
The Annals of Probability
2001, Vol. 29, No. 4, 1435–1450

BOOTSTRAPPING THE STUDENT t-STATISTIC

By David M. Mason1 and Qi-Man Shao 2

University of Delaware and University of Oregon

LetX1� � � � �Xn�n ≥ 1, be independent, identically distributed random
variables and consider the Student t-statistic Tn based upon these random
variables. Giné, Götze and Mason (1997) proved that Tn converges in dis-
tribution to a standard normal random variable if and only if X is in the
domain of attraction of a normal random variable and EX = 0. We shall
show that roughly the same holds true for the bootstrapped Student t-
statistic T∗

n . In the process we shall disclose all the possible subsequential
limiting laws of T∗

n� The proofs introduce a number of amusing tricks that
may be of independent interest.

1. Introduction and statement of main result. Let X� X1� X2� � � � �
be independent, nondegenerate random variables with common distribution
function F� For each integer n ≥ 2� let

Fn�x� = n−1
n∑

i=1
1�Xi ≤ x	� x ∈ R�

Xn = n−1
n∑

i=1
Xi

and

s2n =
∑n

i=1�Xi −Xn	2
n− 1

�

denote the empirical distribution function, sample mean and sample variance,
respectively, based upon X1� � � � �Xn� Consider the Student t-statistic

Tn =
√
n Xn

sn
�(1.1)

Recently Giné, Götze and Mason [9] solved the question concerning when the
Student t-statistic is asymptotically distributed as a standard normal random
variable Z� They showed that

� �Tn� → � �Z� as n → ∞� if and only if EX = 0 and X ∈ DN�(1.2)

where for any random variableY� � �Y� denotes its law andX ∈ DN signifies
that X is in the domain of attraction of a nondegenerate normal random
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variable. The latter means that there exist sequences of norming and centering
constants �an	n≥1 and �bn	n≥1 such that

�

(
an

n∑
i=1

Xi − bn

)
→ � �Z� as n → ∞�(1.3)

We shall prove that roughly the same holds for the bootstrapped version of
Tn� For any integer m ≥ 2, conditioned on Fn, sample X∗

1� � � � �X
∗
m i.i.d. Fn

and form the bootstrapped mean and sample variance

X
∗
n�m = m−1

m∑
i=1

X∗
i and s∗2n�m =

m∑
i=1

�X∗
i −X

∗
n�m	2/�m− 1��(1.4)

Let� ∗
n denote the conditional law givenX1� � � � �Xn� For a sequence of random

variables Y�Y1�Y2� � � � �

� ∗
n �Yn� →P � �Y��(1.5)

shall mean that, with probability 1� for every subsequence �n′
i	i≥1 of �n	n≥1

there is a subsequence �nl	l≥1 of �n′
i	i≥1 such that almost surely

� ∗
nl
�Ynl

� → � �Y� as l → ∞�

Introduce the condition on a sequence of positive integers �mn	n≥1 that for
all n large enough

λ1 ≤ mn/n ≤ λ2�(1.6)

for some constants 0 < λ1 < λ2 < ∞� Assuming (1.6), Giné and Zinn [10]
proved that there exists a sequence of positive norming constants �γn	n≥1 for
which

� ∗
n


√

mn

{
X

∗
n�mn

−Xn

}
γn


 →P � �Z� if and only if X ∈ DN�(1.7)

Shortly afterward, by borrowing an idea of theirs, S. Csörgő and Mason [6]
showed similarly that whenever (1.6) is satisfied,

� ∗
n


√

mn

{
X

∗
n�mn

−Xn

}
sn


 →P � �Z� if and only if X ∈ DN�(1.8)

Following close after, Hall [11] obtained a result that contains both (1.7) and
(1.8). We shall discuss his result later on in Section 3. Given the Giné and
Zinn [10] and S. Csörgő and Mason [6] bootstrap results (1.7) and (1.8), and in
light of the Giné, Götze and Mason [9] result (1.2) for the Student t-statistic,
it is natural to consider the question as to when the bootstrapped Student
t-statistic

T∗
n�m =

√
m

{
X

∗
n�m −Xn

}
s∗n�m

�(1.9)

is asymptotically standard normal. This is our main result.
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Theorem 1.1. Whenever �1�6� holds,
� ∗

n

(
T∗

n�mn

)
→P � �Z� if and only if X ∈ DN�(1.10)

Moreover,

� ∗
n

(
T∗

n�mn

)
→ � �Z� as n → ∞ a.s., if and only if EX2 < ∞�(1.11)

In the process of proving Theorem 1.1 we shall, in fact, describe all the
possible subsequential laws of

� ∗
n


√

mn

{
X

∗
n�mn

−Xn

}
sn


 and � ∗

n

(
T∗

n�m

)
�(1.12)

Like the proofs of (1.2) and (1.8), that of Theorem 1.1 will hinge upon the fact
due to O’Brien [13] that for a nondegenerate random variable X� X ∈ DN if
and only if

max
1≤i≤n

X2
i∑n

i=1X
2
i

→P 0 as n → ∞�(1.13)

The proof of Theorem 1.1 is given in Section 2 and supplementary results
and remarks are detailed in Section 3.

2. Proofs. Set

K∗
n�mn

=
mn

{
X

∗
n�mn

−Xn

}
√∑mn

i=1
{
X∗

i −Xn

}2 �(2.1)

By writing

T∗
n�mn

=
mn

{
X

∗
n�mn

−Xn

}
√

mn

mn−1

[∑mn

i=1
{
X∗

i −Xn

}2
−mn

{
X

∗
n�mn

−Xn

}2]

= K∗
n�mn√(

mn −
(
K∗

n�mn

)2)
/�mn − 1�

�

(2.2)

it is easy to verify that for some random variable Y� with probability 1,

� ∗
n′

(
T∗

n′�mn′

)
→ � �Y�(2.3)

along some subsequence �n′	 of �n	 if and only if
� ∗

n′

(
K∗

n′�mn′

)
→ � �Y��(2.4)

Thus to prove Theorem 1.1, it is equivalent to establish:
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Theorem 2.1. Whenever �1�6� holds,
� ∗

n

(
K∗

n�mn

)
→P � �Z� if and only if X ∈ DN�(2.5)

Moreover,

� ∗
n

(
K∗

n�mn

)
→ � �Z� as n → ∞� a.s. if and only if EX2 < ∞�(2.6)

Let

v2n =
n∑

i=1
�Xi −Xn�2�(2.7)

Now X ∈ DN is equivalent to (1.13), which is equivalent to

max
1≤i≤n

(
Xi −Xn

)2
v2n

→P 0 as n → ∞�(2.8)

which, in turn, is equivalent to the existence, with probability 1� for every
subsequence �n′

i	i≥1 of �n	n≥1� a subsequence �nl	l≥1 of �n′
i	i≥1 such that

max
1≤i≤nl

(
Xi −Xnl

)2
v2nl

→ 0 as l → ∞�(2.9)

The equivalence of (1.13) and (2.8) is trivial to see when X is nondegenerate
and EX2 < ∞� When EX2 = ∞, the equivalence follows readily from the fact
that in this case, almost surely,

n−1
(

n∑
i=1

Xi

)2/
n∑

i=1
Xi

2 → 0 as n → ∞�

(See Corollary 4 of Chen and Rubin [5].)
Our aim is to show that along some subsequence �n′	 of �n	 �

� ∗
n′

(
K∗

n′�mn′

)
→ � �Z��(2.10)

if and only if with probability 1

max
1≤i≤n′

(
Xi −Xn′

)2
v2n′

→ 0(2.11)

along �n′	 � which by the above equivalences would complete the proof of The-
orem 2.1. This will be shown to be a consequence of two propositions, which
may be of separate interest.
Consider the statistics

Wn �=
mn∑
i=1

�X∗
i −Xn	/vn and Sn �=

mn∑
i=1

{
X∗

i −Xn

}2
/v2n�(2.12)
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Clearly, for each n ≥ 2�

K∗
n�mn

= Wn√
Sn

�(2.13)

(We define 0/0 �= 0.)

Proposition 2.1. Whenever �1�6� holds� then, with probability 1� the se-
quence of conditional laws

� ∗
n ��Wn�Sn�	(2.14)

is stochastically compact, and each subsequential limit law is of the form

�
{(

W+ σ
√
λZ�S+ λσ2

)}
�(2.15)

with

W =
∞∑
i=1

ai�Ni − λ� −
∞∑
i=1

bi�N′
i − λ��

S =
∞∑
i=1

a2iNi +
∞∑
i=1

b2iN
′
i�

where Z is a standard normal random variable, independent of N1�N
′
1�N2�

N′
2� � � � � a sequence of i.i.d. Poisson mean λ random variables with λ1 ≤ λ ≤ λ2,

and 1 ≥ a1 ≥ a2 ≥ · · · and 1 ≥ b1 ≥ b2 ≥ · · · � are sequences of non-negative
constants satisfying

∞∑
i=1

a2i +
∞∑
i=1

b2i = 1− σ2(2.16)

with 0 ≤ σ ≤ 1�

Proof. The proof will be inferred from the following lemma.

Lemma 2.1. Let 1 ≥ η1�n ≥ · · · ≥ ηn�n ≥ −1, n ≥ 1� be an triangular array
of numbers satisfying

n∑
i=1

ηi�n = 0�(2.17)

n∑
i=1

η2i�n = 1�(2.18)

ηi�n → ai� ηn+1−i�n → −bi as n → ∞�(2.19)
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where 1 ≥ a1 ≥ a2 ≥ · · · � 1 ≥ b1 ≥ b2 ≥ · · · � are nonnegative constants
satisfying for some 0 ≤ σ ≤ 1�

∞∑
i=1

a2i +
∞∑
i=1

b2i = 1− σ2�(2.20)

Now let �mn	n≥1 be a sequence of positive integers such that for some 0 < λ <
∞�

mn/n → λ�(2.21)

Define for each n ≥ 2, i.i.d. random variables Xi�n, i = 1� � � � �mn, such that

P�X1�n ≤ x	 = 1
n
#�i �ηi�n ≤ x	� −∞ < x < ∞�(2.22)

Then as n → ∞�

�

{(
mn∑
i=1

Xi�n�
mn∑
i=1

X2
i�n

)}
→ �

{(
W+ σ

√
λZ�S+ λσ2

)}
�(2.23)

where �W+ σ
√
λZ�S+ λσ2� is as in �2�15��

Proof. Set for n ≥ 1�

�Sn�1� Sn�2� =
(

mn∑
i=1

Xi�n�
mn∑
i=1

X2
i�n

)
�

Notice that EX1�n = 0 and VarX1�n = 1. Furthermore, the sequence
��Sn�1� Sn�2�	n≥1 is infinitesimal because by Markov’s inequality,

max
1≤i≤mn

P��Xi�n� > δ	 = P�X2
1�n > δ2	 = n−1

n∑
i=1

I�η2i�n > δ2� ≤ 1
nδ2

→ 0�

Let µ denote the Lévy measure that places mass

µ�B� = λ
∞∑
i=1

{
δ�ai�a2i ��B� + δ�−bi�b2i ��B�

}

on measurable subsets B of R2� where δc denotes the point measure that
places mass 1 at c� The measure µ is, in fact, a Lévy measure, since∫

R2
min�1� �x�2	d\µ�x� =

∫
R2

�x�2dµ�x� < ∞�

with the choice of norm �x� = max��x1�� �x2�	�
Now in the notation of Araujo and Giné [1],

�

{( ∞∑
i=1

ai�Ni − λ� −
∞∑
i=1

bi�N′
i − λ��

∞∑
i=1

a2i �Ni − λ� +
∞∑
i=1

b2i �N′
i − λ�

)}

=� cPois µ�
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and thus

�
{(

W+ σ
√
λZ�S+ λσ2

)}
= δa ∗N�0�A� ∗ cPois µ�

where a = �0� λ� and

A =
(
λσ2 0
0 0

)
�

See [1] for further explanation of the notation. So (2.23) can be restated as

�

{(
mn∑
i=1

Xi�n�
mn∑
i=1

X2
i�n

)}
→ δa ∗N�0�A� ∗ cPois µ�(2.24)

We shall show (2.24) by an application of the central limit theorem in R2

as, for example, in exercise 9(e) in [1], pages 67–68. [Note that the signs of cn
and c should be changed in part (d) of that exercise.] Toward this end, set for
i = 1� � � � �mn and any δ > 0� Xi�n�δ� = Xi�n� if �Xi�n� ≤ δ, and = 0 otherwise.
(We shall use the choice of αn = 0 in our application of the result stated there.)
To do this we must verify the following steps:
Step 1 � Convergence of the shift �condition (i) of exercise 9�e��. Since the

Xi�n are bound by 1�

an �= E

{(
mn∑
i=1

Xi�n�1��
mn∑
i=1

X2
i�n�1�

)}

= mnE
{(
X1�n�X

2
1�n

)} =
(
0�

mn

n

)
→ �0� λ� = a�

Step 2 � Convergence of the covariance �condition (ii) of exercise 9�e��. Since
EX1�n = 0 and �X1�n� ≤ 1� for all δ > 0�

lim
δ→0

lim sup
n→∞

mn�EX1�n�δ��2 ≤ lim
δ→0

lim sup
n→∞

mn�P
{�X1�n� > δ

} �2
≤ lim

δ→0
lim sup
n→∞

mn

(
1

nδ2

)2

= 0�

Also,

lim
δ→0

lim sup
n→∞

mn�EX3
1�n�δ�� = lim

δ→0
δ lim sup

n→∞
mn

n

n∑
i=1

η2i�nI�ηi�n�≤δ ≤ λ lim
δ→0

δ = 0�

lim
δ→0

lim sup
n→∞

mnEX
4
1�n�δ� = lim

δ→0
δ2 lim sup

n→∞
mn

n

n∑
i=1

η2i�nI�ηi�n�≤δ ≤ λ lim
δ→0

δ2 = 0

and by (2.20),

λσ2 = lim
δ→0

lim sup
n→∞

mnEX
2
1�n�δ� = lim

δ→0
lim sup
n→∞

mn

n

n∑
i=1

η2i�nI�ηi�n�≤δ

= lim
δ→0

lim inf
n→∞ mnEX

2
1�n�δ� = lim

δ→0
lim inf
n→∞

mn

n

n∑
i=1

η2i�nI�ηi�n�≤δ�
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Therefore it follows that the covariance matrix of
∑mn

i=1�Xi�n�δ��X2
i�n�δ�� con-

verges to A as n → ∞ and δ ↘ 0�

Step 3 � Convergence to µ �condition (iii) of exercise 9�e��. Since for all n ≥ 1�
�

{�X1�n�X
2
1�n�

} = n−1∑n
i=1 δ�ηi�n�η

2
i�n�� we see from (2.19) and (2.21) that

mn�
{�X1�n�X

2
1�n�

} ���x� > δ	 →w µ���x� > δ	
for all but a countable number of δ > 0.
This completes the proof of Lemma 2.1. ✷

Denote the order statistics of

�Xi −Xn�
vn

for 1 ≤ i ≤ n�(2.25)

by

η1�n ≥ · · · ≥ ηn�n�(2.26)

Clearly, with probability 1� for every subsequence �n′
i	i≥1 of �n	n≥1 there is

a further subsequence �nl	l≥1 of �n′
i	i≥1 such that for nonnegative constants

1 ≥ a1 ≥ a2 ≥ · · ·, 1 ≥ b1 ≥ b2 ≥ · · · � some λ1 ≤ λ ≤ λ2 and 0 ≤ σ ≤ 1� we have
for each fixed i ≥ 1�

ηi�nl
→ ai, ηnl+1−i�nl

→ −bi� as l → ∞�(2.27)

mnl
/nl → λ� as l → ∞(2.28)

and
∞∑
i=1

a2i +
∞∑
i=1

b2i = 1− σ2�(2.29)

Obviously in the notation of (2.22), conditioned on η1�n� � � � � ηn�n fixed,

�

{(
mn∑
i=1

Xi�n�
mn∑
i=1

X2
i�n

)}
= � ∗

n ��Wn�Sn�	�

Now since Lemma 2.1 obviously holds along subsequences, we can apply it to
conclude that along the subsequence �nl	l≥1

� ∗
nl
��Wnl

�Snl
�	 → �

{(
W+ σ

√
λZ�S+ λσ2

)}
�(2.30)

which is clearly nondegenerate. This completes the proof of Proposition 2.1. ✷

Remark 2.1. The present proof of Proposition 2.1 was suggested to the
authors by Evarist Giné. It replaces a somewhat longer direct proof.
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Proposition 2.2. Let W� S and Z be as in Proposition 2�1� Whenever 0 ≤
σ < 1� for no choice of 0 ≤ τ < ∞ does the possibly extended real valued
random variable

T �= W+ τZ√
S+ τ2

�(2.31)

have a standard normal distribution.

First we require several lemmas.

Lemma 2.2. Let Y be a Poisson random variable with mean λ > 0� Then

E
(�Y− λ�ecY) = �λec − λ� exp (λec − λ

)
�(2.32)

E
(�Y− λ�2ecY) = (�λec − λ�2 + λec

)
exp

(
λec − λ

)
(2.33)

for any real number c.

Proof. The proof is obvious by computation. ✷

Lemma 2.3.

ET2 = 1(2.34)

if and only if

ai = bi for all i = 1�2� � � � �(2.35)

where we assume that an infinite number of ai or bi are not zero in the case
τ = 0�

Proof. Set for i = 1�2� � � � �

c2i−1 = ai, c2i = −bi� Y2i−1 = Ni and Y2i = N′
i�

and write

W =
∞∑
i=1

ci�Yi − λ� and S =
∞∑
i=1

c2iYi�

Using the identity holding for all γ > 0�

∫ ∞

0
e−tγdt = γ−1�
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we have

ET2 =
∫ ∞

0
E

{
�W+ τZ�2e−t�S+τ2�

}
dt

=
∫ ∞

0
E

{
�τ2 +W2�e−t�S+τ2�

}
dt

=
∫ ∞

0
E

{[
τ2 +

∞∑
i=1

c2i �Yi − λ�2

+ ∑
1≤i�=j<∞

cicj�Yi − λ��Yj − λ�
]
exp

(
−tτ2 − t

∞∑
l=1

c2lYl

)}
dt

=
∫ ∞

0
exp

(
−tτ2 + λ

∞∑
l=1

�e−tc2l − 1�
){

τ2 +
∞∑
i=1

c2i�λe−tc
2
i + �λe−tc2i − λ�2	

+ ∑
1≤i�=j<∞

cicj�λe−tc
2
i − λ��λe−tc2j − λ�

}
dt

=
∫ ∞

0
exp

(
−tτ2 + λ

∞∑
l=1

�e−tc2l − 1�
){

τ2 + λ
∞∑
i=1

c2i e
−tc2i

}
dt

+
∫ ∞

0
exp

(
−tτ2 + λ

∞∑
l=1

�e−tc2l − 1�
){

λ2
∞∑
i=1

c2i �e−tc
2
i − 1�2

+λ2 ∑
1≤i�=j<∞

cicj�e−tc
2
i − 1��e−tc2j − 1�

}
dt

= 1+ λ2
∫ ∞

0
exp

(
−tτ2 + λ

∞∑
l=1

�e−tc2l − 1�
){ ∞∑

i=1
ci�e−tc

2
i − 1�

}2

dt �

Thus we see that (2.34) holds if and only if{ ∞∑
i=1

ci�e−tc
2
i − 1�

}2

= 0 for all t ≥ 0�(2.36)

It is easy to see that �2�35� is a sufficient condition for �2�36�. Now if �2�36�
holds, we have

∞∑
i=1

ai�1− e−ta
2
i � =

∞∑
i=1

bi�1− e−tb
2
i �

for all t ≥ 0, which is equivalent to

∞∑
i=1

a2k+1i =
∞∑
i=1

b2k+1i for k = 1�2� � � � �(2.37)
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This implies that

a1 = max
i

�ai� = lim
k→∞

( ∞∑
i=1

a2k+1i

)1/�2k+1�

= lim
k→∞

( ∞∑
i=1

b2k+1i

)1/�2k+1�
= b1�

which together with �2�37� yields
∞∑
i=2

a2k+1i =
∞∑
i=2

b2k+1i for k = 1�2� � � � �(2.38)

Therefore, by recurrence, �2�35� holds. ✷

Lemma 2.4. LetN1�N
′
1�N2�N

′
2� � � � � be a sequence of i.i.d. Poisson random

variables with mean λ, let Z be a standard normal random variable indepen-
dent of this sequence, and let �ai� i ≥ 1	 be a sequence of real numbers with
0 <

∑∞
i=1 a

2
i < ∞� Put

W =
∞∑
i=1

ai�Ni −N′
i�� S =

∞∑
i=1

a2i �Ni +N′
i�

and

T = W+ τZ√
S+ τ2

�

where 0 ≤ τ < 1 and we assume that an infinite number of the ai are not zero
in the case τ = 0� Then

ET4 < EZ4 = 3�(2.39)

Proof. LetE′ denote the conditional expectation given the sequence �Ni+
N′

i	i≥1� Notice that the conditional distribution of eachNi−N′
i givenNi+N′

i

= mi is that of
mi∑
k=1

sk�

where s1� � � � � smi
are i.i.d. random variables with P�s1 = 1	 = P�s1 = −1	 =

1/2. Thus

E′ [Ni −N′
i

]2 = mi

and

E′ [Ni −N′
i

]4 = 3m2
i − 2mi�

One finds then that

E′W = 0� E′ [W2] = S� E′ [W3] = 0
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and

E′ [W4] = 3S2 − 2
∞∑
i=1

a4i �Ni +N′
i� �

Thus

E′
[
�W+ τZ�4

]
= E

′ [
W4]+ 6τ2S+ 3τ4

= 3�S+ τ2�2 − 2
∞∑
i=1

a4i �Ni +N′
i� �

Hence

ET4 = E
{
E′ [T4]}

= 3− 2
∞∑
i=1

a4iE

{
Ni +N′

i

�S+ τ2�2
}
< 3� ✷

Proof of Proposition 2.2. First consider the case when τ = 0� In this
case

T = W√
S
�

which, if it to be a standard normal random variable, it must be formed by ai

and bi for which an infinite ai or bi are not zero: otherwise the event S = 0
would have a positive probability (recall we define 0/0 �= 0)� which says T
cannot be normal. Also, if T is to be standard normal we must have ET2 = 1�
which by Lemma 2.2 forces ai = bi for all i ≥ 1� However, when this happens,
by Lemma 2.3 we have ET4 < 3 = EZ4� which again implies that T cannot
be standard normal.
Nearly the same argument shows that whenever τ > 0� T cannot be stan-

dard normal. This completes the proof of Proposition 2.2. ✷

We now have all the tools necessary to complete Theorem 2.1. Applying
Proposition 2.1, we get that whenever along some subsequence �n′	 of �n	 �

� ∗
n′

(
K∗

n′�mn′

)
→ � �T��(2.40)

for some random variable T, then T is necessarily of the form

T = W+ σ
√
λZ√

S+ λσ2
�(2.41)

where W + σ
√
λZ and S + λσ2 are as in (2.15), (2.16) and (2.16). But by

Proposition 2.2, if T is to be standard normal, we must have σ = 1� which
forces (2.11) to hold. Thus by the arguments indicated in (2.8), (2.9), (2.10)
through (2.11) above,

� ∗
n

(
K∗

n�mn

)
→P � �Z� implies X ∈ DN�
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To go the opposite direction,

X ∈ DN implies � ∗
n

(
K∗

n�mn

)
→P � �Z��(2.42)

note that from (2.9) we have with probability 1 for every subsequence �n′
i	i≥1

of �n	n≥1 there is a subsequence �nl	l≥1 of �n′
i	i≥1 such that

lim
l→∞

max
1≤i≤nl

(
Xi −Xnl

)2
∑n

i=1�Xi −Xnl
	2 = 0�

which in combination with the proof Proposition 2.1 forces all the ai and bi to
be zero, which implies that (2.42) holds.
We now turn to the proof of the second part of Theorem 2.1. First assume

that

� ∗
n

(
K∗

n�mn

)
→ � �Z� as n → ∞�(2.43)

but

lim sup
n→∞

max
1≤i≤n

(
Xi −Xn

)2
∑n

i=1�Xi −Xn	2
= c > 0 a.s.(2.44)

Then we can use the proof of Proposition 2.1 to show that, with probability 1�
along a subsequence �n′	�

� ∗
n′

(
K∗

n′�mn′

)
→ � �Y��(2.45)

where Y is a random variable, which by Proposition 2.2 is not standard nor-
mal. Thus, with probability 1,

max
1≤i≤n

(
Xi −Xn

)2
∑n

i=1�Xi −Xn	2
→ 0 as n → ∞�(2.46)

must hold, which is equivalent to EX2 < ∞ (see [12]).
Now assume that EX2 < ∞, but (2.43) is not satisfied. Then with proba-

bility 1 we can find a subsequence �n′
i	i≥1 of �n	n≥1 such that (2.45) holds,

where Y is a not a standard normal, which by Proposition 2.1 is necessarily
of the form (2.41). Furthermore, by Propositions 2.2 this forces a1 or b1 to be
nonzero, which by the proof of Proposition 2.1 and (2.46) cannot be the case.
Thus we must have (2.43). This completes the proof of Theorem 2.1. ✷

Remark 2.2. The use of the O’Brien [13] result (1.13) could have been
avoided in the proof of Theorem 2.1 by showing via Propositions 2.1 and 2.2
that Theorem 2.1 is equivalent to the S. Csörgő and Mason [6] result (1.8). On
the other hand, we should point out that Proposition 2.1, which is essential
to the proof of Theorem 2.1, can also be used to in combination with (1.13) to
establish (1.8). Moreover, our present proof based upon (1.13) is self-contained.
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3. Supplementary results and remarks. Proposition 2.1, in combina-
tion with the equivalence of (2.3) and (2.4), says that whenever along a sub-
sequence �n′	�

� ∗
n′
(
T∗

n′�n′
) → � �Y��(3.1)

where Y is a nondegenerate random variable, then necessarily Y is of the
form (2.41). Also from Proposition 2.1 we get that whenever

� ∗
n


√

mn

{
X

∗
n�mn

−Xn

}
sn


 → � �Y��(3.2)

along a subsequence �n′	� where Y is a nondegenerate random variable, then
necessarily Y is of the form W+σ

√
λZ as given in (2.15). From this it is easy

to prove the S. Csörgő and Mason [6] result (2.15) using the O’Brien [13] result
(1.13) and the fact W + σ

√
λZ, being infinitely divisible, is standard normal

if and only if W = 0 and σ
√
λ = 1�

The question naturally arises as what nondegenerate random variables Y
are possible for which along the whole sequence �n	, one has

� ∗
n

(
T∗

n�n

) →P � �Y��(3.3)

Hall [11] established the following result closely related to this question:

Theorem (Hall [11]). There exist measurable functions An and Bn of
X1� � � � �Xn such that

� ∗
n

({
X

∗
n�n −Bn

}
/An

)
→P � �Y�

where Y is a nondegenerate random variable if and only if

1−F is slowly varying at ∞ and

P�X < −x	/P��X� > x	 → 0 as x → ∞�
(3.4)

or

F is slowly varying at −∞ and

P�X > x	/P��X� > x	 → 0 as x → ∞�
(3.5)

or

X ∈ DN�(3.6)

Moreover, An and Bn can be chosen so that in situation �3�4�� Y is Poisson
with mean 1� in situation �3�5�� −Y is Poisson with mean 1� and in situation
�3�6�� Y is standard normal.

In particular, from Hall’s theorem one can show that the only limiting ran-
dom variables, which are possible in (3.2) along the entire sequence �n	� are
Z� Y or −Y, where Y is Poisson with mean 1� and each of these cases is
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achieved. However, whenever (3.4) or (3.5) holds, (3.3) cannot be satisfied. To
see this, note, for instance, that if we are in situation (3.4), then necessarily

η1�n = max
1≤i≤n

Xi −Xn√∑n
i=1�Xi −Xn	2

→P 1,

so that ηi+1�n →P 0 and ηn+1−i�n →P 0 for i ≥ 1. (See, e.g., Section 4.5 of [8].)
Then proceeding as in the proof of Proposition 2.1 we get that

� ∗
n ��Wn�Sn�	 →P � ��N1 − 1�N1�	 �

But since �N1 − 1� /√N1 = −∞� with probability e−1, we conclude that (3.3)
cannot hold for any real valued random variable Y. In view of this and Hall’s
result, we conjecture the following:

Theorem (Conjectured).

� ∗
n

(
T∗

n�n

) →P � �Y��

where Y is a nondegenerate random variable if and only if X ∈ DN, in which
case Y is a standard normal random variable.

Crucial to treating this conjecture is to resolve the question of the unique-
ness of the representation of the random variable appearing in (2.41) in terms
of the parameters λ, 1 ≥ a1 ≥ a2 ≥ · · · � 1 ≥ b1 ≥ b2 ≥ · · · and 0 ≤ σ ≤ 1.
Another avenue of further investigation is to study the asymptotic distri-

bution of the bootstrapped Student t-statistic when the bootstrap samples are
taken at the rate

mn → ∞ such mn/n → 0 as n → ∞�(3.7)

Here is a result in this direction that can be easily inferred from Theorem 4.1
of Arcones and Giné [3] (see also their remark on the bottom of page 593).

Theorem (Arcones and Giné [3]). Whenever �3�7� is satisfied and F is in
the domain of attraction of a stable law of index 1 < α ≤ 2� both

� ∗
n

(
T∗

n�mn

)
→P � �Y� and �n �Tn� → � �Y��(3.8)

where Y is a nondegenerate random variable, depending on α, among other
parameters.

For closely related work on the asymptotic distribution of the mean when
sampling at the rate (3.7) consult Athreya [4], Arcones and Giné [2], [3] and
Deheuvels, Mason and Shorack [7].
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