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We show that the branching random walk on a Galton–Watson tree
may have one or two phase transitions, depending on the relative sizes of
the mean degree and the maximum degree. We show that there are some
Galton–Watson trees on which the branching random walk has one phase
transition while the contact process has two; this contradicts a conjecture of
Madras and Schinazi. We show that the contact process has only one phase
transition on some trees of uniformly exponential growth and bounded
degree, contradicting a conjecture of Pemantle.

1. Introduction. There has been considerable interest, in recent years, in
the behavior of certain stochastic processes on much more general graphs than
the usual Zd. Work has been done on percolation processes, the Ising model
and related models and others, as well as the processes we consider in this
paper (see [13] for a recent survey of various processes and [9] for an up-to-date
account of the contact process). For the contact process and branching random
walk, most of this work has involved studying the processes on homogeneous
trees, where they can behave in a quite different way from their behavior
on Zd (see, e.g., [7, 10, 11, 16]). It is thought that the basic results for the
processes on homogeneous trees should extend to some more general class of
graphs, although a recent body of work on the contact process on more general
graphs (see [17, 18, 20]) as well as the results of this article, does show that
any such class must be more restrictive than was previously thought.
Our investigation of the processes on more general graphs than homo-

geneous trees begins with a partial characterization of the behavior of the
branching random walk on a Galton–Watson tree in terms of the underly-
ing offspring distribution; this enables us to demonstrate that the behav-
ior of the processes there is not as straightforward as has been conjectured.
Later we find that on another reasonably well-behaved class—spherically sym-
metric nonamenable trees of bounded degree—the contact process behaves
unexpectedly.
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We begin by defining the contact process and branching random walk on
a reasonably general graph. Throughout this paper, any graph G = �V�E�,
consisting of a set of vertices or sitesV and a set of (undirected) edgesE ⊆ V�2�,
will be assumed to be connected and of bounded degree, where, as usual, the
degree d�v� of a vertex v is the number of neighbors it has. Note also that a
graph is said to be locally finite if d�v� <∞ for every vertex v. We are always
interested in infinite graphs, although in Section 4 we consider finite graphs
in order to prove results about infinite ones.
The contact process on G is a continuous-time Markov process with state

space �0�1�V, evolving according to the following rules: for each v ∈ V,

ηt�v� → 0 at rate 1;
ηt�v� → 1 at rate λ�#�u ∈ V
 u ∼ v and ηt�u� = 1�;

where λ is a fixed parameter and u ∼ v denotes that u is a neighbor of v.
The fact that these transition rates define a unique process, given a starting
state η0, is well known; for further details see [8]. One thinks of a site v with
ηt�v� = 1 as being infected (or occupied by a particle) at time t; one with
ηt�v� = 0 is healthy (or unoccupied).
The branching random walk on G is defined similarly but now more than

one infection (or particle) is permitted at a site. The state space is a subset of
NV = �0�1�2� � � ��V (see remarks following) and the transition rates are

ηt�v� → ηt�v� − 1 at rate ηt�v�;
ηt�v� → ηt�v� + 1 at rate λ

∑
u
 u∼v

ηt�u��

so if transitions outside �0�1�V were forbidden, the branching random walk
would reduce to the contact process. The fact that these rates determine a
unique process does not seem to follow easily from standard results, so it
appears to us that a little more work must be done to specify the branch-
ing random walk rigorously. There are various equivalent approaches to this,
which we now discuss briefly. One can construct a process with these rates
using the graphical representation (see the start of Section 3) and simply
define the branching random walk to be this process. Another approach would
be to approximate by the well-defined process on the compact space
�0�1�2� � � � � n�V (again see [8]) and then let n → ∞ (carefully) using mono-
tonicity. A third approach takes advantage of an important independence
property of the branching random walk (which generally makes it easier to
analyze than the contact process): if ξt� ηt are independent branching random
walks, then ξt+ηt is a branching random walk with starting state ξo+η0. To
make use of this property, first note that, starting from a single infection [i.e.,∑

v∈V η0�v� = 1], one can define the process in the usual way as a continuous-
time Markov process on the countable state space �η
 ∑v∈V η�v� < ∞�; it is
not hard to see that it is nonexplosive. One then defines the process for a more
general starting state by the superposition of independent processes.
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Whatever approach is adopted to the definition of the branching random
walk, it is worth pointing out that some restriction on the state space is nec-
essary to prevent explosion of the process at some single site. With a little
work one can show that a restriction which suffices is that for some fixed
vertex v0 (equivalently all v0) and all c > 0,

exp�−c dist�v� v0��η�v� → 0 as dist�v� v0� → ∞�

We note also at this point that, as usual, �t denotes the σ-field generated by
the process in question up to time t.
The most basic questions about our processes concern survival. One says

that the branching random walk survives globally if

�δO
�ηt ≡ 0 for sufficiently large t� < 1

and that the branching random walk survives locally if

�δO
�ηt�0� = 0 for sufficiently large t� < 1�

where �δO
denotes the measure for the branching random walk starting from

δO, a single infection at a distinguished vertex O, the root or the origin. One
makes similar definitions for survival of the contact process. The next propo-
sition states some well-known basic facts. [The penultimate statement fol-
lows easily from consideration of the branching random walk on a one-vertex
graph and on the connected graph with two vertices. The remaining facts can
be found in ([9], I.1), once one observes that certain results for the contact
process extend, essentially unchanged, to the branching random walk.]

Proposition 1.1. For the branching random walk on any connected graph
of bounded degree, G, there exists λl = λl�G� ∈ �0�∞� such that local survival
occurs for λ > λl and not for λ < λl. There is also a λg�G� ∈ �0� λl� such that
global survival occurs for λ > λg and not for λ < λg.
For the contact process on any connected graph of bounded degree, G, there

exists λ2 = λ2�G� ∈ �0�∞� such that local survival occurs for λ > λ2 and not
for λ < λ2. There is also a λ1�G� ∈ �0� λ2� such that global survival occurs for
λ > λ1 and not for λ < λ1.
Moreover,

λl�G� <∞ ⇔ λg�G� <∞ ⇔ G has at least two vertices�
λ2�G� <∞ ⇔ λ1�G� <∞ ⇔ G is infinite�

As mentioned at the start, the contact process has recently been studied
extensively on the homogeneous tree: we use Td to denote the tree in which
every vertex has d+1 neighbors; we shall use T′d to denote the rooted tree in
which every vertex has d children, so all vertices except the root have degree
d+1. The principal reason for the study of the process on trees has been that
on Td (d ≥ 3) one has λ1 < λ2, so there is a phase of weak survival in which
the process survives globally but not locally. This was shown by Pemantle [16]
for d ≥ 4; Liggett [10] proved this for d = 3 and a simpler proof was then
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found by Stacey [22] which covered d ≥ 3 and a class of nonhomogeneous
trees. Other works (e.g., [7, 11, 19]) have characterized the various phases
and studied their properties. The weak survival phase does not occur in the
more traditional setting of Zd; the proof [1] of this fact is far from trivial.
These matters are discussed in detail in [9]. The branching random walk has
also been studied on trees (e.g., [6, 11, 12, 15]), perhaps mainly because it
is usually easier to analyze than the contact process but expected to exhibit
similar behavior in many respects. A number of results, including the fact that
λg < λl for T2 (see [15]), were proved for the branching random walk before
they were proved for the contact process.
In the first half of this paper we shall mainly be concerned with pro-

cesses on Galton–Watson trees. Given a probability generating function f�z� =∑∞
n=0pnz

n we consider the standard branching process with offspring distri-
bution given by f. To each realization of the branching process there nat-
urally corresponds a rooted tree; a tree arising in this way is known as a
Galton–Watson tree; f induces a measure, which we denote GW or GWf,
on the space of locally finite rooted trees. For simplicity we shall assume
that p0 = 0 (no extinction) and that the distribution is bounded, that is
d = sup�n
 pn > 0� < ∞. However, it would not be difficult to relax these
restrictions: we can replace the first assumption by the assumption that the
mean m = ∑

npn is greater than 1 and condition on survival of the process;
also, it will be clear from our results what happens in the case d = ∞. In what
follows, we shall make use of the size-biased mean m′ which we now define.
Given f with 0 < m < ∞, we define the size-biased distribution to be that
with generating function g�z� = 1

m

∑∞
n=0 npnz

n. The mean of this distribution
is the size-biased mean, denoted m′. Note that m′ = 1

m

∑
n2pn = g′�1� =

1
m
�zf�z��′�1� = 1+ f′′�1�/f′�1�.
Although Galton–Watson trees are inhomogeneous, they are stochastically

regular, and in consequence processes on them are often better behaved and
easier to study than on more general trees. They were considered in the first
paper on the contact process on trees [16]; various people have attempted
(without success) to show that λ1 < λ2 for Galton–Watson trees; and other
processes on Galton–Watson trees have also been studied (e.g., [14]). The fol-
lowing result and similar results for other processes are easy and well known.
(A slick proof, for the contact process, is given in [16].)

Proposition 1.2. For any bounded offspring distribution f, with f�0� = 0,
there exist 0 < λl�f�� λg�f�� λ1�f�� λ2�f� < ∞ such that for GW-almost all T,
λl�T� = λl�f�, λg�T� = λg�f�, λ1�T� = λ1�f� and λ2�T� = λ2�f�.

When one is considering random processes on random graphs, one needs to
consider a number of different measures. In order to avoid confusion, we now
establish notation for these measures. We shall use � to denote the measure
associated with a process on a single graph, T, and use Ɛ to denote the associ-
ated expectation. Since the graph in question will usually be clear, any suffix
(e.g., �δO

) indicates the starting distribution. (If T is itself a random variable
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then � and Ɛ become random measures, one for each possible T; for exam-
ple, in the proof of Proposition 2.5 we show that, GW-almost surely, Ɛ has a
particular property.) When we are considering a Galton–Watson measure on
trees we shall use the notation PGW and EGW. When we consider the mea-
sure corresponding to a Galton–Watson distribution on trees together with a
process on the trees, we shall use the notation P⊗ and E⊗. Therefore P⊗ is
a measure on the space of all pairs �T�η�, with T a tree of bounded degree
and η a possible realization of the process on T; the marginal distribution of
the first coordinate under P⊗ is PGW; and the conditional distribution of the
second coordinate given the first is (⊗-almost surely) some �.
Positive results about the processes for nonhomogeneous trees are rather

few. It was conjectured by Pemantle [16] that the critical values for the contact
process are distinct when nonzero, under a minimum growth hypothesis. To
state this precisely, we need to make some further definitions. Given G =
�V�E� and K ⊂ V, define ∂EK = {�x�y� ∈ E
 x ∈ K�y /∈ K

}
. Define the

edge-isoperimetric constant to be

ιE�G� = inf
{ �∂EK�
�K� 
 K ⊂ V is finite

}
�

Then G is said to be amenable if ιE�G� = 0. For many processes on well-
behaved graphs, the behavior of the process depends on whether or not the
graph is amenable; see [13]. To understand amenability better for a tree T,
define a shrub to be a finite subgraph which is a component of T\�e� for some
edge e. Then T is non-amenable if it contains neither arbitrarily large shrubs,
nor arbitrarily long paths consisting entirely of vertices of degree (in T) two.
Pemantle [16] used yet another, though equivalent, definition, called strongly
exponential growth. Conjecture 2 of [16] was that for a non-amenable (locally
finite) tree, one either has λ1 = λ2 = 0 (which can happen if the tree has
unbounded degree) or one has λ1 < λ2. It was conjectured by Madras and
Schinazi [15] that the branching random walk on a graph has distinct critical
values exactly when the contact process on that graph does. (Strictly speak-
ing, the conjecture was stated as a one-way implication, but it was equally
thought to hold the other way [21].) We find below (Theorems 2.3 and 2.4)
that both of these conjectures are false, and, in fact, false on fairly simple
graphs. Indeed, there is a bounded offspring distribution such that the result-
ing Galton–Watson tree almost surely satisfies λg = λl and λ1 < λ2. Our
investigation gives conditions under which the branching random walk has
distinct critical values in the case of a Galton–Watson tree. We show that it
depends on whether the mean m is less or greater than approximately 2

√
d,

where d, as above, is the maximal number of offspring.
Conjectures 1 and 3 of [16] also generalize the behavior of the contact pro-

cess on homogeneous trees to more general trees and were shown to be false
in [18] and [20].
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2. Statements of main results. Our first result gives a general criterion
for the branching random walk on a Galton–Watson tree to have two phase
transitions and a criterion under which it has only one.

Theorem 2.1. Let λg and λl be the critical values for global and local
survival (respectively) for the branching random walk on a Galton–Watson
tree whose offspring distribution has mean m > 1 and maximum d.

(i) If m+ 1 ≥ 2√d then λg < λl.

On the other hand,

(ii) if m�1+m′/d� < 2√d where m′ is the size-biased mean, then λg = λl.

Since 0 < m′/d ≤ 1, this says that the boundary between one and two phase
transitions occurs somewhere between m = √

d and m = 2
√
d. The bound

in part �i� appears simpler and one might wonder whether it is sharp and
whether the appearance of m′ in part �ii� is spurious and nonsharp. A partial
answer to this is given by Theorem 2.2, showing that part �ii� is in some sense
also sharp.

Theorem 2.2. For any ε > 0 there is a δ > 0 such that for any offspring
distribution with maximum degree d, λg < λl as long as m ≥ �2 − δ�√d and
m′ ≥ εd.

The proof of the following result, which shows that the branching random
walk and the contact process can exhibit quite different behavior on a tree of
bounded degree, relies heavily on Theorem 2.1.

Theorem 2.3. There is a bounded offspring distribution such that λg = λl
but λ1 < λ2. In particular there is a tree T of bounded degree on which λg = λl
but such that the contact process has two phase transitions.

Our last main result is Theorem 2.4. Its proof makes use of detailed knowl-
edge of the behavior of the contact process on homogeneous trees. A rooted tree
is said to be spherically symmetric if any two vertices at the same distance
from the root have the same number of children.

Theorem 2.4. Let λ1 and λ2 be the critical values for global and local
survival �respectively� of the contact process. Then there is a nonamenable
spherically symmetric �rooted� tree of bounded degree for which 0 < λ1 = λ2 <
∞.

It turns out to be rather easy to obtain the exact value of λl for a Galton–
Watson tree. The same does not seem to be true for λg, but we do obtain, in
Proposition 2.6, an upper bound which is sufficient to establish 2.1(i).



PROCESSES ON NONHOMOGENEOUS TREES 1569

Proposition 2.5. The critical probability for local survival on a Galton–
Watson tree is given by λl = 1/�2

√
d�.

Proposition 2.6. The critical probability for global survival on a Galton–
Watson tree, λg, satisfies λg ≤ 1/�m+ 1�. If, furthermore, the offspring distri-
bution is nontrivial (i.e., not concentrated entirely on a single value) then this
inequality is strict.

A supermartingale argument, given in the following section, is necessary
to establish Theorem 2.1(ii). The proofs of the two preceding propositions and
Theorem 2.2, being about general Galton–Watson trees, are also given in the
next section. Theorems 2.3 and 2.4 are of a different flavor since they give
specific trees with particular properties; they are proved in Section 4.

3. Proofs for branching randomwalks on Galton–Watson trees. We
assume familiarity with the well-known graphical representation for the con-
tact process on a fixed graph G = �V�E�. Briefly, a Poisson process of rate
1 is associated with each vertex of the graph, corresponding to deaths. Two
Poisson processes, each of rate λ, are associated to each edge; these processes
correspond to births, one for each direction. This was introduced by Harris [5];
for details see [4] or [8].
Given the representation for the contact process, it is not too hard to see

that something similar can be done for the branching random walk, but the
situation becomes rather more complicated since multiple infections at a given
vertex are permitted, each independently dying and giving rise to births at
neighbouring vertices. One needs a multiplicity of Poisson processes at each
vertex and edge. Since this does not seem to appear in the literature, and since
we shall make heavy use of the graphical representation for the branching
random walk, we briefly give the details of one way the representation could
be set up.
For each vertex v ∈ V, letN�v� denote the set of neighbors of v; let us choose

some injection φv
N�v�×Z×N→ N. For each m ∈ Z let δ0v�mδ1v�m� δ2v�m� � � � be
the arrival times of a Poisson process with intensity 1. For each ordered pair
�v�w� of neighbors and m ∈ Z, let a0�v�w��m� a

1
�v�w��m� � � � be the arrival times

of a Poisson process of rate λ. All these Poisson processes are taken to be
independent.
We shall think of each infection that occurs at a site as having some index

m, with different infections at the same site having different indices; in fact
initial infections (those present at time zero) will have negative indices and
new infections will have nonnegative ones. The δv�m process gives the times
at which the infection with index m at site v can die; the a�v�w��m process
corresponds to possible new infections at site w arising from infection m at
site v. To be precise, from a fixed starting state η0, an infection trail to �v� t�
(for v ∈ V and t ≥ 0) is a choice of v0 ∈ V and m0 with −η0�v0� ≤ m0 < 0,
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together with a sequence

0 ≤ a
k0
�v0�v1��m0

< a
k1
�v1�v2��m1

< · · ·akl−1�vl−1�v��ml−1
≤ t�(3.1)

such that for each i < l − 1, φvi+1�vi�mi� ki� = mi+1; δ0v0�m0
> a�v0�v1��m0

; for

1 ≤ i < l there is no j with aki−1�vi−1�vi��mi−1
≤ δ

j
vi�mi

≤ a
ki
�vi�vi+1��mi

; and there is no

j with akl−1�vl−1�v��ml−1
≤ δ

j
v�ml

≤ t. [If the sequence (3.1) is null, these conditions
become that v0 = v and that δ0v�m0

> t.] The length of this infection trail is l.
Although the definition of an infection trail appears rather complex, the idea
is essentially the same as for the contact process, where an infection trail is
a path that travels along arrows and up vertical lines, without going through
any deaths; the added complication for the branching random walk comes
from the fact that each infection at a site has its own arrows and deltas, and
arrows must match up appropriately for an infection trail to be valid.
Having defined an infection trail, we set ηt�v� to be the cardinality of the

set of infection trails from η0 to �v� t�. We then have that ηt is a construction
of the branching random walk on G, with parameter λ and starting state η0.
We define a walk of length n, from a vertex v to a vertex w, to be a sequence

of (not necessarily distinct) vertices vi and edges ei, v = v0e1v1e2v2 · · · en
vn = w, such that each ei joins vi−1 to vi. To each infection trail there nat-
urally corresponds a walk, and it is easy to see that the expected number of
infection trails from ηδv0

to w (ending at any time) corresponding to any given
walk of length n from v0 to w is exactly λn. This calculation also applies to
the counting of infection trails for the contact process, but it is not so useful
there since different infection trails in the contact process do not, in general,
give rise to different infections.
Counting of particular walks will be important in the next two lemmas. We

letM�v�n� be the number of walks of length n starting and ending at v. Note
that M = limn→∞M�v�2n�1/2n = supnM�v�2n�1/2n exists for any graph and
any vertex v by an easy supermultiplicativity argument, and does not depend
on the choice of v (recall that all graphs are assumed to be connected and of
bounded degree).

Lemma 3.1. Let G = �V�E� be a graph with M = limn→∞M�v�2n�1/2n =
supnM�v�2n�1/2n as above. Then the critical probability for local survival of
the branching random walk is given by

λl = 1/M�

Proof. Fix some vertex O and consider the branching random walk on G
with parameter λ, starting from a single infection at O. To begin, we consider
the case λ > 1/M.
Let Xn be the number of infection trails of length n from �O�0� back to O

(ending at any time). It is easy to see that the process �X2kn�∞k=0 dominates a
branching process with offspring distribution equal to the distribution ofX2n.
However, for n sufficiently large,M�O�2n� > �M− ε�2n, where ε is chosen so
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that �M−ε�λ > 1. Then Ɛ�X2n� = λ2nM�O�2n� > 1, so this branching process
is supercritical. Hence there is a positive probability that there exist arbitrar-
ily long infection trails from �O�0� back to the root, and this is well known to
imply local survival. [The proof of this implication is easy once one observes,
via a straightforward calculation, that the expected number of infection trails,
a1 · · ·an, with an ≤ T, starting from a single infection and corresponding to a
fixed walk of length n, is equal to

λn

�n− 1�!
∫ T

0
e−ssn−1 ds�

which is less than λnTn/n!, and in particular is superexponentially small in
n for fixed T.]
The proof that local survival does not occur for λ < 1/M is even easier. The

expected number of infection trails from O to O of any length is

∞∑
n=1

λnM�O�n� <∞�

Hence there are almost surely only finitely many infection trail back to O
which implies local nonsurvival. ✷

We now apply this lemma to the finite rooted tree of height h in which every
vertex, other than those in generation h, has d children; we denote this finite
tree by Th

d.

Lemma 3.2. The critical value for local survival of the branching random
walk on Th

d satisfies

lim
h→∞

λl

(
Th
d

)
= 1

2
√
d
�

Remark. This matter, and the rate of convergence in particular, is exam-
ined in more detail in [12].

Proof. Clearly λl�Th
d� is decreasing in h and is bounded below by λl�Td� =

1/2
√
d (see [15], or the estimate on M for Td given below). Therefore, by

Lemma 3.1, we must show that given any ε > 0, we can find some h > 0 and
n > 0 such that on Th

d for some vertex v,M�v�2n�1/2n > 2
√
d− ε.

On the infinite treeTd, a path of length 2n fromO toO is specified by choos-
ing n of the 2n steps to be down, and for each down step choosing one of the d
possibilities: there are

(2n
n

)
dn such paths; note that

(2n
n

)
dn ∼ c�2√d�2n/√n for

some c > 0. Therefore for some n > 0 we have at least �2√d−ε�2n paths from
O to O on Td. Note that none of these paths can travel more than distance n
from O. Therefore, if we consider a vertex v at generation n in T2nd we have
thatM�v�2n�1/2n ≥ 2√d− ε, precisely as required. ✷
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Proof of Proposition 2.5. We certainly have λl ≥ 1/2
√
d by comparison

with Td for which λl = 1/2
√
d (see comment at the start of the proof of

Lemma 3.2).
Now consider a Galton–Watson tree T generated by offspring distribution f

whose maximum is d. Given any k > 0 there is, GW-almost surely, a vertex v
such that each descendant of v up to k generations has exactly d children; that
is, T contains a copy of Tk

d. Therefore, by Lemma 3.2 one has λl�T� ≤ 1/2
√
d

almost surely, as required. ✷

In the proof of Proposition 2.6 we will also need to count paths on trees,
although, as we shall see, the ideas are rather different from Proposition 2.5.
We shall need a lemma which counts certain walks on Z; as in the proof
of Lemma 3.2, we will count walks on trees by first considering possible
sequences of “ups” and “downs.” As usual, a walk of length n on Z will be
a sequence w0w1 · · ·wn of integers, with �wi − wi+1� = 1 (for 0 ≤ i < n). In
accordance with the way these walks are used to count walks on trees, we will
refer to a step with wi+1 > wi by a D; if wi+1 < wi we refer to it by a U. So
the walk 01012 can be described by DUDD (although this description forgets
the starting vertex). The following walk-counting lemma is partly motivated
by the crude estimate that, if the mean number of children is m, then in a
typical walk on a Galton-Watson tree there should be m down steps for every
up step.

Lemma 3.3. Let m > 1 be given. For k ∈ N and ε > 0 let H�k� ε� be the
number of walks, w0 · · ·wl on Z of length l�k� = �km� + k with the following
three properties:

(i) The walk starts at 0 and ends at n = �km�−k (i.e., w0 = 0 and wl = n),
so there are �km�Ds and k Us.

(ii) 0 ≤ wi ≤ n for all 0 ≤ i ≤ l.
(iii) The walk contains at least εk UD pairs (i.e., values of i with wi−1 =

wi + 1 = wi+1).

Then, for some ε > 0, there exist C > 0 and γ so that for all sufficiently large k

H�k� ε� ≥ �m+ 1�k
(
m+ 1
m

)km C

kγ
�(3.2)

Proof. We shall construct a random walk of length l, starting at 0 and
estimate the probability that it has properties (i)–(iii). The first and last
�c log k� steps of the walk, for some c to be specified later, will always be
D. The remaining r = l − 2�c log k� steps of the walk are independent and
random; they are “D” steps with probability p = �r− k�/r and are “U” steps
with probability q = k/r. Note that we assume that k is large enough for all
these values to be positive, and that for large k one has p ≈m/�m+1� > 1/2.
Let A be the event that the resulting path does not go above the starting

point, that is, wi ≥ 0 for all i. This is just the event that the random part of the
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path never goes more than �c log k� steps above its starting point; by standard
estimates about hitting probabilities of simple (biased) random walks, one has

��A� ≥ 1− (
q/p��c log k�

≥ 1− 1
kc log�p/q�

�

(3.3)

where �p/q� →m as k→∞.
Let B be the event that the walk does not ever go below its finishing point

(i.e., wi ≤ wl for all 0 ≤ i ≤ l). We likewise have

��B� ≥ 1− 1
kc log�p/q�

�(3.4)

Now let Cε be the event that the walk satisfies condition (iii). We find a
crude lower bound for ��Cε� by considering �r/2� disjoint pairs of adjacent
steps in the random part of the walk. Each such pair has probability pq to
be “UD,” and these �r/2� events are independent. If Cε does not happen, then
there must be some subset of the pairs, of size exactly �εk� − 1 with the
property that all pairs outside this subset (and perhaps some others) are not
UD’s. Therefore, we can bound the probability of the complement of Cε by

��Cc
ε� ≤

( �r/2�
�εk� − 1

)
�1− pq��r/2�−�εk�+1�

Using the standard estimate of
(
a
b

) ≤ (
ea
b

)b (see, e.g., [2]), this becomes
��Cc

ε� ≤
(

er

2�εk− 1�
)εk
�1− pq�r/2−εk+1�

which becomes, for ε < 1 and large (dependent on ε) k,

≤
(

er

2�εk− 1�
)εk
�1− pq�km/2

≤
[(

e�m+ 1�
2ε

)ε
�1− pq�m/2

]k
�

Now as ε→ 0,
( e�m+1�

2ε

)ε → 1, so for ε sufficiently small (and large k) one has

��Cc
ε� ≤ βk�(3.5)

for β = β�ε� < 1.
Our final estimate is of the probability that wl = n, that is, that there are

precisely k U’s and r−k D’s in the random part of the path. Denote this event
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by D. One has

��D� =
(
r
k

)
qkpr−k

≥ 1
2
√
r

(
r

r− k
)r−k( r

k

)k
qkpr−k

= 1
2
√
r
�

(3.6)

where the inequality just uses a standard lower bound on binomial coefficients
(see [2]).
Combining (3.3), (3.4), (3.5) and (3.6) we obtain

��A ∩B ∩C ∩D� ≥ 1
2
√
r
− 2
kc log�p/q�

− βk�(3.7)

We wish to now choose c so that
√
r = o�kc log�p/q�� as k→∞; since r ∼ k�m+1�

and p/q→m we just take c = 1/ logm. Then for sufficiently large k we have

��A ∩B ∩C ∩D� ≥ 1
3
√
r
�(3.8)

The event A∩B∩C∩D is a set of paths, each of which satisfies conditions (i)–
(iii) in the statement of the lemma. Each such path has probability precisely
pr−kqk. Therefore the total number of such paths, using (3.8), is at least (again,
assuming k sufficiently large throughout)

1
3
√
r

/
pr−kqk

= 1
3
√
r

(
l− 2�c log k�

l− k− 2�c log k�
)r−k( l− 2�c log k�

k

)k
≥ 1

3
√
k�m+ 1�

(
m+ 1
m

)r−k(k�m+ 1� − 2c log k− 2
k

)k

≥ 1

3
√
k�m+ 1�

(
m+ 1
m

)km(m+ 1
m

)−3c log k(
m+ 1− �2c log k+ 2�

k

)k

≥ 1

3
√
k�m+ 1�

(
m+ 1
m

)km
k−3c log��m+1�/m��m+ 1�ke−3c log k/�m+1�

≥ �m+ 1�k
(
m+ 1
m

)km C

kγ
�

[with γ = 1
2 + 3c log�m+1m

� + 3c
m+1 ], as required. ✷

We now turn to the proof of the upper bound on the critical rate for global
survival. Note that although we include the case of a degenerate offspring
distribution for completeness, that case is already well known (see [15]).



PROCESSES ON NONHOMOGENEOUS TREES 1575

Proof of Proposition 2.6. For a nontrivial offspring distribution wemust
show that global survival occurs for some λ < 1/�m + 1� and hence λg < 1/
�m + 1�. By Proposition 2.5 we may assume that 1/�m + 1� ≤ 2√d. For the
case of a degenerate distribution we need only show global survival for all
λ > 1/�m+ 1� and we may assume 1/�m+1� < 2√d (and, indeed, this assump-
tion will hold since m = d > 1!).
We consider the branching random walk on a Galton–Watson tree and let

Xl�n be the number of sites at generation n which can be reached from �O�0�
by an infection trail of length precisely l which does not go below generation n
at any point (or above generation 0!). Unlike in the proof of Lemma 3.1 where
Xn was defined for a fixed G (which was subsequently found embedded in
a random graph), the random variable Xl�n is defined on the space of pairs
�T�η� described in Section 1; that is, there is just one random variable Xl�n

for a given offspring distribution f.
Since each site can be regarded as the root of a new Galton–Watson tree,

with different sites giving rise to independent trees, we see that �Xkl�kn�∞k=0
dominates a branching process with offspring distribution equal to the dis-
tribution of Xl�n. It is crucial that Xl�n counts sites, not infections, since two
infections at the same site do not give rise to independent offspring; the (ran-
dom) trees below the two infections will not be independent. The fact that we
have to count sites, rather than infections, is a significant complication. If we
can show that for some l� n > 0, E⊗Xl�n > 1, then with positive probability
there are infinite infection trails from the root at time 0, which implies global
survival.
It is convenient to construct the measure GW by starting with a rooted tree

T′d in which every vertex has d children and then, for each vertex v, removing
a random subset of the edges leading away from the root so that the size of the
remaining subset has the offspring distribution and so that the subsets are
exchangeable and are independent of each other. Let E′ denote the random set
of edges not removed. The component T containing O in the subgraph with
edge set E′ then has law GW.
Consider one of the dn sites, v, at generation n in T′d. We have that

E⊗Xl�n = dnP⊗�Xl�v > 0��(3.9)

where Xl�v is equal to the number of infection trails of length l, starting from
�O�0� and ending at v lying entirely between generations 0 and n of T. Note
that when v is not itself a vertex of T the random variable Xl�v is zero.
Our first calculation is to estimate E⊗Xl�v, for the same choice of l and n

as in Lemma 3.3 (see remarks preceding this lemma for motivation), that is,
l = �km� + k and n = �km� − k, for some large k to be determined.
In order to choose a valid walk of length �km� + k to generation �km� − k

we must first choose �km� of the steps to be down, with the restriction that
we stay between generations 0 and n. If we impose an additional condition
(which we will use later), namely condition (iii) of Lemma 3.3, the number
of ways to choose these down steps is precisely the H�k� ε� of Lemma 3.3.
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Let us fix ε > 0 so that H�k� ε� = H�k� satisfies (3.2). Now for each of these
H�k� choices, there are d�km� valid walks in T′d. Let us fix one of the H�k�
choices and pick one of these d�km� walks uniformly at random by choosing,
for each down step, one of the d possibilities with equal probability. What is
the probability that this random walk consists entirely of edges lying in the
random tree T? At any up step, the walk must remain in T if it has remained
in T before that point. The probability that the ith down step of the random
walk lies in T (or survives the edge deletion process) conditional on survival
so far is equal to the expectation of the conditional survival probability given
the first i− 1 down steps on the event of survival so far. A sufficient statistic
for this is j, the number of children of the present vertex visited up to that
point. The conditional probability, µj, is the conditional expectation of the
proportion of children of the present vertex which lie in T, given that the
first j samples do. Since µj is increasing in j with µ0 =m/d, the conditional
survival probability at each down step, given survival so far, is at least m/d.
Hence the probability our random walk lies in T is at least

�m/d��km��

However, for a nondegenerate offspring distribution we can improve on this.
Whenever a U is followed immediately by a D, j is guaranteed to be at least
1. For each of theH�k� walks on Z, UD occurs are least εk times [by condition
(iii) of Lemma 3.3], so the probability our random walks lies in T is at least

�m/d��km�αk�(3.10)

where α = �µ1/µ0�ε and, for a nondegenerate distribution, α > 1. There-
fore the expected number of walks from O to generation n, lying entirely
within generations 0 to n of T, is at least H�k�d�km��m/d��km�αk, that is,
H�k�m�km�αk. Since the d�km�−k vertices at level n = �km�−k are equivalent,
we see that the expected number of valid walks to the particular vertex v is
at least H�k�m�km�αk/d�km�−k. Hence

E⊗Xl�v≥
λlH�k�m�km�αk

d�km�−k
≥
(
λ�m+1�α1/�m+1�+o�1�)k�m+1�

dk�m−1�
as k→∞�(3.11)

It follows that, for any λ > 1/�α1/�m+1��m+1��, dnE⊗Xl�v tends to infinity expo-
nentially fast as k→∞; furthermore, for a nontrivial distribution, α > 1. Of
course, we wish to show that this holds with E⊗Xl�v replaced by P⊗�Xl�v > 0�.
In order to estimate P⊗�Xl�v > 0� in terms of E⊗Xl�v we shall obtain bounds

on E⊗X
2
l�v. The quantity X

2
l�v counts ordered pairs of infection trails from

�O�0� to v. Given two such infection trails, t1 and t2, of length l, there will
be some i (0 ≤ i ≤ l) such that the first i birth arrows of t1 are identical to
the first i birth arrows of t2 and subsequently all birth arrows are distinct; in
this case we say that their last common infection is after i steps.
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Letting Yi
l�v denote the number of pairs �t1� t2� of valid infection trails to v

whose last common infection is after i steps, we certainly have

E⊗X
2
l�v =

n∑
i=0

E⊗�Yi
l�v��(3.12)

We can count E⊗Y
i
l�v by

E⊗Y
i
l�v=

∑
e1···ei

λiPGW�e1� � � � � ei ∈ T�

× ∑
ei+1���el
e′i+1���e

′
l

PGW�ei+1� � � � � el� e′i+1� � � � � e′l ∈ T � e1� � � � � ei ∈ T�

×γei+1e′i+1�λl−i−1�2�

(3.13)

the first sum is over all possible choices for the first i edges, e1� � � � � ei, of
a valid walk from O to v; the second sum is over pairs of choices for the
remaining l − i edges. The quantity γei+1e′i+1 counts the expected number of
pairs of distinct birth arrows �a� a′�, with a along ei+1 in the direction of the
walk and a′ likewise along e′i+1, before a single infection (at the common initial
vertex of these two edges) dies. An easy Poisson process calculation gives

γei+1e′i+1 =
{
λ2� if ei+1 = e′i+1�
2λ2� if ei+1 "= e′i+1.

By using 2λ2 as a bound on γ, and more significantly assuming that
e′i+1 · · · e′l lie in T if all the other edges do, we can replace (3.13) with an
upper bound on E⊗Y

i
l�v,

E⊗Y
i
l�v ≤

∑
e1···ei

λiPGW�e1� � � � � ei ∈ T�

× ∑
ei+1···el

PGW�ei+1� � � � � el ∈ T � e1� � � � � ei ∈ T�2λ2�λl−i−1�2N�ei��

where N�ei� is the number of possible choices for e′i+1� � � � � e′l. From any given
vertex (in particular from the end vertex of ei) the number of walks of length
l− i which end at v is at most 2l−id�l−i�/2; one can see this from the fact that
there are at most two choices for whether each step goes away from, or toward,
v, then at most d choices to be made for each of the [at most �l − i�/2] steps
away from v. Therefore,

E⊗Y
i
l� v ≤

∑
e1···el

2λ2l−iPGW�e1� � � � � el ∈ T��2
√
d�l−i

= ∑
e1···el

2PGW�e1� � � � � el ∈ T�λl�2
√
d�l−iλl−i

= 2�2
√
dλ�l−iE⊗Xl�v�

(3.14)
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Combining (3.12) with (3.14) gives the bound on E⊗X
2
l�v of

E⊗X
2
l�v ≤ E⊗Xl�v

l∑
i=0
2�2
√
dλ�l−i

≤ 2

1− 2√dλE⊗Xl�v�

(3.15)

the last inequality holding provided λ < 1/2
√
d. We shall apply (3.15) in the

case λ ∈ I, where I = (
1/�α1/�m+1��m+ 1���1/2√d); see the remark following

(3.11) for an explanation of the lower limit of I. Note that I is nonempty [by
our assumption at the start of this proof that 1/�m + 1� ≤ 1/2

√
d, that for

the degenerate case 1/�m+ 1� < 1/2√d and that for the nondegenerate case
α > 1]. Note also that it is sufficient to prove global survival for λ ∈ I.
Letting c = 2

1−2√dλ (for λ ∈ I), (3.15) implies that

P⊗�Xl�v > 0� ≥
E⊗Xl�v

c
�(3.16)

Combining this with (3.9) and (3.11) we obtain

E⊗Xl�n = dnP⊗�Xl�v > 0�
≥ dn

�λ�m+ 1�α1/�m+1� + o�1��k�m+1�
cdk�m−1�

as k→∞�
(3.17)

Since λ ∈ I (and recalling that n = �km� − k) the r.h.s. of (3.17) tends to
infinity as k → ∞, so for some choice of k we do indeed obtain E⊗Xl�n > 1;
this implies, by the remarks in the third paragraph of this proof, that one has
global survival, as required. ✷

Before we are in a position to prove Theorem 2.1 we need four further
lemmas.

Lemma 3.4. Let ηt be a branching random walk with parameter λ and
bounded starting state g, on a treeT of bounded degree. LetW be a nonnegative
function on the vertices of T and suppose that

∑
v∈V�T�W�v� <∞. Then for all

t, Ɛg
∑
W�v�ηt�v� <∞. If

λ
∑
w∼v

W�w� ≤W�v�(3.18)

for all v, where ∼ denotes the neighbor relation, thenXt 
=
∑

v∈V�T�W�v�ηt�v�
is a supermartingale. If furthermore,

λ
∑
w∼v

W�w� ≤ �1− δ�W�v�(3.19)

for some δ > 0, then ƐXt → 0 exponentially fast and Xt → 0 almost surely.
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Proof. Suppose that (3.18) holds. For any g satisfying Ɛg
∑
W�v�ηt�v� <

∞ (for all t),

d

dt
ƐgXt

∣∣∣
t=0
=∑

v

W�v�
[( ∑

w
w∼v
λg�w�

)
− g�v�

]
=∑

v

g�v�
[( ∑

w
w∼v
λW�w�

)
−W�v�

]
≤ 0�

(3.20)

The inequality follows from (3.18). To prove the first equality, which exchanges
the order of an infinite sum and a derivative, first approximate the branch-
ing random walk by a process confined to the state space �0�1� � � � � n�V, as
described in the Introduction; for this process the Hille–Yosida theorem (see
[8]) gives the derivative ofXt for general t; this derivative converges uniformly
(as n→∞) on compact intervals, to the required value.
The above inequality shows thatXt is a supermartingale: one uses the fact

that for any t one has
∑

vW�v�ηt�v� < ∞ almost surely so (3.20) holds with
g replaced by ηs.
Similarly if (3.19) holds, one has d

dt
ƐgXt ≤ −δƐgXt for any t so one has

ƐXt → ∞ exponentially fast. Furthermore one has (much as above) that
�1− δ�−tXt is a supermartingale, so an application of the martingale con-
vergence theorem implies that Xt → 0 almost surely. ✷

Lemma 3.5. Let ηt be a branching random walk on a tree T of bounded
degree. Then

Ɛδ0
∑

v∈V�T�
ηt�v� = Ɛ1ηt�0��

where 1 is the constant function 1.

Proof. For each path from w to v of length k, the expected number of off-
spring located at v at time t from a single particle at w at time 0 is �λt�ke−t/k!.
Since this is symmetric in w and v, we see that Ɛδwηt�v� = Ɛδvηt�w�. Thus by
superposition (see discussion following the definition of the branching random
walk in Section 1),

Ɛ1ηt�0� =
∑

v∈V�T�
Ɛδvηt�0� =

∑
v∈V�T�

Ɛδ0ηt�v�� ✷

Note that this generalizes to give a duality relation which holds for any
(deterministic, bounded) starting states, η0� ξ0,

Ɛη0

(∑
v

ηt�v�ξ0�v�
)
= Ɛξ0

(∑
v

ξt�v�η0�v�
)
�

The next lemma defines the particular weighting function W that we shall
use. AlthoughWmay appear at first to be somewhat opaque, it can be regarded
as a refinement of the simpler weighting function WO�v� = �1/√d�dist�O�v�.
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WO is sufficient to prove a weaker version of Theorem 2.1(ii), valid when
m <

√
d. This would still provide a class of Galton–Watson trees for which

λg = λl, but it would be insufficient for our proof of Theorem 2.3.

Lemma 3.6. On a rooted tree T, let w ≥ v denote that w is a descendant
of (or equal to) v. Define

L�v� 
= ∑
w≥v

d−dist�v�w�−1/22−dist�v�w�−1�

Define

W�v� 
= ∏
0<w≤v

L�w�

with W�0� = 1. Then, provided no vertex of T has more than d children (in
particular, almost surely-GWf, if f has maximum d), W satisfies (3.18) with
λ = 1/�2√d�.

Proof. Define S�v� = ∑
v→w L�w�, where the sum is over children of v.

From the definitions of L and S, we see that for any v ∈ V�T�,

L�v� = 1

2
√
d
+ ∑

v→w

∑
y≥w

d−dist�y�w�−3/22−dist�y�w�−2

= 1

2
√
d
+ S�v�

2d
�

Observe that L�v� ≤∑∞
n=0 d

nd−n−1/22−n−1 = d−1/2 and hence that S�v� ≤ √d.
The function φ�x� 
= �2√d − x�−1 is convex on #0�√d� and hence bounded
above by its chord,

φ�0� + x√
d

(
φ�
√
d� −φ�0�) = 1

2
√
d
+ x

2d
�

Hence

1

2
√
d−S�v� ≤

1

2
√
d
+ S�v�

2d
= L�v��(3.21)

Let y be any vertex of T with a child v and let w1� � � � �wr be the children of
v. From (3.21), we then see that

W�y�
W�v� =

1
L�v� ≤ 2

√
d−S�v� = 2

√
d−

r∑
j=1

W�wr�
W�v� �

Multiplying through by W�v�/�2√d� then establishes (3.18). ✷

Lemma 3.6 is sufficient to show that for any tree of maximum degree at
most d, λl ≥ 1/�2√d�. However, in order to apply Lemma 3.4 to show that
λg ≥ 1/�2

√
d� we need to know that

∑
vW�v� < ∞; the fact that this holds
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for Galton–Watson trees, under certain conditions, is the content of the next
lemma.

Lemma 3.7. Let m′ be the size-biased mean of the offspring distribution;
let W be as in the statement of Lemma 3.6. When

m

(
1+ m′

d

)
< 2

√
d

then
∑

v∈V�T�W�v� <∞ almost surely-GW. In particular, the conclusion holds
eventually for any family of offspring distributions with m ≤ �2 − ε�√d and
m′ = o�d� as d→∞.

Proof. As described in the proof of Proposition 2.6, it is convenient to
start with T′d and delete edges at random, leaving an edge set E

′ in such a
way that the component, T, containing the origin has law GW.
To show that

∑
vW�v� is almost surely finite, it suffices to show it has finite

expectation, which in turn will follow from an exponential bound

EGW
∑

v
dist�0�v�=n
W�v� ≤ e−cn�

From the construction of GW on the d-ary tree, we see that

EGW
∑

v
dist�0�v�=n
W�v� = dnEGW#W�vn�1�vn ∈ T���(3.22)

where vn is the leftmost vertex in generation n. Note that the value of W on
vertices not in T need not be defined for this to make sense.
To bound this expectation above, we define a function L�n� that will serve

as an upper bound for L�vn�. Let D�n� be the number of children of vn, that
is, the number of edges adjacent to vn in E′ that lead away from the root. Let
D�2��n� be the number of grandchildren of vn that are not children of vn+1.
Define

L�n� = 1

2
√
d
+ 1
4d3/2

�D�n� + 1� + 1
4d5/2

D�2��n��

To see that L�n� is an upper bound for L�vn�, note that L�n� = L�vn� when
E′ contains every edge below vn+1 and every edge below every grandchild of v.
The value of L�n� depends on the presence or absence of edges leading out

of vn and out of the children of vn other than vn+1, where edges are directed
away from the root. The presence or absence of different edges are independent
unless the edges lead out of the same vertex. If n "= m, the variables L�n�
and L�m� are measurable with respect to edges leading out of disjoint sets of
vertices, hence the variables �L�n�� are independent. Similar reasoning shows
they are conditionally independent given �vN ∈ T� for anyN > n. Recall that

EGWW�vn�1�vN∈T� ≤ EGW1�vN∈T�
n∏
j=1

L�n�=m
n

dn

n∏
j=1

EGW�L�n��vN∈T��
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Write

EGW�L�n� �vN ∈ T� =
1

2
√
d
+ 1
4d3/2

EGW�D�n� + 1 �vN ∈ T�

+ 1
4d5/2

EGW�D�2��n� �vN ∈ T��
It is not hard to see that conditioning on vN ∈ T yields a random subtree in
which vertices 0� v1� � � � � vN−1 have numbers of offspring that are independent
picks from the size-biasing of the offspring distribution and all other vertices
have offspring picked from the (not size-biased) offspring distribution. Letting
m′ denote the mean of the size-biased distribution, this gives

EGW�L�n� �vN ∈ T� =
1

2
√
d
+ 1+m

′

4d3/2
+ m�m′ − 1�

4d5/2
�

and hence

EGWW�vn�1�vN ∈ T� ≤
mn

dn

n∏
j=1

1

2
√
d

(
1+ 1+m

′ + �m′ − 1�m/d
2d

)
�

From (3.22) we then have[
EGW

∑
v
dist�0� v�=n

W�v�
]1/n

≤ m

2
√
d

(
1+ m′

d

)
�

Thus the hypothesis (
1+ m′

d

)
m < 2

√
d

implies the exponential decrease of EGW
∑

v
dist�0� v�=nW�v�, which implies the
conclusion of the lemma. ✷

Having proved Proposition 2.5 to Lemma 3.7, the proof of Theorem 2.1 is
now quite short.

Proof of Theorem 2.1. Part (i) follows directly from Proposition 2.5 and
Proposition 2.6, so we need only see how part (ii) follows from the remaining
lemmas. Assume that m�1+m′/d� < 2√d and pick any λ < λl = 1/�2

√
d�. By

Lemma 3.6, the functionW defined therein satisfies (3.19) for some δ > 0. By
Lemma 3.7,

∑
v∈V�T�W�v� <∞ (GW-almost surely), so by Lemma 3.4, for any

bounded starting state g, Xt is a supermartingale converging exponentially
fast to zero. This implies that Ɛ1ηt�0� converges exponentially fast to zero,
which by Lemma 3.5 implies that Ɛδ0

∑
v∈V�T� ηt�v� converges exponentially

fast to zero. This implies, by Borel–Cantelli, that the process started from δ0
dies out almost surely, proving the theorem. ✷

We now turn to the final proof in this section, which proceeds by a careful
path-counting argument.
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Proof of Theorem 2.2. Consider a Galton–Watson tree, T, arising from
an offspring distribution with maximum d, mean m and size-biased mean m′,
wherem ≥ �2−δ�√d,m′ ≥ εd, with ε > 0 arbitrary and δ to be described later.
As in the proof of Proposition 2.6 we obtain T by starting with T′d, removing a
random subset of edges and taking the component containing the root O. Also
much as in that proof, we wish to show that for some λ < λl = 1/�2

√
d� we

have E⊗Xl�n > 1; by the same second moment argument as before it suffices
to show that dnE⊗Xl�v can be made arbitrarily large, for some choice of l�n�,
where v is an arbitrary vertex at generation n of T′d. We have

dnE⊗Xl�v = dnλlPGW�v ∈ T�EGW�Wl�v�v ∈ T�(3.23)

=mnλlEGW�Wl�v�v ∈ T��(3.24)

where Wl�v is the number of walks of length l, from O to v, within T, which
do not go below generation n.
It will be convenient to obtain a lower bound on dnEGW�Wl�v� =

mnEGW �Wl�v�v ∈ T�, for some suitable l. Let O = v0� v1� � � � � vn−1 be the
ancestors of v, and let A�v� be the (random) set consisting of those ancestors
which have at least εd/3 children. As in the proof of Lemma 3.7, when one
conditions on v ∈ T each of the n ancestors of v has offspring with size-biased
distribution, and hence mean number of offspring m′ ≥ εd. Thus with proba-
bility (conditional on v ∈ T) at least ε/3, �A�v�� ≥ εn/3. Now we obtain a lower
bound on EGWWn�1+2δ�� v by considering walks fromO to v which make δn side-
trips of length 2 from distinct ancestors vj ∈ A�v�. (For simplicity we assume
δ is rational and that n is chosen so that δn is an integer.) If �A�v�� ≥ εn/3,
the number of such walks is at least

(
c1n
δn

)�c1d�δn where c1 = ε/3. So we see
that

dnEGWWn�1+2δ�� v ≥mnc1

(
c1n

δn

)
�c1d�δn�(3.25)

Now by standard estimates (see, e.g., [2]) one has(
c1n

δn

)
≥

(
c1
δ

)δn( c1
c1 − δ

)�c1−δ�n 1
2
√
c1n

�(3.26)

Combining (3.25) and (3.26) one has

log
(
dnEGWWn�1+2δ�� v

)
n

≥ logm+ c2/n+ δ log�c1d� + δ log
(
c1
δ

)
+�c1 − δ� log

(
c1

c1 − δ
)
+ �c3 − log n�/2n�

provided nδ is an integer and δ < c1. Hence if m ≥ �2− δ�√d one has

lim sup
n→∞

log
(
dnEGWWn�1+2δ�� v

)
n�1+ 2δ� ≥ φ�δ��(3.27)
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where

φ�δ�= (
log��2− δ�

√
d� + 2δ log �

√
c1d� + δ log�c1/δ�

+ �c1 − δ� log�c1/�c1 − δ��
)/�1+ 2δ��(3.28)

It is easily seen that φ�δ� = log�2√d� + ψ�δ� where ψ�δ� is independent of d
and ψ�0� = 0; ψ′�0� = +∞ since the derivative of δ log�c1/δ� is infinite while
all other contributions are finite. Now (3.27) implies that

lim sup
n→∞

log
(
dnE⊗Xn�1+2δ�� v

)
n�1+ 2δ� ≥ φ�δ� + log λ�

and hence for sufficiently small δ > 0 (independent of d), this limit is strictly
positive for some λ < 1/�2√d�, showing that for such a λ, dnE⊗Xn�1+2δ�� v →∞
as required. ✷

4. Construction of counterexamples. We now turn to consider the
matter of proving Theorem 2.3. If we wish to directly construct a tree of expo-
nential growth on which the branching random walk has only one phase tran-
sition, we have considerable leeway to do so. We might, for example, consider
rooted trees where every vertex has either m or d children, where d > m ≥ 2
and m�1 + m/d� < 2

√
d. If, for every k, the tree contains a vertex all of

whose descendants for k generations have d children, then the tree will have
λl = 1/2

√
d. If, furthermore, vertices with d children are sufficiently rare

(in some sense) in the tree as a whole then also λg = 1/2
√
d, much as in

Theorem 2.1(ii). Now one might hope to show, roughly as follows, that the
contact process on such a tree can have two phase transitions. On any finite
graph the contact process (unlike the branching random walk) dies out for any
parameter value. It seems reasonable to think, therefore, that making finitely
many changes (roughly speaking) to a graph will not alter the contact pro-
cesses critical values. Similarly, if in the graph construction described above,
vertices with d children are sufficiently rare, then the contact processes crit-
ical values should equal (or at least be arbitrarily close to) those for Tm. For
Tm (m ≥ 2) it is known [10, 16, 22] that λ1 and λ2 are distinct.
It does not seem to be an easy matter, however, to make the argument of

the last paragraph rigorous. Indeed, it is an open problem to show that the
addition of a single edge to a graph does not change the contact processes crit-
ical values (although this can be shown in a number of special cases). Instead,
therefore, of pursuing the argument just outlined, we prove Theorem 2.3 in
a more direct fashion, making use of Theorem 2.1 and known bounds on λ1
and λ2.

Proof of Theorem 2.3. Consider a Galton–Watson tree T with offspring
distribution satisfying pc�pd > 0, pc + pd = 1, for some d > c ≥ 2. If c�1 +
c/d� < 2√d then, for pd sufficiently small, Theorem 2.1 implies that λg = λl
for the branching random walk. On the other hand, for the contact process a
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trivial coupling argument gives that on any such tree,

λ1�T� ≤ λ1�T′c� and λ2�T� ≥ λ2�T′d��(4.1)

Hence if c, d, satisfy λ1�T′c� < λ2�T′d� then the contact process on T will
certainly have two phase transitions. Therefore we will establish the theorem
if we can find c, d with c�1+ c/d� < 2√d and λ1�T′c� < λ2�T′d�.
In [16] various bounds are given on λ1 and λ2 for homogeneous trees, Td.

It is not hard to see that the existence of two phase transitions for such trees
(d ≥ 2) implies that the critical values are exactly the same if we consider the
corresponding rooted tree, T′d, in which one vertex has a lower degree than
all the others.
The upper bound on λ1 that we shall use is the simple [16]

λ1�Tc� <
1

c− 1 �(4.2)

The crudest lower bound on λ2�Td� is 1/2
√
d, obtained by comparison with

the branching random walk, and this is not sufficient for our purposes. We
use instead [16]

λ2�Td� ≥
4+ 2/�√d− 1� −

√
8+ 16/�√d− 1� + 4/�√d− 1�2
2�√d− 1� �(4.3)

Denoting the r.h.s. of (4.3) by F�d� we see that

F�d� ∼ 4−√8
2
√
d

as d→∞�(4.4)

Since 4−√8 > 1, this certainly implies that we can find c, d, with both
1

c− 1 < F�d� and
1

c�1+ c/d� >
1

2
√
d
�(4.5)

the first inequality ensures [by (4.1), (4.2) and (4.3)] that λ1�T� < λ2�T�; the
second inequality ensures that, for pd small, λg = λl (GW-almost surely). To
be specific, we may take c = 50 and d = 729. It is easily checked that (4.5)
holds. ✷

To construct a tree T satisfying Theorem 2.4, we will again consider rooted
trees in which every vertex has either c children or d children; to be specific,
we take c = 2 and d = 100. Before stating precisely what tree we shall use
and proving the required properties, we explain the key ideas.
Consider Th

d, the finite rooted tree of height h in which every vertex—other
than those in generation h—has d children. The contact process on any finite
graph eventually dies out, but the length of time for which it survives on Th

d is
closely related to its behavior on the corresponding infinite tree, Td. Roughly
speaking, if λ < λ2�Td� then the process should survive for a time which is
at most linear in the height h. On the other hand, if λ > λ2�Td� then the
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process on Th
d has a significant probability of survival for a time which is

doubly exponential in h.
Now suppose that T—all of whose vertices have either 2 children or 100

children—contains copies of Th
100 for arbitrarily large h and that these sub-

graphs are fairly sparse. Then, for λ > λ2�T100�, the process will survive for
an extremely long time on the copies of Th

100 for h large; this gives the process
many chances to spread from one copy of Th

100 to another and thereby for local
survival to occur. On the other hand, if λ < λ2�T100�, then the process dies out
on each Th

d in a linear time; since most vertices have 2 children it then behaves
much as it would on T2. However, λ2�T100� < λ1�T2� so for λ < λ2�T100� the
process does not even survive globally.
We now turn to the matter of making these ideas precise. We begin by

quoting a theorem from [23] about the survival of the process on finite trees.

Theorem 4.1. Let d ≥ 2, a < 1, λ > λ2�Td�. Then there exists p > 0, c > 0,
α > 1 so that, for the contact process on Th

d starting from a single infection at
the root, with probability at least p the process survives for time at least

cα�da�
h

� ✷

Proof of Theorem 2.4. Let T be the rooted tree in which every vertex
has either 2 children or 100 children in the following way. Every vertex in the
same generation has the same number of children. If a vertex is in generation
2hn+k for some h ≥ 10, n ≥ 1, 0 ≤ k < h, then it has 100 children; otherwise
it has 2 children. Note that, roughly speaking, for each h ≥ 10, this means
that every 2h generations there are h successive generations with 100 children
per vertex.
First, we show that if λ < λ2�T100� then the contact process does not survive

globally on T. An upper bound for the number of generations up to level 2h in
which vertices have 100 children each is

�h−1�+�h−2�2+�h−3�22+�h−4�23+···+10�2h−11

≤10�2h−11�1+2�2−1+3�2−2+4�2−3+···+�h−10��2−�h−11��
≤10�2h−9�

(4.6)

Now, for the contact process on T100, with parameter λ < λ2�T100�, starting
with a single infection at the root, the probability that a fixed vertex at gen-
eration l is ever infected is at most �1/10�l [7]. Therefore by a trivial coupling,
the probability that a particular vertex of T at level 2h is ever infected is at
most �1/10�2h . However, by (4.6) the number of vertices of T at level 2h is at
most

22
h

(
100
2

)10�2h−9
=

(
5010/2

9
�2
)2h

≤ �2�16�2h �
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Therefore the probability that any of the vertices at level 2h is ever infected is
at most �2�16/10�2h which tends to 0 as h→ ∞; hence, with probability one,
the infection does not reach arbitrarily deep levels, and this implies global
nonsurvival.
Now suppose that λ > λ2�T100�. We must show that local survival occurs for

the contact process on T. Take constants p > 0, c > 0 and α > 1 (which depend
on λ) as in the statement of Theorem 4.1. Now choose further constants as
follows. Choose N such that �1 − p2/8�N < 1/2. Let δ = e−1�1 − e−λ�; note
that if a vertex v is infected at time t and w is a neighboring vertex, then
the probability (conditional on �t) that w is infected at time t + 1 is at least
δ; we will also need the (more trivial) fact that δ is a lower bound on the
conditional probability that v is still infected at time t+1. Now chooseH ≥ 10
so that 22

H ≥N and

(
1− δN�2H+H�

)⌊cα99H/�2H+H�⌋
≤ p

2
�(4.7)

Note that exp
( − δN�2

H+H�⌊cα99H/�2H +H�⌋) is an upper bound for the left-
hand side of this inequality, and (since 99 > 2) this → 0 as H→∞.
Let us define another rooted tree T′ as follows. If a vertex of T′ is in gen-

eration 2Hn+k for some n ≥ 0, 0 ≤ k < H, then it has 100 children; all other
vertices have 2 children. Note that T′ implicitly depends on the choice of λ
(via H) and also that T contains a subgraph isomorphic to T′.
We shall show the following for the contact process on T′ by induction on

j. For any j ≥ 0, starting from a single infection at the root, with probability
ρ = p2/8 the origin is infected at some time after 2j�2H + H�. This will
establish that on T′, and hence on T, the process survives locally.
The result trivially holds for j = 0. Now let us fix some j > 0 and suppose

the result holds for smaller values.
Let El be the event that at time l�2H +H� some vertex at generation H

or above is infected, and let E = ⋂L
l=0 El where L = �cα99H/�2H +H��. By

(4.1) ��E� ≥ p. Let v1� � � � � vN beN distinct vertices at generation 2H, chosen
arbitrarily in advance; note that N such exist by choice of H. Let v be any
vertex within distance H of the root. Note that the distance from v to any
given vi is at most 2H + H. So for any vi, the event Gi that there is an
infection trail from �v� t� to �vi� t+ �2H +H�� has probability at least δ2H+H.
The events �Gi�Ni=1 are monotone increasing and hence positively correlated
(see [8]). Therefore if v is infected at time t then, with probability (conditional
on �t) at least δN�2

H+H�, v1� � � � � vN are all infected [via infection trails from
�v� t�] at time t+ �2H +H�.
For simplicity, let �̃l denote �l�2H+H�, the σ-field generated by the process

up to time l�2H+H�; letAl be the event that v1� � � � � vN are all infected at time
l�2H +H�. Then Al is �̃l-measurable and ��Al+1 � �̃l� ≥ δN�2

H+H� on E, for
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0 ≤ l ≤ L. This implies (with a little care) that

�

( L⋂
l=0
Ac
l+1

)
≤ �1− ��E�� +

(
1− δN�2H+H�

)L+1
≤ 1− p/2�

(4.8)

that is,

�

(L+1⋃
l=1

Al

)
≥ p/2�

Now let l0 be the least l ≥ 1 such that Al occurs (if there is such). Each
vi is at the top of a copy of T′ so, suppressing infections outside each of
theseN subtrees, we see by the induction hypothesis that, conditional on �̃l0

,
each vi has probability at least ρ of infection at some time at least l0�2H +
H� + 2�j− 1��2H +H�, with each vi behaving independently in this respect.
So the (nonconditional) probability that some vi is infected at time beyond
�2j− 1��2H +H� is at least

�

(L+1⋃
l=1

Al

)
�1− �1− ρ�N� ≥ p/4�(4.9)

the inequality following from (4.8) and the choice of N.
So, if we let

t0 = inf�t ≥ �2j− 1��2H +H�
 some vi is infected at time t��
then ��t0 < ∞� ≥ p/4. On this event let i0 be the least i with vi infected at
time t0. Conditional on t0 <∞, with probability p the copy of TH

100 which has
vi0 as its root remains infected until time t0 + cα99

H
. Letting this event play

the same role as E above, one can see that if this happens one has essentially
L independent opportunities to reinfect the origin, each with probability δ2

H+H

of success. Exactly as in the proof of (4.8), one obtains that, conditional on the
event t0 <∞, the probability that O is infected at time beyond t0 + �2H +H�
is at least p/2. Hence the (non-conditional) probability that O is infected at
time beyond 2j�2H +H� is at least �p/4��p/2� = ρ; as required. ✷

We remark that the overall scheme of the last part of this proof was inspired
by the proof of Proposition 1 in [19].

5. Conclusion and open problems. Although we have found that the
contact process and branching random walk are not as well behaved as
expected on general graphs, it is natural to try to prove positive results for
a more restricted class of graphs. One reasonable class to consider is that of
the quasi-transitive graphs. A graph is said to be transitive if the automor-
phism group acts transitively on the set of vertices (i.e., has only one orbit);
it is said to be quasi-transitive if the action of the automorphism group has
only finitely many orbits. These concepts often arise in the context of other
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processes. For example it is now well known (and follows from the proofs of
[3]) that, for percolation on a quasi-transitive amenable graph, there can be
at most one infinite cluster.
The example exhibited to prove Theorem 2.4 is not quasi-transitive,

although it is as well behaved as possible without being so: it is spherically
symmetric, non-amenable, and of bounded degree, indeed with every vertex
having either 2 children or 100.
Since processes on quasi-transitive graphs are often better behaved than

on more general graphs, we do not claim to be the first to make the following
conjecture. It is a more restricted version of the conjectures disproved in this
paper.

Conjecture 5.1. For a quasi-transitive connected infinite locally finite
(and hence bounded degree) graph G, the following are equivalent:

(i) G is nonamenable.
(ii) λ1�G� < λ2�G�.
(iii) λg�G� < λl�G�.

For the contact process the best result of this kind in one direction is in
[22], which gives a class of trees (and treelike graphs), isotropic block trees, for
which λ1 < λ2; the proof is easily adapted to the branching random walk (with
some simplifications in the preliminary lemmas). However this class does not
even include all quasi-transitive nonamenable trees. In the other direction
even less is known. Results of Bezuidenhout and Grimmett [1] imply that
λ1 = λ2 for Zd and could no doubt be adapted to certain other lattices. Their
proofs are rather hard, but show a good deal more. It would be very interesting
to find a simpler proof of λ1 = λ2 that could be adapted to a general class of
graphs.
Of course Galton–Watson trees, although widely studied, are far from being

quasi-transitive. The following question, which originally motivated the work
of this paper, remains open.

Problem 5.2. Is there a bounded offspring distribution, with mean m > 1,
for which λ1 = λ2?

Wemake a conjecture about one further problem, of a rather different flavor,
to which we referred prior to the proof of Theorem 2.4.

Conjecture 5.3. Suppose that G = �V�E� is a connected locally finite
graph, and let G′ = �V�E ∪ �e�� be a graph with the same vertex set and one
additional edge. Then λ1�G� = λ1�G′� and λ2�G� = λ2�G′�.

Note that this conjecture is blatantly false with the contact process’s crit-
ical values replaced by those for the branching random walk, but then the
branching random walk, unlike the contact process, can survive on a finite
graph.
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