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STOCHASTIC TWO DIMENSIONAL EULER EQUATIONS

BY ZDzISEAW BRZEZNIAK AND SZYMON PESzAT!

University of Hull and Polish Academy of Sciences

The existence of a martingale solution to 2-dimensional stochastic Eu-
ler equations is proved. The constructed solution is a limit as the viscos-
ity converges to zero of a sequence of solutions to modified Navier—Stokes
equations.

1. Introduction. Let & be a smooth open subset of R2. The paper is con-
cerned with the existence of a martingale solution to the stochastic incom-
pressible Euler equations

du+ (u,Viu+Vp=F(t,u)+ G, u)W,
divu =0,

(1.1 {

with the boundary condition
(1.2) (u,m) =0 on J&@,

where n stands for the unit outward normal to d#. Further we assume that
the initial value u, satisfies divu, =0 on # and (uy, n) = 0 on ¢&.

In (1.1), W is a cylindrical Wiener process on a real separable Hilbert space
#,and u = (uq, uy) and p are unknown random fields. We interpret u (¢, x) =
(uq(t, x), uy(t, x)) and p(¢, x) as the velocity and pressure of an incompressible
perfect fluid, and F(¢, v)+G(t, u)W as the density of the external random force
per unit volume.

We will formulate our main existence result in a rather abstract form. How-
ever it covers the following two cases. The equations on & = R? driven by an
R™-valued spatially homogeneous random field W = (W, ..., W,,); see Sec-
tion 2. In this case d& = ¢, and so the boundary condition (z,n) = 0 can be
dropped. The second important case is the equations with two independent
L%(#;R™)-valued Wiener processes. In both cases the mappings F and G can
be of the Nemytski form; see Theorems 2.2 and 2.3.
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Let v > 0 and T > 0. We will show that the following linearized modified
Navier—Stokes equations on [0, T'] x #,

(9tu(v,n) —pAum 4 (u(v,n), V>¢n(u(v,n)) +Vvptm
= F,(t,u"™) + G, (t, u""W,

divu®™ =0,

u(V,n)(O) _ ug)n)’

(1.3)

with the boundary conditions

(1.4) (™™ n) =0 and curl ™ =0 on ¢&

has a unique solution. In (1.3), F,,, G,, and uf)n) are some regularizations of F,
G and u, and ¢,, is a bounded and Lipschitz function in appropriate functional
spaces; see Section 5 for details. We will construct the solution to (1.1)—(1.2)
proving first the weak compactness of the family {«™, v > 0,n € N} in
L%(0, T; LY(&, e~ "l dx; R?)). We will use some ideas of Gatarek—Gotdys [24],
see also [12], [16], [17]. The crucial point of the proof is to show that for
any p € [2, o0) one has the following estimate in the Sobolev spaces W12 :=
Wbl2(@;R?) and W9 := Whe(#; R?),

(1.5) sup supE sup <||u("’")(t)||pW1,2 + ||u(”’”)(t)||€vw) < 0.
v>0 n te[0,T]

To do this we adopt the method developed for the deterministic Euler equa-

tions, see [3], [29], [30] and [33]. In this method an important role is played

by the operator curl v(x) := dyv;(x) — d1V5(x).

Stochastic Euler equations with periodic boundary conditions were consid-
ered in [15] using nonstandard analysis. The problem on a bounded domain
was considered in [6], [7] and [8]. In the present paper we treat equations
on a possibly unbounded region, and using the theory of stochastic integra-
tion in Banach spaces we obtain better regularity of solutions. In particular,
for suitable initial values we can show their space Holder continuity; see
Remark 2.2.

The paper is organized as follows. In Section 2 we introduce the notation and
we formulate our main results on the existence of a solution to (1.1) - (1.2). In
Section 3 we formulate two theorems on analytical properties of the modified
Stokes operator on L?-spaces, and the nonlinear term (u, V)u appearing in the
Euler and Navier—Stokes equations. These theorems are proven in Appendix
A. In Section 4 we present basic facts concerning stochastic integration in
Banach, in particular W"? spaces. We also evaluate the so-called y-radonifying
norm of a W™9%-valued integral operator, see Theorem 4.1. The proof of this
result is given in Appendix B. Section 5 is devoted to the prove of the estimate
(1.5) for solutions to the modified stochastic Navier—Stokes equations (1.3)
- (1.4). In the next section we prove our main result; Theorem 2.1. In the
following two sections we derive from Theorem 2.1 the existence of solutions
to the stochastic Euler equations driven by a spatially homogeneous Wiener
random field and by an L%(#; R™)-valued Wiener process.
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2. Notation and formulation of results. Let us denote by C3°(£;RY),
where d = 1, 2, the space consisting of all mappings v € C(#;R?)NC>®(&#;R?)
such that suppv := {x € #: v(x) # 0} is compact in &. Let C be the col-
lections of all v € CF° (€;R?) satisfying the boundary and incompressibility
conditions: (v,n) = 0 on J# and divv = 0 in #. For g € (1, 00) let X, be the

closure of C%, in LY := L9(#;R?), and let W be the closure of C(&;R?)
with respect to the norm

(/ﬁ('”(xﬂq + [Vo()|) dx)l/q.

Denote the space X, N W4 by H"%. Note that H'? is a closed subspace of
W19 and that the original norm on H%? is equivalent to the one induced by
wha,

Assume that W is a cylindrical Wiener process on a real separable Hilbert
space /. Let us denote by R(-#, W1-9) the space of all y-radonifying mappings
acting from # into W1 9. For the convenience of the reader we will recall in
Section 4 the notion of a cylindrical Wiener processes, radonifying operators
and the radonifying norm. Furthermore, we present basic facts on the theory
of stochastic integration in Banach spaces. In the definition below, and also
in the whole paper, (-, -) stands for the scalar product in L2, or R2. We denote
by Lys)(#, W12) the space of all Hilbert—Schmidt operators acting from #
into W2, In what follows we fix T' > 0.

DEFINITION 2.1. Let uy € H"2nHY for q € [2, o0). Let F and G be jointly
measurable mappings acting from [0, T'] x (H%2 N H"?) into W2 N W4 and
Ls)(#, Wh2) N R(#', Wh?), respectively.

A martingale H2 N H%%-valued solution to the stochastic Euler problem
(1.1) — (1.2) is a triple consisting of a filtered probability space & = (Q, 7,
(Z)te0,17> P), an (F;)-adapted cylindrical Wiener process W(¢), ¢ > 0, on #
and an (.%;)-adapted measurable H'2 N H%-valued process u(t), t > 0, such
that:

(i) for every p € [1,00), u € L (; L>(0, T; H2 n H-7));

(ii) for all z € C3;; and ¢ € [0, T'] one has a.s.

¢ 2
(u(?), 2) = (uo, 2) +/0 { 2 (ui(s)u(s), Vz;) + (F(s, u(s)), z) ¢ ds
i=1

+ </Ot G(s, u(s)) dW(s), z>.

REMARK 2.1. In the definition of the solution the incompressibility and
boundary conditions are contained in the requirement that u belong to H%2n
H'4. Since divu = 0, the term (u, Vu;) has been replaced by div (zu;). Note
that the gradient of the pressure vanishes after projecting the both sides of
(1.1) onto the divergence free space, and that (ii) is the weak, in the sense of
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PDEs, form of the projected equation. For if we take the inner product in L2 of
both sides of (0.1) with z such that divz = 0, then the pressure term vanishes
and after integrating by parts we obtain (ii). Going back, suppose that u is
sufficiently regular. We move all the terms of (ii) on one side and integrate by
parts. Then we arrive at the relation of the form

<u(t) —u(0) — /Ot O(s;u)ds, z> =0 Vz: divz =0,

with a certain 0. Since we have the following orthogonal decomposition

L>={Vp:pe Cr(Oa;R)} @ {y € CF(F;R?) : divy = 0},

we conclude that u(¢) — u(0) — fé O(s; u)ds is in the form of the gradient of a
certain function, say @(¢). Hence formally V p(¢) = 9,®(¢), however @ need not
to be absolutely continuous with respect to the time variable, and consequently
we allow the case of Vp being a distribution in ¢. One can show that & is
absolutely continuous with respect to ¢ under the additional assumption that
G(t, u)y, ¢ € & is divergence free.

Let us denote by H}; the space H'2 endowed with the strong L2-topology.
The L?-norm is denoted by |- |. Recall that C%°, stands for the space of smooth

sol
divergence free mappings satisfying boundary condition (1.2). We impose the

following standing assumption on the set #.

ASSUMPTION A. Either & = R? or the Dirichlet problem in & is well posed

in the following sense. For any [ € LY(&) there exists a unique v € Wé’q(ﬁ) n
W24(#) such that

—Av=fin D and v=0 on dD.

linear operator in L9(#) defined by: D(f?q) = W(l)’q(ﬁ) N
—Av. Then we assume that Bq has bounded imaginary powers,

Denote by Aq a
W24(&), B,v =
that is, there exist constants & < § and C, < oo such that || By 1(rae),Lo(e)) <
C.e°tl, s € R. Finally, we assume that if f € WY4(&), then the solution u to

the problem above belongs to W>9(&)

Let us observe that in view of well celebrated results of Seeley [42], the second
part of the assumption A is satisfied when # is a bounded domain with €%
boundary. The case with ¢2 boundary is studied by Priiss and Sohr in [40].
The third part of the assumption is satisfied if in addition the boundary &
is of 3 class, see [2] and [46].

The main result of the present paper is:

THEOREM 2.1. Let q € [2, 0). Assume that:

G) F:[0,T]x H*?2 - W2 F :[0,T] x H*? — WY9, and G : [0, T] x
HY2 — Lg(#, W2), G : [0, T] x H"? — R(#, W"9) are jointly measur-
able, and there are functions a; € L(0, T) and ay € L"(0, T) with r > 2, such
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that for all t € [0, T] and v € H“2 N H%9 one has
[F(t, v)llwrz < a1(t) (1 + [[v] g2)
IF(, v)llwre < a1(2) (1 + vl gra) »
1G (2, V)L sy, w12y < @2(8) (1 + (V] f112) 5
1G(t, V)l rew,wray < ag(t) (1 + [[v] 1a) 5
(ii) for all t € [0, T'], and z € C, the real valued functions v — (F(t,v), z)

sol
and v + |G*(t, v)z|, are continuous on Hy;. Then for any u, € H-2n H“
there exists a martingale H“2 N HY%-valued solution to the problem
(1.1)~(1.2).

REMARK 2.2. If q > 2 then by the Sobolev imbedding theorem W9 is
continuously imbedded into the space of Holder continuous mappings C*, a <

1—2/q. Thus, as HY9 is a subspace of W19 we can get the space continuity of
the solution to (1.1)—(1.2).

The remaining part of this section is concerned with the application of The-
orem 2.1 to the case of F' and G being Nemytski operators and W being either
an R™-valued spatially homogeneous Wiener random field, or an L?(&#;R™)-
valued Wiener process with a nuclear covariance operator. We will need the
following two definitions.

DEFINITION 2.2. Let g € [2, ), and r € [1, 00). A mapping & : [0, T'] x & x
R? — R? belongs to the class U (&, q, r) iff h(¢, x, y) = hV(¢, x)+h3(¢, x, ),
te[0,T], x € #, y € R?, where:

(i) M and A® are measurable, and for any ¢ € [0, T], AV(¢, ) € WH2nWhe
and A®)(¢, -, ) is differentiable;

(i) there are functions @ € L”(0, T) and ¢ € L?(#) N L(#), such that all
te[0,T],and x € #, y € R?,

RO, )z + [RD(E )l < a(t),

2
Rt %, Y) + X 10, B, x, y)| < a(t)($(x) + ),

i=1
2
Y19, A (8, x, y)| < a().
i=1

We say that & : [0, T] x & x R? — R? belongs to the class U (&, oo, r) iff it is
differentiable with respect to the second and third variables, and there is a
function @ € L"(0, T') such that

2
At %, Y|4+ Y {105, h(t %, 9)|+10y, bt %,y <a(t),  t€[0,T], xel, yeR>
i=1
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DEFINITION 2.3. Let & be a filtered probability space. By an R™-valued
spatially homogeneous Wiener random field on [0, T] x R?> we understand a
system 7}, j = 1,..., m of independent measurable real valued random fields
on [0, T] x R? such that each ¥; is Gaussian, Wiener and spatially homoge-
neous, that is:

(i) the random vector (#;(¢1, x1), ..., #;(t,, x,)) is Gaussian for an arbi-
trary finite sequence (¢, x1), ..., (£,, x,) € [0, T'] x RZ;

(i) for each x € R?, {#;(¢, x)},c[0,1) is a real valued Wiener process with
respect to the filtration (%);

(iii) for arbitrary ¢ € [0, T], n € N, x4, ..., x,, € R? and & € R? the random
vectors (¥;(¢,x1+h),...,#(t,x, +h)) and (¥,(t,x,),...,7;(¢,x,)) have
the same distribution.

Let # be an R™-valued spatially homogeneous Wiener random field on R?.
Then (see [38]) there are symmetric positive finite measures u;, j=1,...,m
on R? such that for all j=1,...,m, ¢, s€[0,T], and x, y € R? one has

EY(t, x)¥i(s,y)=tAs % /W exp{i(x — y, z) }du ;(2).

We call = (g, ..., M,) the spectral measure of 7. Clearly, the law of 7 is
uniquely determined by its spectral measure.

Let # be an R™-valued spatially homogeneous Wiener random field on R?
with a spectral measure u, and let £, g/ : [0, T|xRZxR2 - R?, j=1,..., m.
Consider the following system of equations on [0, T'] x R2,

@.1) dau+{u, Viu+Vp=f(t,x,u)+ i g’(t, x, u)¥(t, x),
) et

divu = 0.

By a martingale H'? N H%%-valued solution to (2.1) we understand a triple
consisting of a filtered probability space &, an (.%;)-adapted R™-valued spa-
tially homogeneous Wiener process # with the spectral measure u, and an
(7,)-adapted H2 N H'-9-valued process u satisfying conditions (i) to (i) from
Definition 2.1. In the integral equation in (ii) we replace F(¢, u) by f(t, -, u(+))
and we write

<f0t G(s, u(s)) dW(s), z> - il/R </Ot g/(s, x, u(s, x))7(ds, x), z(x)> dx,
iz

where 7;(d¢, x) means that for fixed x we integrate in It6’s sense with respect
to the real-valued Wiener process 7(-, x), see [21].

THEOREM 2.2. Let q € [2, 0). Assume that:

@ X7 fe (14117 duj(y) < oo

(i) f belongs to U(R2, q,1) and g/, j =1,..., m belong to U(R?, q, r) for
a certain r > 2. Then for any u, € H%2 N H'9 there exists a martingale
HY2 N HY9-valued solution to the problem (2.1) such that u(0) = u, a.s.
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REMARK 2.3. The random field 7 can be viewed as a cylindrical Wiener
process on a properly chosen Hilbert space %, see Example 4.1 in Section
4, or [38]. We note that %, is a function space. In fact, it is a subspace of
the space on which # lives. Thus in particular, %, c L2(R?,e I dx;R™).
Equation (2.1) can be written as a stochastic evolution equation with F' and
G given by

(2.2) F(t, u)(x) = f(2, x, u(x)), (G(t:U)tlf)(x)=igj(t,x,U(x))wj(x),
j=1

where ¢ = (Y1, ..., ¥,,) € #y. Thus we are in the framework of Definition
2.1. In the last section we show that F' and G satisfy the assumptions (i) and
(ii) of Theorem 2.1 with # = 2%, , and consequently that Theorem 2.2 is a
special case of Theorem 2.1.

DEFINITION 2.4. An L?(#;R™)-valued process W defined on a filtered prob-
ability space & is called Wiener iff for any ¢ € L*(@;R™), (W(2), ¥) 12(o:rm)»
t € [0, T, is a real-valued Wiener process.

Let W be an L%(#;R™)-valued Wiener process. Then (see, e.g., [19], [33]),
there is a symmetric non-negative trace class operator @ on L%(#;R™) such
that for all u, v € L?(#;R™) and ¢, s € [0, T] one has

E (W(?), u)LZ(ﬁ;Rm)<W(s)7 v)LZ(é’;JRm) =t As(Qu, U>L2(ﬁ;]Rm)-

We call @ the covariance operator of W. Since Q'/? is Hilbert—-Schmidt it is
given by an integral kernel 2, that is

(2.3) QY*yY(x) = (ifﬁ 2y (x, y)dfz(y)dy,---,ifﬁ Dy (2, y)dfz(y)dy>-
=1"% =1

Let # be a smooth connected open subset of R? satisfying Assumption A,
and let W, W be two independent L2(#; R”)-valued Wiener processes with the
covariance operators @ and @, respectively. We denote by 2 and 9 the integral
kernels corresponding to @12 and Q2. Let f, g/, 7 : [0, T] x & x RZ — R2,
Consider the stochastic Euler equations on [0, T'] x &,

du+ (u, Viu+Vp =f(t x,u)

(2.4) + i {gf(t, x, W)W, (8) + &(t, x, u)Wj(t)] ;
j=1

divu =0,
with the boundary condition
(2.5) (u,m) =0 on Jo.

The processes W and W can be treated as cylindrical on some Hilbert spaces
Hy and Hy, see Section 4. By a solution to (2.4)—(2.5) we understand a solution
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to the problem (1.1) - (1.2) with % = #y x #4, F given by (2.2), and G defined
for x € #, and ¢ = (¢, §) € # by the formula

m

(2.6)  (G(t, w))(x) = 2 {g7(t, x, u(x))e;(x) + &7 (t, x, u(x))g;(x)} -

Jj=1

THEOREM 2.3.  Let q € [2, 00). Assume that:
(1) the integral kernels 2 and 2 satisfy the estimates

> Y sup ; (922, j(x, )" dy < o0,

1,j=1lal<1 *€&

i > [fﬁf( (939, (x, y))2 dydx

l,j=1]a|<1
~ 2 q/2
%2 (x, d d ’
+/€</ﬁ(x “J(x y)) y> x| <00

(ii) f belongs to U(&,q,1), g/, j = 1,...,m belong to U(&,q,r) for a
certain r > 2, and g7, j=1,...,m belong to U (&, 0o, 1) for a certain r > 2.
Then for any uy, € HY2 N H%9 there exists a martingale H%? N HY9-valued
solution to (2.4) — (2.5) such that u(0) = u, a.s.

3. Analytical preliminaries. From now on, we use the notation LY in-
discriminately for the spaces LI(#) or L(#;R?). Similarly, W9, q € (1, c0),
r € R stand for the Sobolev spaces W™4(&#) or W"4(&#;R?). Recall that for
an n € N, W™ is defined as the completion of C{°(#;R), or C3°(£;R?) with
respect to the norm

1/q
[olwns = ( > //ID“v(x)lqu) .

la|<n "~

Then for r = 6n + (n 4+ 1)(1 — ), W9 is defined as the complex interpolation
space [W™4, W*t1.4],. Finally, for r > 0 we set W9 = (W~"9)* where q* =
q/(q — 1), and we identify (L?)* with L?. Clearly, LY = W%%. We write for
brevity | - |, instead of | - ||y, and | - | instead of || - [|yo.2, or |- |s.

For a proof of the following lemma, see [29].

LEMMA 3.1.  There is a constant C such that |Vv|, < C|curlv|, for every
ve HY,

From now on g € (1, 00). As before X, denotes the closure of C in L?. For
u e L9 we set

Syu=u—Vp,
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where p is a solution to the following boundary value problem

p

(3.1 Ap=divu in @&,
Jn

={u,n) on J&.

REMARK 3.1. Although p is not unique, it is unique up to a constant in a
simply connected domain. Thus V p is uniquely determined by u.

The following result is due to Fujiwara—Morimoto [23]. The case of & = R?
is treated in [29].

LEMMA 3.2. &, is a bounded linear projection in L? and its range is equal
to X,,.
q

Consider the following modified Stokes operator:
Aju=—-ZAu, uecDom(A,),
Dom (A,) =X, N{u e W24 : curlu = 0 on §&}.

The following theorem gathers the analytical properties of A, which are
needed in the proofs of the main existence results. Its proof is however post-
poned till Appendix A.

THEOREM 3.1. (i) The operator —A, is the generator of an analytic semi-
group in the Banach space X,.

(i) If r > § + g, then Dom (A}) = X, N {u € W?"7: curlu = 0 on 9¢}. If
O0<r< % + %, then Dom (Af) = X, N w2ra,

(iii) Let r € [0, 00), and let us define the Sobolev space H™? as the domain
of Ag/ 2 equipped with the graph norm. Then %, is a bounded projection from
W2 into H™1.

(iv) Let g* be conjugate to q. Then there is a constant C such that for v €
Dom (4,), u € HY4' = Dom (A,*) one has |(A,v, u)| < C|lv| grellu] g

Note that from Theorem 3.1(ii), H™? is a closed subspace of W’-4. Thus, in
particular the norm on H"? and the norm induced from W"? are equivalent.
We set H"% = (H™9)*. Note that #Z,y = Z.¢ for all q,r € (1,00) and
e LYNL". Thus A,y = A,¢ for ¢y € Dom(A,) N Dom(A,). To simplify
notation we shall write & and A instead of &, and A,,.

The remainder of this section is devoted to the study of the bilinear term

in the Euler and Navier—Stokes equations. For u, v € Cg;, write

(3.2) B(u, v) = -2 (div (uv,), div (uvy)) .

Note that B(u, v) = —2(u, V)v. The theorem below gathers main properties
of B. Its proof can be found in Appendix A.
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THEOREM 3.2. Let q € [2, ), and let B be given by (3.2). Then:

(i) The mapping B has a unique extension to a continuous bilinear operator
acting from H> x H>9 into Xy Moreover, there exists a constant C such that
for all u,v € H*>9 one has |B(u, Vg < C(llullgrallvll gze + Nl gzollvll gre)-

(i1) For any r > 0, B has a unique extension to a continuous bilinear mapping
acting from H%?x H%? into H="-9. In particular, there exists a constant C such
that

| B(w, v)|| g-ra < Cllu|grellvll mgre forall u,v e Ha.

(iii) If q > 2 then there exists a constant C such that |B(u, v)|, < Cllu| g4
lvll gre for all w,v e H9, and |B(u, v)| < C||lu| grq||v| g2 for all u,v e H2nN
Ha,

(iv) For every u,v € H"9, (B(u, v), v) = 0.

(v) For all u,v € H*%, (curl B(u, v), curlv |curl v]|?72) = 0.

4. Probabilistic preliminaries.

DEFINITION 4.1. Let & = (Q, 7, (%) c0,1)-P) be a filtered probability
space, and let /% be a real separable Hilbert space. By an (.%)-adapted cylin-
drical Wiener process on # we understand a family W(¢), ¢ > 0 of bounded
linear operators from # into L2((), .7, P) such that:

() forall t >0, and ¢, 0 € Z, EW()YyW(t)o = t{, @) 4;

(ii) for each ¢ € #, W(¢)¢, ¢t > 0 is a real valued (%,)-adapted Wiener
process.

REMARK 4.1. Assume that E is a Banach space and W(¢), ¢ > 0 is a E-
valued Wiener process defined on a filtered probability space &. Replacing
if necessary E by its closed subspace we can assume that E is equal to the
support of the law #(W(1)) of W(1). Then (see, e.g., [28]), there is a unique
densely and continuously imbedded into E separable Hilbert space -# such
that

]E(W(t)7 ¢’)E,E*(W(3), QD)E,E'* =tAS (d"s go)Jf for t’ s = O’ ws [Z8S E*’
where (-, -)g - stands for the canonical bilinear form on E x E*, and we iden-
tify (#)* with &, and then E* with a properly chosen subspace of /#. Thus,
as E* is dense in /7, for any ¢ > 0 the mapping

E* > lﬂ = (W(t)a lp)E,E* € L2(Qa ya ]P)

has the unique continuous extension to /#. We denote this extension also by
W(t). Note that W is a cylindrical Wiener process on /#. The space /# is called
the reproducing kernel Hilbert space, shortly RKHS, or Cameron—-Martin space
of W.

REMARK 4.2. A cylindrical Wiener process on -# can be viewed as a formal
series

(4.1) W) =Y Wy()fs  tel0,T],
k
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where {W,} is a sequence of independent standard 1-dimensional Wiener pro-
cesses, and {f} is an orthonormal basis of /. This series does not converge
in # if dim# < oo. It does however in any Hilbert space E such that the
imbedding -# < E is Hilbert—Schmidt; see Remark 4.4. In this case W is an
E-valued Wiener process, and .# is its RKHS.

ExampPLE 4.1. Let 7 = (#4,...,%;,) be an R™-valued spatially homoge-
neous Wiener random field on [0, T'] x R?; see Definition 2.3. Note that ¥ is
a Wiener process on any weighted space L2(R2, e */*ldx;R™), p > 0. For a
complex valued function ¢ on R? we write

) (x) = P(—x), x € R%

Let o = (w1,...,M,,) be the spectral measure of 7. Let us denote by
L?S)(]R?, ;) the closed subspace of L*(R?, u;;C) of functions ¢ satisfying
) = ¥, nj-a.s. Finally let

oy def — — X 1.2 (R2 i1

Hy = {(lpl,ul,...,lpm,um). ;e (s)( NTERNES ,...,m},

where lp;/.\b ; is the Fourier transform of a tempered distribution ¢ ;u ;. Then
#y endowed with the norm

— — _ A def _
<(¢1/"L1’ cees wml‘l’m)’ (‘Pl/"Ll’ cees @m“‘m)>%’ = X:I/RZ lpj“oj d”’f
Jj=
is the RKHS of 7’; see [38], Proposition 1.2.

EXAMPLE 4.2. Let W be an L?(#;R™)-valued Wiener process, and let @ be
its covariance operator. Note that in fact W takes values in a smaller subspace
of L?(#;R™), namely in (Ker Q'/2)*. Let us equip # % Range Q/2 with the
scalar product

(¥, @) =(u,V)12(p.qxmmy, ~ Where y=Q"%u, o=Q"?v, u,ve(Ker@"?)".

Then (see, e.g., [19]), # is the RKHS of W. Let {e,} be an orthonormal basis
of L2(#;R™) consisting of the normalized eigenvectors of @2, and let {A,}
be the corresponding sequence of eigenvalues of @/2. Then it is easy to see
that {A,e;} is an orthonormal basis of /#. Thus using representation (4.1) we
obtain

(4.2) W) =Y M Wi(Dep,  tel0, T,
k

the series being convergent in L%(Q), 7, P; L2(#;R™)).

Let o be a real separable Hilbert space, let {e;} be an orthonormal basis
of 27, and let {B;} be a system of independent normal real-valued random
variables defined on a probability space (Q, .7, P).



STOCHASTIC EULER EQUATIONS 1807

DEFINITION 4.2. Let E be a real Banach space. A linear bounded operator
K : # — E is called y-radonifying, or simply radonifying, iff the series
31 B Ke,, converges in L2(Q, 7, P; E).

Note that in view of the It6-Nisio theorem (see [32]), K : # — E is y-
radonifying iff the series )", B, Ke, converges a.s. in E.

The set of all y-radonifying operators from -# into E is denoted by R(#, E).
Note that if K € R(#, E) then ), B,Ke; is a 0-mean Gaussian E-valued
random variable, and consequently Fernique’s theorem yields that

def 2\ 12
||K||R(J/,E)=<E\szKek|> = ([, leltretae)) <.
P E E

where yx denotes the law of the E-valued random vector >, 8, Ke,. It is easy
to see that for any K € R(#, E), | K| gr(u, ) does not depend on the choice of
{er} and {B.}. Moreover, | - | g», &) is @ norm, and (R(#, E), | - [|g(»,r)) is @
separable Banach space; for more details see [4] and [36].

REMARK 4.3. Let W be a cylindrical Wiener process on #, and let E be
a separable Banach space such that the imbedding »# — E is y-radonifying.
Let {e,} be an orthonormal basis of #, and let W,(¢) = W(t)e,, £ € N and
t € [0, T']. Then for every t € [0, T'] the series >, W (¢)e, ¢t € [0, T'], converges
in L%2(Q, 7, P; E). Clearly, its limit, which we also denote by W, is a Wiener
process on E with the reproducing kernel Hilbert space /#, and W does not
depend on the choice of {e,}.

REMARK 4.4. Assume that E is a separable Hilbert space. Recall that a
bounded linear operator K from # into E is called Hilbert—Schmidt iff

1/2
o0
def 2
I K| L s (. B) = (Z |Kek|E’) <
k=1

for any orthonormal basis {e;} of #'. Let us denote by L yg)(+#, E) the class of
all Hilbert—Schmidt operators from -# into E. Then, as a direct consequence of
Theorem 4.1(iii) we have R(#, E) = Lygs)(#', E) and |-|| g(»,5) = ”'”L(HS)(#,E)'

In what follows we fix a ¢ € [2, 00). The theorem below gives sufficient
condition under which an integral W ¢-valued operator K is radonifying. The
Sobolev space W™4(&; #) appearing in its formulation can be defined in the
standard way, see Section 3. The proof of Theorem 4.1 is given in Appendix B.

THEOREM 4.1. Let K be a bounded linear operator acting from a real sep-
arable Hilbert space # into W4, where r € [0, 00). Assume that K is given
by the formula

(4.3) (Ky)(x) = (HF(x), ¥) 4 for x e @ and ¢ € #,
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where % € W1(0; #). Then K € R(#, W) and there is an independent of
K constant C such that || K| gy, wrey < C|# lwrae.n)-

Let v = (uq,...,u,,) be an R™-valued function. In the proofs of Theorems
2.2 and 2.3 we apply Theorem 4.1 with -# being the RKHS of an R™-valued
spatially homogeneous Wiener random field, or an L?(#;R™)-valued Wiener
process respectively, see Lemmas 7.1 and 8.1. In both cases K(u) is a linear
operator on J# given by

Jj=1

The remaining part of the present section is devoted to the construction
and properties of the Itd integral in L? and W9 spaces. In what follows &
is a filtered probability space, and W is an (.%;)-adapted cylindrical Wiener
process on a real separable Hilbert space H.

Let V be a Banach space, and let us denote by .#?(0, T; V) the Banach
space of all (%)-predictable V-valued processes o such that

def T » 1/p
lo|_sro,1:8) = (E/o lo(2)]y dt> < 00.

Let us fix an orthonormal basis {e;} of 2#, and let us denote by II,, the orthog-
onal projection onto the space spanned by ey, ..., e,. Let E be a real separable
Banach space, and let ./ (E) denote the class of all ¢ € #2(0, T; R(#, E))
such that

n

o(o,t) = Z O'j(w)HiX(tj,tj+1]
j=1

for some n,i e N,0 < ¢; <--- < t,, .1 < T and 0; € L*(Q, 7, ,P; R(#, E)).
For 0 € 4(E) and ¢ € [0, T'| we put

IV (o) = an le (W(tjant)— W(t; AtL))e,oep.

j=1k=1

In general .#V cannot be extended continuously to the whole 20, T;
R(H, E)). This holds true for E being an M-type 2 Banach space; see, e.g.,
[9] or [22]. Further to make the theory of stochastic integrals applicable we
need a Burkholder type inequality. It turns out that this is also true when E
is an M-type 2 Banach space; see [9] and [22]. Since L? and W7 are M-type
2 Banach spaces (see [10]), we have the following consequence of Theorems
2.4 and 3.3 from [22], see also [36] and [10].

THEOREM 4.2. Let r € [0,00). Then £y(W™9) is dense in (0, T;
R(#,W"9)) and for each t € [0, T] there exists a unique extension of %" to
a linear bounded operator from /%0, T; R(#, W"?)) into L%(Q, 7, P, WH9).
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Moreover, there exists a constant C such that for any o € £%(0, T; R(#, W"9))
one has

T
E sup |.7" (o)} < CE [ o) pppds, e[0T
s€[0,7] 0

We denote the value of the extension of .7, on o € £2(0, T; R(#, W"9)) by
fy o(s)dW(s) or by .#" (). Then, see [10] or [36], for any o, .#¥ (), ¢ € [0, T,
is a W"49-valued square integrable martingale with continuous modification.

For further references we recall 1t6’s formula for an L9-valued process and
real valued function

(4.5) W, o) = ulf, uelf.

For its proof we refer the reader to Appendix A from [13]; see also [36]. Be-
fore formulating the theorem we need to introduce some notation. Let y be a
standard Gaussian distribution on a Hilbert space -#, and let E be a Banach
space. Let K € R(#, E), and let yx = yo K~1. For any Banach space V, and
for any bounded bilinear map L : E x E — V we define

trgL = /E L(x, x) dyg(x).

Below, (-, -) denotes the duality form on (L%)* x L9.

THEOREM 4.3. Let p > q, and let ¥V, ,, be given by (4.5). Assume that

t t
£t) = £0)+ [ a(s)ds+ [ a(s)dW(s),  te[0,T],
0 0
with a € Y0, T; L) and o € £%(0, T; R(#, LY)). Then for all t > 0,

1E@)[F = 160)[F + p/(: |£()|P9(|&()|972£(s), a(s)) ds
+ [ 1662 6(9), o(s) AW ()
+1 /O t tr o) Wi (£(5)) ds.

Note that & — (|£(5)|972&(s), o(s)¥) belongs to the space R(#, R), so the Ito
integral above is well defined.

REMARK 4.5. Note that v, v5 € L? we have

Wy p(@) (v, v9) = p(g — Duld™ /( |()|7 vy () 0g(x) dox
+p(p — @)lulb™* ff ()| 7 u(x)vy (x) dx

x /ﬁ ()7 2u(x)vs (%) da.
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Hence we easily obtain that
tr, Wy ,(w) < p(p — Dul22|o|kp 1oy

5. Solutions to modified Navier-Stokes equations. Let {¢,} ¢ H>?n
H?7 be an orthonormal basis of H12. We assume that it is also a Schauder
basis of H4. Let II,,, II" be orthonormal projections of H2 into the spaces
linspan {e;, ..., e,} and linspan {e,} = Re,, respectively. Let [1 : H2 — R
be defined by 1M (v)e, = 1™ (v), v € H2.

Note that there is a constant C such that

L0l e < Cllvllgne and  JT™v]lg10 < Clloll g

for all n and v € H%2 N H%9, Thus II, and 1 can be treated as linear
projections on H9.

From now on, we assume that the assumptions of Theorem 2.1 are fulfilled.
Let p € C7(R) be a non-negative function with the support in [0, 1] and
mean [, p(x)dx = 1. Let also x, = x|, - Recall that for all ¢ € [0, T],
ve H?N HY, and ¢ € #, F(t,v), G(t,v){ belong to W2 N Whe. For

te[0,T] and v € H“2 N HYY define
F,(t,v) = n_"Hn/ F (t, > xiel) Xn ( )
R? i=1 H12nHLq

X p (n(f[(l)v — x1)> e p (n(f[(")v — xn)) dx

n
Z x;e;
i=1

and, for € #,

n
Z X;€;
i=1

[Gn(t’ U)l,[f] = n’_nﬁn /D%" |:G <t’ i xiei> 17[/:| Xn < )
i=1 Hl12nHLq

Xp (n(f[(l)v — xl)) ) (n(ﬁ(n)v — xn)> dx.

Note that the functions F, (¢, ) and G, (¢, -) are bounded and globally Lips-
chitz from H%2 into W2, and from H'¢ into W-¢ and, respectively from H'2
into R(#, W'2), and from H“? into R(#, W14) (with bounds possibly de-
pending on n). Moreover, there are functions a; € L1(0, T) and a, € L"(0, T,
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r>2suchthatallneN, te(0,T)and v e H"? one has
IF(t, v)llwrz < @1(t) (1 + vl g2)
IF(t, v)llwre < @1(2) (1 + [vllgra)
[F, (¢, v)llwrz < @1(¢) (1 + [[v]| grz)
IF,(, 0)llwra < @1(2) (1+ [lv]l ga) »
IG (2, V)L yysy (o, w12y < G(8) (1 + [0l p112) 5
1G (&, V)| rew,wray < @a(8) (1 + V]l gra) 5
1G (&, V)| L iy . 12y < G2(2) (1 + [[0]| 1)
1G(t, V)| R, wray < @o(8) (1 + (0]l 10) -
Let ugn) = II,,uy. Recall that the projection £, the Stokes operator A, and

the bilinear term B were introduced in Section 3. Let ¢, : H'2 N HYY —
H'2 N H%“9 be defined by

u, if|u|H1,2mH1,q <n,
en(u) = 3 .
n|u| gioqgreles otherwise.
It is well known, but see also Appendix in [11], that ¢,, is bounded and globally
Lipschitz. Define B,(v) = B(¢,(u), u). Then it follows from Theorem 3.2(iii)
that B, is a (globally) Lipschitz map from H»?N H'? to X, N X,. For brevity
we write B(v) = B(v, v).

THEOREM 5.1. Let uy € H*2 N HY9, and let v > 0. Let W be a cylindri-
cal Wiener process on # defined on a filtered probability space . Then for
any n there is a unique adapted and continuous H? N HY“9-valued global
strong solution u™™ to (1.3) — (1.4), that is a process satisfying the following
conditions:

1) u®™ e LP (Q; L%(0, T; H>2 N H*9) N C([0, T]; HY2 N H9)) for any p €
[1, 00);

(i) for t € [0, T'] one has

w0 () = uf” + | t [~rAu®(s) + B@"(s)) + PF,(s,u®"(s))} ds
(5.1) o
+ /O PG, (s, u™"(s)) dW(s).

Moreover, for any p € (1, ),

(5.2)  sup supE { sup (||u<”’”>(t>||;;1,z+||u<”’”)(t>||21,q)} < 0o,
ve(0,1] neN te[0,T]

Note that F,, G, and B, are globally Lipschitz continuous and U} € H%2n
H?4. Thus the existence and uniqueness of a (global) mild solution ™™ to
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(1.3) - (1.4) follows from Theorem 4.10 in [10]. It follows next from Lemma 4.5
in [9] that in fact it is a strong solution. For an alternative detailed exposition
in the case of the full, not approximated equation in a bounded domain see
[14]. Hence Theorem 5.1 will be proved as soon as we verify Lemmas 5.1 and
5.2 formulated below.

LEMMA 5.1. Let u™™ be a solution to (1.3) —(1.4). Then for any p € [1, )
there is a constant C < oo independent of v € (0, 1] and n such that

E sup [[u®™(2)|5. < C.
£€[0,T]
PROOF. Let us first present the main points of the proof. Let us fix tem-
porarily p € [2, 00), v € (0, 1], and n. We adopt the convention that constants

¢; and C; depends only on u,, T, d;, d; and p. Recall that | - | denotes the
L2-norm. Set

() =E sup |[u™M(s)|*? and ¢(¢) =F sup ||u<”vn>(s)||‘};g,2.
s€[0,t] s€[0,t]

The first step will be to show that there is a constant C; such that for all
0<k=<t<T

(5.3) w(t) < Cy {1 + (k) + o(t) [: (1+ d1(s) + @3(s)) ds} .

In this step we will use first Ité’s lemma to the function H(v) = |v|??, and
then the Burkholder inequality. We will employ the growth conditions on F
and G, and Theorem 3.2(iv). Next we set

n(t, x) = curluM(¢t,x) and O(t) =E sup |n(s)[*?.
s€[0,t]

Then n is a mild solution to the following stochastic partial differential
equation (subject to Dirichlet boundary conditions if & # R?)

dn = [mn + curl { B,(u"") + F,(t, u(”’”))” de
+ (curl G, (t, u(”’”))> aw
(5.4) - [Vm; — (@™, Vyy + curl F, (¢, u(”’”))] dt
+ (curl G, (t, u(”’”))> aw,

n(t,)=0 on Jd&.

By uniqueness, since (5.4) has a unique strong L?(#)-valued solution, 7 is also
a strong L2(&)-valued solution. Hence, by applying again the Ité6 formula,
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the Burkholder inequality, and using Theorem 3.2(v) we will arrive at the
following estimate

55 902 C {1+ 900+ (00 + o0 [ (@x(s)+a3() ds)

valid for all 0 < k < ¢ < T. Taking into account Lemma 3.1 we may find C,
and C, such that

C3 (4(2) +9(2)) < o() = Cy (Y(2) + I(2)).
Consequently, combining (5.3) with (5.5) we obtain

(5.6) o(t) < Cj {1 + @(k) + () /: (1+a,(s) +as(s)) ds} .

Let 0 = ¢t; < --- < t; = T be a partition of [0, T'] such that for every i =
1,...,01-1,

[t”l (1+ay(s) + a(s)) ds < L.

Then from (5.6) we have
¢(tl+1)5205(1+¢(tl))’ i:]-a""l_]-’

and consequently

-1
v 4 j — 4
Ets[lgr;] ™™ (@2 = ¢(T) < 3-(2C5)7 + (2C5)' " luoll 2
€[0, Jj=1

which gives the desired estimate.
Let us now present some more details on the derivation of (5.3) and (5.5).
For t € [0, T'] we write

D(t) = v2Au"M(t) + PF, (¢, u"M(2)),
£(t) = 2G,(t, u”™M(t)).

Let k < t. Since "™ is a strong X,-valued solution to (5.1), using Theorems
3.1(iv) and 3.2(ii) and the It6 formula (see [37] or [41]), we infer that

O = ()

- / t [(H/(u(”’”)(s)), D(s)) + %traceH”(u(”’”)(s))f(s)f*(s)] ds
+ " (w(5)) 4 (s) AW (s)

=: [u"M (k)2 + f t I(s)ds + / t H'(u™"(s))£(s)dW(s).
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Using now Theorems 3.1(iv) and 3.2(iv), and the growth property of F, we
obtain

(H'(u")(s)), (s))
= 2p[u® (PP [ep|u® ) ($)3a + (10(s), (s, u®(s))) ]
< (@1 (2) + D)(1+ [ ()] 3h2)-
For the second term in the deterministic integral we have
strace H"(u")(s))£(s)(£(s))*
= p|u(v,n)(s)|2(P—2) |:|u(”’”)(3)|2 ||f(s)||‘%(Hs)(”,L2) +2(p— 1)|(j(3))*u(1/,n)(s)|2:|
S03|u(”’")(8)|2p_2||Gn(8, u(V’n)(s))||%(HS)(M’W1’2)
<, @3(s) (1+ 12 ()32 )
Thus
I(s)| <cs(1+a iy 14 [ut™(s)[
($)] = e5 (14 a(s) + @3(s) (1+ [ ()50

and consequently
: 2
0(0) = cof 1 000+ 00 ([ (14 ax(s) + o) ds )

+E sup

s€[k,t]

/ H' (" ()4 (r) dW (r) }

Applying now the Burkholder inequality we easily obtain that

E sup

s€[k,t]

[ @2 aw )|

< c7E/ as(r) <1 + flut n)(")”HlZ)

< er(1+ (1) [ @(r)dr,
which gives (5.3). We can show (5.5). For brevity write

W(t) = van(t) + curl { B, @"(6) + F,(t, u® ()],

(5.7) -
G(t) = curl G(t, u™™(¢)).

As we observed before, the process 7n(¢), ¢ € [0, T'], given by (5.4) is a strong
L%(#)-valued solution to (5.4). Hence we may apply the It6 formula to the



STOCHASTIC EULER EQUATIONS 1815

function H and the process 7(¢) and obtain

()PP = |n(x)[*?

+ [ [ (), w(s)) + Ftrace H'(n(:)G(s)(Gls)) ] ds

+ / " H/(n())G(s) AW (s).
Using Theorems 3.1(iv) and 3.2(v) we obtain
(H'(1(5)), W(s)) = 2pln(s)PPD [=v|Vn(s)2 + (n(s), curl F, (s, u®"(s)) |
< ¢5|n(8) 27| F (5, u(s)
< cadr ()| ()PP (1+ 2" (5) 2
< oty (s) (14 ()27 + ()] 372 -
We have
strace H'(n(s))G(s)(G(s))*
= p (&P [In(BICE)IF  (r.12) +2(P = DIG) ()]
< e [n()P 2G5, u ) o
< e @§(s) (L+1m() + ()3

Applying now the Burkholder inequality we obtain

[ H ()G aw )|

K

E sup

s€[k,t]

¢
< e [ @30r) (1+ ()™ + ()R ) dr.
Combining these estimates we get (5.5). O
In what follows we need estimate for solutions in the space H'9, where
q € [2, 00). We use the inequality
(5.8) vl g1e < C ([[v]l g2 + |curl v|q) ,

which is a consequence of Lemma 3.1 and the imbedding W12 «— L4,

LEMMA 5.2. Let u™™ be the solution to (1.3) — (1.4). Then for any p €
[1, 00) there is a constant C < oo independent of v € (0, 1] and n such that

(5.9) E sup |u" ()| 5, < C.
t€[0,T]
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PROOF. As in the proof of Lemma 5.1 we fix v, n and p. Define

n(t,x) =curlu®(t,x) and 6(t)=E ssug) |n(”)(s)|§p.

Recall, see the proof of Lemma 5.2, that n satisfies (5.4), and that ¥ and G
are given by (5.7). Assume that g > 2. First note that n is a both strong and
mild solution to (5.4). In particular, it follows from Theorem 4.6 and Lemma
4.3 from [9], and from Theorem 4.10 from [10] that for any p € [2, 00),

(5.10) 5 e L? (Q, 7, P L%*(0, T; Hz’q)) NL?(Q,7,P;L>(0, T; Hl’q)) .
For the above deduction we use the uniqueness of a weak solution to (5.4)
and the imbedding H'9 < L*>, q > 2.

Let p € [¢q,0), and 0 < k < ¢t < T. Then by (5.10) we may apply the It
formula for H(n) = |n|7, see Theorem 4.3 and Remark 4.5. Thus we have

@l < In(Ol2 +p [ Il 0l *n(s), ¥s) ds
4 [ Il ()l 2n(s). Gs) AW (s)

p(p—-1) -2
+55 = [ @I IG) o) ds.

Using Theorem 3.2(v) and the growth estimates for G and F we get

(@5 = ()Ig + 1 f: ()2 @ (s)(L + [u™(5)l| 1) ds

+ f: In(s)|22az(s)(1 + [[u®™ (s)lI30) ds + I(2),
where
I(t) = p/: In(s)[E79(In()|Z2n(s), G(s) AW(s)).

Using Lemma 5.1 and (5.8) we easily obtain the following estimate

O < ) + -+ s [ InEI2(n(s) +a3(:) ds + 100,

where ¢y, c3 are independent of v € (0, 1], n, k, and ¢, and o. The Burkholder
inequality, see Theorem 4.2, yields

E sup |I(s)|? < cq (1 + O(t))ft a2(s) ds.

K<s<t

Summing up we have

0(6) = € {14 600 + 800 [ (@1(5) + @351 as .
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where C is independent of v, n, 7, ¢, and o. Thus taking a partition 0 = ¢; <
- < t; = T such that

[ @)+ a3 ds < 3

i

we get

-1
E sup [[u® (8|55, <Co(1+6(T))<C,y <1+ Z<2C)f+(2C>l—1||nnuo||§;i,q>.
t€[0,T] j=1

Since {e,} is a Schauder basis of H'Y we have

sup [|IL, wol 1. < 00,
n
and the proof is complete. O

6. Proof of Theorem 2.1. For further references we recall the well-
known Dubinsky criterion for compactness. Its proof can be found in [47],
Theorem 4.1, page 132.

LEMMA 6.1. Let E\, E,; and E be reflexive Banach spaces such that the
imbeddings Ey — E — E, are continuous and the imbedding E, — E is
compact. Let p € (1, 00) and let I" be a bounded set in L?(0, T; E) consisting

of equicontinuous functions in C([0,T]; E,). Then I is relatively compact in
LP(0,T; E) and C([0, T]; E;).

Let 9 € C®(R?) be a strictly positive even function equal to exp{—|x|}
for |x| > 1, and let us denote by L% the weighted space L2(&#, 9(x)dx;R?).
Clearly, if # is bounded, then the spaces L? and L%, are equivalent. For a proof
of the lemma below we refer the reader to [17], Lemma 3.4(3).

LEMMA 6.2. The imbedding W'% < L2 is compact.

In this section, z®™, v € (0, 1], n € N, is an H“? N H'-%-valued solution to
the modified Navier—Stokes problem (1.3) - (1.4). We assume that each u*"
is defined on a filtered probability space &, and satisfies (1.3) driven by a

cylindrical Wiener process W. Let us denote by -~ (u>™) the law of u"™ on
the space of trajectories C([0, T']; H2 N H%?). Let

t
MED(t) = / PG, (s, u”M(s))dW(s), te[0,T],
0
and let .~ (M®™) be the law of M*™ on C([0, T]; H“2 N H9).

LEMMA 6.3. The family #(M®™), ve(0,1], neN is tight in C([0,T];L%).
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PROOF. Let £ > 0. We have to find a relatively compact set I' in C([0, T'];
L%) such that P(M®™ € M) > 1— e for allv € (0, 1], n € N. To do this we are

going to use the Dubinsky criterion with E, = H%? and E; = E = L. First
note that there is an « € (0, 1) such that

/O ‘(6= )2 Va2(s)ds < 0 fort € [0, T].
Let p > (1 —a)7!, and let
/gb(t):/ot(t—s)_“zl/(s)ds, te[0,T], v e LP(0, T; H-?).
Finally, let
Y@m(g) = M /O ‘(6= ) LG, (s, u"(s))AW(s), €0, T].

Note that for all » and n, the process Y™ is well defined in H2. Moreover,
using (5.2) and the growth property of G,, one can easily show that
T

sup supE ||Y(V’”)(1,‘)||‘DHL2 dt < oo.
ve(0,1] n 0

Then, see [19] or [20], M™"™ = 7 Y™ and the desired conclusion follows from

Lemma 6.2 and the fact that # transforms bounded sets in L?(0, T; H?) into
equicontinuous bounded sets in C([0, T']; H%2). O

Let H be a Hilbert space. We denote by L,(H, H) the space of nuclear
operators from H into H. Obviously, { M} are square integrable continuous
L%-valued martingales. Thus for every v and n there is a unique process
<« M™™ > with continuous trajectories in L;(L%, L%) such that for all ¢, ¢ €
L? the process

(MOm ), d’>L% (M), go)L% (<« M& s (b, ¢>L,% ., te[0,T]

is a real-valued continuous martingale. We call « M®7™ > the quadratic
variation process of M(""). Note that

t *
< MO s (1) = / Jane 12 PGo(s, u(s)) ( e 12 PGos, u(”’”)(s))) ds,
0 U ’ p
where jp2 72 denotes the imbedding of H'? into L5. We have the following
consequence of Lemma 6.3 and the Métivier—Nakao theorem; see e.g. [34] or

[35].

COROLLARY 6.1.  The family { £ (< M™™ )} of the laws of {<« M®™ >}
is tight in C([0, T]; Ly(L3, L2)).

The next lemma plays a crucial role in the proof of Theorem 2.1.
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LEMMA 6.4. The family £ (u®™), v € (0,1], and n € N is tight in
L2%(0,T;L%).

PrROOF. Let v = y(® — M) By Lemma 6.3 it is enough to show
that the laws #(v™™) are tight in L2?(0, T; L%). Let us define the weighted

Sobolev space Wi’?, as the completion of C3°(#, R?) with respect to the norm

1/2
lollyrz = (/@ (lo(2)? + [Vo(x)[2) e dx) .

Then W2 < W12 < L2 and W"2 < L2(#, e/l dx;R2). Let E, = W, "% =
(W-2)*, where we identify the adjoint space throughout the identity (L%)* =
L?. Then W2 — E, and L% — E,, with dense imbeddings. We use Lemma
6.1, for E = L%, E, = W'2 and E, defined above. Note that by Lemma 6.2,
E, is compactly imbedded into E. We have

t
v”M(#) =0, u, —i—/ [—VAu(”’”)(s) + B(u™"(s)) + 2F, (s, u("’”)(s))} ds.
0

Let £ > 0. Then using (5.2), and Theorems 3.1(iv) and 3.2(ii) one can construct
a set 2, of equicontinuous in W;l’z valued equicontinuous functions such that

inf P (v(”’") € 2) >1—e¢.
ve(0,1], neN

Thus the desired conclusion follows from the fact that as a consequence of
(5.2) we have
T
1 sup E[ [v"0()]3.dt
ve(0,1],neN  “0

T
< sup E ||u(”’”)(t)llfnp_z d¢
ve(0,1],neN 0

T
4 osup E[ [MO(@)]%0s dt < oo. 0
ve(0,1],neN 0

LEMMA 6.5. Let r € (1,00), and let vV, | € N be a sequence of processes
with trajectories in L>(0, T; WY, such that, for a fixed p € [1, ),

s1l1p E |v(l)|£x<0’T;W1,) < o0.

If [vD(t) — v(t)|, — 0, dt x P-almost surely, then the process v has trajectories
in L*(0, T; WY") and E |v|€m(0 Ty < 00

PRrROOF. Let {e;} be an unconditional Schauder basis of the both spaces L”

and W1, Then each element z € L” has the unique representation z = }_ z jej
Moreover, the projections

k
def
HkZZ szej, keN,
=1
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are uniformly bounded in both L” and W'’. In particular, z € L" belongs to
WLT iff supy, |1,z wer < oo. If this is a case, then

Izllw.r = lim [T,z ] ..
—00

Thus, as [|[II;[|zwi- wiry, £ € N is bounded, for p,s > 2 we have, using the
Fatou lemma,

T p/s o T p/s
E(/O lim ||Hkv(t)||W1,,dt> ghlreggolfza(/o ||Hkv(t)||W1_,dt>

< TPliminf liminf E 1,097 o ropiny
k—o00 l—>o00 o

< TP SluNpE |v(l)|£m(0’T;W1,r) < 00.
€

Hence v has trajectories in W" and

: l
E |U|§°0(O,T;W1”) = }E}OE |U|Iljs(o,T;W1w) = CSZUR]?E |0 )|£°°(0,T;W1”) < 00,
€
which completes the proof. O

PROOF OF THEOREM 2.1. Let /# be a Hilbert space such that # — # with
a Hilbert—Schmidt imbedding, and let

2 = L*(0, T; L) x C([0, T L3) x C([0, T]; Ly(L5, L3)) x C([0, TL; 7).
Note that W is then a process with continuous trajectories in -#. By Lemmas
5.3, 5.4 and Corollary 6.1, the family of laws 2 (u®"™, M®" « M®™ » W),
ve(0,1], n € N of (u(”’”), MO« MO s, W) on 2 is tight, and hence by
the Prokhorov theorem, it is relatively weakly compact. So there are sequences
v; | 0 and n; 1 oo such that (w7, M®m) | « M®™ > W) converges weakly
as [ 1 oo.

By the Skorokhod imbedding theorem (see, e.g., [27]), there exist a prob-
ability space I = (Q, .7, (%), P), random elements in 2°, (v, M, m, V) and
{wD, MO, m®O VO | e N, defined on Q, such that the laws of (u(>™),
Mem) < M) W) and (v, MO, m®), VD) are the same, and (v, M©,
m®, VD) = (v, M, m, V), P-almost surely in 2°. Thus, in particular,

T
: sy _ 2 — -
(6.1) llgg/o |v'(¢) v(t)|L129 d¢ =0, P-a.s.

Note that for every I, V() is a cylindrical Wiener processes on .#, and v¥) is the
solution to the appropriate Navier—Stokes equations driven by V(). Moreover,

M) = /0 t 2G, (s, v(s))dVI(s), te[0,T]

and
mO(t) =< MY > (2)

t *
= [ Jme.13 PG, (5. 00() (rie.13 2Go (5. 00(9))) ds.
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Let p > 2. Then as H'2 < L2 (5.2) and the Fatous lemma yield

r 2 P . . g l 2 P
IE</0 |v(t)|L%dt> < liminf E (/0 |v()(s)|L%dt> < .

Thus for any p > 2 we have

T p
supE </0 () - o), dt) < 0,

leN

and consequently, the sequence fOT lv®(¢t) — v(t)|i2 dt, [ € N is uniformly inte-
b
grable, and hence from (5.1) we have

. T 0) 2
ZIE?OE/O vO(t) - v(o)[2, dt = 0.

Taking a subsequence we may assume that v)(¢, x) — v(t, x), d¢x dx xP-a.s.,
and

T
(6.2) lim / (&) = v(®)?, dt =0,  P-as..
-0 JO &

Since {v\)} is bounded in L?(Q, 7, P; L=(0, T; L")), r = 2, q, we may assume
that [vD(¢) —v(¢)|,- — 0, dt x P-a.s. for r = 2, q. Lemma 6.5 yields that v has
a trajectories from L>(0, T; H“2 N H%%) and that for every p > 2, one has

(6.3) E [ sup [v(£)]%:. + sup ||v<t>||;;1.q} < 0.
te[0,T] te[0,T]

The sequence { M} converges P-a.s. to M. Note that M is a square integrable
continuous L%-valued martingale with quadratic variation m. Our goal is to
show that

t *
<M (1) = /0 Je. 12 PG(s, v(s)) ( Jme 2 PG(s, v(s))) ds, te[0,T].

To do this it is enough to prove that for all ¢ € [0, T'] and z € CJ(#;R?) the
sequence

t I . o % IZ
J; = /O I (JHl,z,nganl(S, v (8))) Zigfds, leN,
converges in probability to

Lo * 9
J = /0 | (JHLZ,L%@G(S, u(s))) 2|, ds.
Note that for all ¢ > 0 and R > 0 one has

P(|J, —J| > &) <P (|JZ —J|>¢eand sup [v(s)] < R)
0<s<T

+P ( sup |v¥V(s)| > R)

0<s<T
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Therefore the convergence in probability follows from the assumptions (i)
and (ii) of Theorem 2.1, and (6.2), (6.3) and the Lebesgue dominated conver-
gence theorem.

Using now the representation theorem ([19], Theorem 8.2) we can find a
filtered probability space (0, 77, (%), '), and a cylindrical Wiener process
W on #, which is defined on the probability space

ﬁ:(():QxQ’j‘:fixg",(z)z(zxz’),ﬁbsz@’),
such that the process .#(t, w;, wy) = M (¢, w;) has the following form:
t ~
A (t, 01, 09) = [ PC(s,us, w1, 02)) AW (5, 01, 03),
0

W}Eere u(s, w1, wy) = v(s, wy). Clearly, the process u is adapted to the filtration
(%), and by (6.3), for every p € [2, o),

E { sup [u(t)||5. + sup IIu(t)Ilf}Lq} < o0.
t€[0,7) t€[0,T]

The last task is to show that u satisfies the integral equation in Definition
2.1. To do this we fix ¢t € [0, T] and z € CP(#;R?) satisfying divz = 0. We
have already shown that, P-a.s.,

</0t 2G,, (s,v0(s))dW(s), z> = (MD(¢), z) - (M(t), 2)

</0t PG(t, u(s))dW(s), z>

< / "Gt u(s)) AW (s), z>.
0
For t € [0, T] and z € C;; we define
I, = /0 t(@Fm(s, v(s)), 2) ds,
1= /t(@F(s, u(s)), 2) ds = /t(F(s, u(s)), 2) ds.
0 0

We are showing that I; converges to I in probability P. Since for all /, £ > 0,
and R > 0 we have

P(I, - 1| > ¢) < IF’(|I, —I|>¢eand sup [v¥(s) < R)
0<s<T

+P ( sup [vO(s)| > R)
0<s<T

the convergence follows from the assumptions (i) and (ii) of Theorem 2.1, and
(6.2), (6.3) and the Lebesgue dominated convergence theorem.
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Clearly vY(0) — u,, and from (6.2) we have (v(V(¢), z) — (u(¢), z). Also
from (6.2) we have

/Ot é(v(l)(S)v(jl)(S), ﬂj2> ds — /()tj22:21<u(s)uj(s), d;z) ds.
Finally,

¢
VZ/O (v¥O(s), Az) ds — 0.

Thus u satisfies the integral equation in Definition 2.1, and the proof is com-
plete. O

7. Proof of Theorem 2.2.

LEMMA 7.1. Let % be an R™-valued spatially homogeneous random Wiener
field with the spectral measure u = (pq, ..., iy,), and let #; be its RKHS. Let
u=(u,...,u,)c WHi(R%R™), and let K(u) be given by (4.4). Assume that

/Rz(l—i-|y|q)dp,j(y)<oo for j=1,...,m.

Then K(u) € R(#y, Wh?), and there is an independent of u constant C such
that

m 1/q
”K(u)”R(Jf,/,WLq) = C”u”leq(RZ;Rm) (Z /RZ 1+ 1y de()’)) .
j=1

PROOF. Set
L?S)(M) = [l’[/ = (lvbla L] llfm) : l,[/J € L%S)(RQ, /‘L_])} s

and let us equip L%s)(u) with the scalar product

m
def —
(l!f’ @)L?S)(M) = Z /]-QZ l,lfJQDJ d/-LJ
=1

Finally let
JW) = Wit oo i), € LEy(w).
Clearly j is an isomorphism between L(ZS)(/.L) and #,. Thus

K(u) € R(H#y, W) = K(u)j € R(L% (1), WH).



1824 Z. BRZEZNIAK AND S. PESZAT

Now we have

m

(K@) )W)(x) = 3 u(x)y jp(x)

j=1
= Y @m [ i) expli(e, 1)} () du ()
j=1
= (H (u)(x), ‘/’)Lfs)(u),

where

H (u)(x) = (2m) " (uy(x) exp{—i(x, )}, ..., up(x) exp{—i(x,)}).
Note that % (u) € Wh(R?; L§, (1)), and there is an independent of u and u
constant C; such that

m 1/q
17 @) llwrae2 ) < Crllellwrogezn) (Z fRZ (1 +1[y1%) duj(y)> :
Jj=1

Hence, Theorem 4.1 gives the desired conclusion. O

PROOF OF THEOREM 2.2. We prove the theorem by showing that F and G
given by (2.2) satisfy the hypothesis (i) and (ii) of Theorem 2.1. To do this take
v e H%4. Then F(t,v)(x) = f(t, x, v(x)). Clearly, F(t,v) € Wh? and

I F(t, v)fq = /Rz {|f(t, x, v(x))]? + |dixf(t, x, v(x))|q} dx

< Cyai () /Rz {0l + [o(x)[7 + [Vu(x)|?} dx
< Coaf(®) (1 + [[vllna)

where ¢ € L9 and a; € L'(0, T). Thus F satisfies (i). Finally, for z € C3 and
u,v e Whe we have

(F(t.0) = F(t.w),2)] = | [ (F(t %, 0(x)) = £t %, u(x)), 2(2) de
< Crar(®) [, () - u()2(2)] d

< Cra1()|v — ulpel2|pe,

and consequently F' satisfies (i1). We will show that
G(t, v)(W)(x) = 3 g7(t, x, v(x))y ;(x)
j=1
has the required properties. Note that G(¢, v) is of the form (4.4) with
Let
G(t, v)(x) = (Gr(t, V)(@), .., G, 0)()) -
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Then using the same calculations as for F we obtain G(t,v) € WY4(R2; R™)
and

IG(t, V) lwrazeny < Cag(t)(L+ [vllyo),

with a certain ay € L™(0, T'). Thus by Lemma 7.1, G satisfies (i). We will show
below that G(¢,-) is a Lipschitz mapping from L? into L gs)(#y, L?). This
obviously guarantees that G satisfies the condition (ii) of Theorem 2.1. Let
u,ve L?and t € [0, T). For j =1,...,m let {f}} be an orthonormal basis of
L(zs)(,uj). Then

IG(t, v) = G(t, W7 o, 1)
— Z/z
ik R
1
=X .

3 ﬁfR /R leit=) (g7(¢, x, v(x)) — g7 (t, %, u(x))|* dpu;(y) dx
J

— 2

(g7(t, %, v(x)) — g/(t, x, u(x)) flp,(x)| dx

[, e (7t 2 v(x)) — 8 (%, w() F() dpa () s

= 4_717-2%:Mj(R2)_/Rz |gj(t, x, v(x)) — g/(t, «x, u(x)|2 doc

< Cai(t)|lu — U|2L2,
and the proof is complete. O
8. Proof of Theorem 2.3. In the lemma below W is an L%(#;R™)-valued

Wiener process with the covariance operator @. By 2 we denote the integral
kernel corresponding to Q/2; see (2.3).

LEMMA 8.1. Let r € [0, 00), and let u € W™P(&#;R™). Let # be the RKHS
of W, and let K(u) be given by (4.4). Assume that

m . 9 q/2
K0, Q=Y ¥ [0 u,»(x>|q(/ (%22, (. ) dy) dx < oo,
1,j=1la+p|<1"¢ 4

Then K(u) € R(#, Wh?). Moreover, there is an independent of u constant C
such that

”K(u)”R(%,Wlﬂ) < Ck(u,q, Q)l/q-
PROOF. Recall (see Example 4.2) that @2 is an isomorphism between

(Ker @Y?)* and #. Thus K(u) is radonifying iff K(u)QY2 is radonifying.
Moreover,

||K(u)||R(J£’;W1~‘1) = ||K(u)Ql/2||R(L2(5;Rm),wm)-
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Now note that

m

(Kw)Q"?¢) (x) =Y u;(x) i/ﬁ 2;.1(x, )P (y)dy = (F (w)(x), ¥) L2(omm)

j=1 1=1"7
where
m m
H (W) (x) = | 2 ui(x)21(x, ), .5 D ui(0)2; 4(x, ) |-
j=1 j=1
Furthermore, we have
”‘Z/(u)”%VUI(ﬁ;LZ(ﬁ;Rm)) <Cik(u,q, Q),

where C; is independent of u. Hence Theorem 4.1 yields the desired conclu-
sion. O

PROOF OF THEOREM 2.3. It follows from the proof of Theorem 2.2 that F
given by (2.2) satisfies the conditions of Theorem 2.1. The proof of the fact that
G and G given by (2.6) satisfies conditions (i) and (ii) of Theorem 2.1 follows
the lines of the corresponding part of the proof of Theorem 2.2.
The only difference being that instead of applying Lemma 7.1 now we use
Lemma 8.1. O

APPENDIX A
We shall deduce Theorem 3.1 from the following result.

THEOREM A.1. There exists e < § and a constant C, > 0 such that

IAS L, x,) < Coe™,  seR.

PROOF. In the case & = R? the result is known (see, e.g., Lemma 5.3 in
[26]).

If # is a proper subset of R? we shall prove Theorem A.1 by reducing it to an
analogous result for the Laplace operator with Dirichlet boundary conditions
in the L9-space. Assumption A will play a crucial role. Namely let B, be the
linear operator in the space W19 defined by

B,v = —Av, v € Dom(B,),
Dom (B,) ={v e W9 : v =0 on dD}.

It follows from Assumption A that BAqi1 extends to a bounded and linear

. . . _ 1, .
operator (in fact to an isomorphism) from W—14 to W;?. Moreover, the inverse
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s —1/2
of such extension is exactly the operator B,. Since also B, ' extends to an
isomorphism (denoted by ¢/ ;) between L7 and W~L4_ the identity

(A+B) ' =J A+ By, Aep(B,)

proves that B, satisfies the statement of Theorem A.1, that is, there are & > 0
and C, < 5 such that

(A.1) 1B N w14, w10y < Cpe, seR.

Suppose that A € C, f € X, and u € Dom (A,) are such that (A + A )u = f.
Thus, there exists a function p : # — R such that

(A2) (A—-Au+Vp=fin@, divei=0in#, (u,n)=0=curluond?.

Then the function v = curlu is a solution to the following inhomogeneous
Dirichlet boundary value problem

(A.3) (A—=Aw=curlfin® and v=0ond~o.

The above argument can be reversed. Suppose that f € X, and that v is a
solution to (A.3). We need to find u € Dom (A,) such that curlu = v. For this
let z be the unique solution to

(A.4) —Az=viné# and z=0o0nd~o.
Let u = (d92, —d12). Then:

(1) u € W29,

@i1) divu = 0;

(iii) (z,n) = 0 on 97,

(iv) curlu =0 on 97.

To prove the first property let us observe that since curl f € W14 it follows
from the elliptic regularity that v € W19, Hence, z € W7 and therefore u €
W24, The second follows as divu = div (dy¢, —d1¢) = 0. The prove the third
we first notice that (z,n) = 0 on ¢#, as z = 0 on J&. Therefore the vector field
(dy¢, —d1¢) is tangent to the boundary /& and hence (iii) follows. We finish
by observing that in view of (A.3), (A.4), and the identity curl (d,, —d;) = —A,
we have curlu = —A¢ = v = 0 on d#. The properties (i) - (iv) proven above
imply that the function u satisfies the three boundary conditions from (A.2).
We will find a function p € W19 such that the pair (u, p) is a solution to (A.2).
For this let p € W14 be a solution of

d
(A.5) Ap=divAuin #  and ﬁ — 0 on de.
Then, arguing as in [45], we infer that the (u, p) is a solution to (A.2).
Summing up we have shown that
(A.6) (A + Aq)*lf = (dq, —al)Bgl(/\ + Bq)*lcurl f

for all f € X, and A € C from the resolvent set of —B,. Since in view of As-
sumption A, (J,, —ﬁl)B;I is a bounded linear operator from W14 into X, and



1828 Z. BRZEZNIAK AND S. PESZAT

curl is a bounded linear operator from X, into W-14 Theorem A.1 virtually
follows from (A.1), (A.5) and the definition of imaginary powers. O

PROOF OF THEOREM 3.1(i). This result follows directly from Theorem A.1
and [39], Theorem 2. O

PrOOF OF THEOREM 3.1(3i1). This result follows directly from Theorem A.1
and [46], Theorem 1.15.3. O

PROOF OF THEOREM 3.1(ii1). We know from Lemma 3.2 that P, is a
bounded liner projection from W9 onto X,. If u € W7 then divu € W'¢
and hence by the elliptic regularity of Agmon—Douglis—Nirenberg (see [2] and
[46]), the solution p to (3.1) belongs to W39. Hence #,u € W>49. This argu-
ment shows also that the linear map &, : W27 — W27 is bounded. Hence
the map %, : W»¢ - W29NX, = H*Y is bounded. Then by the Riesz—
Thorin theorem the map &, : [W*4, L], 5 — [H*9,X,], 5 is bounded as well.
Therefore we infer the result by using equalities: [W>9, L%, 5 = W™ and
[H*9,X,],/o = [Dom (A,),X,], 2 = Dom (A}) = H?4, Note that the equality
[Dom (A,), X,],/2 = Dom (A}) follows from Theorem A.1 and [46], Theorem
1.15.3. O

PROOF OF THEOREM 3.1(iv). Integrating by parts we get
(Agu,u) = / curl v(x)curl u(x) dx,
o
and the desired conclusion follows from Hélder’s inequality. O

PROOF OF THEOREM 3.2(1). Since & is continuous on L9, we have
(A7) |B(u, v)|q < (Julxllvllwre + lellwralvlo) s

and the desired conclusion follows from the continuity of the imbeddings
H"™% — W4 see Theorem 3.1(iii), and

(A.8) Wotha s 1o §>0
(see, e.g., [44], Theorem 3.1, or [43], Theorem 2, page 124). O

PROOF OF THEOREM 3.2(ii). Let g* be the conjugate exponent to g: %+ q—l* =
1. Clearly we may assume that r < %. Then q—l* — 5 > 0 and so we can choose
p>1suchthat%=q—1*—§. Sincethen(asr>0)%+%=1—§ < 1, we can
find s > 1 such that 1 + % + % = 1. Let u, v,z € HY?. In what follows the
constants ¢; do not depend on u, v, z. First the Holder inequality imply that

[(B(u, v), 2)| < e1luls|Volglz] .
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Next, the above choice of p and s implies that the imbeddings W% < L* and
W4 — LP are continuous (see, e.g., [1], Lemma 5.14, or [43], Theorem 2,
page 124), and therefore

(B(u, v), 2)| < colluflwral[vliwrallzllwre < csllel grallvll gzl g

Therefore, as H "9 = (H™9")*, the proof is complete. O

PROOF OF THEOREM 3.2(iii). This proof follows the lines of the proof of The-
orem 3.2(1). O

PROOF OF THEOREM 3.2(iv). The case g = 2 is well known, see [45] and
[3]. Assume hence that ¢ > 2. Since H?2 N H9 is dense in H"? and by the
Sobolev imbedding H? — L%, we only need to show the desired equality for
u,v e H2n H%4. But this follows from the case ¢ =2. O

PROOF OF THEOREM 3.2(v). It is enough to show the identity for u,v €

C2 such that curlu = 0 and curlv = 0 on d#. For such v and v we have

curl B(u,v) = curl[(x - V)v] = (u - V)curlv. Then, denoting ¢ = curlv, we
have by integration by parts

(- Ve, ple972) = —((u- V) [¢le*?], o)
= —(q - D([(x- V)¢l |¢|72 )
= —(q—D{(u- V), ¢le|772).

Hence we obtain the desired conclusion. O

APPENDIX B

The following result gathers the main properties of the space of radonifying
operators. For the proof of the theorem below we refer the reader to Baxendale

[4].

THEOREM B.1. Let o# and E be real separable Hilbert and Banach spaces,
respectively. Then for arbitrary K € R(/, E) and orthonormal basis {e,} of
A one has

||K_KH}'L||R(/,E)_>O as n — oo,
where II,, stands for the projection of -# onto the space spanned by ey, ..., e,.
PROOF OF THEOREM 4.1. The first step is to show that there is a constant

C depending only on r and g such that for any n € N and for any operator
K :R" - W4 given by the kernel % € W4(#;R") one has

(B.1) | K || e, wray < C||#]

Wra(&;Rm)-
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Let {e;} be an orthonormal basis of R", and let {B,},.y be a system of inde-
pendent identically distributed normal variables. We have to estimate

) 1/2
Ke “ .
k| e

To do this we first assume that r € NU {0}. Then
Z | 3 B (Kep)(x)| dx.

2
9 q/
Ke ”
k| =
\a\<r k=1

Using the normality of Y, B,9*(Ke;)(x), and the fact that there is a constant
C such that for an arbitrary centered normal random variable &, E|£|?7 <

C(E |§|2)q/2, we get

1K || een wriay = (

q
Kek H

q/2
| & N 12
||K||%’(R",qu) = C/ > ( IZ Brd (Kek)(x)I ) dx

" la|sr

q/2
> <Z Iﬁa(Kek)(x)P) dx

laj<r \k=1
< c/ 1A () A < CIH | yrany-

|oz|<r

Thus we have (B.1) for [ € NU {0}. Using standard interpolation arguments
one can show (B.1) for an arbitrary r € [0, c0). Now let -# be an infinite
dimensional Hilbert space, let {e;} be an orthonormal basis of /7, and let II,
be the projection of /# onto the space spanned by ey, ..., e,, which we identify
with R”. Then, by Theorem B.1 we have

1K | rr ey = Hm (| KL, || pep wray < € Him ([T, 2 [[ywra(ome)
< Cll# |lwrace.n)s

which is the desired conclusion. O
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