed with the topology of weak convergence of measures. Let �X�D =
D��0�∞���F�Rd�� be the Skorohod space of cadlag�F�Rd�-valued paths, and
let �X�C be the space of continuous �F�Rd�-valued paths with the topology of
uniform convergence on compacts. In either case,Xt will denote the coordinate
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function, Xt�ω� = ω�t�. Integration of a function φ with respect to a measure
µ will be denoted by µ�φ�. For 1 ≤ n ≤ ∞ let Cn

b �Rd� be the space of bounded
continuous functions whose partial derivatives of order less than n + 1 are
also bounded and continuous, and let Cn

0�Rd� be the space of those functions
in Cn

b �Rd� with compact support.
An adapted a.s.-continuous �F�Rd�-valued process Xt� t ≥ 0 on a complete

filtered probability space ���� ��t�P� is said to be a super-Brownian motion
with branching rate b and diffusion coefficient σ2 > 0 starting atX0 ∈�F�Rd�
if it solves the following martingale problem:

�MP�b� σ2

X0

For all φ ∈ C∞
0 �Rd��Mt�φ�=Xt�φ�−X0�φ�−

∫ t
0 Xs�σ2�φ/2�ds

is a continuous ��t�-martingale, with M0�φ� = 0 and square func-
tion �M�φ��t =

∫ t
0 Xs�bφ2�ds


The existence and uniqueness in law of a solution to this martingale problem
is well known [see Chapters 6 and 7 in Dawson (1993)], but as this and other
references work with a larger class of test functions, we give a proof in the
Appendix. See Theorem A.2. Let Pb�σ2

X0
denote the law of the solution on �X�C.

We may, and shall at times, also consider this law as a probability on the space
of cadlag paths �X�D.

We define a sequence of branching walk systems ζNt , N = 1�2� 
 
 
 , using
Brownian space–time scaling. Let p�x�y� = p�y − x� be a fixed symmetric,
finite range random walk kernel on Zd, with p�0� = 0 and with covariance
matrix ∑

x∈Zd

xixjp�x� = δi� jσ
2�

where δi� j = 1 if i = j, and δi� j = 0 otherwise, is Kronecker’s delta. Preparing
for later generalizations we let MN = 1 and define the rescaled lattice by

SN = Zd/�MN

√
N� ≡ �x/�MN

√
N�:x ∈ Zd�

and for x ∈ SN, define pN�x� = p�x√N�. Let ζNt �x� = ζNt�x
√
N� be the

critical branching random walk system ζNt :SN → N in which each particle
dies at rate γN and produces a new particle at a given y ∈ SN with rate
γNpN�y−x�. Let YN

t be the measure defined by putting an atom of size 1/N
at each particle in ζNt . That is,

YN
t = 1

N

∑
x∈SN

ζNt �x�δx
(1.2)

For initial ζN0 with only finitely many particles, the law PN of YN. is a prob-
ability measure on �X�D. We use ⇒ to denote weak convergence on �X�D,
or on the more mundane space Rd. The following result is well known. See
Theorem 4.6.2 of Dawson (1993), and note that his slightly different initial
conditions are easy to modify to cover the present setting.
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Theorem 1.0. Assume YN
0 ⇒ Y0 ∈ �F�Rd� as N → ∞. Then PN ⇒

P
2γ� σ2γ
Y0

as N→∞.

We turn now to defining our rescaled voter models. We will create a some-
what general framework, so that we may easily consider a variety of different
special cases. For N = 1�2� 
 
 
, let MN ∈ N, and define SN as above. We
will use displacement distributions that depend on N. These, of course, will
not be arbitrary but must satisfy various assumptions about their asymptotic
behavior.

To formulate these assumptions, let WN = �W1
N� 
 
 
 �W

d
N� ∈ �Zd/MN \ �0��

have the displacement distribution p on the unscaled lattice, and let �x� denote
the usual Euclidean norm of x ∈ Rd. About the distribution of WN we will
suppose that:

�H1�
(a) WN and −WN have the same distribution.

(b) There is a finite σ2 > 0 such that limN→∞E�Wi
NW

j
N� = δijσ

2


(c) The family ��WN�2�N ∈ N� is uniformly integrable.

The full strength of assumption (H1.a) is not needed. It would suffice to assume
EWN = 0, but symmetry simplifies many details in our proofs. We define the
displacement distribution on the scaled lattice by

pN�x� = P

(
WN√
N

= x

)
� x ∈ SN�(1.3)

and let ξNt �x� = ξNt�x
√
N� denote the rate-N voter model on �0�1�SN with

voting kernel pN�x�y� = pN�y− x�.
We treat ξNt as a measure by assigning mass 1/N′ to each site of ξNt with

value 1 and mass 0 to all other sites. Here the scaling for the particle mass
satisfies 1 ≤ N′ ≤ N, and will depend on the particular model considered.
Given a sequenceN′�N�, we define the corresponding measure-valued process
XN

t by

XN
t = 1

N′
∑
x∈SN

ξNt �x�δx
(1.4)

We make the following assumptions about the initial states ξN0 :

�H2�
(a)

∑
x∈SN

ξN0 �x� <∞


(b) XN
0 →X0 in �F�Rd� as N→∞


We note that a consequence of (H2) is that supNXN
0 �1� <∞, a fact we will use

frequently. Let PN denote the law of XN. , and note that PN is a probability
measure on �X�D.

The first special case of the above in which we will be interested is the
following.
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(M1) Long-range models. Let MN →∞ as N→∞, and let WN be uniformly
distributed on �Zd/MN� ∩ I, where I = �−1�1�d \ �0�.

Clearly, all the parts of (H1) are satisfied with σ2 = 1/3.
The next result shows that for the long-range models defined above, XN.

converges to the super-Brownian limit given in Theorem 1.0 with γ = 1 and
σ2 = 1/3 (the variance of the uniform distribution on �−1�1�), provided the
pN�·� spread out rapidly enough.

Theorem 1.1. Assume (H2) holds, and let PN denote the law of XN. for the
long-range models (M1), with N′ ≡N. If as N→∞,

MN/
√
N→∞ in d = 1�

M2
N/�logN�→∞ in d = 2�

MN→∞ in d ≥ 3


(1.5)

then PN ⇒ P
2�1/3
X0

as N→∞.

The above result for d = 1 should be compared to Theorem 2 of Mueller
and Tribe (1995). They take N′ =N and MN = √

N for d = 1 and obtain con-
vergence of the approximate densities of XN

t to the solution of the stochastic
partial differential equation (SPDE),

∂u

∂t
= 1

6
∂2u

∂x2
+ �2u�1− u��1/2Ẇ�

where Ẇ is a space–time white noise on R+ × R. The constants here and
there do not match since our approximating voter models and limiting SPDE
differ from theirs by a trivial scale factor. In the situation studied by Mueller
and Tribe, the density of 0’s and 1’s are both nontrivial and are a continuous
function of rescaled space.

It is well known that under P2γ�1/3
Y0

, super-Brownian motion for d = 1 has a
density which solves the above SPDE but with γ in place of the 1−u in front
of the white noise [see Konno and Shiga (1988), Reimers (1989)]. Hence we
can view the solution of the above SPDE as the density of a state dependent
“super-Brownian motion” with branching parameter equal to 1 − u, the local
density of 0’s for the limiting process. This agrees with our earlier description
of the scaling limit of the voter models. By comparison, in the one-dimensional
special case of Theorem 1.1, the fact thatMN/

√
N→∞ ensures that the local

density of 0’s is one in the limit, leading to branching with parameter γ = 1.
Durrett and Perkins (1999) have shown that, for d ≥ 2, the scaling limit of

super-critical contact process is super-Brownian motion with drift, provided
the range of interaction MN → ∞ at the appropriate rate. Work of Derbez,
Slade and Van der Hofstad (1998) on oriented percolation suggests that a
corresponding limit theorem is valid for the critical contact process in d > 4,
at least when the fixed kernel model is sufficiently spread out. We expect that



190 J. T. COX, R. DURRETT AND E. A. PERKINS

their proof of this deep fact will be rather difficult and depend heavily on
complicated lace expansion technology. Our computations for the convergence
of rescaled fixed kernel voter models to super-Brownian motion at or above
the critical dimension of 2 will be relatively simple, thanks to the existence of
a dual process of coalescing random walks.

To study these voter models, we introduce our second set of examples:

(M2) Fixed Kernel Models. Let MN ≡ 1, and let p�x�y� = p�x − y� be an
irreducible, symmetric, random walk kernel on Zd, such that p�0� = 0
and

∑
x∈Zd xixjp�x� = δijσ

2. Define WN by P�WN = x� = p�x�.
Clearly (H1) is satisfied in this case.

Our next result shows that for these fixed kernel models, one also obtains
super-Brownian limits, but with a change in the limiting branching rate, and
in d = 2 a different mass normalization N′. To specify the branching rate for
the limit in d ≥ 3, let γe be the probability that a random walk with step
distribution p, starting at the origin, never returns there.

Theorem 1.2. Assume (H2) holds, and let PN denote the law of XN. for the
fixed kernel models (M2), with

N′ =
{
N/ logN� in d = 2,
N� in d ≥ 3.

(1.6)

Then PN ⇒ P
2γ� σ2

X0
as N→∞, where

γ =
{
2πσ2� in d = 2,
γe� in d ≥ 3.

(1.7)

Consider the above result for d ≥ 3 in the nearest neighbor case: p�x� =
1/2d if �x� = 1. Although the overall density of 1’s in space is still approxi-
mately zero, the local density of 0’s, Vt�x�, defined in (1.1), at a site x with
ξt�x� = 1, is now the proportion of 0’s among the nearest neighbors y of x. This
will be strictly less than 1 with significant probability, as a 1 at a neighbor y
may be due to a “birth” from x which has not changed to 0 in the intervening
time.

We will show that for d ≥ 3 the mean proportion of neighboring 0’s for
an occupied site is γe > 0. The transience of simple random walk for d ≥
3 will allow us to conclude in addition that this nontrivial local density of
1’s relies only on the contribution of “close cousins,” and hence the resulting
independence between sites at a positive macroscopic distance ensures there
will be a mean-field simplification in the scaling limit. Note also that, unlike
Theorem 1.0, this branching parameter does not affect the diffusion coefficient
in Theorem 1.2. This is because for the �0�1�-valued voter model we can also
exchange neighboring 1’s (it won’t change a thing) and so the effective diffusion
rate is given by the variance of the voter kernel. To see this more clearly, the
reader may want to look at the derivation of (2.4) in the proof of Theorem 2.1(i)
below.
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If we take N′ =N in the fixed kernel case in d = 2, then the recurrence of
simple random walk ensures that the local density of 0’s about a site in state
1 approaches zero, and the resulting limit will be super-Brownian motion with
no branching, that is, deterministic heat flow. Presutti and Spohn (1983) stated
this result at the end of their Section 2, but did not give the details of the proof.
Cox and Durrett (1995) (see their Theorem 2) give a complete proof for the
special initial condition of a half plane of 1’s, which can be easily adapted
to more general initial macroscopically smooth initial conditions. From the
last two results, we see that to get a random limit, we must compensate for
the low density of 0’s in d = 2, by speeding up the branching rate N, or,
equivalently, reduce the inverse particle mass N′, which has been done in
Theorem 1.2.

Theorem 1.2 has been applied in Bramson, Cox and Le Gall (1999) to re-
solve a conjecture raised in Bramson and Griffeath (1980). In that paper, the
asymptotic behavior of P�ξt �= �� as t → ∞ was obtained, where ξt is the
nearest neighbor voter model on Zd with rate one started from a single one
at the origin. Bramson and Griffeath asked whether or not ξt, conditioned on
the event �ξt �= ��, obeyed an asymptotic shape theorem. Using Theorem 1.2,
Bramson, Cox and Le Gall answer this by showing that the law of ξt/

√
t,

conditioned on the event �ξt �= ��, converges as t → ∞ to the law of the
support of super-Brownian motion at time t = 1 under its canonical measure
[see Section 3.4 of Dawson (1992)].

Finally, we consider the case d = 1 which is not covered by Theorem 1.2.
If we restrict our attention to the nearest neighbor case, then taking N′ =
N1/2, and using the reasoning that led to Theorem 2 of Cox and Griffeath
(1986), we see that XN

t defined above converges to a measure valued process
where the density at any positive time is 1 or 0 on alternating intervals of
random length, with the end points of these intervals undergoing annihilating
Brownian motions.

Having considered fixed range and long-range voter models, it is natural to
ask if there are any results to be found in between. In d ≥ 3, Theorems 1.1
and 1.2 cover all the possibilities. The Mueller and Tribe (1995) result shows
that at the borderline of the d = 1 condition in Theorem 1.1, we get a more
interesting limit. Extrapolating wildly suggests that in d = 2 we should take
MN = O�√logN� to get a more interesting limit. The next result does this
and yields a result which “interpolates” between Theorems 1.1 and 1.2.

Theorem 1.3. Assume (H2) holds, and let PN denote the law of XN. for the
d = 2 long range models (M1), where as N→∞, MN →∞ and

M2
N

logN
→ ρ ∈ �0�∞��(1.8)

N′ =
{
N� ρ > 0,
NM2

N/ logN� ρ = 0.(1.9)
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Then PN ⇒ P
2γ�1/3
X0

as N→∞, where

γ =
{
1/�1+ �3/2πρ��� ρ > 0,
2π/3� ρ = 0.

(1.10)

We note that setting ρ = ∞ in (1.10) gives γ = 1, which is consistent with
Theorem 1.1. For any ρ <∞ we have 0 < γ < 1. To explain this, note that the
difference of two independent random walks with variance v will visit a cube
about logN/2πv times up to time N, so if the number of lattice points in the
cube M2

N = O�logN� there is positive probability of the difference hitting 0
(and positive probability it does not).

As ρ → 0 the probability the two random walks hit approaches 1, so the
local density of 0’s approaches 0 and we have to reduce the initial mass to
NM2

N/ logN. To see the result of this, note that if we used N′ = M2
N/ logN

in the case ρ > 0, that would change the ρ > 0 formula for γ to

1/ρ
1+ �3/2πρ� →

2π
3

as ρ→ 0


Finally, we should consider d = 1. Theorem 1.1 applies if MN/
√
N → ∞,

while Mueller and Tribe handle the case MN/
√
N → ρ. We leave it to the

interested reader to show that if MN/
√
N → 0 then we get the same result

as for the nearest neighbor case we discussed after Theorem 1.2.
To minimize the total number of words needed to write down our proofs

and to better expose the reasoning behind our arguments, Theorems 1.1–1.3
will be derived as special cases of more general results. In addition to (H1)
and (H2), which concern the dispersal kernel and the initial condition, we will
need the following assumptions about the mass renormalization:

�H3�
(a) 1 ≤N′ ≤N�

(b) N′ ≡N or N′/N→ 0�

(c) limN→∞N5/7/N′ = 0


The first two conditions are natural but the third is somewhat strange. The
5/7’s here is dictated by the proof of (2.13) in Lemma 2.4. In all of the examples
we consider, we will either have N′ ≡ N or N/N′ = logN, so we could get
away with any power less than 1.

Let Bx�N
t ∈ SN be independent rate N random walks with B

x�N
0 = x and

step distribution pN�·�. To prove our results, we will need assumptions on the
behavior ofBx�N

t and ofB∗�N
t , the rateN random walk with initial distribution

pN�·�. Let
τ∗�N = inf�t ≥ 0:B∗�N

t = 0� ≤ ∞


Our new conditions are as follows:

�K1� lim
N→∞

N

N′P�τ∗�N > t� = γ
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(K2) There is a sequence εN → 0 with 0 < εN < 1/2� so that for all t > 0 and
δ > 0,

(a) lim
N→∞

N

N′P
(∣∣B0�N

tεN

∣∣ > δ

)
= 0�

(b) lim
N→∞

N

N′P�εNt < τ∗�N ≤ t� = 0


(K3) lim
N→∞

sup
x∈SN

N′P�B0�N
t = x� = 0 for all t > 0


(K4) sup
N

N

N′P
(
τ∗�N > �N′/N�2

)
<∞


Condition (K1) says that the ratio N/N′ was chosen correctly and identifies
the value of the branching rate γ. (K3) says that N′ is not too large or the
lattice spacing M−1

N M−1/2 is not too large. This condition fails, for example, in
d = 1 if N′ = N and MN/

√
N �→ ∞, as is the case in Theorem 2 of Mueller

and Tribe (1995) described above and for which the weak limit is not super-
Brownian motion. To get a sense for (K2) and (K4), first consider the case
N′ = N. In this situation, (K4) is trivial while the condition in (K2) involves
a competition between wanting εN → 0 quickly or slowly. In the case N′ =N
this is typically easy to satisfy but when N′/N→ 0, (K4) becomes nontrivial
and the competition in (K2) becomes more difficult to accommodate.

The conditions (K1)–(K4) are designed to allow us to prove the following
umbrella result.

Theorem 1.4. Assume (H1)–(H3) and (K1)–(K4). Then PN ⇒ P
2γ� σ2

X0
.

The proof of Theorem 1.4 begins in Section 2 with a “stochastic integral”
construction of the voter model which was used by Mueller and Tribe (1995)
and by Kurtz and Protter (1996). In Section 2 we also identify certain related
martingales and their square functions. In Section 3 we introduce a set of
intermediate conditions (I1)–(I3) and prove the following theorem.

Theorem 1.5. Assume (H1)–(H3) and (I1)–(I3). Then PN ⇒ P
2γ� σ2

X0
.

In Section 4, we show that in the presence of (H1)–(H3), (K1)–(K4) imply
(I1)–(I3). In Section 5 we verify in Theorem 5.1 that (K1)–(K4) hold for the
voter models considered in Theorems 1.1, 1.2 and 1.3, thus completing their
proofs. In our first version of this paper, we only considered dimensions d ≥ 2.
We thank Martin Barlow for suggesting that we extend our results to the one-
dimensional setting, for this has led to an illuminating comparison between
d ≥ 3, d = 2 and d = 1. That is, Theorems 1.1–1.3 imply that the limit is
always super-Brownian motion in dimensions d ≥ 2. In contrast, in d = 1 we
get super-Brownian motion, a SPDE, or a �0�1�-valued density depending on
the size of the range.
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2. Rescaled voter models and martingale problems. In this section,
we give a careful construction of our rescaled voter models ξNt and describe as-
sociated measure-valued martingale problems solved by their empirical mea-
sures XN

t . The main result here is Theorem 2.1 below.
The rescaled voter model ξNt ∈ �0�1�SN , described in the introduction,

evolves as follows. Each site x ∈ SN, at rate N, selects a site y ∈ SN with
probability pN�y − x�, and adopts the “opinion” of the chosen site. Transi-
tions at different sites and times are independent of one another. In order to
make effective use of martingale methods, we follow the approach of Mueller
and Tribe (1995) [see also Kurtz and Protter (1996)] and give a more formal
construction of ξNt using ξN0 and a family of independent Poisson processes
�0N

t �x�y�:x�y ∈ SN�, with rate NpN�y− x�.
To be very formal, these Poisson processes are defined on a complete prob-

ability space and we let �t denote the canonical right-continuous filtration
generated by these processes up to time t and the P-null sets. To explain the
phrase “rate NpN�y− x�” we note that the compensated processes,

0̂N
t �x�y� = 0N

t �x�y� −NpN�y− x�t�
are ��t�-martingales. Our rescaled voter model is defined by the stochastic
integral equation,

ξNt �x� = ξN0 �x� +
∑
y

∫ t

0

[
ξNs−�y� − ξNs−�x�

]
d0N

s �x�y��

x ∈ SN� t ≥ 0�

(2.1)

where the sum is over y ∈ SN. A solution ξN is a cadlag �0�1�SN -valued process
for which∑

y

∫ t

0

∣∣ξNs−�y� − ξNs−�x�
∣∣ d0N

s �x�y� <∞ for all t > 0� x a.s.

and (2.1) holds a.s. To see that this gives the voter model, note that if ξNs−�y� =
ξNs−�x� then nothing happens, then consider the cases ξNs−�y� = 1, ξNs−�x� = 0
and ξNs−�y� = 0, ξNs−�x� = 1.

Equation (2.1) captures our earlier more intuitive description, but, as it
involves infinitely many processes ξN. �x�, x ∈ SN, we will give here an el-
ementary proof of the existence of a unique solution. In doing this, we will
omit the dependence on N from our notation [writing ξt for ξ

N
t , 0̂t�x�y� for

0̂N
t �x�y�, etc.]. We will often do this in what follows except where confusion

might arise. A more general version of the following lemma may be found in
Chapter 9 of Kurtz and Protter (1996).

Lemma 2.1. With probability 1, equation (2.1) uniquely defines ξt for initial
states ξ0 with finitely many sites having opinion 1.

Proof. Let T0 = 0 and for n ≥ 1, let Tn be the time of the nth jump of∑
x�y ξt�x��0t�x�y� + 0t�y�x��. In words, T1 is the time until the first jump
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of some 0t�x� y� or 0t�y� x� with ξt�x� = 1. Since KN ≡ ∑
x ξ0�x� < ∞,

and
∑

z p�z� = 1, T1 is an exponential random variable with mean µ1 =
�2NKN�−1. Clearly, (2.1) uniquely defines ξt for t ∈ �0�T1�, since ξt is constant
for such t. Furthermore, it is easy to see by induction that (2.1) has a unique
solution on �0�T∞� where T∞ = limn→∞Tn, so it suffices now to show that
T∞ = ∞ a.s.

To get an upper bound on the number of 1’s at time t, we set

Yt =KN + j for Tj ≤ t < Tj+1


The time difference Tj+1 − Tj is bounded below by an exponential random
variable with mean �2N�KN + j��−1. Thus if Zt defines a pure birth process
in which each particle gives birth at rate 2N, we can define Yt and Zt on the
same space so that Yt ≤ Zt. Well-known results for the pure birth process
imply Zt < ∞ a.s. for all t, and hence T∞ = ∞ a.s. This can be proved for
instance by using a trivial comparison and then computing the mean of the
branching process

E
(
sup
t≤T

∑
x

ξt�x�
)
≤ E�ZT� =KN exp �2NT� <∞
(2.2)

This estimate will be useful later on. ✷

Recall that for bounded φ:SN → R, we have defined in (1.4),

XN
t �φ� =

1
N′
∑
x

φ�x�ξt�x�


For bounded, measurable ψ: �0�T� × SN → R, let

MN
t �ψ� =

1
N′
∑
x

∑
y

∫ t

0
ψs�x��ξs−�y� − ξs−�x�� d0̂s�x�y�� 0 ≤ t ≤ T
(2.3)

Note that (2.2) shows that this sum is finite for all t ∈ �0�T� a.s.
We need a little more notation before stating Theorem 2.1. Recall that, for

x ∈ SN, B
x�N
t denotes the continuous time random walk on SN which starts

at x, jumps at rate N and has step distribution pN. Let P
N
t f�x� = Ef�Bx�N

t �
be its semigroup and �N its generator,

�Nφ�x� =N
∑
y

pN�y− x�(φ�y� −φ�x�)

The walks B

x�N
t , x ∈ SN are independent. Let Z

x�N
t = B

x�N
t/N

√
N be the

corresponding “unscaled” walks. For φ: �0�T� × SN → R, we let φ̇�s� x� =
�∂φ/∂s��s� x�, and write φt�x� for φ�t� x� and φ̇t�x� for φ̇�t� x�. Let
C

m�n
b ��0�T�×Rd� be the space of bounded continuous functions on �0�T�×Rd

whose derivatives of order less than m + 1 in the first variable and partial
derivatives of order less than n + 1 in the second variable are also bounded
and continuous. [We allow T = ∞, in which case φ is taken to have domain
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�0�∞�×SN.] Let 1 denote the function on SN which is identically one. Finally,
we introduce two notions of the density of vacant sites near x at time t,

VN�t� x� =
∑
y

pN�y− x�1�ξt�y� = 0�� V′
N�t� x� =

N

N′VN�t� x�

and define VN�t�x� = VN�t� x�, V′
N� t�x� = V′

N�t� x�.

Theorem 2.2. Let φ ∈ C
1�3
b ��0�∞�×Rd�. Then

(i) XN
t �φ� =XN

0 �φ� +
∫ t

0
XN

s �φ̇s +�Nφs�ds+MN
t �φ��

where
(ii) MN

t �φ� [defined in (2.3)] is a cadlag, square-integrable ��t�-martingale,
with predictable square function

�MN�φ��t =
∫ t

0
�2XN

s �φ2
sV

′
N�s� + εNs �φ��ds�

where εNs �φ� satisfies

E

(
sup
s≤T

�εNs �φ��2
)
→ 0 as N→∞ for any T > 0


(iii) For any T > 0,

E
∫ T

0
XN

s ���Nφs − σ2�φs/2��ds→ 0 as N→∞


Outline of Proof. Conclusion (i) is (2.5) below. To prove (ii), we will begin
in Lemma 2.2 by deriving a formula for �MN�ψ��t for a large class of test
functions ψ, and then analyze the behavior of MN in Lemma 2.4. Finally, the
convergence in (iii) of the rescaled random walk generators to the Laplacian
is proved in Lemma 2.5.

Proof of (i). Let φ: �0�T� × SN → R such that both φ and φ̇�s� x� are in
Cb��0�T� ×SN�. It follows from the integration by parts formula of Riemann–
Stieltjes integration theory and (2.1) that, for t ∈ �0�T�,

ξt�x�φt�x� = ξ0�x�φ0�x� +
∫ t

0
ξs�x�φ̇s�x�ds

+∑
y

∫ t

0
φs�x��ξs−�y� − ξs−�x��d0̂s�x�y�

+∑
y

∫ t

0
φs�x��ξs−�y� − ξs−�x��NpN�y− x�ds


Note that the left limits are important in the second integral on the right
but not in the third where the integrator is continuous. Multiplying by 1/N′,
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summing over x and rearranging gives

XN
t �φt�=XN

0 �φ0� +MN
t �φ�

+
∫ t

0

[
XN

s �φ̇s� +
N

N′

(∑
x

∑
y

�ξs�y� − ξs�x��pN�y− x�
)
φs�x�

]
ds�

(2.4)

where, as in (2.3),

MN
t �φ� =

1
N′
∑
x

∑
y

∫ t

0
φs�x��ξs−�y� − ξs−�x��d0̂s�x�y��

and absolute convergence of this series and all the sums in (2.4) is clear from
(2.2). By summation by parts and the symmetry assumption (H1)(a),

N

N′
∑
x

∑
y

�ξs�y� − ξs�x��φs�x�pN�y− x�

= 1
N′
∑
x

ξs�x�
(
N
∑
y

�φs�y� −φs�x��
)
pN�y− x� =XN

s ��Nφs�


Therefore, (2.4) becomes

XN
t �φt� =XN

0 �φ0� +
∫ t

0
XN

s �φ̇s +�Nφs�ds+MN
t �φ�� t ∈ �0�T�
(2.5)

Proof of (ii). Having obtained this representation for XN
t , we must now

show that MN
t �φ� is a martingale, and obtain the required form for its pre-

dictable square function. The first step in doing so is the following lemma.

Lemma 2.3. Fix T < ∞, and let ψ: �0�T� × SN → R be bounded and mea-
surable. ThenMN

t �ψ� is a cadlag, square-integrable ��t�-martingale, with pre-
dictable square function

�MN�ψ��t=
N

N′2

∫ t

0

∑
x

∑
y

ψs�x�2�ξs�y�− ξs�x��2pN�y− x�ds� t∈ �0�T�
(2.6)

In particular,

�MN�1��t = 2
∫ t

0
XN

s �V′
N�s�ds� t ≥ 0
(2.7)

Proof. Equation (2.7) follows from (2.6) and the relevant definitions. To
prove (2.6) we will truncate to a finite sum, apply standard results for stochas-
tic integrals with respect to Poisson processes and then pass to the limit. For
k = 1�2� 
 
 
, let

M
N�k
t �ψ� = ∑

x: �x�≤k

∑
y: �y�≤k

∫ t

0

ψs�x�
N′ �ξs−�y� − ξs−�x��d0̂N

s �x�y�
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Clearly, MN�k
t �ψ� is a cadlag, square-integrable ��t�-martingale with predict-

able square function

�MN�k�ψ��t =
∫ t

0

∑
x: �x�≤k

∑
y: �y�≤k

ψs�x�2
N′2 �ξs�y� − ξs�x��2NpN�y− x�ds


Since the difference ξs�y� − ξs�x� can only be nonzero when either ξs�x� = 1
or ξs�y� = 1, it is easy to see that there is a finite constant CN so that

E�MN�k�ψ��t ≤ CN�ψ�2∞
∫ t

0
E�XN

s �1��ds <∞

by (2.2). Since k→ �MN�k�ψ��t is increasing, the last estimate and dominated
convergence imply

sup
k� j≥K

E�MN�k�ψ� −MN�j�ψ��T → 0 as K→∞�

and so by the L2 maximal inequality for martingales,

sup
k� j≥K

E
(
sup
t≤T

�MN�k
t �ψ� −M

N�j
t �ψ��2

)
→ 0 as K→∞


Letting j→∞ and using Fatou’s lemma, converts this into

E
(
sup
t≤T

�MN�k
t �ψ� −MN

t �ψ��2
)
→ 0 as k→∞


This shows thatMN
t �ψ� is a cadlag (right-continuous with left limits), L2 ��t�-

martingale, and it follows easily that �MN�ψ��t = limk→∞�MN�k�ψ��t which
gives the desired formula. ✷

The next result is a technical interlude needed to compute the mean of
XN

t �ψ� and get bounds on its moments.

Lemma 2.4. (a) If ψ:SN → R is bounded, then EXN
t �ψ� = XN

0 �PN
t ψ�. In

particular,

EXN
t �1� =XN

0 �1�

(b) For any p > 1 and T > 0, there is a finite constant cp�T such that

E

(
sup
t≤T

XN
t �1�p

)
≤ cp�T�N/N′�p−1/2�XN

0 �1�p + 1�


Proof. (a) Set φs�x� = PN
t−sψ�x� for 0 ≤ s ≤ t and note that φ̇s+�Nφs =

0 by the backwards equation for continuous time Markov chains. Now take
expectation in (2.5) at t = T and use the fact that MN

t �φ� is a martingale.
(b) Lemma 2.2 and (2.5) show that XN

t �1� = XN
0 �1� + MN

t �1� is an L2

martingale, such that

�XN�1��t =
2N
N′

∫ t

0

1
N′
∑
x

ξs�x�VN�s� x�ds ≤
2N
N′

∫ t

0
XN

s �1�ds�(2.8)
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where the second equality follows from VN�s� x� ≤ 1. For p > 1, a predictable
square function inequality of Burkholder (1973) (see Theorem 21.1) shows
that, for a finite constant bp,

E

(
sup
t≤T

XN
t �1�p

)

≤ bp

[
�XN

0 �1��p +E�XN�1��p/2t +E

(
sup
s≤T

��XN
s �1��p

)]



(2.9)

Since the largest discontinuity in the process XN
s �1� is at most 1/N′ ≤ 1 and

the integral representing �XN�1��t in (2.8) can be trivially bounded by the
supremum, we have

E

(
sup
t≤T

XN
t �1�p

)

≤ bp

[
XN

0 �1�p +
(
2NT

N′

)p/2
E

(
sup
t≤T

XN
t �1�p/2

)
+ 1
]



(2.10)

Inequality (2.10) will reduce the desired result for p to the result for p/2.
To get the induction going, we prove the conclusion for 1 < p ≤ 2. Setting
p = 2 in (2.9) and using (2.8) with conclusion (a) of this lemma we have

E

(
sup
t≤T

XN
t �1�2

)
≤ b2

[
XN

0 �1�2+�2TN/N′� +1
]
≤ b2�2T+1�N

N′
(
XN

0 �1�2+1
)

since N/N′ ≥ 1. For 1 < p ≤ 2, it follows from Jensen’s inequality and the
fact that p/2 ≤ p− 1/2, that

E

(
sup
t≤T

XN
t �1�p

)
≤ cp�T

(
N

N′

)p−1/2
�XN

0 �1�p + 1�

for a finite constant cp�T.
We use induction to finish the proof. Suppose that (b) has been proved for

2n−1 < p ≤ 2n with n ≥ 1, and we let 2n < p ≤ 2n+1. Using (2.10) and the
induction hypothesis,

E

(
sup
t≤T

XN
t �1�p

)

≤ bp

[
XN

0 �1�p +
(
2NT

N′

)p/2
cp/2�T

(
N

N′

)p/2−1/2
�XN

0 �1�p/2 + 1� + 1
]
�

which gives the desired result. ✷

Remark. The estimate in (b) above is poor if N′ � N. For this situation,
in the models we consider, better bounds are derived in Section 4 for p = 2
and 3.
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To prepare for taking the limit as N→∞, we will now rewrite the expres-
sion for �MN�ψ��t given in Lemma 2.2.

Lemma 2.5. Let ψ: �0�T�×SN → R be bounded and measurable, such that
ψ2 is Lipschitz continuous on compact time sets; that is,∣∣ψ2�s� x� − ψ2�s� y�∣∣ ≤ Cψ�x− y�� s ∈ �0�T�� x� y ∈ SN�

for a finite constant Cψ. In this case,

�MN�ψ��t =
∫ t

0

[
2XN

s �ψ2
sV

′
N�s� + εNs �ψ�

]
ds�(2.11)

where, for another finite constant Cψ,

∣∣εNs �ψ�∣∣ ≤ Cψ

√
N

N′ X
N
s �1�(2.12)

and

E

(
sup
s≤T

�εNs �ψ��2
)
→ 0 as N→∞
(2.13)

Proof. First we claim that for bounded φ:SN → R we have

1
N′
∑
x

∑
y

φ�x��ξs�y� − ξs�x��2pN�y− x�

= 2XN
s �φVN�s�

+ 1
N′
∑
x

∑
y

�φ�x� −φ�y��pN�y− x�ξs�y��1− ξs�x��


(2.14)

To see this, begin with the identity

�ξs�y� − ξs�y��2 = ξs�x�1�ξs�y� = 0� + ξs�y�1�ξs�x� = 0�

Using this, the left-hand side of (2.14) can be written as

1
N′
∑
x

φ�x�ξs�x�VN�s�x� +
1
N′
∑
y

φ�y�ξs�y�VN�s�y�

+ 1
N′
∑
x

∑
y

�φ�x� −φ�y��pN�y− x�ξs�y�1�ξs�x� = 0��

which equals the right side of (2.14).
Consulting (2.6), then letting φ = ψ2

s in (2.14) and multiplying by N/N′,
shows that (2.11) holds, with

εNs �ψ� =
N

N′2
∑
x

∑
y

�ψs�x�2 − ψs�y�2�pN�y− x�ξs�y�1�ξs�x� = 0�


By our assumption on ψ, and the scaling of pN in (1.3),∣∣εNs �ψ�∣∣ ≤ N

N′2
∑
y

ξs�y�
∑
x

Cψ�x− y�pN�y− x� ≤ Cψ

N

N′X
N
s �1�

1
N1/2

E��WN��
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By (H1.c), E�WN� is bounded, and hence (2.12) must hold for some finite Cψ.
Finally, to prove (2.13) we note that from (2.12), and Lemma 2.3(b),

E sup
s≤T

∣∣εNs �ψ�∣∣2 ≤ Cψ

N

�N′�2E sup
s≤T

XN
s �1�2

≤ Cψ

N5/2

�N′�7/2 �X
N
0 �1�2 + 1� → 0

by our basic assumptions (H2) and (H3)(c). ✷

Proof of (iii). The next result shows that the rescaled random walk gen-
erators �N converge in an appropriate sense to the generator of Brownian
motion. As the reader can probably guess, this is a straightforward applica-
tion of Taylor’s theorem with remainder.

Lemma 2.6. For φ ∈ C
1�3
b ��0�T� ×Rd�,

lim
N→∞

sup
s≤T

��Nφs − σ2�φs/2�∞ = 0


Moreover, for every R <∞, the rate of convergence above is uniform over

{
φ ∈ C

1�3
b ��0�T� ×Rd�: sup

s� i� j� k

���φs�ij�∞ + ��φs�ijk�∞� ≤ R
}
�

where the subscripts i� j� 
 
 
 indicate partial derivatives with respect to the
spatial variable.

Proof. Taylor’s theorem shows there is a YN�ω� in the line segment from
x to x+WN�ω�/

√
N such that

N
(
φs�x+WN/

√
N� −φs�x�

) = ∇φs�x��WN/
√
N� + 1

2

∑
ij

�φs�ij�YN�Wi
NW

j
N


Therefore, using (H1), we have∣∣�Nφs�x� − σ2�φs�x�/2
∣∣ = ∣∣N�Eφs�x+WN/

√
N� −φs�x�� − σ2�φs�x�/2

∣∣
≤ 1

2

∑
i� j

∣∣∣E(��φs�ij�YN� − �φs�ij�x��Wi
NW

j
N

)∣∣∣
+ 1

2

∑
i� j

∣∣∣�φs�ij�x��E�Wi
NW

j
N� − δijσ

2�
∣∣∣


Since �φs�ij is bounded and Lipschitz continuous, the above is not larger than

C
∑
ij

E
(( �WN�√

N
∧ 1
)
�Wi

NW
j
N�
)
+C max

1≤i� j≤d

∣∣E�Wi
NW

j
N� − δijσ

2
∣∣ ≡ ηN

for a finite constant C. By (H1)(b) and (H1)(c), ηN → 0 uniformly as required.
✷
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This, together with Lemma 2.3(a) and (H2), completes the proof of (iii) in
Theorem 2.1, which means that the mission of this section has been accom-
plished.

3. Weak convergence to super-Brownian motion. We now introduce
some intermediate hypotheses, (I1)–(I3). In this section, we will show that
(H1)–(H3) and (I1)–(I3) imply the conclusion of Theorem 1.4. In Section 4 we
will confront the problem of inferring (I1)–(I3) from (K1)–(K4). The three new
conditions are:

(I1) There is a finite γ > 0 such that, for all φ ∈ C∞
0 �Rd� and T > 0, as

N→∞,

E

[( ∫ T

0
XN

s ��V′
N�s − γ�φ2�ds

)2]
→ 0


(I2) For all T > 0 there exists a finite CT such that limT↓0CT = 0 and for all
N,

∫ T

0
EξN0 �XN

s �V′
N�s��ds ≤ CTX

N
0 �1�


(I3) There is a θ ∈ �0�1� and a finite C�ε�T�K� such that, for all N ∈ N, all
cutoffs 0 < ε, K <∞, and all pairs of times ε ≤ s ≤ t ≤ T, we have

sup

{
E

[( ∫ t

s
XN

r �V′
N�r��dr

)2]
:XN

0 �1� ≤K

}
≤ C�ε�T�K��t− s�1+θ


Hypothesis (I1) says that the mean field simplification occurs: when V′
N�s

is averaged over a macroscopic scale, the result is a constant γ which gives
the branching rate in the limiting super-Brownian motion. Hypothesis (I2)
is a bound to supplement (I1), which is phrased in terms of test functions.
Technically, it provides the needed control over the square function �MN�1��t.
Finally, (I3) is a Kolmogorov continuity bound that will be used to obtain
tightness. When the smoke clears at the end of the proof of Theorem 4.1, you
will see that we could take θ = 1/3.

Assuming that (H1)–(H3) and (I1)–(I3) hold, we will now use standard
weak convergence arguments [see, e.g., Ethier and Kurtz (1986) or Jacod and
Shiryaev (1987)] to prove weak convergence of our rescaled voter models to
super-Brownian motion. Recall thatXt�ω� = ω�t� are the coordinate variables
on �X�D and PN denotes the law of XN

t . To prove tightness of the PN we use
a specialized version of Jakubowski’s general criterion for D��0�∞��E� when
E is Polish. See Theorem 3.6.4 of Dawson (1993) or Jakubowski (1986).

To state the relevant result, we begin by recalling that ? ⊂ Cb�Rd� is a
separating class if and only if each finite measure µ on the d-dimensional
Borel sets is uniquely determined by the values of µ�φ� for φ in ?.
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Proposition 3.1. Let ? ⊂ Cb�Rd� be a separating class which is closed
under addition. A sequence of probabilities PN on �X�D is tight if and only if
the following conditions hold:

(i) For each T�ε > 0 there is a compact set KT�ε ⊂ Rd such that

sup
N

PN

(
sup
t≤T

Xt�Kc
T�ε� > ε

)
< ε


(ii) For each T > 0, limM→∞ supN PN �supt≤T Xt�1� > M� = 0.
(iii) If P

φ
N�A� = PN�X.�φ� ∈ A�, then for each φ in ?, �Pφ

N:N ∈ N� is
tight on D = D��0�∞��R�.

The derivation of this result from the more general results cited above is
straightforward. See Theorem 3.7.1 of Dawson (1993) for the slightly simpler
case where one considers measures on the one-point compactification of Rd.

Corollary 3.2. Assume PN satisfies (i)–(iii) of Proposition 3.1 with ? =
C∞

0 �Rd� and that:

(iv) for φ ∈ ?, each limit point of P
φ
N is supported by C��0�∞��Rd� ≡ C.

Then PN is tight on �X�D and all limit points are supported by �X�C ≡
C��0�∞��MF�Rd��.

Proof. PN is tight on �X�D by Proposition 3.1. Let P be a limit point of
this sequence. If φ ∈ ?, then Pφ is a limit point of Pφ

N and so is supported by
C. Let ?0 be a countable dense subset of ? (in the � �∞-topology). Then P-a.s.
for all φ ∈ ?0, X.�φ� is continuous. As ?0 is a separating class this shows
that Xt =Xt− for all t ≥ 0, P-a.s. ✷

Our goal now is to verify the hypotheses (i)–(iii) of Proposition 3.1. We as-
sume (H1)–(H3) and (I1)–(I3) throughout this section and begin with checking
condition (i) in Proposition 3.1. Let hn:Rd → �0�1�, be a sequence of C∞ func-
tions such that

B�0� n� ⊂ �x:hn�x� = 0� ⊂ �x:hn�x� < 1� ⊂ B�0� n+ 1��
where B�x� r� is the open ball in Rd with center x and radius r. If we let �hn�i,
�hn�ij and �hn�ijk denote partial derivatives of hn, then

Ch ≡ sup
n

sup
1≤i� j� k≤d

(
��hn�i�∞ + ��hn�ij�∞ + ��hn�ijk�∞

)
<∞


Lemma 3.3. For hn defined as above, limn→∞ supN P�supt≤T XN
t �hn� >

ε� = 0 for any ε�T > 0.
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Proof. Since hn does not depend on s, Theorem 2.1 shows that

XN
t �hn� =XN

0 �hn� +
∫ t

0
XN

s ��Nhn�ds+MN
t �hn�
(3.1)

Clearly, we have

sup
t≤T

∣∣∣∣
∫ t

0
XN

s ��Nhn�ds
∣∣∣∣≤
∫ T

0
XN

s ���Nhn − σ2�hn/2��ds

+
∫ T

0
XN

s �σ2��hn�/2�ds

(3.2)

The first term is handled by Lemmas 2.3(a) and 2.5 which show that, uniformly
in n,

E

( ∫ T

0
XN

s

(∣∣�Nhn − σ2�hn/2
∣∣)ds)

≤ ��Nhn − σ2�hn/2�∞TXN
0 �1� → 0 as N→∞�

As the left side trivially approaches 0 as n→∞ for each fixed value of N by
dominated convergence and Lemma 2.3(a), it follows immediately that

lim
n→∞ sup

N

E

( ∫ T

0
XN

s ���Nhn − σ2�hn/2��ds
)
= 0
(3.3)

By Lemma 2.3(a), using Chebyshev’s inequality for the last inequality, the
mean of the second term on the right side of (3.2) is at most

CE

(∫ T

0
XN

s �B�0� n�c�ds
)
=CE

(∫ T

0

∫
P��Bx�N

s � ≥ n�XN
0 �dx�ds

)

≤CT
[
XN

0 �B�0� n/2�c�

+XN
0 �1� sups≤T P��B0�N

s � ≥ n/2�
]

≤CT
[
XN

0 �B�0� n/2�c� +XN
0 �1�CTn−2

]
�

(3.4)

which approaches 0 uniformly in N as n → ∞ by (H2). Combine this with
(3.2) and (3.3) to see that

lim
n→∞ sup

N

E

(
sup
t≤T

∣∣∣∫ t

0
XN

s ��Nhn�ds
∣∣∣) = 0 for all T > 0
(3.5)

Apply (3.1) and (3.5) to see that for some ηn → 0,

E
(∣∣MN

T �hn�
∣∣) ≤ E�XN

T �hn�� +XN
0 �hn� + ηn =XN

0 �PN
T hn + hn� + ηn�

the last by Lemma 2.3(a). To bound the right-hand side, we note thatB�0� n� ⊂
�x:hn�x� = 0� and hn ≤ 1, and thus

XN
0 �PN

T hn� ≤XN
0 �B�0� n/2�c� +XN

0 �1�P
(∣∣B0�N

s

∣∣ > n/2
)
→ 0 as n→ 0
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uniformly in N. Since XN
0 �hn� ≤ XN

0 �B�0� n�c�, we can conclude from (H2)
that

lim
n→∞ sup

N

XN
0 �PN

Thn + hn� = 0


The weak L1 inequality for martingales now gives

lim
n→∞ sup

N

P

(
sup
t≤T

∣∣MN
t �hn�

∣∣ > ε

)
= 0 for all ε > 0
(3.6)

Since (3.6), (3.5) and (H2) control the three terms in (3.1), the proof of
Lemma 3.3 [and condition (i) of Proposition 3.1] is now complete. ✷

To prove (ii) in Proposition 3.1, we begin by observing that (2.5) gives
XN

t �1� =XN
0 �1� +MN

t �1� while (2.7) tells us that

�XN�1��t = �MN�1��t = 2
∫ t

0
XN

s �V′
N�s�ds


If we use (I2) and apply Doob’s L2-inequality to the martingale MN
t �1� we get

E

(
sup
s≤T

MN
s �1�2

)
≤ CTX

N
0 �1�


From this it follows easily that, for a finite constant CT,

E

(
sup
s≤T

XN
s �1�2

)
≤ CT�XN

0 �1� +XN
0 �1�2��(3.7)

and using (H2) we have the desired result by Chebyshev’s inequality.
Next we verify (iii) in Proposition 3.1 and (iv) in Corollary 3.2.

Lemma 3.4. If φ ∈ C∞
0 �Rd�, then �Pφ

N:N ∈ N� is tight in D and all limit
points are in C��0�∞��R�.

Proof. To do this, we begin by using (2.5) to write

XN
t �φ� =XN

0 �φ� +
∫ t

0
XN

s ��Nφs�ds+MN
t �φ�
(3.8)

The first term on the right is constant in t. Our approach will be to show that
the other two terms are also tight. If t < u ≤ T, then the uniform convergence
of �Nφ to σ2�φ/2 proved in Lemma 2.5 implies there is a finite constant Cφ

such that

E

[(∫ u

t
�XN

s ��Nφ��ds
)2]

≤ CφE

[(∫ u

t
XN

s �1�ds
)2]




Inequality (3.7) shows that if XN
0 �1� ≤ K, then the right side above is not

larger than

CφE

[
sup
s≤T

XN
s �1�2

]
�u− t�2 ≤ Cφ�T�K+K2��u− t�2
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Let AN�t� =
∫ t
0 X

N
s ��Nφ�ds. The above bound and Proposition VI.3.26 in

Jacod and Shiryaev (1987) imply that AN defines a tight sequence of proba-
bilities on C��0�∞��R�.

Turning now to MN
t �φ�, Theorem 2.1 implies

�MN�φ��t =
∫ t

0
�2XN

s �φ2
sV

′
N�s� + εNs �φ��ds


From this we see that for 0 < ε ≤ s < t ≤ T, t− s ≤ 1,

E
({�MN�φ��t − �MN�φ��s

}2)

≤ C

{
�φ�4∞E

[(∫ t

s
XN

r �V′
N�r�dr

)2]
+E

(
sup
r≤T

εNr �φ�2
)
�t− s�2

}
�

(3.9)

where C is a finite constant. Using (I3) and Theorem 2.1, we conclude that if
N is large and XN

0 �1� ≤K, the right side of (3.9) is at most

C
{
�φ�4∞C�ε�T�K��t− s�1+θ + �t− s�2

}
≤ C�ε�T�K�φ��t− s�1+θ

for ε ≤ s < t ≤ T, since we have assumed in (I3) that 0 < θ ≤ 1.
Now Theorem 2.1 and (I2) show that

E��MN�φ��T� ≤ 2�φ�2∞E
(∫ T

0
XN

s �V′
N�s�ds

)
+TE

(
sup
s≤T

εNs �φ�
)

≤ 2�φ�2∞CTX
N
0 �1� +TE

(
sup
s≤T

εNs �φ�
)



The right side is bounded uniformly in N by (H2) and Theorem 2.1 and ap-
proaches 0 as T ↓ 0 uniformly in N by Theorem 2.1 and (I2).

It is now an elementary exercise to use the above two inequalities to
show that �MN�φ��. is tight in C��0�∞��R�, for example, by using Propo-
sition VI.3.26 in Jacod and Shiryaev (1987) again. Recall also that
supt≤T ��MN�φ��t�� ≤ �φ�∞�N′�−1. Theorem VI.4.13 and Proposition VI.3.26
of Jacod and Shiryaev (1987) show that �MN�φ�:N ∈ N� is tight in D and
all limit points are supported by C��0�∞��R�. Using (3.8) now with the above
results, we obtain the desired conclusion. ✷

At this point we have proved that all the hypotheses of Corollary 3.2 are
satisfied so we are ready to prove our main result. Recall from Section 1 that
P

b�σ2

X0
denotes the law of super-Brownian motion on �X�D or �X�C, starting at

X0, and with branching rate b and diffusion coefficient σ2.

Theorem 3.5. Assume (H1)–(H3) and (I1)–(I3). Then PN ⇒ P
2γ� σ2

X0
.
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Proof. Corollary 3.2 implies that �PN� is tight and all limit points are
supported by �X�C. Let P be any such limit point and let φ ∈ C∞

0 �Rd�. By Sko-
rohod’s theorem [Theorem 3.1.8 in Ethier and Kurtz (1986)] we may assume
there is an X with law P and a subsequence �Nk� such that

XNk →X a.s. in �X�D
(3.10)

Lemma 2.5 and part (iii) of Theorem 2.1 show that for all T > 0,

lim
k→∞

sup
t≤T

∣∣∣∣
∫ t

0
XNk

s ��Nk
φ�ds−

∫ t

0
Xs�σ2�φ/2�ds

∣∣∣∣ = 0 a.s.(3.11)

Let Mt�φ� = Xt�φ� −X0�φ� −
∫ t
0 Xs�σ2�φ/2�ds. Then (3.10) and (3.11) to-

gether with the identity in (i) of Theorem 2.1 imply that for all T > 0,

lim
k→∞

sup
t≤T

∣∣∣MNk

t �φ� −Mt�φ�
∣∣∣ = 0 a.s.(3.12)

Here we use the fact that M.�φ� is continuous to derive uniform convergence
on compacts from convergence in D.

Lemma 2.4 implies that

E�MN�φ��2t = E

(∫ t

0

[
2XN

s �φ2V′
N�s� + εNs �φ�

]
ds

)2
�

where �εNs �φ�� ≤ C′
φX

N
s �1�

√
N/N′. It follows from (I1), Theorem 2.1(ii), and

(3.7), that for all T > 0, supNE
(
�MN�φ��2T

)
< ∞. Using Burkholder’s in-

equality in (2.9) and ��MN�φ��t�� ≤ �φ�∞�N′�−1, we obtain

sup
N

E

(
sup
t≤T

�MN
t �φ��4

)
<∞ for all T > 0
(3.13)

Fix 0 ≤ t1 < t2 < · · · < tn ≤ s < t and test functions hi:�F�Rd� → R that are
bounded and continuous for 1 ≤ i ≤ n. Now (3.10), (3.12), (3.13) and dominated
convergence imply that

E

(
�Mt�φ� −Ms�φ��

n∏
1

hi�Xti
�
)

= lim
k→∞

E

(
�MNk

t �φ� −MNk
s �φ��

n∏
1

hi�XNk

ti
�
)
= 0�

the last from Theorem 2.1. Therefore under P, Mt�φ� is a continuous � X
t -

martingale where � X
t is the canonical right-continuous filtration generated

by X. Also, (3.10), (3.12), (3.13) and (3.7) imply

E

((
Mt�φ�2 −Ms�φ�2 −

∫ t

s
Xr�2γφ2�dr

) n∏
1

hi�Xti
�
)

= lim
k→∞

E

((
M

Nk

t �φ�2 −MNk
s �φ�2 −

∫ t

s
XNk

r �2γφ2�dr
) n∏

1

hi�XNk

ti
�
)
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Lemma 2.4 and (I1) show that the above equals

lim
k→∞

E

((
M

Nk

t �φ�2 −MNk
s �φ�2 − ��MNk�φ��t − �MNk�φ��s�

) n∏
1

hi�XNk

ti
�
)
�

which is 0 by Theorem 2.1. This shows that �M�φ��t =
∫ t
0 Xs�2γφ2�ds for

all t ≥ 0, P-a.s. We have proved that X satisfies the martingale problem
�MP�2γ� σ2

X0
(see Section 1) which characterizes the law of super-Brownian mo-

tion (see the Appendix). Therefore the law of X, P, equals P2γ� σ2

X0
. As P is an

arbitrary limit point, the result follows. ✷

4. Analysis of the square function. In this section we will show that
in the presence of (H1)–(H3), (K1)–(K4) imply the intermediate conditions
(I1)–(I3). To do this, we will introduce a second set of intermediate conditions
(J1)–(J2), but for that we need some notation. For φ in C∞

0 �Rd� and γ > 0,
define

ε
N�γ
K�φ�t� = sup

{ ∣∣∣EξN0 �XN
t ��V′

N� t − γ�φ2��
∣∣∣$ XN

0 �1� ≤K
}



(J1) There is a γ > 0 such that for all φ ∈ C∞
0 �Rd�, t > 0 and K <∞,

lim
N→∞

ε
N�γ
K�φ�t� = 0


(J2) There is a p > 1 and function g: �0�∞� %→ �1�∞� which is bounded on
compact subintervals of �0�∞�, such that for all T > 0,

∫ T
0 g�s�pds <∞,

and for each T > 0 there exists a finite C = CT such that for all s ∈ �0�T�
and N ∈ N,

�a�
�b�
�c�

EXN
s �V′

N�s�≤g�s�XN
0 �1��

EXN
s �1�3≤CT�XN

0 �1�3 + 1��
E
[
XN

s �V′
N�s�XN

s �1�2
]
≤g�s��XN

0 �1� + 1�


Obviously (J1) will be the key to the proof of (I1), but note that (J1) only
says that the mean of V′

N�s is close to γ while (I1) asserts convergence of
V′

N�s to γ in an L2 sense. The conditions in (J2) are boundedness conditions
that will be needed to upgrade (J1) to (I1) and establish the earlier regularity
conditions (I2) and (I3). It will turn out (see the proof of Lemma 4.5 below)
that we can take g�s� = Cs�1+ s−1/2� where s→ Cs is increasing, and hence
we can choose p = 3/2. Note that we have assumed g�s� ≥ 1, so g�s� can be
used to absorb constants.

Theorem 4.1. Assume (H1)–(H3). If (J1)–(J2) hold, then (I1)–(I3) hold.
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Proof of (I1). Let φ ∈ C∞
0 �Rd� and set

φN�s�x� = �V′
N�s�x� − γ�φ2�x�
(4.1)

By expanding the expectation in (I1), we obtain

E

[(∫ T

0
XN

s �φN�s�ds
)2]

= 2
∫ T

0

∫ T

s
E
(
XN

s �φN�s�XN
t �φN� t�

)
dtds


By the Markov property, for s < t,

E
(
XN

s �φN�s�XN
t �φN� t�

)
= E

[
XN

s �φN�s�EξNs
(
XN

t−s�φN� t−s�
)]



Thus,

E

[(∫ T

0
XN

s �φN�s�ds
)2]

= 2E
[∫ T

0
XN

s �φN�s�
∫ T

s
EξNs

(
XN

t−s�φN�t−s�
)
dtds

]



(4.2)

Using the definition of φN�s and (J2.a), we have for any s > 0,

EξN0

(∣∣∣XN
s �φN�s�

∣∣∣) ≤ EξN0

(
XN

s �V′
N�sφ

2� + γ�φ�2∞XN
s �1�

)

≤ �φ�2∞g�s�XN
0 �1� + γ�φ�2∞XN

0 �1�
≤ �1+ γ�g�s��φ�2∞XN

0 �1��

where in the last step we have used g�s� ≥ 1. Using the definition of εN�γ
K�φ�s�

now it follows that

ε
N�γ
K�φ�s� ≤ �1+ γ�g�s��φ�2∞K
(4.3)

Let �K�s� = �XN
s �1� ≤K�. On �K�s� we have

�EξNs �XN
t−s�φN� t−s��� ≤ ε

N�γ
K�φ�t− s� ≤ Cφ�Kg�t− s��(4.4)

where Cφ�K = �1+γ��φ�2∞K. Thus, by (H2), (J1), the dominated convergence

theorem and the fact that
∫ T
0 g�s�ds <∞,

2E
(∫ T

0

∣∣XN
s �φN�s�

∣∣1�K�s�
∫ T

s

∣∣EξNs �XN
t−s�φN�t−s��

∣∣dtds)

≤ 2Cφ�KX
N
0 �1�

∫ T

0
g�s�ds

∫ T

0
ε
N�γ
K�φ�t�dt→ 0

(4.5)

as N→∞.
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To handle the contribution from �c
K�s�, we note that using the definition of

φN�s then (J2.a) and part (a) of Lemma 2.3, we have that for all s ≤ T,

∫ T

s

∣∣EξNs XN
t−s�φN�t−s�

∣∣dt ≤ �1+ γ��φ�2∞
∫ T

s
EξNs

(
XN

t−s�V′
N� t−s� +XN

t−s�1�
)
dt

≤ �1+ γ��φ2�∞XN
s �1�

∫ T

s
�g�t− s� + 1�dt

≤ CT�φX
N
s �1��

where CT�φ = �1 + γ��φ�2∞
∫ T
0 g�s�ds. On account of this, and the definition

of φN�s,

2E
∫ T

0
�XN

s �φN�s��1�c
K�s�

∫ T

s

∣∣EξNs �XN
t−s�φN�t−s��

∣∣dt
≤ 2CT�φ

∫ T

0
E
[∣∣XN

s �φN�s�
∣∣XN

s �1�1�c
K�s�
]

≤ 2CT�φ�1+ γ��φ2�∞
∫ T

0
E
[�XN

s �V′
N�s� +XN

s �1��XN
s �1�1�c

K�s�
]
ds


(4.6)

Using the inequality E�UV�1��V�>K� ≤ E��U�V2�/K, and then (J2.b) and (J2.c)
it follows that for s ∈ �0�T�,

E
[�XN

s �V′
N�s� +XN

s �1��XN
s �1�1�c

K�s�
] ≤ C

K
�XN

0 �1�3 + 1�g�s��

for a finite constant C. Using this inequality in (4.6) we obtain

2E
(∫ T

0

∣∣XN
s �φN�s�

∣∣1�c
K�s�

∫ T

s

∣∣EξNs �XN
t−s�φN� t−s��

∣∣dtds)

≤ 2C2
T�φC

K
�XN

0 �1�3 + 1�

(4.7)

By combining (4.5) and (4.7), we obtain (I1). ✷

Proof of (I2). This follows immediately from (J2.a), with CT =∫ T
0 g�s�ds. ✷

Proof of (I3). We fix 0 < ε < T <∞, and consider s� t such that ε ≤ s <
t ≤ T. The first step is to note that

E
(∫ t

s
XN

r �V′
N�r�dr

)2
= 2

∫ t

s

∫ t

r
E�XN

r �V′
N�r�XN

r′ �V′
N�r′ ��dr′ dr


Let ε ≤ r ≤ r′ ≤ T and note XN
r �1� ≤ 1 +XN

r �1�2. By the Markov property,
and all three bounds in (J2) we get

E
[
XN

r �V′
N�r�XN

r′ �V′
N�r′ �

]
= E

[
XN

r �V′
N�r�EξNr XN

r′−r�V′
N�r′−r�

]
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≤ E
[
XN

r �V′
N�r�XN

r �1�g�r′ − r�
]

≤ �XN
0 �1�3 + 1�g�r�g�r′ − r�

≤ Cε�T�XN
0 �1�3 + 1�g�r′ − r�

for a finite constant Cε�T, where we have used the boundedness of g on �ε� T�.
A little calculus and Hölder’s inequality show that if p is the power in (J2)
and 1/q = 1− 1/p, then∫ t

s

∫ t

r
g�r′ − r�dr′dr =

∫ t−s

0
g�u��t− s− u�du

≤
(∫ t−s

0
g�u�p du

)1/p ( �t− s�q+1
q+ 1

)1/q



Consequently, for θ = 1/q, we can choose a C�ε�T�K� so that (I3) holds. This
completes the proof of Theorem 4.1. In closing we would like to note that if
p = 3/2 as advertised in the discussion of (J2) above, then q = 3 and θ = 1/3
as promised in the introduction. ✷

The second half of closing the gap between the K’s and the I’s is shown in
the following.

Theorem 4.2. Assume (H1)–(H3). If (K1)–(K4) hold, then (J1)–(J2) hold.

The first half of that is to show the following lemma.

Lemma 4.3. Assume (H1)–(H3). If (K1)–(K3) hold then (J1) holds.

Note that the technical condition (K4) is not needed for the proof of (J1). It
will come up several times in the proof of (J2).

Proof. Fix t > 0 and φ ∈ C∞
0 �Rd�. Recalling the definition of V′

N,

E
(
XN

t �V′
N� tφ

2�) = 1
N′
∑
x

φ�x�2∑
y

pN�y− x�E[ξNt �x��1− ξNt �y��
]
N/N′


Here for the first time we will use the usual particle system duality between
the voter model and coalescing random walks. The reader can find this de-
scribed in Griffeath (1978) or in Section 3 of Durrett (1995). Intuitively, if we
follow the sources of the opinions at x and y at time t backwards in time, then
the result is a pair of dual random walks B̂

x�N
t and B̂

y�N
t which: (i) individ-

ually behave like B
x�N
t and B

y�N
t , (ii) are independent until they collide, and

(iii) stay together after they collide.
To say this more formally, let τN�x�y� = inf�s:Bx�N

s = B
y�N
s �, and let

B̂
x�N
t = B

x�N
t for all t and

B̂
y�N
t =

{
B

y�N
t � t ≤ τNx�y,

B
x�N
t � t ≥ τNx�y.
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Duality implies that P�ξNt �x� = 1, ξNt �y� = 0� = P�ξ0�B̂x�N
t � = 1� ξ0�B̂y�N

t � =
0�, so

E
(
XN

t �V′
N� tφ

2�) = 1
N′
∑
x

φ�x�2∑
y

pN�y− x�

×P
[
ξN0 �Bx�N

t � = 1� ξN0 �By�N
t � = 0� τN�x�y� > t

]N
N′ 


To estimate the last sum we will write it as EN
1 − EN

2 , where

EN
1 = 1

N′
∑
x

φ�x�2∑
y

pN�y− x�P
[
ξN0 �Bx�N

t � = 1� τN�x� y� > t
]
N/N′�

EN
2 = 1

N′
∑
x

φ�x�2∑
y

pN�y− x�

×P
[
ξN0 �Bx�N

t � = 1� ξN0 �By�N
t � = 1� τN�x� y� > t

]
N/N′


We first show that EN
2 → 0 uniformly in XN

0 �1� ≤K as N→∞. Summing
over the possible values of w = Bx

t and z = B
y
t and setting y− x = e, we get

EN
2 =

1
�N′�2

∑
w

∑
z

ξN0 �w�ξN0 �z�
∑
e

pN�e�
∑
x

φ�x�2

×P
[
B

x�N
t = w� B

x+e�N
t = z� τN�x� x+ e� > t

]
N


(4.8)

To explain our arithmetic below, we first note that �1/�N′�2�∑w

∑
z ξ

N
0 �w�

ξN0 �z� =XN
0 �1�2. Next, it is easy to see that

∑
e

pN�e�
∑
x

φ�x�2P
[
B

x�N
t = w� B

x+e�N
t = z� τN�x� x+ e� > t

]
N

≤∑
e

pN�e��φ�2∞
∑
x

P
[
B

0�N
t = w− x� B

e�N
t = z− x� τN�0� e� > t

]
N

=∑
e

pN�e��φ�2∞P
[
B

0�N
t −B

e�N
t = w− z� τN�0� e� > t

]
N


By the Markov property, we have

∑
e

pN�e�P
[
B

0�N
t −B

e�N
t = w− z� τN�0� e� > t

]
N

≤∑
e

pN�e�E
(
1�τN�0� e� > t/2�P

[
B

0�N
t −B

e�N
t = w− z �B0�N

t/2 �B
e�N
t/2

])
N

≤ N

N′P�τ∗�N > t/2�N′ sup
x

P�B0�N
t = x� ≡ ηN�t�
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Combining these estimates we obtain EN
2 ≤ XN

0 �1�2�φ�2∞ηN�t�. Since (K1)
and (K3) imply that ηN�t� → 0, we conclude that

sup
XN

0 �1�≤K
EN
2 ≤K2�φ�2∞ηN�t� → 0 as N→∞
(4.9)

Turning now to EN
1 , we can again sum over all the possible values of w =

B
x�N
t to write

EN
1 = 1

N′
∑
w

ξN0 �w�
∑
e

pN�e�
∑
x

φ�x�2P
(
B

x�N
t = w� τN�x� x+ e� > t

)
N/N′


Using translation, reflection symmetry, and then translation again, we have

P
(
B

x�N
t = w� τN�x� x+ e� > t

)
= P

(
B

0�N
t = w− x� τN�0� e� > t

)
= P

(
B

0�N
t = x−w� τN�0�−e� > t

)
= P

(
B

w�N
t = x� τN�w�w− e� > t

)



Using symmetry again we get

EN
1 = 1

N′
∑
w

ξN0 �w�
∑
e

pN�e�
∑
x

φ�x�2P
(
B

w�N
t = x� τN�w�w+ e� > t

)
N/N′


We will write this as EN
3 − EN

4 , where [recall εN in (K2)]

EN
3 = 1

N′
∑
w

ξN0 �w�
∑
e

pN�e�E
[
φ�Bw�N

t �21�τN�w�w+ e� > εNt�
]
N/N′�

EN
4 = 1

N′
∑
w

ξN0 �w�
∑
e

pN�e�E
[
φ�Bw�N

t �21�τN�w�w+ e� ∈ �εNt� t��
]
N/N′


To bound EN
4 , we note that

EN
4 ≤ �φ�2∞

N′
∑
w

ξN0 �w�
∑
e

pN�e�P
(
τN�0� e� ∈ �εNt� t�

)
N/N′

= �φ�2∞XN
0 �1�

N

N′P�τ∗�N/2 ∈ �εNt� t���

where the factor of 2 arises because B0�N
t −B

e�N
t jumps at rate 2N. Condition

(K2.b) now gives

sup
XN

0 �1�≤K
EN
4 → 0 as N→∞
(4.10)

Combining (4.9), (4.10) and Lemma 2.3(a) will show that the proof of
Lemma 4.3 will be complete once we establish

sup
XN

0 �1�≤K

∣∣EN
3 − γXN

0 �PN
t �φ2��∣∣→ 0 as N→∞
(4.11)
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The idea behind (4.11) is that φ2�Bw�N
t � and 1�τN�w�w+e� > εNt� are almost

independent, and thus

EN
3 = 1

N′
∑
w

ξN0 �w�
∑
e

pN�e�E
[
φ2�Bw�N

t �1�τN�w�w+ e� > εNt�
]N
N′

≈ 1
N′
∑
w

ξN0 �w�E�φ2�Bw�N
t ��∑

e

pN�e�P�τN�0� e� > εNt�
N

N′

=XN
0 �PN

t �φ2��N
N′P�τ∗�N > 2εNt� ≈ γXN

0 �PN
t �φ2���

by (K1) and (K2)(b).

Proof of (4.11). Recall that PN
s f�x� = Ef�Bx�N

s �. The Markov property
implies that

E
[
φ2�Bw�N

t �1�τN�w�w+ e� > εNt�
]

= E
[
1�τN�w�w+ e� > εNt�PN

�1−εN�tφ
2�Bw�N

εNt
�
]



Our goal is to show that a small error results if we replace PN
�1−εN�tφ

2�Bw�N
εNt

�
by PN

t φ
2�w�. By (K2)(a) we may choose δN ↓ 0 such that

lim
N→∞

N

N′P
(∣∣B0�N

tεN

∣∣ > δN

)
= 0
(4.12)

Let Bt be a d-dimensional Brownian motion starting at 0, with covariance
matrix σ2I, and let Pt denote its semigroup. As φ2 is Lipschitz we may choose
Cφ so that �φ2�x�−φ2�y�� ≤ Cφ�x−y�. If tN → t and zN → z ∈ Rd asN→∞,
then

�PN
tN
�φ2��zN� −Pt�φ2��z��
≤ ∣∣E�φ2�zN +B

0�N
tN

� −φ2�z+B
0�N
tN

��∣∣
+ ∣∣E�φ2�z+B

0�N
tN

�� −E�φ2�z+Bt��
∣∣

≤ Cφ�z− zN� +
∣∣E�φ2�z+B

0�N
tN

�� −E�φ2�z+Bt��
∣∣→ 0


(4.13)

For the convergence in the last line, see Theorem VIII.3.33 of Jacod and
Shiryaev (1987) and use (H1) to verify the hypotheses of that result.

If tN → t, �zN� → ∞, and the support of φ is contained in B�0�R�, then∣∣PN
tN
φ2�zN�

∣∣ ≤ �φ�2∞P(∣∣zN +B
0�N
tN

∣∣ ≤ R
) ≤ �φ�2∞P�∣∣B0�N

tN

∣∣ > �zN� −R�

Using (H1)(a), (H1)(c) and Chebyshev’s inequality, it follows that

∣∣PN
tN
φ2�zN�

∣∣ ≤ �φ�2∞ CtN
��zN� −R�2 → 0(4.14)
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as N→∞. By (4.13) and (4.14),

κN�t� ≡ sup
{∣∣PN

s �φ2��w�−PN
t �φ2��z�∣∣: �w−z� ≤ δN� �s−t� ≤ εNt

}→ 0(4.15)

as N→ 0.
With (4.15) in hand the rest is straightforward. To begin, we use the Markov

property to see that

EN
3 − γXN

0 �PN
t φ

2�
= 1

N′
∑
w

ξN0 �w�
∑
e

pN�e�

×E

[
1�τN�w�w+ e� > εNt�

N

N′ �PN
�1−εN�tφ

2��Bw�N
εNt

�
]

− γ

N′
∑
w

ξN0 �w��PN
t φ

2��w�


(4.16)

Next, we rewrite the second term on the right side above as

− 1
N′
∑
w

ξN0 �w�
∑
e

pN�e�E�1�τN�w�w+ e� > εNt��
N

N′P
N
t φ

2�w�

+ 1
N′
∑
w

ξN0 �w�
[∑

e

pN�e�
{
P�τN�w�w+ e� > εNt�

N

N′ − γ

}]
PN

t φ
2�w�


Substituting this into (4.16) we obtain∣∣ EN
3 − γXN

0 �PN
t φ

2�∣∣
≤ 1

N′
∑
w

ξN0 �w�P��Bw�N
εNt

−w� > δN�
N

N′ 2�φ�2∞

+ 1
N′
∑
w

ξN0 �w�
∑
e

pN�e�E
(
1�τN�w�w+ e� > εNt� �Bw�N

εNt
−w� ≤ δN�

×N

N′
∣∣PN

�1−εN�t�φ
2��Bw�N

εNt
� −PN

t φ
2�w�∣∣)

+ 1
N′
∑
w

ξN0 �w�
∣∣∣∑
e

pN�e�
{
P�τN�w�w+ e� > εNt�

N

N′ − γ
}∣∣∣PN

t φ
2�w�


Recalling the definitions of XN
0 �1�, κN�t� in (4.15) and τ∗�N, we may bound

the above by

CφX
N
0 �1�

{
P
(∣∣∣B0�N

εNt

∣∣∣ > δN

)N
N′ + P�τ∗�N > 2εNt�

N

N′ κN�t�

+
∣∣∣∣NN′P�τ∗�N > 2εNt� − γ

∣∣∣∣
}



Use (4.12) and then (K1) and (K2)(b) twice to see the above is at most
XN

0 �1�ρN, where ρN → 0 is a sequence of constants independent of XN
0 . This

establishes (4.11) and completes the proof of Lemma 4.3. ✷
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The second half of the proof of Theorem 4.2 is as follows.

Lemma 4.4. Assume (H1)–(H3). If (K1)–(K4) hold, then (J2) holds.

Proof. To begin to accomplish this we let RN�T� = ��B0�N
s : s ≤ T�� denote

the size of the range of B0�N
s up to time T, and derive the following bound.

Lemma 4.5. Conditions (H3)(a) and (K4) imply that supN E�RN�T��/N′

<∞ for all T > 0.

Proof. We start with the observation that

ERN�T� =∑
x

P�B0�N
s = x for some s ≤ T�
(4.17)

Next, by a last time at x decomposition [see Lemma A.2(ii) in the Appendix],

P�B0�N
s = x for some s ≤ T�

= P�B0�N
T = x� +N

∫ T

0
P�B0�N

s = x�P�τ∗�N > T− t�dt


Combining these facts gives

ERN�T� = 1+N
∫ T

0
P�τ∗�N > t�dt


By integrating first over t ≤ �N′/N�2 and bounding P�τ∗�N > t� by 1 there,
and then integrating over t > �N′/N�2, we obtain the estimate

ERN�T�
N′ ≤ 1

N′ +
N′

N
+T

N

N′P
(
τN >

(N′

N

)2)

(4.18)

By (H3)(a), N′ ≤N, so using (K4) we see that ERN�T�/N′ is bounded. ✷

Proof of (J2.a). If N′ ≡ N then V′
N�s ≤ 1 and the desired result holds

with g�s� = 1. Invoking (H2.b), we now suppose that N′/N → 0. Let εN =
�N′/N�2. By duality, we have

E
[
XN

s �V′
N�s�

]
≤ N

N′2
∑
x

∑
y

pN�y− x�P�Bx�N
s ∈ ξN0 � τ

N�x� y� > s�

= N

N′2
∑
w

ξN0 �w�
∑
e

pN�e�
∑
x

P�B0�N
s = w− x� τN�0� e� > s�

=XN
0 �1�

N

N′P�τN > 2s�


If s ≥ εN = �N′/N�2, (K4) implies this is bounded by CXN
0 �1� for a finite

constant C. If 0 ≤ s ≤ εN, then the above is at most

N

N′X
N
0 �1� ≤XN

0 �1�s−1/2
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Therefore (J2)(a) holds with g�s� = C�1+ s−1/2�. ✷

Proof of (J2)(b). We will warm up by estimating E�XN
s �1�2�. Recall from

Lemma 2.2 that XN
s �1� is a martingale, with predictable-square function

2
∫ s
0 X

N
u �V′

N�u�du. Thus, using (J2)(a), for s ∈ �0�T�,

EXN
s �1�2≤XN

0 �1�2 + 2
∫ s

0
EXN

u �V′
N�u��du

≤XN
0 �1�2 + 2XN

0 �1�
∫ s

0
g�u�du ≤ CT

[
XN

0 �1�2 + 1
]



(4.19)

Turning now to the third moments we will again use the particle system
duality, but this time for three and four particles. In the proof of (J2.c) we will
need to consider four particles, so we pause now for some general definitions.
For A ⊂ SN let ζA�N

s denote the set of occupied sites in a coalescing random
walk system in which: (i) we start with a particle at each site x ∈ A and (ii)
the particles move according to independent random walks B

x�N
t until they

collide, at which point they stick together for all time. Let

τN�A� = min�τN�a� b�:a� b ∈ A�a �= b�

denote the time of the first collision between two particles in ζA�N

s . When
A = �x�y� z�, we should write τN��x�y� z�� for the collision time, but we will
usually drop the braces and write τN�x�y� z� instead.

It follows from the particle system duality that

EXN
s �1�3 = �N′�−3 ∑

x�y� z

P�ζ�x�y� z��Ns ⊂ ξN0 �


To bound the right-hand side we start with

P
[
ζ�x�y� z��Ns ⊂ ξN0 � τ

N�x�y� z� > s
]

= P
[
�Bx�N

s �By�N
s �Bz�N

s � ⊂ ξN0 � τ
N�x�y� z� > s

]
≤ P�Bx�N

s ∈ ξN0 �P�By�N
s ∈ ξN0 �P�Bz�N

s ∈ ξN0 �

It is immediate from (a) of Lemma 2.3 that

�N′�−3 ∑
x�y� z

P�Bx�N
s ∈ ξN0 �P�By�N

s ∈ ξN0 �P�Bz�N
s ∈ ξN0 � =XN

0 �1�3
(4.20)

By decomposing the event �τN�x� y� z� ≤ s� according to which pair of walks
collides first, then using symmetry and translation, we see that∑

x�y� z

P
(
ζ�x�y� z��Ns ⊂ ξN0 � τ

N�x�y� z� ≤ s
)

= 3
∑

x�y′� z′
P
(
ζ�0� y

′� z′��N
s ⊂ ξN0 − x� τN�0� y′� = τN�0� y′� z′� ≤ s

)(4.21)

where y′ = y − x, z′ = z − x, and 0� y′ correspond to the pair of walks which
collides first. Ignoring the restriction that the walk starting from z avoids the
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other walks up to the coalescing time, using the strong Markov property, and
dropping the primes from y and z, we obtain∑

x�y� z

P�ζ�0� y� z��Ns ⊂ ξN0 − x� τN�0� y� = τN�0� y� z� ≤ s�

≤ ∑
x�y� z

∑
w�w′

∫ s

0
P�τN�0� y� ∈ du�B0�N

u = w�

×P�Bz�N
u = w′�P�ζ�w�w′��N

s−u ⊂ ξN0 − x�


Do the sum over z and rearrange the other sums to see the above equals

∑
y�w

∫ s

0
P�τN�0� y� ∈ du�B0�N

u = w� ∑
x�w′

P�ζ�w�w′��N
s−u ⊂ ξN0 − x�
(4.22)

Changing variables and doing the sums with the help of (a) of Lemma 2.3 and
(4.19) gives

�N′�−2 ∑
x�w′

P�ζ�w�w′��N
s−u ⊂ ξN0 − x� =N′−2 ∑

x′�w′′
P�ζ�x′�w′′��N

s−u ⊂ ξN0 �

= EXN
s−u�1�2 ≤ CT�XN

0 �1�2 + 1�


With the dependence on u eliminated we can sum to get

�N′�−1 ∑
y�w

∫ s

0
P�τN�0� y� ∈ du�B0�N

u = w�

= �N′�−1∑
y

P�τN�0� y� ≤ s� = �N′�−1ERN�2s��

the 2 coming from the fact thatB0�N
t −By�N

t makes jumps at rate 2N. Plugging
the last two equations into (4.22) and using Lemma 4.5, we see that

1
�N′�3

∑
x�y� z

P�ζx�y� z�N ⊂ ξN0 � τ
N�x�y� z� ≤ s� ≤ CT�XN

0 �1�2 + 1�
(4.23)

The estimates (4.20) and (4.23) imply (J2)(b). ✷

Proof of (J2)(c). We need to estimate E�XN
s �V′

N�s�XN
s �1�2�. If N′ ≡ N

then V′
N�s ≤ 1 so this follows from (J2)(b). So again we invoke (H2)(b) and

suppose that N′/N → 0. Let εN = �N′/N�2. For s ≤ εN, (J2)(b) implies this
expectation is at most

N

N′E�XN
s �1�3� ≤

N

N′C�XN
0 �1�3 + 1� ≤ C�XN

0 �1�3 + 1�s−1/2(4.24)

for some constant C independent of N.
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Having disposed of s ≤ εN we can and will for the rest of the proof suppose
s > εN. Using duality, we have

E�XN
s �V′

N�s�XN
s �1�2�

≤ N

�N′�4
∑

x�y� z� x′
pN�x− x′�P�ζ�x�y� z��Ns ⊂ ξN0 � τ

N�x� x′� > s�
(4.25)

An upper bound for this is EN
1 �s� + EN

2 �s� + EN
3 �s�, where

EN
1 �s� =

N

�N′�4
∑

x�y� z

P�ζ�x�y� z��Ns ⊂ ξN0 � τ
N�x�y� z� ≤ εN��

EN
2 �s� =

N

�N′�4
∑

x�y� z� x′
pN�x− x′�P�ζ�x�y� z��Ns ⊂ ξN0 �

τN�x′� y� z� ≤ εN < τN�x�y� z���

EN
3 �s� =

N

�N′�4
∑

x�y� z� x′
pN�x− x′�P�ζ�x�y� z��Ns ⊂ ξN0 � τ

N�x′� x� y� z� > εN��

and in the last we have used τN�x� x′� > s > εN.
I. To handle EN

1 �s�, note that by symmetry and translation it equals

3
N

�N′�4
∑

x�y� z

P�ζ�x�y� z��Ns ⊂ ξN0 � τ
N�x� z� = τN�x�y� z� ≤ εN�

= 3
N

�N′�4
∑

x�y� z

P�ζ�0� y� z��Ns ⊂ ξN0 − x� τN�0� z� = τN�0� y� z� ≤ εN�


Decompose according to the value of τN�0� z� = u, and the positions B0�N
u and

B
y�N
u , to obtain

EN
1 �s� ≤ 3

N

�N′�4
∑

x�y� z

∑
w�w′

∫ εN

0
P�τN�0� z� ∈ du�B0�N

u = w�

×P�By�N
u = w′�P�ζ�w�w′��N

s−u ⊂ ξN0 − x�

Doing the sum over y, rearranging and changing variables, we see the right
side above equals

3
N

�N′�2
∑
w�z

∫ εN

0
P�τN�0� z� ∈ du�B0�N

u = w� 1
�N′�2

× ∑
x′�w′′

P
(
ζ�x

′�w′′��N
s−u ⊂ ξN0

)



(4.26)

Using duality and (4.19), then summing over w and doing the integral over u,
we transform the above (for s ≤ T) into

3
N

�N′�2
∑
w�z

∫ εN

0
P�τN�0� z� ∈ du�B0�N

u = w�EXN
s−u�1�2
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≤ N

�N′�2
∑
z

P�τN�0� z� ≤ εN�CT�XN
0 �1�2 + 1�

= N

�N′�2E�R
N�2εN��CT�XN

0 �1�2 + 1�


Clearly RN�2εN� is bounded by the number of jumps of B0�N up to time 2εN,
that is, a Poisson variable with mean 2εNN. Thus, for an appropriate constant
CT, we have for T ≥ s > εN,

EN
1 �s� ≤ CT�XN

0 �1�2 + 1�
(

N2

�N′�2
)
εN = CT�XN

0 �1�2 + 1��(4.27)

since εN = �N′/N�2.
II. For EN

2 �s�, note that on the event �τN�x′� y� z� ≤ εN < τN�x�y� z��, y
and z cannot be the first pair to hit. Therefore, on this event,

τN��x′� y� z�� = τN�x′� y� ∧ τN�x′� z�

Using symmetry, EN

2 �s� is at most

2N
�N′�4

∑
x�y� z� x′

pN�x− x′�P
[
ζ�x�y� z��Ns ⊂ ξN0 �

τN�x′� y� = τN�x′� y� z� ≤ εN < τN�x�y� z�
]



Changing variables e = x− x′, y′ = y− x′, z′ = z− x′, and weakening various
inequalities, we see the above is bounded by

2N
�N′�4

∑
x′� y′� z′�e

pN�e�P
[
ζ�e� y

′� z′��N
s ⊂ ξN0 − x′�

τN�0� y′� = τN�0� y′� z′� ≤ εN < τN�y′� z′�
]

≤ 2N
�N′�4

∑
x′� y′� z′

P
[
ζ�y

′� z′��N
s ⊂ ξN0 − x′� τN�0� y′� = τN�0� y′� z′� ≤ εN

]



Dropping the primes from the variables x′, y′, z′ and introducing u, w and
w′ to account for the possible values of τN�0� y�, B0�N

u and Bz�N
u , the strong

Markov property implies that the above is most

2N
�N′�4

∑
x�y� z�w�w′

∫ εN

0
P�τN�0� y� ∈ du� B0�N

u = w�
×P�Bz�N

u = w′�P�ζ�w�w′��N
s−u ⊂ ξN0 − x�


If we sum over z to get rid of P�Bz�N
u = w′�, then we get the same expression

as in (4.26), and so we have

EN
2 �s� ≤ CT�XN

0 �1�2 + 1�
(4.28)
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III. Finally, we come to the estimation of EN
3 �s� for s > εN. Translating by

x, setting e = x′ − x and computing as we did for the two previous sums, we
obtain

EN
3 �s� =

N

�N′�4
∑

e� x� y� z

pN�−e�P�ζ�0� y� z��Ns ⊂ ξN0 − x� τN�e�0� y� z� > εN�

≤ N

�N′�4
∑

e� x� y� z

∑
w�w′�w′′

pN�e�P�B0�N
εN

= w� τN�0� e� > εN�

×P�By�N
εN

= w′�
×P�Bz�N

εN
= w′′�P�ζ�w�w′�w′′��N

s−εN ⊂ ξN0 − x�

= N

�N′�4
∑
w� e

pN�e�P�B0�N
εN

= w� τN�0� e� > εN�
× ∑

x�w′�w′′
P�ζ�w�w′�w′′��N

s−εN ⊂ ξN0 − x�


A change of variables gives

1
�N′�3

∑
x�w′�w′′

P�ζ�w�w′�w′′��N
s−εN ⊂ ξN0 − x�

= 1
�N′�3

∑
a� b� c

P�ζ�a� b� c��Ns−εN ⊂ ξN0 � = EXN
s−εN�1�3


Thus, we have

EN
3 �s� ≤

N

N′EX
N
s−εN�1�3

∑
w� e

pN�e�P�B0�N
εN

= w� τN�0� e� > εN�

= N

N′EX
N
s−εN�1�3

∑
e

pN�e�P�τN�0� e� > εN�

≤ Cs�XN
0 �1�3 + 1�N

N′P�τ∗�N > 2εN�

by the third moment estimate (J2)(b). Recalling εN = �N′/N�2 and using (K4),
there is a constant CT such that if T ≥ s > εN,

EN
3 �s� ≤ CT�XN

0 �1�3 + 1�
(4.29)

Combining (4.25) with (4.27)–(4.29) gives (J2)(c) with g�s� = Cs�1 + s−1/2�.
Note that the boundedness and integrability conditions on g are clear as we
may take Cs to be increasing in s. ✷

For the proof of Theorem 4.2, combine Lemmas 4.3 and 4.4.
For the proof of Theorem 1.4, combine Theorems 3.5, 4.1 and 4.2.
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5. Proofs of Theorems 1.1–1.3. As (H1)–(H3) hold in all of these set-
tings, by Theorem 1.4 it suffices to show that the conditions (K1)–(K4) of Sec-
tion 1 hold for the parameter combinations �pN�MN�N

′� γ� being considered.
That is, it suffices to prove the following result.

Theorem 5.1. Conditions (K1)–(K4) hold in each of the following cases:

(a) The long range kernels given by (M1), with MN satisfying (1.5), N′ ≡N
and γ = 1.
(b) The fixed kernels in (M2), with MN ≡ 1, and N′, γ given by (1.6) and

(1.7).
(c) The long range kernels of (M1) in d = 2, with MN, N′ and γ given in

(1.8)–(1.10).

Proof. We will take the three parts of Theorem 5.1 in order. To prove (a),
we will first obtain an estimate on the spread out random walk kernels given
in (M1) which will be used to verify (K3).

Recall that SN = Zd/�MN

√
N�.

Lemma 5.2. Assume WN is uniformly distributed over �Zd/MN�∩I, where
I = �−1�1�d \ �0�. There is a C such that for all t ≥ 0,

sup
x∈SN

P�B0�N
t = x� ≤ exp

(−Nt

2

)
+ C

Md
N�Nt+ 1�d/2 


Proof. By Lemma 2.4 of Bramson, Durrett and Swindle (1989) (and a
trivial rescaling), there is a constant C such that for all N ∈ N and u > 0,

sup
x

P

(
B0�N

u ∈ x+
[ −1√

N
�

1√
N

]d)
≤ C

�Nu+ 1�d/2 
(5.1)

Let T1 be the first jump time of B0�N
u . Then, by the Markov property,

P�B0�N
t = x� = P�B0�N

t = x� T1 > t/2� +P�B0�N
t = x�T1 ≤ t/2�

≤ exp
(−Nt

2

)
+
∫ t/2

0
P�T1 ∈ du�∑

e

pN�e�P�Be�N
t−u = x�


The probability of Be�N
t−u = x is the same as that of B0�N

t−u −x = −e. Furthermore,

∑
e

pN�e�P�B0�N
t−u − x = −e� = 1

�2MN + 1�d − 1
P

(
B

0�N
t−u − x ∈

[ −1√
N

�
1√
N

]d)



Using (5.1), we now have

P�B0�N
t = x� ≤ exp

(−Nt

2

)
+ 1
�2MN + 1�d − 1

. C

�Nt/2+ 1�d/2 
 ✷
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Proof of Theorem 5.1 (a). Recall thatN ≡N′, which makes (K4) trivial.
By considering separately the three cases, d = 1, d = 2 and d ≥ 3, it is clear
that (K3) follows from Lemma 5.2. To check (K2) we begin by observing that
for any εN > 0, a simple estimate using Chebyshev’s inequality gives

P��B0�N
tεN

� > δ� ≤ E�B0�N
tεN

�2
δ2

≤ CtεN
δ2




This shows that (K2.a) holds for any εN → 0. For (K2)(b), we will show that
for any fixed t > 0,

P�τ∗�N ≤ t� → 0 as N→∞
(5.2)

This will imply that (K1) holds with γ = 1 and (K2)(b) holds for any εN ≤ 1.
For any δN > 0, the number of jumps the walk B

∗�N
t takes up to time δN

is Poisson distributed with mean NδN. The probability it hits 0 on any given
jump is at most 1/Md

N, so the probability that it hits 0 in its first k jumps is
at most k/Md

N. Therefore,

P�τ∗�N ≤ δN� ≤ exp�−NδN�
∞∑
k=1

�NδN�k
k!

k

Md
N

= NδN

Md
N


(5.3)

On the other hand, a last time at 0 decomposition [Lemma A.2(iii)] gives

P�τ∗�N ∈ �δN� t�� ≤ P�B∗�N
t = 0� +N

∫ t

δN

P�B∗�N
u = 0�du


By Lemma 5.2, P�B∗�N
t = 0� → 0 as N → ∞. Since

∫ t
δN

N exp�−Nu/2�du ≤
2 exp�−NδN/2�, Lemma 5.2 also implies that

N
∫ t

δN

P�B∗�N
u = 0�du

≤ 2 exp
(−NδN

2

)
+




C

MN

�Nt+ 1�1/2� in d = 1,

C

M2
N

log
(
�Nt+ 1�/�NδN + 1�

)
� in d = 2,

C

Md
N

�1/�NδN + 1��d/2�−1�� in d ≥ 3.

(5.4)

If we choose δN such that NδN →∞ as N →∞, the first term on the right
side of (5.4) will tend to 0. It is a simple matter to check, using the assumptions
on MN, that the second term on the right side of (5.4) and the right side of
(5.3) tend to 0 if we set δN = N−1/2 in d = 1, δN = logN/N in d = 2 and
δN = MN/N in d = 3. This shows that (5.2) holds and completes the proof
of (a). ✷

Proof of Theorem 5.1(b). We consider now the fixed kernel models in
d ≥ 2 that have MN ≡ 1.
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Case 1. In d ≥ 3, N ≡ N′, so (K4) is trivial. To begin to check (K3), let
Zx

t be a rate-one continuous time random walk on Zd with step distribution
p�x�, and let τ0�x� denote the first hitting time of 0 for Zx

t . By a standard
local limit theorem [see (A.7) in the Appendix], there is a finite C such that
for all N,

P�B0�N
t = 0� = P�Z0

tN = 0� ≤ C

�Nt+ 1�d/2 
(5.5)

Condition (K3) clearly follows from (5.5) and the simple bound (see
Lemma A.3)

P
(
B

0�N
t = x

)
≤ P

(
B

0�N
t = 0

)

(5.6)

For (K2)(a), we note that for any εN > 0, a simple estimate using Chebyshev’s
inequality gives

P
(∣∣∣B0�N

tεN

∣∣∣ > δ
)
≤

E
∣∣∣B0�N

tεN

∣∣∣2
δ2

≤ CtεN
δ2


(5.7)

This shows that (K2)(a) holds for any εN → 0. To check the last two conditions,
we note that

P
(
τ∗�N > t

)
→ γe(5.8)

and that if εNN→∞, then

P
(
τ∗�N > εNt

)
= ∑

x∈Zd

p�x�P�τ0�x� > εNNt� → γe
(5.9)

Thus, choosing εN → 0 so that εNN→∞, (K1) holds with γ = γe and (K2)(b)
is satisfied. ✷

Case 2. In d = 2, we are assuming that MN ≡ 1 and N = N′ logN.
Let Zx

t and τ0�x� be as above. Write a�t� ∼ b�t� as t → ∞ if and only if
limt→∞ a�t�/b�t� = 1. By a standard local limit theorem [see Lemma A.3(i)
below],

P
(
Z0

t = 0
)
∼ 1

2πσ2t
as t→∞
(5.10)

Furthermore, by Lemma A.3(ii),

∑
x∈Zd

p�x�P�τ0�x� > t� ∼ 2πσ2

log t
as t→∞
(5.11)

To see that (K3) holds, we use (5.10), obtaining

N

logN
P
(
B

0�N
t = 0

)
= N

logN
P
(
Z0

tN = 0
)
≤ C

logN
→ 0

as N→∞. Using (5.6) now (which remains valid for d = 2) gives (K3).
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To check that (K1) holds with γ = 2πσ2, we use (5.11) to conclude

�logN�P�τ∗�N > t� ∼ 2πσ2 logN
log�Nt� ∼ 2πσ2


For (K2)(a), we can again use the Chebyshev estimate in (5.7), obtaining

�logN�P
(∣∣∣B0�N

εNt

∣∣∣ > δ
)
≤ �logN�CtεN

δ2
→ 0

provided �logN�εN → 0. For (K2)(b) we note that if log�εN�/ logN→ 0, then
another use of (5.11) gives

�logN�P�τ∗�N > εNt� ∼ 2πσ2 logN
logN+ log εN + log t

∼ 2πσ2


If we let εN = 1/�logN�2, then both parts of (C2) hold. Finally, (K4) is a trivial
consequence of (5.11). ✷

Proof of Theorem 5.1(c). Here we consider the long-range kernels of
(M1) for d = 2, assuming now that M2

N/�logN� → ρ ∈ �0�∞� as N → ∞.
We consider first Case 1.

Case 1. Suppose ρ > 0, whereN′ ≡N and γ = 1/�1+�3/2πρ��. SinceN′ ≡
N, condition (K4) is trivial, and condition (K3) follows easily from Lemma 5.2.
Reasoning as in (5.7) we see that (K2)(a) holds for any εN → 0.

The last two conditions require some additional information not provided by
Lemma 5.2. To introduce this, let GN�t� =

∫ t
0 P�B0�N

s = 0�ds. By Lemma A.4
of the Appendix, if εN → 0 with εNM

2
N → ∞, then for any fixed T > 0 and

tN ∈ �εNT�T�,

lim
N→∞

NGN�tN� = 1+ 3
2πρ


(5.12)

Let HN�t� = P�τ∗�N > t�. We claim that

lim
N→∞

NGN�tN�HN�tN� = 1
(5.13)

Given this, (K1) and (K2)(b) follow immediately from (5.12).
To prove (5.13), we start with the decomposition [see Lemma A.2(i)]

1 = P�B0�N
t = 0� +N

∫ t

0
P�B0�N

s = 0�HN�t− s�ds
(5.14)

Since HN�t� is nonincreasing in t, it is clear that

NGN�t�HN�t� ≤ 1
(5.15)

Therefore, to prove (5.13) it suffices to prove

lim inf
N→∞

NGN�tN�HN�tN� ≥ 1
(5.16)
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The decomposition in (5.14) implies that

1 ≤ P�B0�N
2t = 0� +NHN�t�

∫ t

0
P�B0�N

s = 0�ds+N
∫ 2t

t
P�B0�N

s = 0�ds


Rearranging this, and setting t = tN, we obtain

NGN�tN�HN�tN� ≥ 1−P�B0�N
2tN

= 0� −N�GN�2tN� −GN�tN��
(5.17)

It is easy to see from Lemma 5.2 that if εNN→∞ (which is weaker than the
already assumed condition, εNM

2
N →∞) then

P�B0�N
2tN

= 0� → 0(5.18)

as N→∞, and also that

N�GN�2tN� −GN�tN�� ≤ 2 exp
(−NεNT

2

)
+ C log 2

M2
N

→ 0
(5.19)

Combining (5.17)–(5.19) gives (5.16).

Case 2. Suppose MN → ∞ and M2
N/�logN� → ρ = 0 as N → ∞. Let

N′ = NM2
N/ logN, and γ = 2π/3. As before, Lemma 5.2 implies that (K3)

holds, and the Chebyshev estimate in (5.7) gives

N

N′P
(∣∣∣B0�N

εNt

∣∣∣ > δ
)
≤ N

N′
CtεN
δ2

�

which certainly tends to 0 as N→∞ if we set

εN =
(
N′

N

)2
=
(

M2
N

logN

)2



Therefore, (K2)(a) holds for this choice of εN.
Lemma A.4 implies that, for any fixed T > 0 and ε′N satisfying ε′N → 0 and

ε′NM
2
N →∞ as N→∞, for tN ∈ �ε′NT�T�,

lim
N→∞

M2
N

logN
NGN�tN� =

3
2π


(5.20)

We claim that (5.20) in fact holds for tN ∈ �εNT�T�. This is because Lemma 5.2
implies that

N�GN�T� −GN�εNT�� ≤ 2 exp
(−NεNT

2

)
+ C

M2
N

log�1/εN��

and this estimate shows that

M2
N

logN
N�GN�T� −GN�εNT�� → 0 as N→∞


Thus, (5.20) holds for tN ∈ �εNT�T�.
Conditions (K1) and (K2)(b) now follow from (5.20) and (5.13) (which only

required NεN → ∞ and so still hold for the current choice of εN). Finally,
(K4) follows from (K2)(b) since εN = �N′/N�2. ✷
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APPENDIX

We collect here several “well-known” results, which we have referred to,
but that seem difficult to document in the literature. First, we show in The-
orem A.1 that the martingale problem �MP�b� σ2

X0
for super-Brownian motion

using smooth test functions of compact support is well posed. Next, we state
and prove extensions to the continuous time setting of several discrete time
random walk facts. These include some simple last exit time formulas (see
Lemma A.2) and asymptotic hitting time formulas (see Lemma A.3). Finally,
we derive asymptotics for the two-dimensional long-range random walk ker-
nels in the “critical” case M2

N/ logN→ ρ ∈ �0�∞� (Lemma A.4).

A1. Existence and uniqueness in law of solutions to �MP�b� σ2

X0
clearly re-

duces to existence and uniqueness of a law on the canonical space �X�C under

which the coordinate maps Xt�ω� = ω�t� satisfy �MP�b� σ2

X0
with respect to the

canonical right-continuous filtration �t containing the null sets of the law in
question.

It is at times useful to deal with smooth test functions of compact support in
the martingale problem calculations. Although the following result is certainly
“well known” most standard references seem to use slightly larger classes of
test functions. For example, Dawson (1993) (Theorem 6.1.3, Example 7.1.3)
uses the domain of the strong generator of Brownian motion in the space of
continuous functions on Rd with limits at the point at infinity.

Theorem A.1. For each X0 in MF�Rd�, b > 0, and σ2 > 0, there is a

unique probability P
b�σ2

X0
on �X�C under which X satisfies �MP�b� σ2

X0
.

Proof. Existence is immediate from Example 7.1.3 of Dawson (1993)
which uses the larger class of test functions described above. For uniqueness
we have to show that our smaller class is good enough. Let P be a probability
on �X�C under which X satisfies the above martingale problem. If �hn� is
the sequence of functions considered in Lemma 3.3, let gn = 1 − hn ↑ 1 with
gn ∈ C∞

0 �Rd�. If Tk = inf�t:Xt�1� ≥ k�, with Tk = ∞ if there is no such t,

then Tk ↑ ∞ P-a.s. By �MP�b� σ2

X0
and monotone convergence,

E�Xt∧Tk
�1�� = lim

n→∞E�Xt∧Tk
�gn�� = lim

n→∞X0�gn�+E

(∫ t∧Tk

0
Xs

(
σ2

2
�gn

)
ds

)



Since ��gn�∞ is uniformly bounded and �gn converges pointwise to 0, we may
use dominated convergence (note that Xs∧Tk

��σ2�gn�� ≤ ck) to see that the
above gives

E�Xt∧Tk
�1�� = lim

n→∞X0�gn� =X0�1�
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Now use Fatou’s lemma to conclude that

E�Xt�1�� ≤X0�1� <∞
(A.1)

Therefore, for T > 0, �MP�b� σ2

X0
and Doob’s maximal inequality show that

E

(
sup
t≤T

�Mt�gm� −Mt�gn��2
)
≤ cE

(∫ T

0
Xs�b�gm − gn�2�ds

)
→ 0(A.2)

as m�n →∞, by (A.1) and dominated convergence. Note (by dominated con-
vergence again) that for all t ≥ 0 a.s.,

Mt�gn� =Xt�gn� −X0�gn� −
∫ t

0
Xs

(
σ2

2
�gn

)
ds→Xt�1� −X0�1� ≡Mt�1�

as n → ∞. By (A.2), the above convergence is uniform in t ≤ T in L2, and
so Mt�1� is a continuous, square integrable ��t�-martingale satisfying for all
t ≥ 0,

�M�1��t = lim
n→∞�M�gn��t =

∫ t

0
Xs�b1�ds�

where the convergence is in L2. By continuity this establishes �MP�b� σ2

X0
for

φ in C∞
0 �Rd� ∪ �1�. Let D0 denote the linear span of this set of functions.

It follows from (A.2) that �M�gn��M�φ��t converges to �M�1��M�φ��t in L2,
and from this one may easily establish �MP�b�σ2

X0
for φ ∈ D0. D0 is a core for

A, the generator of the Brownian semigroup (with variance σ2) on the space
of continuous functions with limits at ∞ [see Proposition 5.1.1 of Ethier and
Kurtz (1986)]. It follows that �MP�b� σ2

X0
holds for φ in D�A�, the domain of A

[use the square integrability of Xt�1� = X0�1� +Mt�1� established above].
This is enough to conclude that P is the law of super-Brownian motion with
branching rate b and diffusion rate σ2 by standard results which are easy to
find [e.g., by Theorem 6.1.3 of Dawson (1993) and Itô’s lemma]. ✷

A2. We temporarily adopt the notation of Chung, (1967). Let x�t�, t ≥ 0
be a rate r continuous time random walk on Zd with step distribution �pi�,
i ∈ Zd, with p0 = 0. That is, we let pij = pj−i and let x�t� have probability
transition semigroup pij�.�, where

pij�t� =
∞∑
n=0

e−rt�rt�np�n�ij /n!� i� j ∈ Zd


We define the random variables τi = inf�t:x�t� = i�, γi�t� = sup�s ≤ t:x�s� =
i�, where inf � = sup� = ∞. That is, τi is the first hitting time of i, and γi�t�
is the last time at i before time t. We also define H�t� = ∑i piP

i�τ0 > t� and
the “taboo” probabilities ipkj�t� = Pk�x�t� = j� τi > t�
 Our next step is to
prove the following “last exit time” formulas.

Lemma A.2. (i) 1 = pii�t� + r
∫ t
0 pii�s�H�t− s�ds� i ∈ Zd.
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(ii) Pi�τj ≤ t� = pij�t� + r
∫ t

0
pij�s�H�t− s�ds� i� j ∈ Zd� i �= j


(iii) Pi�τj ∈ �δ� t�� ≤ pij�t� + r
∫ t

δ
pij�s�H�t− s�ds�

i� j ∈ Zd� i �= j� 0 ≤ δ ≤ t


Proof. By Theorem II.12.3 of Chung (1967), pij�t� =
∫ t
0 pii�s�gij�t− s�ds,

for i �= j, where

gij�s� = lim
δ→0

1
δ

∑
k �=i

pik�δ� ipkj�t�


It follows easily in our setting from the bounded convergence theorem that

gij�t� = r
∑
k �=i

p�k− i�ipkj�t�
(A.3)

Therefore,

pij�t� = r
∫ t

0
pii�s�

∑
k �=i

p�k− i�ipkj�t− s�ds� i �= j�

and summation over j yields 1 = pii�t� + r
∫ t
0 pii�s�H�t − s�ds
 This proves

(i).
For (ii), we start with the simple decomposition

Pi�τj ≤ t� = pij�t� +Pi�τj < t� x�t� �= j� = pij�t� +Pi�γj�t� < t�
(A.4)

By the Markov property, consideration of the first hitting time of j gives

Pi�γj�t� < t� =
∫ t

0
Pi�τj ∈ ds�Pj�γj�t− s� < t− s�


By (i) above, and the fact that Pj�γj�t� < t� = 1− pjj�t�, we have

Pj�γj�t� < t� = r
∫ t

0
pjj�t− s�H�s�ds


Therefore,

Pi�γj�t� < t�= r
∫ t

0
Pi�τj ∈ ds�

∫ t−s

0
pjj�t− s− u�H�u�du

= r
∫ t

0
pij�t− u�H�u�du


(A.5)

In the last line we have used the strong Markov property at τj. By combining
(A.4) and (A.5) we obtain (ii). To prove (iii), take differences in (ii) and use the
fact that H is nonincreasing. ✷
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A3. Here we give a brief sketch of how to adapt standard asymptotics
for discrete time random walk to the continuous time setting. Let p�x�y� =
p�x − y� be an irreducible, symmetric random walk kernel on Zd, such that
p�0� = 0 and

∑
x∈Zd xixjp�x� = δijσ

2. Let Bt denote rate-one continuous time
random walk with step distribution p�x�, and let τ = τ0, so that

H�t� =∑
x

p�x�Px�τ > t�


Recall that a�t� ∼ b�t� as t→∞ means that limt→∞ a�t�/b�t� = 1.

Lemma A.3. For every t > 0 and x ∈ Zd, pt�0� x� ≤ pt�0�0�. As t→∞,

(i) pt�0�0� ∼
(

1
2πσ2t

)d/2
�

(ii) H�t� ∼ 2πσ2

log t in d = 2


Proof. Let φ�θ� = ∑
x p�x� exp�−ix.θ� be the characteristic function of

the step distribution p�.�. Then

pt�0� x� = �2π�−d
∫
�−π�π�d

exp�−ix.θ� exp�−t�1−φ�θ���dθ


This representation and the fact that φ�θ� is real (by the symmetry of p) imply
that pt�0� x� ≤ pt�0�0�. By a standard local limit theorem [see P9 on page 79
of Spitzer (1976)],

pn�0�0� ∼
( 1
2πσ2n

)d/2
as n→∞ with n ∈ N
(A.6)

By the Fourier representation for pt�0�0� it is apparent that pt�0�0� is non-
increasing in t. This fact and (A6) easily imply (i). It also follows that there is
a finite constant C such that

pt�0�0� ≤ C/�1+ td/2�� t ≥ 0
(A.7)

Let G�t� = ∫ t0 ps�0�0�ds, and observe by (i) that G�t� ∼ �log t�/2πσ2 as t→
∞ in d = 2. Given this, in order to prove (ii), it suffices to prove G�t�H�t� → 1
as t→∞. To do so we employ the last exit time decomposition of Lemma A.2,

1 = pt�0�0� +
∫ t

0
ps�0�0�H�t− s�ds
(A.8)

Since H�s� is nonincreasing, it follows from (A.8) that

1 ≥ G�t�H�t�
(A.9)

To obtain a bound in the other direction, we employ (A.8) again, and obtain,
for any a > 1,

1 = pat�0�0� +
∫ at

0
ps�0�0�H�at− s�ds
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≤ pat�0�0� +
∫ �a−1�t
0

ps�0�0�H�t�ds+
∫ at

�a−1�t
ps�0�0�ds

= pat�0�0� +G��a− 1�t�H�t� +G�at� −G��a− 1�t�

Thus, for any a > 1, H�t�G��a − 1�t� ≥ 1 − pat�0�0� − �G�at� −G��a − 1�t�

By the estimate (A.7),

lim sup
t→∞

�G�at� −G��a− 1�t�� ≤ C log�a/�a− 1��

and limt→∞G��a − 1�t�/G�t� = 1. Since pat�0�0� → 0 as t → ∞, it follows
that

lim inf
t→∞

G�t�H�t� ≥ 1−C log�a/�a− 1��� a > 1


Letting a ↑ ∞, we obtain lim inf t→∞G�t�H�t� ≥ 1. This and (A.9) complete
the proof of (ii). ✷

A4. The next result gives the asymptotics needed to verify that the d = 2
long-range random kernels with M2

N = O�logN� satisfy the conditions (K1)
and (K2). Let 0M = �−M�M�d ∩ �Zd \ �0��, and let Ux�M

t denote continuous
time rate-one random walk with initial state x and step distribution that is
uniform over 0M.

Lemma A.4. Assume d = 2 and M2
N/�logN� → ρ ∈ �0�∞� as N→∞. Let

εN > 0, and assume that εN → 0 and εNM
2
N →∞ as N→∞. Then for fixed

T > 0, for any tN ∈ �εNTN�TN�,

lim
N→∞

M2
N

logN

∫ tN

0
P�U0�MN

s = 0�ds = ρ

(
1+ 3

2πρ

)



Proof. To simplify notation, we will write M for MN. The characteristic
function of U0�M

t is exp�−t�1− ϕM��, where

ϕM�θ� =
1

�0M�
∑

x∈0M

exp�ix.θ� = 1
�0M�

[
2∏

j=1

sin��M+ 1
2�θj�

sin� 12θj�
− 1
]



By the inversion formula [see P6.3 in Spitzer (1976)],

P�U0�M
s = 0� = �2π�−2

∫
B�π�

exp�−s�1− ϕM�θ���dθ�

where B�r� = �−r� r�2. It follows easily that∫ tN

0
P�U0�M

s = 0�ds = �2π�−2
∫
B�π�

1− exp�−tN�1− ϕM�θ���
1− ϕM�θ�

dθ
(A.10)

We will evaluate this integral by splitting B�π� into several regions, and es-
timating the integrand over these regions. To do this, we will rely on the
following properties of ϕM, which can be easily derived using the explicit form
of ϕM.
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(P1) For all ε > 0 there exists δ = δ�ε� > 0 such that

1− ϕM�θ�
M2�θ�2/6 ∈ �1− ε�1+ ε� for all θ ∈ B�δ/M�


(P2) For all δ > 0 there exists a = a�δ� > 0 and finite C = C�δ� < 1 such that

�ϕM�θ�� ≤ C for all θ ∈ B�a� \B�δ/M�

(P3) For all ε′ > 0 there exists a finite C = C′

ε such that

�ϕM�θ�� ≤
C

M2
for all θ ∈ B�π� \B�ε′�


Let us now fix 0 < ε < 1. To simplify notation, we define

ψM�θ� =
1− exp�−tN�1− ϕM�θ���

1− ϕM�θ�
�

and also the annular region, A�r� s� = B�s� \B�r� for 0 < r < s. We note that
ψM is real and positive. By a simple inequality, ψM�θ� ≤ tN everywhere, and
since tN ≤ TN,

1
4π2

∫
B�ε/√N�

ψM�θ�dθ ≤ T
ε2

π2

(A.11)

Now choose δ as in (P1). Then, for θ ∈ A�ε/√N�δ/M�, since tN ≥ εNTN,

tN�1− ϕM�θ�� ≥ tN�1− ε�M2�θ�2/6 ≥ ε2�1− ε�T
6

εNM
2�

which tends to infinity as N → ∞ by assumption. For large N, exp�−ε2�1 −
ε�TδNM2/6� ≤ ε. Since (P1) also implies that for θ ∈ B�δ/M�,

1− ϕM�θ� ≤ �1+ ε�M2�θ�2/6�

we have that, for large N, and θ ∈ A�ε/√N�δ/M�,

ψM�θ� ≥
1− ε

1+ ε

6
M2�θ�2 


Therefore,

1
4π2

∫
A�ε/√N�δ/M�

ψM�θ�dθ ≥
1− ε

1+ ε

3
2π2M2

∫ 1�2ε/√N ≤ �θ� ≤ δ/2M�
�θ�2 dθ

≥ �1− 2ε� 3
πM2

∫ δ/2M

2ε/
√
N

dr

r

= �1− 2ε� 3
πM2

log
(
δ
√
N

4εM

)
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Using the fact thatM→∞ andM2/ logN→ ρ ∈ �0�∞� asN→∞, it follows
that

lim inf
N→∞

M2

logN
1

4π2

∫
A�ε/√N�δ/M�

ψM�θ�dθ ≥ �1− 2ε� 3
2π


(A.12)

A corresponding analysis shows that

lim sup
N→∞

M2

logN
1

4π2

∫
A�ε/√N�δ/M�

ψM�θ�dθ ≤ �1+ 2ε� 3
2π


(A.13)

Now choose a as in (P2). Then ψ ≤ 1/�1−C�δ�� on A�δ/M�a�. We may now
choose ε′ > 0, ε′ < min�a� ε� small enough so that

1
4π2

∫
A�δ/M�ε′�

ψ�θ�dθ ≤ �ε′�2
π2

1
1−C�δ� < ε
(A.14)

It follows easily from (P3) that ψM → 1 uniformly on A�ε′� π�, and therefore

lim
N→∞

1
4π2

∫
A�ε′� π�

ψM�θ�dθ = 1− �ε′�2
π2


(A.15)

If we now combine the estimates (A.11), (A.14) and (A.15), recalling that ε′ < ε,
we have

lim sup
N→∞

∣∣∣ 1
4π2

∫
B�π�\A�ε√N�δ/M�

ψM�θ�dθ− 1
∣∣∣ ≤ ε+ �T+ 1�ε2/π2
(A.16)

Clearly, (A.12), (A.13) and (A.16) give the desired result. ✷
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