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STOCHASTIC TWO DIMENSIONAL EULER EQUATIONS

By Zdzisław Brzeźniak and Szymon Peszat1

University of Hull and Polish Academy of Sciences

The existence of a martingale solution to 2-dimensional stochastic Eu-
ler equations is proved. The constructed solution is a limit as the viscos-
ity converges to zero of a sequence of solutions to modified Navier–Stokes
equations.

1. Introduction. Let � be a smooth open subset of R
2. The paper is con-

cerned with the existence of a martingale solution to the stochastic incom-
pressible Euler equations

{
∂tu+ �u�∇�u+ ∇p = F�t� u� +G�t� u�Ẇ�
divu = 0�

(1.1)

with the boundary condition

�u�n� = 0 on ∂� �(1.2)

where n stands for the unit outward normal to ∂� . Further we assume that
the initial value u0 satisfies divu0 = 0 on � and �u0�n� = 0 on ∂� .

In (1.1), W is a cylindrical Wiener process on a real separable Hilbert space
� , and u = �u1� u2� and p are unknown random fields. We interpret u�t� x� =
�u1�t� x�� u2�t� x�� and p�t� x� as the velocity and pressure of an incompressible
perfect fluid, and F�t� v�+G�t� u�Ẇ as the density of the external random force
per unit volume.

We will formulate our main existence result in a rather abstract form. How-
ever it covers the following two cases. The equations on � = R

2 driven by an
R

m-valued spatially homogeneous random field W = �W1� � � � �Wm�; see Sec-
tion 2. In this case ∂� = ∅, and so the boundary condition �u�n� = 0 can be
dropped. The second important case is the equations with two independent
L2�� 
Rm�-valued Wiener processes. In both cases the mappings F and G can
be of the Nemytski form; see Theorems 2.2 and 2.3.
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Let ν > 0 and T > 0. We will show that the following linearized modified
Navier–Stokes equations on �0�T� × � ,

∂tu
�ν�n� − ν�u�ν�n� + �u�ν�n��∇�ϕn�u�ν�n�� + ∇p�ν�n�

= Fn�t� u�ν�n�� +Gn�t� u�ν�n��Ẇ�

divu�ν�n� = 0�
u�ν�n��0� = u

�n�
0 �

(1.3)

with the boundary conditions

�u�ν�n��n� = 0 and curlu�ν�n� = 0 on ∂�(1.4)

has a unique solution. In (1.3), Fn, Gn and u
�n�
0 are some regularizations of F,

G and u0, and ϕn is a bounded and Lipschitz function in appropriate functional
spaces; see Section 5 for details. We will construct the solution to (1.1)–(1.2)
proving first the weak compactness of the family �u�ν�n�� ν > 0� n ∈ N� in
L2

(
0�T
Lq�� � e−�x� dx
R2�). We will use some ideas of Gątarek–Gołdys [24],

see also [12], [16], [17]. The crucial point of the proof is to show that for
any p ∈ �2�∞� one has the following estimate in the Sobolev spaces W1�2 �=
W1�2�� 
R2� and W1�q �= W1�q�� 
R2�,

sup
ν>0

sup
n

E sup
t∈�0�T�

(
�u�ν�n��t��p

W1�2 + �u�ν�n��t��p

W1�q

)
< ∞�(1.5)

To do this we adopt the method developed for the deterministic Euler equa-
tions, see [3], [29], [30] and [33]. In this method an important role is played
by the operator curlv�x� �= ∂2v1�x� − ∂1v2�x�.

Stochastic Euler equations with periodic boundary conditions were consid-
ered in [15] using nonstandard analysis. The problem on a bounded domain
was considered in [6], [7] and [8]. In the present paper we treat equations
on a possibly unbounded region, and using the theory of stochastic integra-
tion in Banach spaces we obtain better regularity of solutions. In particular,
for suitable initial values we can show their space Hölder continuity; see
Remark 2.2.

The paper is organized as follows. In Section 2 we introduce the notation and
we formulate our main results on the existence of a solution to (1.1) - (1.2). In
Section 3 we formulate two theorems on analytical properties of the modified
Stokes operator on Lq-spaces, and the nonlinear term �u�∇�u appearing in the
Euler and Navier–Stokes equations. These theorems are proven in Appendix
A. In Section 4 we present basic facts concerning stochastic integration in
Banach, in particular Wr�q spaces. We also evaluate the so-called γ-radonifying
norm of a Wr�q-valued integral operator, see Theorem 4.1. The proof of this
result is given in Appendix B. Section 5 is devoted to the prove of the estimate
(1.5) for solutions to the modified stochastic Navier–Stokes equations (1.3)
- (1.4). In the next section we prove our main result; Theorem 2.1. In the
following two sections we derive from Theorem 2.1 the existence of solutions
to the stochastic Euler equations driven by a spatially homogeneous Wiener
random field and by an L2�� 
Rm�-valued Wiener process.
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2. Notation and formulation of results. Let us denote by C∞
0 �� 
Rd�,

where d = 1�2, the space consisting of all mappings v ∈ C�� 
Rd�∩C∞�� 
Rd�
such that suppv �= �x ∈ � � v�x� �= 0� is compact in � . Let C∞

sol be the col-
lections of all v ∈ C∞

0 �� 
R2� satisfying the boundary and incompressibility
conditions: �v�n� = 0 on ∂� and div v = 0 in � . For q ∈ �1�∞� let Xq be the
closure of C∞

sol in Lq �= Lq�� 
R2�, and let W1�q be the closure of C∞
0 �� 
R2�

with respect to the norm(∫
�
��v�x��q + �∇v�x��q� dx

)1/q

�

Denote the space Xq ∩ W1�q by H1�q. Note that H1�q is a closed subspace of
W1�q and that the original norm on H1�q is equivalent to the one induced by
W1�q.

Assume that W is a cylindrical Wiener process on a real separable Hilbert
space � . Let us denote by R�� �W1�q� the space of all γ-radonifying mappings
acting from � into W1�q. For the convenience of the reader we will recall in
Section 4 the notion of a cylindrical Wiener processes, radonifying operators
and the radonifying norm. Furthermore, we present basic facts on the theory
of stochastic integration in Banach spaces. In the definition below, and also
in the whole paper, �·� ·� stands for the scalar product in L2, or R

2. We denote
by L�HS��� �W1�2� the space of all Hilbert–Schmidt operators acting from �

into W1�2. In what follows we fix T > 0.

Definition 2.1. Let u0 ∈ H1�2∩H1�q for q ∈ �2�∞�. Let F and G be jointly
measurable mappings acting from �0�T� × (

H1�2 ∩H1�q
)

into W1�2 ∩W1�q and
L�HS��� �W1�2� ∩R�� �W1�q�, respectively.

A martingale H1�2 ∩ H1�q-valued solution to the stochastic Euler problem
�1�1� − �1�2� is a triple consisting of a filtered probability space � = ���� �
��t�t∈�0�T��P�, an ��t�-adapted cylindrical Wiener process W�t�, t ≥ 0, on �

and an ��t�-adapted measurable H1�2 ∩H1�q-valued process u�t�, t ≥ 0, such
that:

(i) for every p ∈ �1�∞�, u ∈ Lp
(
�
L∞�0�T
H1�2 ∩H1�q�);

(ii) for all z ∈ C∞
sol and t ∈ �0�T� one has a.s.

�u�t�� z� = �u0� z� +
∫ t

0

{
2∑

i=1

�ui�s�u�s��∇zi� + �F�s� u�s��� z�
}

ds

+
〈∫ t

0
G�s� u�s��dW�s�� z

〉
�

Remark 2.1. In the definition of the solution the incompressibility and
boundary conditions are contained in the requirement that u belong to H1�2 ∩
H1�q. Since divu = 0, the term �u�∇ui� has been replaced by div �uui�. Note
that the gradient of the pressure vanishes after projecting the both sides of
(1.1) onto the divergence free space, and that (ii) is the weak, in the sense of
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PDEs, form of the projected equation. For if we take the inner product in L2 of
both sides of (0.1) with z such that div z = 0, then the pressure term vanishes
and after integrating by parts we obtain (ii). Going back, suppose that u is
sufficiently regular. We move all the terms of (ii) on one side and integrate by
parts. Then we arrive at the relation of the form〈

u�t� − u�0� −
∫ t

0
"�s
u�ds� z

〉
= 0 ∀z � div z = 0�

with a certain ". Since we have the following orthogonal decomposition

L2 = �∇p � p ∈ C∞
0 �� 
R2�� ⊕ �ψ ∈ C∞

0 �� 
R2� � divψ = 0��
we conclude that u�t� − u�0� − ∫ t

0 "�s
u�ds is in the form of the gradient of a
certain function, say Φ�t�. Hence formally ∇p�t� = ∂tΦ�t�, however Φ need not
to be absolutely continuous with respect to the time variable, and consequently
we allow the case of ∇p being a distribution in t. One can show that Φ is
absolutely continuous with respect to t under the additional assumption that
G�t� u�ψ, ψ ∈ � is divergence free.

Let us denote by H
1�2
L2 the space H1�2 endowed with the strong L2-topology.

The L2-norm is denoted by � · �. Recall that C∞
sol stands for the space of smooth

divergence free mappings satisfying boundary condition (1.2). We impose the
following standing assumption on the set � .

Assumption A. Either � = R
2 or the Dirichlet problem in � is well posed

in the following sense. For any f ∈ Lq�� � there exists a unique v ∈ W
1�q
0 �� � ∩

W2�q�� � such that
−�v = f in D and v = 0 on ∂D�

Denote by B̂q a linear operator in Lq�� � defined by: D�B̂q� = W
1�q
0 �� � ∩

W2�q�� �, B̂qv = −�v. Then we assume that B̂q has bounded imaginary powers,

that is, there exist constants ε < π
2 and Cε < ∞ such that �B̂is

q �L�Lq�� ��Lq�� �� ≤
Cεeε�s�, s ∈ R. Finally, we assume that if f ∈ W1�q�� �, then the solution u to
the problem above belongs to W3�q�� �

Let us observe that in view of well celebrated results of Seeley [42], the second
part of the assumption A is satisfied when � is a bounded domain with �∞

boundary. The case with � 2 boundary is studied by Prüss and Sohr in [40].
The third part of the assumption is satisfied if in addition the boundary ∂�
is of � 3 class, see [2] and [46].

The main result of the present paper is:

Theorem 2.1. Let q ∈ �2�∞�. Assume that�
(i) F � �0�T� × H1�2 → W1�2, F � �0�T� × H1�q → W1�q, and G � �0�T� ×

H1�2 → L�HS��� �W1�2�, G � �0�T� × H1�q → R�� �W1�q� are jointly measur-
able, and there are functions a1 ∈ L1�0�T� and a2 ∈ Lr�0�T� with r > 2, such
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that for all t ∈ �0�T� and v ∈ H1�2 ∩H1�q one has

�F�t� v��W1�2 ≤ a1�t� �1 + �v�H1�2� �
�F�t� v��W1�q ≤ a1�t� �1 + �v�H1�q� �

�G�t� v��L�HS��� �W1�2� ≤ a2�t� �1 + �v�H1�2� �
�G�t� v��R�� �W1�q� ≤ a2�t� �1 + �v�H1�q� 


(ii) for all t ∈ �0�T�, and z ∈ C∞
sol the real valued functions v �→ �F�t� v�� z�

and v �→ �G∗�t� v�z�� are continuous on H
1�2
L2 . Then for any u0 ∈ H1�2 ∩ H1�q

there exists a martingale H1�2 ∩ H1�q-valued solution to the problem
�1�1�–�1�2�.

Remark 2.2. If q > 2 then by the Sobolev imbedding theorem W1�q is
continuously imbedded into the space of Hölder continuous mappings Cα, α <
1− 2/q. Thus, as H1�q is a subspace of W1�q we can get the space continuity of
the solution to �1�1�–�1�2�.

The remaining part of this section is concerned with the application of The-
orem 2.1 to the case of F and G being Nemytski operators and W being either
an R

m-valued spatially homogeneous Wiener random field, or an L2�� 
Rm�-
valued Wiener process with a nuclear covariance operator. We will need the
following two definitions.

Definition 2.2. Let q ∈ �2�∞�, and r ∈ �1�∞�. A mapping h � �0�T�×� ×
R

2 → R
2 belongs to the class U �� � q� r� iff h�t� x� y� = h�1��t� x�+h�2��t� x� y�,

t ∈ �0�T�, x ∈ � , y ∈ R
2, where:

(i) h�1� and h�2� are measurable, and for any t ∈ �0�T�, h�1��t� ·� ∈ W1�2∩W1�q

and h�2��t� ·� ·� is differentiable;
(ii) there are functions a ∈ Lr�0�T� and φ ∈ L2�� � ∩ Lq�� �, such that all

t ∈ �0�T�, and x ∈ � , y ∈ R
2,

�h�1��t� ·��W1�2 + �h�1��t� ·��W1�q ≤ a�t��

�h�2��t� x� y�� +
2∑

i=1

�∂xi
h�2��t� x� y�� ≤ a�t��φ�x� + �y���

2∑
i=1

�∂yi
h�2��t� x� y�� ≤ a�t��

We say that h � �0�T� × � × R
2 → R

2 belongs to the class U �� �∞� r� iff it is
differentiable with respect to the second and third variables, and there is a
function a ∈ Lr�0�T� such that

�h�t�x�y�+
2∑

i=1

{�∂xi
h�t�x�y��+�∂yi

h�t�x�y��}≤a�t�� t∈�0�T�� x∈� � y∈R
2�
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Definition 2.3. Let � be a filtered probability space. By an R
m-valued

spatially homogeneous Wiener random field on �0�T� × R
2 we understand a

system �j, j = 1� � � � �m of independent measurable real valued random fields
on �0�T� × R

2 such that each �j is Gaussian, Wiener and spatially homoge-
neous, that is:

(i) the random vector
(
�j�t1� x1�� � � � ��j�tn� xn�

)
is Gaussian for an arbi-

trary finite sequence �t1� x1�� � � � � �tn� xn� ∈ �0�T� × R
2;

(ii) for each x ∈ R
2, ��j�t� x��t∈�0�T� is a real valued Wiener process with

respect to the filtration ��t�;
(iii) for arbitrary t ∈ �0�T�, n ∈ N, x1� � � � � xn ∈ R

2 and h ∈ R
2 the random

vectors
(
�j�t� x1 + h�� � � � ��j�t� xn + h�) and

(
�j�t� x1�� � � � ��j�t� xn�

)
have

the same distribution.

Let � be an R
m-valued spatially homogeneous Wiener random field on R

2.
Then (see [38]) there are symmetric positive finite measures µj, j = 1� � � � �m
on R

2 such that for all j = 1� � � � �m, t� s ∈ �0�T�, and x�y ∈ R
2 one has

E�j�t� x��j�s� y� = t ∧ s
1

2π

∫
R2

exp�i�x− y� z��dµj�z��

We call µ = �µ1� � � � � µm� the spectral measure of � . Clearly, the law of � is
uniquely determined by its spectral measure.

Let � be an R
m-valued spatially homogeneous Wiener random field on R

2

with a spectral measure µ, and let f�gj � �0�T�×R
2 ×R

2 → R
2, j = 1� � � � �m.

Consider the following system of equations on �0�T� × R
2, ∂tu+ �u�∇�u+ ∇p = f�t� x� u� +

m∑
j=1

gj�t� x� u��̇j�t� x��
divu = 0�

(2.1)

By a martingale H1�2 ∩ H1�q-valued solution to (2.1) we understand a triple
consisting of a filtered probability space �, an ��t�-adapted R

m-valued spa-
tially homogeneous Wiener process � with the spectral measure µ, and an
��t�-adapted H1�2 ∩H1�q-valued process u satisfying conditions (i) to (ii) from
Definition 2.1. In the integral equation in (ii) we replace F�t� u� by f�t� ·� u�·��
and we write〈∫ t

0
G�s� u�s��dW�s�� z

〉
=

m∑
j=1

∫
R2

〈∫ t

0
gj�s� x� u�s� x���j�ds� x�� z�x�

〉
dx�

where �j�dt� x� means that for fixed x we integrate in Itô’s sense with respect
to the real-valued Wiener process �j�·� x�, see [21].

Theorem 2.2. Let q ∈ �2�∞�. Assume that�
(i)

∑m
j=1

∫
R2�1 + �y�q�dµj�y� < ∞;

(ii) f belongs to U�R2� q�1� and gj, j = 1� � � � �m belong to U�R2� q� r� for
a certain r > 2. Then for any u0 ∈ H1�2 ∩ H1�q there exists a martingale
H1�2 ∩H1�q-valued solution to the problem �2�1� such that u�0� = u0 a.s.
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Remark 2.3. The random field � can be viewed as a cylindrical Wiener
process on a properly chosen Hilbert space �� , see Example 4.1 in Section
4, or [38]. We note that �� is a function space. In fact, it is a subspace of
the space on which � lives. Thus in particular, �� ⊂ L2�R2� e−�x� dx
Rm�.
Equation (2.1) can be written as a stochastic evolution equation with F and
G given by

F�t� u��x� = f�t� x� u�x��� �G�t� u�ψ� �x� =
m∑

j=1

gj�t� x� u�x��ψj�x��(2.2)

where ψ = �ψ1� � � � � ψm� ∈ �� . Thus we are in the framework of Definition
2.1. In the last section we show that F and G satisfy the assumptions (i) and
(ii) of Theorem 2.1 with � = �� , and consequently that Theorem 2.2 is a
special case of Theorem 2.1.

Definition 2.4. An L2�� 
Rm�-valued process W defined on a filtered prob-
ability space � is called Wiener iff for any ψ ∈ L2�� 
Rm�, �W�t�� ψ�L2�� 
Rm�,
t ∈ �0�T�, is a real-valued Wiener process.

Let W be an L2�� 
Rm�-valued Wiener process. Then (see, e.g., [19], [33]),
there is a symmetric non-negative trace class operator Q on L2�� 
Rm� such
that for all u� v ∈ L2�� 
Rm� and t� s ∈ �0�T� one has

E �W�t�� u�L2�� 
Rm��W�s�� v�L2�� 
Rm� = t ∧ s �Qu�v�L2�� 
Rm��

We call Q the covariance operator of W. Since Q1/2 is Hilbert–Schmidt it is
given by an integral kernel � , that is

Q1/2ψ�x� =
(

m∑
l=1

∫
�
�1�l�x�y�ψl�y�dy� � � � �

m∑
l=1

∫
�
�m�l�x�y�ψl�y�dy

)
�(2.3)

Let � be a smooth connected open subset of R
2 satisfying Assumption A,

and let W, W̃ be two independent L2�� 
Rm�-valued Wiener processes with the
covariance operators Q and Q̃, respectively. We denote by � and �̃ the integral
kernels corresponding to Q1/2 and Q̃1/2. Let f�gj� g̃j � �0�T� × � × R

2 → R
2.

Consider the stochastic Euler equations on �0�T� × � ,

∂tu+ �u�∇�u+ ∇p = f�t� x� u�

+
m∑

j=1

{
gj�t� x� u�Ẇj� �t� + g̃j�t� x� u� ˙̃Wj�t�

}
�

divu = 0�

(2.4)

with the boundary condition

�u�n� = 0 on ∂� �(2.5)

The processes W and W̃ can be treated as cylindrical on some Hilbert spaces
�W and �W̃, see Section 4. By a solution to (2.4)–(2.5) we understand a solution
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to the problem (1.1) - (1.2) with � = �W×�W̃, F given by (2.2), and G defined
for x ∈ � , and ψ = �ϕ� ϕ̃� ∈ � by the formula

�G�t� u�ψ��x� =
m∑

j=1

{
gj�t� x� u�x��ϕj�x� + g̃j�t� x� u�x��ϕ̃j�x�

}
�(2.6)

Theorem 2.3. Let q ∈ �2�∞�. Assume that�
(i) the integral kernels � and �̃ satisfy the estimates

m∑
l�j=1

∑
�α�≤1

sup
x∈�

∫
�

(
∂α
x�i�j�x�y�

)2 dy < ∞�

m∑
l�j=1

∑
�α�≤1

[∫
�

∫
�

(
∂α
x�̃i�j�x�y�

)2
dydx

+
∫
�

( ∫
�

(
∂α
x�̃i�j�x�y�

)2
dy

)q/2

dx

]
< ∞�

(ii) f belongs to U �� � q�1�, gj, j = 1� � � � �m belong to U �� � q� r� for a
certain r > 2, and g̃j, j = 1� � � � �m belong to U �� �∞� r� for a certain r > 2.
Then for any u0 ∈ H1�2 ∩ H1�q there exists a martingale H1�2 ∩ H1�q-valued
solution to �2�4� − �2�5� such that u�0� = u0 a.s.

3. Analytical preliminaries. From now on, we use the notation Lq in-
discriminately for the spaces Lq�� � or Lq�� 
R2�. Similarly, Wr�q, q ∈ �1�∞�,
r ∈ R stand for the Sobolev spaces Wr�q�� � or Wr�q�� 
R2�. Recall that for
an n ∈ N, Wn�q is defined as the completion of C∞

0 �� 
R�, or C∞
0 �� 
R2� with

respect to the norm

�v�Wn�q =
( ∑

�α�≤n

∫
�
�Dαv�x��q dx

)1/q

�

Then for r = θn+ �n+ 1��1− θ�, Wr�q is defined as the complex interpolation
space �Wn�q�Wn+1�q�θ. Finally, for r > 0 we set W−r�q = �W−r�q∗�∗ where q∗ =
q/�q − 1�, and we identify �Lq�∗ with Lq∗

. Clearly, Lq = W0�q. We write for
brevity � · �q instead of � · �W0�q , and � · � instead of � · �W0�2 , or � · �2.

For a proof of the following lemma, see [29].

Lemma 3.1. There is a constant C such that �∇v�q ≤ C�curlv�q for every
v ∈ H1�q.

From now on q ∈ �1�∞�. As before Xq denotes the closure of C∞
sol in Lq. For

u ∈ Lq we set

�qu = u− ∇p�
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where p is a solution to the following boundary value problem

�p = divu in � �
∂p

∂n
= �u�n� on ∂� �(3.1)

Remark 3.1. Although p is not unique, it is unique up to a constant in a
simply connected domain. Thus ∇p is uniquely determined by u.

The following result is due to Fujiwara–Morimoto [23]. The case of � = R
2

is treated in [29].

Lemma 3.2. �q is a bounded linear projection in Lq and its range is equal
to Xq.

Consider the following modified Stokes operator:{
Aqu = −�q�u� u ∈ Dom �Aq��
Dom �Aq� = Xq ∩ �u ∈ W2�q � curlu = 0 on ∂���

The following theorem gathers the analytical properties of Aq which are
needed in the proofs of the main existence results. Its proof is however post-
poned till Appendix A.

Theorem 3.1. (i) The operator −Aq is the generator of an analytic semi-
group in the Banach space Xq.

(ii) If r > 1
2 + 1

2q , then Dom �Ar
q� = Xq ∩ �u ∈ W2r�q � curlu = 0 on ∂��. If

0 < r < 1
2 + 1

2q , then Dom �Ar
q� = Xq ∩W2r�q.

(iii) Let r ∈ �0�∞�, and let us define the Sobolev space Hr�q as the domain

of A
r/2
q equipped with the graph norm. Then �q is a bounded projection from

Wr�q into Hr�q.
(iv) Let q∗ be conjugate to q. Then there is a constant C such that for v ∈

Dom �Aq�, u ∈ H1�q∗ = Dom �A1/2
q∗ � one has ��Aqv�u�� ≤ C�v�H1�q�u�H1�q∗ .

Note that from Theorem 3.1(ii), Hr�q is a closed subspace of Wr�q. Thus, in
particular the norm on Hr�q and the norm induced from Wr�q are equivalent.
We set H−r�q = �Hr�q∗�∗. Note that �qψ = �rψ for all q� r ∈ �1�∞� and
ψ ∈ Lq ∩ Lr. Thus Aqψ = Arψ for ψ ∈ Dom �Aq� ∩ Dom �Ar�. To simplify
notation we shall write � and A instead of �q and Aq.

The remainder of this section is devoted to the study of the bilinear term
in the Euler and Navier–Stokes equations. For u� v ∈ C∞

sol write

B�u� v� = −� �div �uv1��div �uv2�� �(3.2)

Note that B�u� v� = −� �u�∇�v. The theorem below gathers main properties
of B. Its proof can be found in Appendix A.
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Theorem 3.2. Let q ∈ �2�∞�, and let B be given by �3�2�. Then�
(i) The mapping B has a unique extension to a continuous bilinear operator

acting from H2�q ×H2�q into Xq. Moreover, there exists a constant C such that

for all u� v ∈ H2�q one has �B�u� v��q ≤ C ��u�H1�q�v�H2�q + �u�H2�q�v�H1�q�.
(ii) For any r > 0,B has a unique extension to a continuous bilinear mapping

acting fromH1�q×H1�q intoH−r�q. In particular, there exists a constant C such
that

�B�u� v��H−r�q ≤ C�u�H1�q�v�H1�q for all u� v ∈ H1�q�

(iii) If q > 2 then there exists a constant C such that �B�u� v��q ≤ C�u�H1�q

�v�H1�q for all u� v ∈ H1�q, and �B�u� v�� ≤ C�u�H1�q�v�H1�2 for all u� v ∈ H1�2 ∩
H1�q.

(iv) For every u� v ∈ H1�q, �B�u� v�� v� = 0.
(v) For all u� v ∈ H2�q,

〈
curlB�u� v�� curlv �curlv�q−2

〉 = 0.

4. Probabilistic preliminaries.

Definition 4.1. Let � = ���� � ��t�t∈�0�T��P� be a filtered probability
space, and let � be a real separable Hilbert space. By an ��t�-adapted cylin-
drical Wiener process on � we understand a family W�t�, t ≥ 0 of bounded
linear operators from � into L2���� �P� such that:

(i) for all t ≥ 0, and ψ�ϕ ∈ � , EW�t�ψW�t�ϕ = t�ψ�ϕ�� ;
(ii) for each ψ ∈ � , W�t�ψ, t ≥ 0 is a real valued ��t�-adapted Wiener

process.

Remark 4.1. Assume that E is a Banach space and W�t�, t ≥ 0 is a E-
valued Wiener process defined on a filtered probability space �. Replacing
if necessary E by its closed subspace we can assume that E is equal to the
support of the law 	 �W�1�� of W�1�. Then (see, e.g., [28]), there is a unique
densely and continuously imbedded into E separable Hilbert space � such
that

E �W�t�� ψ�E�E∗�W�s�� ϕ�E�E∗ = t ∧ s �ψ�ϕ�� for t� s ≥ 0� ψ�ϕ ∈ E∗�

where �·� ·�E�E∗ stands for the canonical bilinear form on E×E∗, and we iden-
tify �� �∗ with � , and then E∗ with a properly chosen subspace of � . Thus,
as E∗ is dense in � , for any t ≥ 0 the mapping

E∗ $ ψ �→ �W�t�� ψ�E�E∗ ∈ L2���� �P�
has the unique continuous extension to � . We denote this extension also by
W�t�. Note that W is a cylindrical Wiener process on � . The space � is called
the reproducing kernel Hilbert space, shortly RKHS, or Cameron–Martin space
of W.

Remark 4.2. A cylindrical Wiener process on � can be viewed as a formal
series

W�t� = ∑
k

Wk�t�fk� t ∈ �0�T��(4.1)
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where �Wk� is a sequence of independent standard 1-dimensional Wiener pro-
cesses, and �fk� is an orthonormal basis of � . This series does not converge
in � if dim� < ∞. It does however in any Hilbert space E such that the
imbedding � ↪→ E is Hilbert–Schmidt; see Remark 4.4. In this case W is an
E-valued Wiener process, and � is its RKHS.

Example 4.1. Let � = ��1� � � � ��m� be an R
m-valued spatially homoge-

neous Wiener random field on �0�T� × R
2; see Definition 2.3. Note that � is

a Wiener process on any weighted space L2�R2� e−ρ�x� dx
Rm�, ρ > 0. For a
complex valued function ψ on R

2 we write

ψ�s��x� = ψ�−x�� x ∈ R
2�

Let µ = �µ1� � � � � µm� be the spectral measure of � . Let us denote by
L2

�s��R2� µj� the closed subspace of L2�R2� µj
C� of functions ψ satisfying
ψ�s� = ψ, µj-a.s. Finally let

��
def=

{
�ψ̂1µ1� � � � � ̂ψmµm� � ψj ∈ L2

�s��R2� µj�� j = 1� � � � �m
}
�

where ψ̂jµj is the Fourier transform of a tempered distribution ψjµj. Then
�� endowed with the norm〈

�ψ̂1µ1� � � � � ̂ψmµm�� �ϕ̂1µ1� � � � � ̂ϕmµm�
〉
��

def=
m∑

j=1

∫
R2

ψjϕj dµj

is the RKHS of � ; see [38], Proposition 1.2.

Example 4.2. Let W be an L2�� 
Rm�-valued Wiener process, and let Q be
its covariance operator. Note that in fact W takes values in a smaller subspace

of L2�� 
Rm�, namely in �KerQ1/2�⊥. Let us equip �
def= RangeQ1/2 with the

scalar product

�ψ�ϕ�� =�u�v�L2�� �dx
Rm�� where ψ=Q1/2u�ϕ=Q1/2v�u�v∈�KerQ1/2�⊥�
Then (see, e.g., [19]), � is the RKHS of W. Let �ek� be an orthonormal basis
of L2�� 
Rm� consisting of the normalized eigenvectors of Q1/2, and let �λk�
be the corresponding sequence of eigenvalues of Q1/2. Then it is easy to see
that �λkek� is an orthonormal basis of � . Thus using representation (4.1) we
obtain

W�t� = ∑
k

λkWk�t�ek� t ∈ �0�T��(4.2)

the series being convergent in L2���� �P
L2�� 
Rm��.

Let � be a real separable Hilbert space, let �ek� be an orthonormal basis
of � , and let �βk� be a system of independent normal real-valued random
variables defined on a probability space ���� �P�.
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Definition 4.2. Let E be a real Banach space. A linear bounded operator
K � � → E is called γ-radonifying, or simply radonifying, iff the series∑

k βkKek converges in L2���� �P
E�.

Note that in view of the Itô-Nisio theorem (see [32]), K � � → E is γ-
radonifying iff the series

∑
k βkKek converges a.s. in E.

The set of all γ-radonifying operators from � into E is denoted by R�� �E�.
Note that if K ∈ R�� �E� then

∑
k βkKek is a 0-mean Gaussian E-valued

random variable, and consequently Fernique’s theorem yields that

�K�R�� �E�
def=

(
E

∣∣∣∑
k

βkKek

∣∣∣2
E

)1/2

=
(∫

E
�e�2EγK�de�

)1/2

< ∞�

where γK denotes the law of the E-valued random vector
∑

k βkKek. It is easy
to see that for any K ∈ R�� �E�, �K�R�H�E� does not depend on the choice of
�ek� and �βk�. Moreover, � · �R�� �E� is a norm, and �R�� �E�� � · �R�� �E�� is a
separable Banach space; for more details see [4] and [36].

Remark 4.3. Let W be a cylindrical Wiener process on � , and let E be
a separable Banach space such that the imbedding � ↪→ E is γ-radonifying.
Let �ek� be an orthonormal basis of � , and let Wk�t� = W�t�ek, k ∈ N and
t ∈ �0�T�. Then for every t ∈ �0�T� the series

∑
k Wk�t�ek, t ∈ �0�T�, converges

in L2���� �P
E�. Clearly, its limit, which we also denote by W, is a Wiener
process on E with the reproducing kernel Hilbert space � , and W does not
depend on the choice of �ek�.

Remark 4.4. Assume that E is a separable Hilbert space. Recall that a
bounded linear operator K from � into E is called Hilbert–Schmidt iff

�K�L�HS��� �E�
def=

( ∞∑
k=1

�Kek�2E
)1/2

< ∞

for any orthonormal basis �ek� of � . Let us denote by L�HS��� �E� the class of
all Hilbert–Schmidt operators from � into E. Then, as a direct consequence of
Theorem 4.1(iii) we have R�� �E� = L�HS��� �E� and �·�R�� �E� = �·�L�HS��� �E�.

In what follows we fix a q ∈ �2�∞�. The theorem below gives sufficient
condition under which an integral Wr�q-valued operator K is radonifying. The
Sobolev space Wr�q�� 
� � appearing in its formulation can be defined in the
standard way, see Section 3. The proof of Theorem 4.1 is given in Appendix B.

Theorem 4.1. Let K be a bounded linear operator acting from a real sep-
arable Hilbert space � into Wr�q, where r ∈ �0�∞�. Assume that K is given
by the formula

�Kψ��x� = �
 �x�� ψ�� for x ∈ � and ψ ∈ � �(4.3)
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where 
 ∈ Wr�q�� 
� �. Then K ∈ R�� �Wr�q� and there is an independent of
K constant C such that �K�R�� �Wr�q� ≤ C�
 �Wr�q�� 
� �.

Let u = �u1� � � � � um� be an R
m-valued function. In the proofs of Theorems

2.2 and 2.3 we apply Theorem 4.1 with � being the RKHS of an R
m-valued

spatially homogeneous Wiener random field, or an L2�� 
Rm�-valued Wiener
process respectively, see Lemmas 7.1 and 8.1. In both cases K�u� is a linear
operator on � given by

K�u�ψ =
m∑

j=1

ujψj�(4.4)

The remaining part of the present section is devoted to the construction
and properties of the Itô integral in Lq and W1�q spaces. In what follows �
is a filtered probability space, and W is an ��t�-adapted cylindrical Wiener
process on a real separable Hilbert space H.

Let V be a Banach space, and let us denote by 	 p�0�T
V� the Banach
space of all ��t�-predictable V-valued processes σ such that

�σ �	 p�0�T
E�
def=

(
E

∫ T

0
�σ�t��pV dt

)1/p

< ∞�

Let us fix an orthonormal basis �ek� of � , and let us denote by An the orthog-
onal projection onto the space spanned by e1� � � � � en. Let E be a real separable
Banach space, and let 	0�E� denote the class of all σ ∈ 	 2�0�T
R�� �E��
such that

σ�ω� t� =
n∑

j=1

σj�ω�Aiχ�tj�tj+1�

for some n� i ∈ N, 0 ≤ t1 < · · · < tm+1 ≤ T and σj ∈ L2����tj
�P
R�� �E��.

For σ ∈ 	0�E� and t ∈ �0�T� we put

�W
t �σ� �=

n∑
j=1

i∑
k=1

(
W�tj+1 ∧ t� −W�tj ∧ t�) ekσjek�

In general �W cannot be extended continuously to the whole 	 2�0�T

R�H�E��. This holds true for E being an M-type 2 Banach space; see, e.g.,
[9] or [22]. Further to make the theory of stochastic integrals applicable we
need a Burkholder type inequality. It turns out that this is also true when E
is an M-type 2 Banach space; see [9] and [22]. Since Lq and Wr�q are M-type
2 Banach spaces (see [10]), we have the following consequence of Theorems
2.4 and 3.3 from [22], see also [36] and [10].

Theorem 4.2. Let r ∈ �0�∞�. Then 	0�Wr�q� is dense in 	 2�0�T

R�� �Wr�q�� and for each t ∈ �0�T� there exists a unique extension of �W

t to
a linear bounded operator from 	 2�0�T
R�� �Wr�q�� into L2����t�P
Wr�q�.
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Moreover, there exists a constant C such that for any σ ∈ 	 2�0�T
R�� �Wr�q��
one has

E sup
s∈�0�t�

��W
t �σ��2E ≤ CE

∫ T

0
�σ�s��2

R�� �E� ds� t ∈ �0�T��

We denote the value of the extension of �W
t on σ ∈ 	 2�0�T
R�� �Wr�q�� by∫ t

0 σ�s�dW�s� or by �W
t �σ�. Then, see [10] or [36], for any σ , �W

t �σ�, t ∈ �0�T�,
is a Wr�q-valued square integrable martingale with continuous modification.

For further references we recall Itô’s formula for an Lq-valued process and
real valued function

Eq�p�u� = �u�pq � u ∈ Lq�(4.5)

For its proof we refer the reader to Appendix A from [13]; see also [36]. Be-
fore formulating the theorem we need to introduce some notation. Let γ be a
standard Gaussian distribution on a Hilbert space � , and let E be a Banach
space. Let K ∈ R�� �E�, and let γK = γ ◦K−1. For any Banach space V, and
for any bounded bilinear map L � E×E → V we define

trKL =
∫
E
L�x� x�dγK�x��

Below, �·� ·� denotes the duality form on �Lq�∗ ×Lq.

Theorem 4.3. Let p ≥ q, and let Eq�p be given by �4�5�. Assume that

ξ�t� = ξ�0� +
∫ t

0
a�s�ds+

∫ t

0
σ�s�dW�s�� t ∈ �0�T��

with a ∈ 	 1�0�T
Lq� and σ ∈ 	 2�0�T
R�� �Lq��. Then for all t ≥ 0,

�ξ�t��pq = �ξ�0��pq + p
∫ t

0
�ξ�s��p−q

q ��ξ�s��q−2ξ�s�� a�s��ds

+p
∫ t

0
�ξ�s��p−q

q ��ξ�s��q−2ξ�s�� σ�s�dW�s��

+ 1
2

∫ t

0
trσ�s� E

′′
q�p�ξ�s��ds�

Note that ψ → ��ξ�s��q−2ξ�s�� σ�s�ψ� belongs to the space R�� �R�, so the Itô
integral above is well defined.

Remark 4.5. Note that v1� v2 ∈ Lq we have

E′′
q�p�u��v1� v2� = p�q− 1��u�p−q

q

∫
�
�u�x��q−2v1�x�v2�x�dx

+p�p− q��u�p−2q
q

∫
�
�u�x��q−2u�x�v1�x�dx

×
∫
�
�u�x��q−2u�x�v2�x�dx�
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Hence we easily obtain that

trσ E′′
q�p�u� ≤ p�p− 1��u�p−2

q �σ�2
R�� �Lq��

5. Solutions to modified Navier–Stokes equations. Let �ek� ⊂ H2�2∩
H2�q be an orthonormal basis of H1�2. We assume that it is also a Schauder
basis of H1�q. Let An, A�n� be orthonormal projections of H1�2 into the spaces
linspan �e1� � � � � en� and linspan �en� = Ren, respectively. Let Â�n� � H1�2 → R

be defined by Â�n��v�en = A�n��v�, v ∈ H1�2.
Note that there is a constant C such that

�Anv�H1�q ≤ C�v�H1�q and �A�n�v�H1�q ≤ C�v�H1�q

for all n and v ∈ H1�2 ∩ H1�q. Thus An and A�n� can be treated as linear
projections on H1�q.

From now on, we assume that the assumptions of Theorem 2.1 are fulfilled.
Let ρ ∈ C∞

0 �R� be a non-negative function with the support in �0�1� and
mean

∫
R
ρ�x�dx = 1. Let also χn = χ�−n�n�. Recall that for all t ∈ �0�T�,

v ∈ H1�2 ∩ H1�q, and ψ ∈ � , F�t� v��G�t� v�ψ belong to W1�2 ∩ W1�q. For
t ∈ �0�T� and v ∈ H1�2 ∩H1�q define

Fn�t� v� = n−nAn

∫
Rn

F

(
t�

n∑
i=1

xiei

)
χn

(∣∣∣∣∣ n∑
i=1

xiei

∣∣∣∣∣
H1�2∩H1�q

)

×ρ
(
n�Â�1�v− x1�

)
· · ·ρ

(
n�Â�n�v− xn�

)
dx

and, for ψ ∈ � ,

�Gn�t� v�ψ� = n−nÂn

∫
Rn

[
G

(
t�

n∑
i=1

xiei

)
ψ

]
χn

(∣∣∣∣∣ n∑
i=1

xiei

∣∣∣∣∣
H1�2∩H1�q

)

×ρ
(
n�Â�1�v− x1�

)
· · ·ρ

(
n�Â�n�v− xn�

)
dx�

Note that the functions Fn�t� ·� and Gn�t� ·� are bounded and globally Lips-
chitz from H1�2 into W1�2, and from H1�q into W1�q and, respectively from H1�2

into R�� �W1�2�, and from H1�q into R�� �W1�q� (with bounds possibly de-
pending on n). Moreover, there are functions ã1 ∈ L1�0�T� and ã2 ∈ Lr�0�T�,
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r > 2 such that all n ∈ N, t ∈ �0�T� and v ∈ H1�q one has

�F�t� v��W1�2 ≤ ã1�t� �1 + �v�H1�2� �
�F�t� v��W1�q ≤ ã1�t� �1 + �v�H1�q� �
�Fn�t� v��W1�2 ≤ ã1�t� �1 + �v�H1�2� �
�Fn�t� v��W1�q ≤ ã1�t� �1 + �v�H1�q� �

�G�t� v��L�HS��� �W1�2� ≤ ã2�t� �1 + �v�H1�2� �
�G�t� v��R�� �W1�q� ≤ ã2�t� �1 + �v�H1�q� �

�Gn�t� v��L�HS��� �W1�2� ≤ ã2�t� �1 + �v�H1�2� �
�Gn�t� v��R�� �W1�q� ≤ ã2�t� �1 + �v�H1�q� �

Let u
�n�
0 = Anu0. Recall that the projection � , the Stokes operator A, and

the bilinear term B were introduced in Section 3. Let ϕn � H1�2 ∩ H1�q →
H1�2 ∩H1�q be defined by

ϕn�u� �=
{

u� if �u�H1�2∩H1�q ≤ n�

n�u�−1
H1�2∩H1�qu� otherwise.

It is well known, but see also Appendix in [11], that ϕn is bounded and globally
Lipschitz. Define Bn�v� = B�ϕn�u�� u�. Then it follows from Theorem 3.2(iii)
that Bn is a (globally) Lipschitz map from H1�2 ∩H1�q to X2 ∩ Xq. For brevity
we write B�v� = B�v� v�.

Theorem 5.1. Let u0 ∈ H1�2 ∩ H1�q, and let ν > 0. Let W be a cylindri-
cal Wiener process on � defined on a filtered probability space �. Then for
any n there is a unique adapted and continuous H1�2 ∩ H1�q-valued global
strong solution u�ν�n� to �1�3� − �1�4�, that is a process satisfying the following
conditions�

(i) u�ν�n� ∈ Lp
(
�
L2�0�T
H2�2 ∩H2�q� ∩C��0�T�
H1�2 ∩H1�q�) for any p ∈

�1�∞�;
(ii) for t ∈ �0�T� one has

u�ν�n��t� = u
�n�
0 +

∫ t

0

{
−νAu�ν�n��s� +B�u�ν�n��s�� +�Fn�s� u�ν�n��s��

}
ds

+
∫ t

0
�Gn�s� u�ν�n��s��dW�s��

(5.1)

Moreover, for any p ∈ �1�∞�,

sup
ν∈�0�1�

sup
n∈N

E

{
sup

t∈�0�T�

(
�u�ν�n��t��p

H1�2 + �u�ν�n��t��p

H1�q

)}
< ∞�(5.2)

Note that Fn, Gn and Bn are globally Lipschitz continuous and Un
0 ∈ H2�2∩

H2�q. Thus the existence and uniqueness of a (global) mild solution u�ν�n� to
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(1.3) - (1.4) follows from Theorem 4.10 in [10]. It follows next from Lemma 4.5
in [9] that in fact it is a strong solution. For an alternative detailed exposition
in the case of the full, not approximated equation in a bounded domain see
[14]. Hence Theorem 5.1 will be proved as soon as we verify Lemmas 5.1 and
5.2 formulated below.

Lemma 5.1. Let u�ν�n� be a solution to �1�3�−�1�4�. Then for any p ∈ �1�∞�
there is a constant C < ∞ independent of ν ∈ �0�1� and n such that

E sup
t∈�0�T�

�u�ν�n��t��p

H1�2 ≤ C�

Proof. Let us first present the main points of the proof. Let us fix tem-
porarily p ∈ �2�∞�, ν ∈ �0�1�, and n. We adopt the convention that constants
ci and Ci depends only on u0, T, ã1, ã2 and p. Recall that � · � denotes the
L2-norm. Set

ψ�t� = E sup
s∈�0�t�

�u�ν�n��s��4p and ϕ�t� = E sup
s∈�0�t�

�u�ν�n��s��4p
H1�2 �

The first step will be to show that there is a constant C1 such that for all
0 ≤ κ ≤ t ≤ T

ψ�t� ≤ C1

{
1 + ψ�κ� + ϕ�t�

∫ t

κ

(
1 + ã1�s� + ã2

2�s�
)

ds
}
�(5.3)

In this step we will use first Itô’s lemma to the function H�v� = �v�2p, and
then the Burkholder inequality. We will employ the growth conditions on F
and G, and Theorem 3.2(iv). Next we set

η�t� x� = curlu�ν�n��t� x� and ϑ�t� = E sup
s∈�0�t�

�η�s��4p�

Then η is a mild solution to the following stochastic partial differential
equation (subject to Dirichlet boundary conditions if � �= R

2)

dη =
[
ν�η+ curl

{
Bn�u�ν�n�� +Fn�t� u�ν�n��

}]
dt

+
(
curlGn�t� u�ν�n��

)
dW

=
[
ν�η− �u�ν�n��∇�η+ curlFn�t� u�ν�n��

]
dt

+
(
curlGn�t� u�ν�n��

)
dW�

η�t� ·� = 0 on ∂� �

(5.4)

By uniqueness, since (5.4) has a unique strong L2�� �-valued solution, η is also
a strong L2�� �-valued solution. Hence, by applying again the Itô formula,
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the Burkholder inequality, and using Theorem 3.2(v) we will arrive at the
following estimate

ϑ�t� ≤ C2

{
1 +ϑ�κ� + �ϑ�t� + ϕ�t��

∫ t

κ

(
ã1�s� + ã2

2�s�
)

ds
}

(5.5)

valid for all 0 ≤ κ ≤ t ≤ T. Taking into account Lemma 3.1 we may find C3
and C4 such that

C3 �ψ�t� +ϑ�t�� ≤ ϕ�t� ≤ C4 �ψ�t� +ϑ�t�� �
Consequently, combining (5.3) with (5.5) we obtain

ϕ�t� ≤ C5

{
1 + ϕ�κ� + ϕ�t�

∫ t

κ

(
1 + ã1�s� + ã2

2�s�
)

ds
}
�(5.6)

Let 0 = t1 < · · · < tl = T be a partition of �0�T� such that for every i =
1� � � � � l− 1, ∫ ti+1

ti

(
1 + ã1�s� + ã2

2�s�
)

ds ≤ 1
2 �

Then from (5.6) we have

ϕ�ti+1� ≤ 2C5 �1 + ϕ�ti�� � i = 1� � � � � l− 1�

and consequently

E sup
t∈�0�T�

�u�ν�n��t��4p
H1�2 = ϕ�T� ≤

l−1∑
j=1

�2C5�j + �2C5�l−1�u0�4p
H1�2�

which gives the desired estimate.
Let us now present some more details on the derivation of (5.3) and (5.5).

For t ∈ �0�T� we write

K�t� = ν� �u�ν�n��t� +�Fn�t� u�ν�n��t���
� �t� = �Gn�t� u�ν�n��t���

Let κ < t. Since u�ν�n� is a strong X2-valued solution to (5.1), using Theorems
3.1(iv) and 3.2(ii) and the Itô formula (see [37] or [41]), we infer that

�u�ν�n��t��2p = �u�ν�n��κ��2p

+
∫ t

κ

[
�H′�u�ν�n��s���K�s�� + 1

2 traceH′′�u�ν�n��s��� �s�� ∗�s�
]

ds

+
∫ t

κ
H′�u�ν�n��s��� �s�dW�s�

=� �u�ν�n��κ��2p +
∫ t

κ
I�s�ds+

∫ t

κ
H′�u�ν�n��s��� �s�dW�s��
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Using now Theorems 3.1(iv) and 3.2(iv), and the growth property of Fn we
obtain

�H′�u�ν��s���K�s��
≤ 2p�u�ν�n��s��2�p−1�

[
c1ν�u�ν�n��s��2

H1�2 +
〈
u�ν�n��s��Fn�s� u�ν�n��s��

〉]
≤ c2�ã1�t� + 1��1 + �u�ν�n��s��2p

H1�2��
For the second term in the deterministic integral we have

1
2traceH′′�u�ν�n��s��� �s��� �s��∗

=p�u�ν�n��s��2�p−2�
[
�u�ν�n��s��2�� �s��2

L�HS��� �L2�+2�p−1���� �s��∗u�ν�n��s��2
]

≤c3�u�ν�n��s��2p−2�Gn�s�u�ν�n��s���2
L�HS��� �W1�2�

≤c4ã
2
2�s�

(
1+�u�ν�n��s��2p

H1�2

)
�

Thus

�I�s�� ≤ c5
(
1 + ã1�s� + ã2

2�s�
) (

1 + �u�ν�n��s��2p
H1�2

)
and consequently

ψ�t� ≤ c6

{
1 + ψ�κ� + ϕ�t�

(∫ t

κ
�1 + ã1�s� + ã2

2�s��ds
)2

+E sup
s∈�κ�t�

∣∣∣ ∫ s

κ
H′�u�ν�n��r��� �r�dW�r�

∣∣∣2}�

Applying now the Burkholder inequality we easily obtain that

E sup
s∈�κ�t�

∣∣∣ ∫ s

κ
H′�u�ν�n��r��� �r�dW�r�

∣∣∣2
≤ c7 E

∫ t

κ
ã2

2�r�
(
1 + �u�ν�n��r��4p

H1�2

)
dr

≤ c7 �1 + ϕ�t��
∫ t

κ
ã2

2�r�dr�

which gives (5.3). We can show (5.5). For brevity write

E�t� = ν�η�t� + curl
{
Bn�u�ν�n��t�� +Fn�t� u�ν�n��t��

}
�

G̃�t� = curlG�t� u�ν�n��t���
(5.7)

As we observed before, the process η�t�, t ∈ �0�T�, given by (5.4) is a strong
L2�� �-valued solution to (5.4). Hence we may apply the Itô formula to the
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function H and the process η�t� and obtain

�η�t��2p = �η�κ��2p

+
∫ t

κ

[
�H′�η�s���E�s�� + 1

2 traceH′′�η�s��G̃�s��G̃�s��∗
]

ds

+
∫ t

κ
H′�η�s��G̃�s�dW�s��

Using Theorems 3.1(iv) and 3.2(v) we obtain

�H′�η�s���E�s�� = 2p�η�s��2�p−1�
[
−ν�∇η�s��2 +

〈
η�s�� curlFn�s� u�ν�n��s��

〉]
≤ c8�η�s��2p−1�Fn�s� u�ν�n��s��W1�2

≤ c8ã1�s��η�s��2p−1
(
1 + �u�ν�n��s��H1�2

)
≤ c9ã1�s�

(
1 + �η�s��2p + �u�ν�n��s��2p

H1�2

)
�

We have
1
2traceH′′�η�s��G̃�s��G̃�s��∗

= p �η�s��2�p−2�
[
�η�s��22�G̃�s��2

L�HS��� �L2� + 2�p− 1���G̃�s��∗η�s��22
]

≤ c10 �η�s��2p−2�Gn�s� u�ν�n��s���2
L�HS��� �W1�2�

≤ c11 ã2
2�s�

(
1 + �η�s��2p + �u�ν�n��s��2p

H1�2

)
�

Applying now the Burkholder inequality we obtain

E sup
s∈�κ�t�

∣∣∣ ∫ s

κ
H′�η�r��G̃�r�dW�r�

∣∣∣2
≤ c12E

∫ t

κ
ã2

2�r�
(
1 + �η�r��4p + �u�ν�n��r��4p

H1�2

)
dr�

Combining these estimates we get (5.5). ✷

In what follows we need estimate for solutions in the space H1�q, where
q ∈ �2�∞�. We use the inequality

�v�H1�q ≤ C
(�v�H1�2 + �curlv�q

)
�(5.8)

which is a consequence of Lemma 3.1 and the imbedding W1�2 ↪→ Lq.

Lemma 5.2. Let u�ν�n� be the solution to �1�3� − �1�4�. Then for any p ∈
�1�∞� there is a constant C < ∞ independent of ν ∈ �0�1� and n such that

E sup
t∈�0�T�

�u�ν�n��t��p

H1�q ≤ C�(5.9)
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Proof. As in the proof of Lemma 5.1 we fix ν, n and p. Define

η�t� x� = curlu�ν��t� x� and θ�t� = E sup
s≤t

�η�ν��s��2pq �

Recall, see the proof of Lemma 5.2, that η satisfies (5.4), and that E and G̃
are given by (5.7). Assume that q > 2. First note that η is a both strong and
mild solution to (5.4). In particular, it follows from Theorem 4.6 and Lemma
4.3 from [9], and from Theorem 4.10 from [10] that for any p ∈ �2�∞�,

η ∈ L2 (
��� �P
L2�0�T
H2�q�) ∩Lp

(
��� �P
L∞�0�T
H1�q�) �(5.10)

For the above deduction we use the uniqueness of a weak solution to (5.4)
and the imbedding H1�q ↪→ L∞, q > 2.

Let p ∈ �q�∞�, and 0 ≤ κ ≤ t ≤ T. Then by (5.10) we may apply the Itô
formula for H�η� = �η�pq , see Theorem 4.3 and Remark 4.5. Thus we have

�η�t��pq ≤ �η�κ��pq + p
∫ t

κ
�η�s��p−q

q ��η�s��q−2η�s��E�s��ds

+p
∫ t

κ
�η�s��p−q

q ��η�s��q−2η�s�� G̃�s�dW�s��

+p�p− 1�
2

∫ t

κ
�η�s��p−2

q �G̃�s��2
R�� �Lq� ds�

Using Theorem 3.2(v) and the growth estimates for G and F we get

�η�t��pq ≤ �η�κ��pq + c1

∫ t

κ
�η�s��p−1

q ã1�s��1 + �u�ν�n��s��H1�q�ds

+
∫ t

κ
�η�s��p−2

q ã2
2�s��1 + �u�ν�n��s��2

H1�q�ds+ I�t��

where

I�t� = p
∫ t

κ
�η�s��p−q

q ��η�s��q−2
q η�s�� G̃�s�dW�s���

Using Lemma 5.1 and (5.8) we easily obtain the following estimate

�η�t��pq ≤ �η�κ��pq + c2 + c3

∫ t

κ
�η�s��pq �ã1�s� + ã2

2�s��ds+ I�t��

where c2� c3 are independent of ν ∈ �0�1�, n, κ, and t, and σ . The Burkholder
inequality, see Theorem 4.2, yields

E sup
κ≤s≤t

�I�s��2 ≤ c4 �1 + θ�t��
∫ t

κ
ã2

2�s�ds�

Summing up we have

θ�t� ≤ C1

{
1 + θ�κ� + θ�t�

∫ t

κ
�ã1�s� + ã2

2�s��ds
}
�
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where C is independent of ν, n, τ, t, and σ . Thus taking a partition 0 = t1 <
· · · < tl = T such that ∫ ti+1

ti

�ã1�s� + ã2
2�s��ds ≤ 1

2

we get

E sup
t∈�0�T�

�u�ν�n��t��2p
H1�q ≤C2�1+θ�T��≤C2

(
1+

l−1∑
j=1

�2C�j+�2C�l−1�Anu0�2p
H1�q

)
�

Since �en� is a Schauder basis of H1�q we have

sup
n

�Anu0�H1�q < ∞�

and the proof is complete. ✷

6. Proof of Theorem 2.1. For further references we recall the well-
known Dubinsky criterion for compactness. Its proof can be found in [47],
Theorem 4.1, page 132.

Lemma 6.1. Let E0, E1 and E be reflexive Banach spaces such that the
imbeddings E0 ↪→ E ↪→ E1 are continuous and the imbedding E0 ↪→ E is
compact. Let p ∈ �1�∞� and let N be a bounded set in Lp�0�T
E0� consisting
of equicontinuous functions in C��0�T�
E1�. Then N is relatively compact in
Lp�0�T
E� and C��0�T�
E1�.

Let ϑ ∈ C∞�R2� be a strictly positive even function equal to exp�−�x��
for �x� ≥ 1, and let us denote by L2

ϑ the weighted space L2�� �ϑ�x�dx
R2�.
Clearly, if � is bounded, then the spaces L2 and L2

ϑ are equivalent. For a proof
of the lemma below we refer the reader to [17], Lemma 3.4(i).

Lemma 6.2. The imbedding W1�2 ↪→ L2
ϑ is compact.

In this section, u�ν�n�, ν ∈ �0�1�, n ∈ N, is an H1�2 ∩H1�q-valued solution to
the modified Navier–Stokes problem (1.3) - (1.4). We assume that each u�ν�n�

is defined on a filtered probability space �, and satisfies (1.3) driven by a
cylindrical Wiener process W. Let us denote by 	 �u�ν�n�� the law of u�ν�n� on
the space of trajectories C��0�T�
H1�2 ∩H1�q�. Let

M�ν�n��t� �=
∫ t

0
�Gn�s� u�ν�n��s��dW�s�� t ∈ �0�T��

and let 	 �M�ν�n�� be the law of M�ν�n� on C��0�T�
H1�2 ∩H1�q�.

Lemma 6.3. The family 	 �M�ν�n��, ν∈�0�1�, n∈N is tight in C��0�T�
L2
ϑ�.
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Proof. Let ε > 0. We have to find a relatively compact set N in C��0�T�

L2

ϑ� such that P
(
M�ν�n� ∈ M

) ≥ 1−ε for all ν ∈ �0�1�, n ∈ N. To do this we are
going to use the Dubinsky criterion with E0 = H1�2 and E1 = E = L2

ϑ. First
note that there is an α ∈ �0�1� such that∫ t

0
�t− s�2�α−1�ã2

2�s�ds < ∞ for t ∈ �0�T��

Let p > �1 − α�−1, and let


ψ�t� =
∫ t

0
�t− s�−αψ�s�ds� t ∈ �0�T�� ψ ∈ Lp�0�T
H1�2��

Finally, let

Y�ν�n��t� �= sin�1 − α�π
π

∫ t

0
�t− s�α−1�Gn�s� u�ν�n��s��dW�s�� t ∈ �0�T��

Note that for all ν and n, the process Y�ν�n� is well defined in H1�2. Moreover,
using (5.2) and the growth property of Gn one can easily show that

sup
ν∈�0�1�

sup
n

E

∫ T

0
�Y�ν�n��t��p

H1�2 dt < ∞�

Then, see [19] or [20], M�ν�n� = 
 Y�ν�n� and the desired conclusion follows from
Lemma 6.2 and the fact that 
 transforms bounded sets in Lp�0�T
H1�2� into
equicontinuous bounded sets in C��0�T�
H1�2�. ✷

Let H be a Hilbert space. We denote by L1�H�H� the space of nuclear
operators from H into H. Obviously, �M�ν�n�� are square integrable continuous
L2

ϑ-valued martingales. Thus for every ν and n there is a unique process
( M�ν�n� ) with continuous trajectories in L1�L2

ϑ�L
2
ϑ� such that for all ψ�ϕ ∈

L2
ϑ the process〈

M�ν�n��t�� ψ
〉
L2

ϑ

〈
M�ν�n��t�� ϕ

〉
L2

ϑ

−
〈
( M�ν�n� ) �t�ψ�ϕ

〉
L2

ϑ

� t ∈ �0�T�

is a real-valued continuous martingale. We call ( M�ν�n� ) the quadratic
variation process of M�ν�n�. Note that

( M�ν�n� ) �t� =
∫ t

0
jH1�2�L2

ϑ
�Gn�s� u�ν�n��s��

(
jH1�2�L2

ϑ
�Gn�s� u�ν�n��s��

)∗
ds�

where jH1�2�L2
ϑ

denotes the imbedding of H1�2 into L2
ϑ. We have the following

consequence of Lemma 6.3 and the Métivier–Nakao theorem; see e.g. [34] or
[35].

Corollary 6.1. The family �	 �( M�ν�n� )�� of the laws of �( M�ν�n� )�
is tight in C��0�T�
L1�L2

ϑ�L
2
ϑ��.

The next lemma plays a crucial role in the proof of Theorem 2.1.



STOCHASTIC EULER EQUATIONS 1819

Lemma 6.4. The family 	 �u�ν�n��, ν ∈ �0�1�, and n ∈ N is tight in
L2�0�T
L2

ϑ�.
Proof. Let v�ν�n� = u�ν�n� − M�ν�n�. By Lemma 6.3 it is enough to show

that the laws 	 �v�ν�n�� are tight in L2�0�T
L2
ϑ�. Let us define the weighted

Sobolev space W
1�2
−ϑ as the completion of C∞

0 �� �R
2� with respect to the norm

�v�W
1�2
−ϑ

=
(∫

�

(�v�x��2 + �∇v�x��2) e�x� dx
)1/2

�

Then W
1�2
−ϑ ↪→ W1�2 ↪→ L2, and W

1�2
−ϑ ↪→ L2�� � e�x� dx
R2�. Let E1 = W

−1�2
ϑ �=

�W1�2
−ϑ�∗, where we identify the adjoint space throughout the identity �L2�∗ =

L2. Then W−1�2 ↪→ E1 and L2
ϑ ↪→ E1, with dense imbeddings. We use Lemma

6.1, for E = L2
ϑ, E0 = W1�2, and E1 defined above. Note that by Lemma 6.2,

E0 is compactly imbedded into E. We have

v�ν�n��t� = Anu0 +
∫ t

0

{
−νAu�ν�n��s� +B�u�ν�n��s�� +�Fn�s� u�ν�n��s��

}
ds�

Let ε > 0. Then using (5.2), and Theorems 3.1(iv) and 3.2(ii) one can construct
a set P of equicontinuous in W

−1�2
ϑ valued equicontinuous functions such that

inf
ν∈�0�1�� n∈N

P

(
v�ν�n� ∈ P

)
> 1 − ε�

Thus the desired conclusion follows from the fact that as a consequence of
(5.2) we have

1
2 sup

ν∈�0�1��n∈N

E

∫ T

0
�v�ν�n��t��2

H1�2 dt

≤ sup
ν∈�0�1��n∈N

E

∫ T

0
�u�ν�n��t��2

H1�2 dt

+ sup
ν∈�0�1��n∈N

E

∫ T

0
�M�ν�n��t��2

H1�2 dt < ∞� ✷

Lemma 6.5. Let r ∈ �1�∞�, and let v�l�, l ∈ N be a sequence of processes
with trajectories in L∞�0�T
W1�r�, such that, for a fixed p ∈ �1�∞�,

sup
l

E �v�l��pL∞�0�T
W1�r� < ∞�

If �v�l��t�−v�t��Lr → 0, dt×P-almost surely, then the process v has trajectories
in L∞�0�T
W1�r� and E �v�pL∞�0�T
W1�r� < ∞.

Proof. Let �ek� be an unconditional Schauder basis of the both spaces Lr

and W1�r. Then each element z ∈ Lr has the unique representation z = ∑
zjej.

Moreover, the projections

Akz
def=

k∑
j=1

zjej� k ∈ N�
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are uniformly bounded in both Lr and W1�r. In particular, z ∈ Lr belongs to
W1�r iff supk �Akz�W1�r < ∞. If this is a case, then

�z�W1�r = lim
k→∞

�Akz�W1�r �

Thus, as �Ak�L�W1�r�W1�r�, k ∈ N is bounded, for p� s ≥ 2 we have, using the
Fatou lemma,

E

(∫ T

0
lim
k→∞

�Akv�t��s
W1�r dt

)p/s

≤ lim inf
k→∞

E

(∫ T

0
�Akv�t��s

W1�r dt
)p/s

≤ Tp/s lim inf
k→∞

lim inf
l→∞

E �Akv
�l��pL∞�0�T
W1�r�

≤ CTp/s sup
l∈N

E �v�l��pL∞�0�T
W1�r� < ∞�

Hence v has trajectories in W1�r and

E �v�pL∞�0�T
W1�r� = lim
s→∞ E �v�pLs�0�T
W1�r� ≤ C sup

l∈N

E �v�l��pL∞�0�T
W1�r� < ∞�

which completes the proof. ✷

Proof of Theorem 2.1. Let �̃ be a Hilbert space such that � ↪→ �̃ with
a Hilbert–Schmidt imbedding, and let

� = L2�0�T
L2
ϑ� ×C��0�T�
L2

ϑ� ×C��0�T�
L1�L2
ϑ�L

2
ϑ�� ×C��0�T�
 �̃ ��

Note that W is then a process with continuous trajectories in �̃ . By Lemmas
5�3, 5�4 and Corollary 6.1, the family of laws 	 �u�ν�n��M�ν�n��( M�ν�n� )�W�,
ν ∈ �0�1�, n ∈ N of �u�ν�n��M�ν�n��( M�ν�n� )�W� on � is tight, and hence by
the Prokhorov theorem, it is relatively weakly compact. So there are sequences
νl ↓ 0 and nl ↑ ∞ such that �u�νl�nl��M�νl�nl��( M�ν�n� )�W� converges weakly
as l ↑ ∞.

By the Skorokhod imbedding theorem (see, e.g., [27]), there exist a prob-
ability space � = ���� � ��t��P�, random elements in � , �v�M�m�V� and
��v�l��M�l��m�l��V�l���, l ∈ N, defined on �, such that the laws of �u�νl�nl��
M�νl�nl��(M�νl�nl� )�W� and �v�l��M�l��m�l��V�l�� are the same, and �v�l��M�l��
m�l��V�l�� → �v�M�m�V�, P-almost surely in � . Thus, in particular,

lim
l→∞

∫ T

0
�v�l��t� − v�t��2

L2
ϑ
dt = 0� P-a.s.(6.1)

Note that for every l, V�l� is a cylindrical Wiener processes on � , and v�l� is the
solution to the appropriate Navier–Stokes equations driven by V�l�. Moreover,

M�l��t� =
∫ t

0
�Gnl

�s� v�l��s��dV�l��s�� t ∈ �0�T�
and

m�l��t� = ( M�l� ) �t�

=
∫ t

0
jH1�2�L2

ϑ
�Gnl

�s� v�l��s��
(
jH1�2�L2

ϑ
�Gnl

�s� v�l��s��
)∗

ds�
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Let p ≥ 2. Then as H1�2 ↪→ L2
ϑ, (5.2) and the Fatous lemma yield

E

(∫ T

0
�v�t��2

L2
ϑ
dt

)p

≤ lim inf
l→∞

E

(∫ T

0
�v�l��s��2

L2
ϑ
dt

)p

< ∞�

Thus for any p ≥ 2 we have

sup
l∈N

E

(∫ T

0
�v�l��t� − v�t��2

L2
ϑ
dt

)p

< ∞�

and consequently, the sequence
∫ T
0 �v�l��t� − v�t��2

L2
ϑ
dt, l ∈ N is uniformly inte-

grable, and hence from (5.1) we have

lim
l→∞

E

∫ T

0
�v�l��t� − v�t��2

L2
ϑ
dt = 0�

Taking a subsequence we may assume that v�l��t� x� → v�t� x�, dt× dx×P-a.s.,
and

lim
l→∞

∫ T

0
�v�l��t� − v�t��2

L2
ϑ
dt = 0� P-a.s.�(6.2)

Since �v�l�� is bounded in Lp���� �P
L∞�0�T
Lr��, r = 2� q, we may assume
that �v�l��t�−v�t��Lr → 0, dt×P-a.s. for r = 2� q. Lemma 6.5 yields that v has
a trajectories from L∞�0�T
H1�2 ∩H1�q� and that for every p ≥ 2, one has

E

{
sup

t∈�0�T�
�v�t��p

H1�2 + sup
t∈�0�T�

�v�t��p

H1�q

}
< ∞�(6.3)

The sequence �M�l�� converges P-a.s. to M. Note that M is a square integrable
continuous L2

ϑ-valued martingale with quadratic variation m. Our goal is to
show that

( M ) �t� =
∫ t

0
jH1�2�L2

ϑ
�G�s� v�s��

(
jH1�2�L2

ϑ
�G�s� v�s��

)∗
ds� t ∈ �0�T��

To do this it is enough to prove that for all t ∈ �0�T� and z ∈ C∞
0 �� 
R2� the

sequence

Jl =
∫ t

0

∣∣∣∣ (jH1�2�L2
ϑ
�Gnl

�s� v�l��s��
)∗

z

∣∣∣∣2
�

ds� l ∈ N�

converges in probability to

J =
∫ t

0

∣∣ (jH1�2�L2
ϑ
�G�s� v�s��

)∗
z
∣∣2
�

ds�

Note that for all ε > 0 and R > 0 one has

P��Jl −J� > ε� ≤ P̃

(
�Jl −J� > ε and sup

0≤s≤T

�v�l��s�� ≤ R

)

+P

(
sup

0≤s≤T

�v�l��s�� > R

)
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Therefore the convergence in probability follows from the assumptions (i)
and (ii) of Theorem 2.1, and (6.2), (6.3) and the Lebesgue dominated conver-
gence theorem.

Using now the representation theorem ([19], Theorem 8.2) we can find a
filtered probability space ��′�� ′� �� ′

t ��P
′�, and a cylindrical Wiener process

W̃ on � , which is defined on the probability space

�̃ =
(
�̃ = �×�′� �̃ = � × � ′� ��̃t� = ��t × � ′

t �� P̃ = P × P
′
)
�

such that the process � �t�ω1�ω2� = M�t�ω1� has the following form:

� �t�ω1�ω2� =
∫ t

0
�G�s� u�s�ω1�ω2��dW̃�s�ω1�ω2��

where u�s�ω1�ω2� = v�s�ω1�. Clearly, the process u is adapted to the filtration
��̃t�, and by (6.3), for every p ∈ �2�∞�,

Ẽ

{
sup

t∈�0�T�
�u�t��p

H1�2 + sup
t∈�0�T�

�u�t��p

H1�q

}
< ∞�

The last task is to show that u satisfies the integral equation in Definition
2.1. To do this we fix t ∈ �0�T� and z ∈ C∞

0 �� 
R2� satisfying div z = 0. We
have already shown that, P̃-a.s.,〈∫ t

0
�Gnl

�s� v�l��s��dW�s�� z
〉
= �M�l��t�� z� → �M�t�� z�

=
〈∫ t

0
�G�t� u�s��dW̃�s�� z

〉
=

〈∫ t

0
G�t� u�s��dW̃�s�� z

〉
�

For t ∈ �0�T� and z ∈ C∞
sol we define

Il =
∫ t

0
��Fnl

�s� v�l��s��� z�ds�

I =
∫ t

0
��F�s� u�s��� z�ds =

∫ t

0
�F�s� u�s��� z�ds�

We are showing that Il converges to I in probability P̃. Since for all l, ε > 0,
and R > 0 we have

P̃��Il − I� > ε� ≤ P̃

(
�Il − I� > ε and sup

0≤s≤T

�v�l��s�� ≤ R

)

+P̃

(
sup

0≤s≤T

�v�l��s�� > R

)
the convergence follows from the assumptions (i) and (ii) of Theorem 2.1, and
(6.2), (6.3) and the Lebesgue dominated convergence theorem.
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Clearly v�l��0� → u0, and from (6.2) we have �v�l��t�� z� → �u�t�� z�. Also
from (6.2) we have∫ t

0

2∑
j=1

〈
v�l��s�v�l�

j �s�� ∂jz
〉

ds →
∫ t

0

2∑
j=1

〈
u�s�uj�s�� ∂jz

〉
ds�

Finally,

νl

∫ t

0
�v�l��s�� �z�ds → 0�

Thus u satisfies the integral equation in Definition 2.1, and the proof is com-
plete. ✷

7. Proof of Theorem 2.2.

Lemma 7.1. Let � be an R
m-valued spatially homogeneous randomWiener

field with the spectral measure µ = �µ1� � � � � µm�, and let �� be its RKHS. Let
u = �u1� � � � � um� ∈ W1�q�R2
Rm�, and let K�u� be given by �4�4�. Assume that∫

R2
�1 + �y�q� dµj�y� < ∞ for j = 1� � � � �m�

Then K�u� ∈ R��� �W1�q�, and there is an independent of u constant C such
that

�K�u��R��� �W1�q� ≤ C�u�W1�q�R2
Rm�

(
m∑

j=1

∫
R2

�1 + �y�q� dµj�y�
)1/q

�

Proof. Set

L2
�s��µ� =

{
ψ = �ψ1� � � � � ψm� � ψj ∈ L2

�s��R2� µj�
}
�

and let us equip L2
�s��µ� with the scalar product

�ψ�ϕ�L2
�s��µ�

def=
m∑

j=1

∫
R2

ψjϕj dµj�

Finally let

j�ψ� = �ψ̂iµ1� � � � � ̂ψmµm�� ψ ∈ L2
�s��µ��

Clearly j is an isomorphism between L2
�s��µ� and �� . Thus

K�u� ∈ R��� �W1�q� ⇐⇒ K�u�j ∈ R�L2
�s��µ��W1�q��
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Now we have

�K�u�j��ψ��x� =
m∑

j=1

uj�x�ψ̂jµj�x�

=
m∑

j=1

�2π�−1
∫

R2
uj�x� exp�i�x�y��ψj�y�dµj�y�

= �
 �u��x�� ψ�L2
�s��µ��

where


 �u��x� = �2π�−1 �u1�x� exp�−i�x� ·��� � � � � um�x� exp�−i�x� ·��� �
Note that 
 �u� ∈ W1�q�R2
L2

�s��µ��, and there is an independent of u and µ

constant C1 such that

�
 �u��W1�q�R2
L2
�s��µ�� ≤ C1�u�W1�q�R2
Rm�

(
m∑

j=1

∫
R2

�1 + �y�q� dµj�y�
)1/q

�

Hence, Theorem 4.1 gives the desired conclusion. ✷

Proof of Theorem 2.2. We prove the theorem by showing that F and G
given by (2.2) satisfy the hypothesis (i) and (ii) of Theorem 2.1. To do this take
v ∈ H1�q. Then F�t� v��x� = f�t� x� v�x��. Clearly, F�t� v� ∈ W1�q and

�F�t� v��q

W1�q =
∫

R2

{
�f�t� x� v�x���q + ∣∣ d

dx
f�t� x� v�x��∣∣q} dx

≤ C1a
q
1�t�

∫
R2

��φ�x��q + �v�x��q + �∇v�x��q� dx

≤ C2a
q
1�t�

(
1 + �v�q

W1�q

)
�

where φ ∈ Lq and a1 ∈ L1�0�T�. Thus F satisfies (i). Finally, for z ∈ C∞
sol and

u� v ∈ W1�q we have∣∣�F�t� v� −F�t� u�� z�∣∣ = ∣∣∣ ∫
R2
�f�t� x� v�x�� − f�t� x� u�x��� z�x��dx

∣∣∣
≤ C1a1�t�

∫
R2

�v�x� − u�x��z�x��dx
≤ C1a1�t��v− u�Lq �z�Lq∗ �

and consequently F satisfies (ii). We will show that

G�t� v��ψ��x� =
m∑

j=1

gj�t� x� v�x��ψj�x�

has the required properties. Note that G�t� v� is of the form (4.4) with

uj = gj�t� ·� v�·�� = G̃j�t� v��
Let

G̃�t� v��x� =
(
G̃1�t� v��x�� � � � � G̃m�t� v��x�

)
�
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Then using the same calculations as for F we obtain G̃�t� v� ∈ W1�q�R2
Rm�
and

�G̃�t� v��W1�q�R2
Rm� ≤ Ca2�t��1 + �v�W1�q��
with a certain a2 ∈ Lr�0�T�. Thus by Lemma 7.1, G satisfies (i). We will show
below that G�t� ·� is a Lipschitz mapping from L2 into L�HS���� �L2�. This
obviously guarantees that G satisfies the condition (ii) of Theorem 2.1. Let
u� v ∈ L2 and t ∈ �0�T�. For j = 1� � � � �m let �fj

k� be an orthonormal basis of
L2

�s��µj�. Then

�G�t� v� −G�t� u��2
L�HS���� �L2�

= ∑
j�k

∫
R2

∣∣∣∣(gj�t� x� v�x�� − gj�t� x� u�x�) f̂j
kµj�x�

∣∣∣∣2 dx

= ∑
j�k

1
4π2

∫
R2

∣∣∣ ∫
R2

ei�x�y� (gj�t� x� v�x�� − gj�t� x� u�x�)fj
k�y�dµj�y�

∣∣∣2 dx

= ∑
j

1
4π2

∫
R2

∫
R2

∣∣ei�x�y� (gj�t� x� v�x�� − gj�t� x� u�x�)∣∣2 dµj�y�dx

= 1
4π2

∑
j

µj�R2�
∫

R2

∣∣gj�t� x� v�x�� − gj�t� x� u�x�∣∣2 dx

≤ Ca2
2�t��u− v�2L2�

and the proof is complete. ✷

8. Proof of Theorem 2.3. In the lemma below W is an L2�� 
Rm�-valued
Wiener process with the covariance operator Q. By � we denote the integral
kernel corresponding to Q1/2; see (2.3).

Lemma 8.1. Let r ∈ �0�∞�, and let u ∈ Wr�p�� 
Rm�. Let � be the RKHS
of W, and let K�u� be given by �4�4�. Assume that

κ�u�q�Q� �=
m∑

l�j=1

∑
�α+β�≤1

∫
�
�∂αuj�x��q

(∫
�

(
∂β
x�l�j�x�y�

)2
dy

)q/2

dx < ∞�

Then K�u� ∈ R�� �W1�q�. Moreover, there is an independent of u constant C
such that

�K�u��R�� �W1�q� ≤ Cκ�u�q�Q�1/q�

Proof. Recall (see Example 4.2) that Q1/2 is an isomorphism between
�KerQ1/2�⊥ and � . Thus K�u� is radonifying iff K�u�Q1/2 is radonifying.
Moreover,

�K�u��R�� 
W1�q� = �K�u�Q1/2�R�L2�� 
Rm��W1�q��
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Now note that(
K�u�Q1/2ψ

) �x� = m∑
j=1

uj�x�
m∑
l=1

∫
�
�j�l�x�y�ψl�y�dy = �
 �u��x�� ψ�L2�� 
Rm��

where


 �u��x� =
(

m∑
j=1

uj�x��j�1�x� ·�� � � � �
m∑

j=1

uj�x��j�d�x� ·�
)

�

Furthermore, we have

�
 �u��q

W1�q�� 
L2�� 
Rm�� ≤ C1κ�u�q�Q��
where C1 is independent of u. Hence Theorem 4.1 yields the desired conclu-
sion. ✷

Proof of Theorem 2.3. It follows from the proof of Theorem 2.2 that F
given by (2.2) satisfies the conditions of Theorem 2.1. The proof of the fact that
G and G given by (2.6) satisfies conditions (i) and (ii) of Theorem 2.1 follows
the lines of the corresponding part of the proof of Theorem 2.2.
The only difference being that instead of applying Lemma 7.1 now we use
Lemma 8.1. ✷

APPENDIX A

We shall deduce Theorem 3.1 from the following result.

Theorem A.1. There exists ε < π
2 and a constant Cε > 0 such that

�Ais
q �L�Xq�Xq� ≤ Cεe

ε�s�� s ∈ R�

Proof. In the case � = R
2 the result is known (see, e.g., Lemma 5.3 in

[26]).
If � is a proper subset of R

2 we shall prove Theorem A.1 by reducing it to an
analogous result for the Laplace operator with Dirichlet boundary conditions
in the Lq-space. Assumption A will play a crucial role. Namely let Bq be the
linear operator in the space W−1�q defined by{

Bqv = −�v� v ∈ Dom �Bq��
Dom �Bq� = �v ∈ W1�q � v = 0 on ∂D��

It follows from Assumption A that B̂q

−1
extends to a bounded and linear

operator (in fact to an isomorphism) from W−1�q to W
1�q
0 . Moreover, the inverse
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of such extension is exactly the operator Bq. Since also B̂q

−1/2
extends to an

isomorphism (denoted by Jq) between Lq and W−1�q, the identity

�λ+Bq�−1 = J−1
q �λ+ B̂q�−1Jq� λ ∈ ρ�Bq�

proves that Bq satisfies the statement of Theorem A.1, that is, there are ε > 0
and Cε < π

2 such that

�Bis
q �L�W−1�q�W−1�q� ≤ Cεe

ε�s�� s ∈ R�(A.1)

Suppose that λ ∈ C, f ∈ Xq and u ∈ Dom �Aq� are such that �λ + Aq�u = f.
Thus, there exists a function p � � → R such that

�λ−��u+∇p = f in � � divu = 0 in � � �u�n� = 0 = curlu on ∂� �(A.2)

Then the function v = curlu is a solution to the following inhomogeneous
Dirichlet boundary value problem

�λ− ��v = curlf in � and v = 0 on ∂� �(A.3)

The above argument can be reversed. Suppose that f ∈ Xq and that v is a
solution to (A.3). We need to find u ∈ Dom �Aq� such that curlu = v. For this
let z be the unique solution to

− �z = v in � and z = 0 on ∂� �(A.4)

Let u = �∂2z�−∂1z�. Then:
(i) u ∈ W2�q;
(ii) divu = 0;
(iii) �u�n� = 0 on ∂� ;
(iv) curlu = 0 on ∂� .
To prove the first property let us observe that since curlf ∈ W−1�q, it follows

from the elliptic regularity that v ∈ W1�q. Hence, z ∈ W3�q and therefore u ∈
W2�q. The second follows as divu = div �∂2φ�−∂1φ� = 0. The prove the third
we first notice that �u�n� = 0 on ∂� , as z = 0 on ∂� . Therefore the vector field
�∂2φ�−∂1φ� is tangent to the boundary ∂� and hence (iii) follows. We finish
by observing that in view of (A.3), (A.4), and the identity curl �∂2�−∂1� = −�,
we have curlu = −�φ = v = 0 on ∂� . The properties (i) - (iv) proven above
imply that the function u satisfies the three boundary conditions from (A.2).
We will find a function p ∈ W1�q such that the pair �u�p� is a solution to (A.2).
For this let p ∈ W1�q be a solution of

�p = div�u in � and
∂p

∂n
= 0 on ∂� �(A.5)

Then, arguing as in [45], we infer that the �u�p� is a solution to (A.2).
Summing up we have shown that

�λ+Aq�−1f = �∂2�−∂1�B−1
q �λ+Bq�−1curlf(A.6)

for all f ∈ Xq and λ ∈ C from the resolvent set of −Bq. Since in view of As-
sumption A, �∂2�−∂1�B−1

q is a bounded linear operator from W−1�q into Xq and
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curl is a bounded linear operator from Xq into W−1�q, Theorem A.1 virtually
follows from (A.1), (A.5) and the definition of imaginary powers. ✷

Proof of Theorem 3.1(i). This result follows directly from Theorem A.1
and [39], Theorem 2. ✷

Proof of Theorem 3.1(ii). This result follows directly from Theorem A.1
and [46], Theorem 1�15�3. ✷

Proof of Theorem 3.1(iii). We know from Lemma 3.2 that Pq is a
bounded liner projection from Wq onto Xq. If u ∈ W2�q then divu ∈ W1�q

and hence by the elliptic regularity of Agmon–Douglis–Nirenberg (see [2] and
[46]), the solution p to (3.1) belongs to W3�q. Hence �qu ∈ W2�q. This argu-
ment shows also that the linear map �q � W2�q → W2�q is bounded. Hence
the map �q � W2�q → W2�q ∩ Xq = H2�q is bounded. Then by the Riesz–
Thorin theorem the map �q � �W2�q�Lq�r/2 → �H2�q�Xq�r/2 is bounded as well.
Therefore we infer the result by using equalities: �W2�q�Lq�r/2 = Wr�q and
�H2�q�Xq�r/2 = �Dom �Aq��Xq�r/2 = Dom �Ar

q� = H2r�q. Note that the equality
�Dom �Aq��Xq�r/2 = Dom �Ar

q� follows from Theorem A.1 and [46], Theorem
1.15.3. ✷

Proof of Theorem 3.1(iv). Integrating by parts we get

�Aqv�u� =
∫
�

curlv�x�curlu�x�dx�

and the desired conclusion follows from Hölder’s inequality. ✷

Proof of Theorem 3.2(i). Since � is continuous on Lq, we have

�B�u� v��q ≤ ��u�∞�v�W1�q + �u�W1�q �v�∞� �(A.7)

and the desired conclusion follows from the continuity of the imbeddings
Hr�q ↪→ Wr�q, see Theorem 3.1(iii), and

Wδ+1�q ↪→ L∞� δ > 0(A.8)

(see, e.g., [44], Theorem 3.1, or [43], Theorem 2, page 124). ✷

Proof of Theorem 3.2(ii). Let q∗ be the conjugate exponent to q: 1
q
+ 1

q∗ =
1. Clearly we may assume that r < 2

q∗ . Then 1
q∗ − r

2 > 0 and so we can choose

p > 1 such that 1
p
= 1

q∗ − r
2 . Since then (as r > 0) 1

q
+ 1

p
= 1 − r

2 < 1, we can

find s > 1 such that 1
s
+ 1

q
+ 1

p
= 1. Let u� v� z ∈ H1�q. In what follows the

constants ci do not depend on u� v� z. First the Hölder inequality imply that

��B�u� v�� z�� ≤ c1�u�s�∇v�q�z�p�
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Next, the above choice of p and s implies that the imbeddings W1�q ↪→ Ls and
Wr�q∗

↪→ Lp are continuous (see, e.g., [1], Lemma 5.14, or [43], Theorem 2,
page 124), and therefore

��B�u� v�� z�� ≤ c2�u�W1�q�v�W1�q�z�Wr�q∗ ≤ c3�u�H1�q�v�H1�q�z�Hr�q∗ �

Therefore, as H−r�q = �Hr�q∗�∗, the proof is complete. ✷

Proof of Theorem 3.2(iii). This proof follows the lines of the proof of The-
orem 3.2(i). ✷

Proof of Theorem 3.2(iv). The case q = 2 is well known, see [45] and
[3]. Assume hence that q > 2. Since H1�2 ∩ H1�q is dense in H1�q and by the
Sobolev imbedding H1�q ↪→ Lq∗

, we only need to show the desired equality for
u� v ∈ H1�2 ∩H1�q. But this follows from the case q = 2. ✷

Proof of Theorem 3.2(v). It is enough to show the identity for u� v ∈
C∞

sol such that curlu = 0 and curlv = 0 on ∂� . For such u and v we have
curlB�u� v� = curl ��u · ∇�v� = �u · ∇� curlv. Then, denoting ϕ = curlv, we
have by integration by parts

��u · ∇�ϕ�ϕ�ϕ�q−2� = −��u · ∇� [
ϕ�ϕ�q−2] � ϕ�

= −�q− 1����u · ∇�ϕ� �ϕ�q−2� ϕ�
= −�q− 1���u · ∇�ϕ�ϕ�ϕ�q−2��

Hence we obtain the desired conclusion. ✷

APPENDIX B

The following result gathers the main properties of the space of radonifying
operators. For the proof of the theorem below we refer the reader to Baxendale
[4].

Theorem B.1. Let � and E be real separable Hilbert and Banach spaces,
respectively. Then for arbitrary K ∈ R�� �E� and orthonormal basis �ek� of
� one has

�K−KAn�R�� �E� → 0 as n → ∞�

where An stands for the projection of � onto the space spanned by e1� � � � � en.

Proof of Theorem 4.1. The first step is to show that there is a constant
C depending only on r and q such that for any n ∈ N and for any operator
K � R

n → Wr�q given by the kernel 
 ∈ Wr�q�� 
Rn� one has

�K�R�Rn�Wr�q� ≤ C�
 �Wr�q�� 
Rn��(B.1)
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Let �ek� be an orthonormal basis of R
n, and let �βk�k∈N be a system of inde-

pendent identically distributed normal variables. We have to estimate

�K�R�Rn�Wr�q� =
(

E

∥∥∥ n∑
k=1

βkKek

∥∥∥2

Wr�q

)1/2

�

To do this we first assume that r ∈ N ∪ �0�. Then(
E

∥∥∥ n∑
k=1

βkKek

∥∥∥2

Wr�q

)q/2

≤ E

∥∥∥ n∑
k=1

βkKek

∥∥∥q

Wr�q

≤ E

∫
�

∑
�α�≤r

∣∣∣ n∑
k=1

βk∂
α�Kek��x�

∣∣∣q dx�

Using the normality of
∑

k βk∂
α�Kek��x�, and the fact that there is a constant

C such that for an arbitrary centered normal random variable ξ, E �ξ�q ≤
C

(
E �ξ�2)q/2, we get

�K�q
R�Rn�Wr�q� ≤ C

∫
�

∑
�α�≤r

(
E

∣∣∣ n∑
k=1

βk∂
α�Kek��x�

∣∣∣2)q/2

dx

≤ C
∫
�

∑
�α�≤r

(
n∑

k=1

�∂α�Kek��x��2
)q/2

dx

≤ C
∫
�

∑
�α�≤r

�∂α
 �x��q
Rn dx ≤ C�
 �q

Wr�q�� 
Rn��

Thus we have (B.1) for l ∈ N ∪ �0�. Using standard interpolation arguments
one can show (B.1) for an arbitrary r ∈ �0�∞�. Now let � be an infinite
dimensional Hilbert space, let �ek� be an orthonormal basis of � , and let An

be the projection of � onto the space spanned by e1� � � � � en, which we identify
with R

n. Then, by Theorem B.1 we have

�K�R�� �Wr�q� ≤ lim
n→∞�KAn�R�� �Wr�q� ≤ C lim

n→∞�An
 �Wr�q�� 
Rn�

≤ C�
 �Wr�q�� 
� ��

which is the desired conclusion. ✷
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