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HOW TO FIND AN EXTRA HEAD: OPTIMAL RANDOM SHIFTS
OF BERNOULLI AND POISSON RANDOM FIELDS

By Alexander E. Holroyd1 and Thomas M. Liggett2

University of California, Los Angeles

We consider the following problem: given an i.i.d. family of Bernoulli
random variables indexed by �d, find a random occupied site X ∈ �d such
that relative to X, the other random variables are still i.i.d. Bernoulli.
Results of Thorisson imply that such an X exists for all d. Liggett proved
that for d = 1, there exists an X with tails P��X� ≥ t� of order ct−1/2, but
none with finite 1/2th moment. We prove that for general d there exists a
solution with tails of order ct−d/2, while for d = 2 there is none with finite
first moment. We also prove analogous results for a continuum version of
the same problem. Finally we prove a result which strongly suggests that
the tail behavior mentioned above is the best possible for all d.

1. Introduction. The following problems were considered in [7]. They
were originally motivated by some problems involving tagged particles in the
exclusion and zero-range processes. We refer to [7] for more on those connec-
tions.

For 0 < ρ < 1 and a positive integer d, let νρ = νρ�d� denote the product
measure with parameter ρ on �0
1	�d (with the product σ-algebra). Let η have
distribution νρ (so that �η�k� 
 k ∈ �d	 are i.i.d. Bernoulli with parameter ρ),
and define the measure ν∗ρ by

ν∗ρ�·� = νρ�η ∈ · �η�0� = 1��

Problem A. If η has distribution νρ, find a �d-valued random variable
X (possibly using additional randomization) such that η�X+ ·� has distribu-
tion ν∗ρ.

In the following continuum version of the above problem, � is a spatial Pois-
son process regarded as a random non-negative integer-valued Borel measure
on �d.

Problem B. If � is a rate-1 spatial Poisson process on �d, find an �d-
valued random variableY (possibly using additional randomization) such that
���Y	� = 1 a.s., and ��Y + ·� is a rate-1 spatial Poisson process on �d with
an added point at 0.
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It is by no means obvious that either problem has a solution, but in fact
solutions to both exist for all d, ρ. This follows from much more general results
in [9]; for more information see [7], [10].

Writing � · � for the Euclidean norm on �d, it is natural to ask how large
�X�
 �Y� must be for solutions to Problems A, B. In particular, what can be
said about their moments and tail behavior? These questions were essentially
fully answered for d = 1 in [7]. In particular the following two results were
proved there.

Theorem 1. Let d = 1.

(A) For each 0 < ρ < 1 there exists a solution X to Problem A satisfying

P��X� ≥ t� ≤ c1ρ−1/2t−1/2

where c1 <∞.

(B) There exists a solution Y to Problem B satisfying

P��Y� ≥ t� ≤ c2t−1/2

where c2 <∞.

Theorem 2. Let d = 1.

(A) Any solution to Problem A satisfies E�X�1/2 = ∞.
(B) Any solution to Problem B satisfies E�Y�1/2 = ∞.

Actually, even tighter bounds involving E�X ∧ t� were obtained in [7]. We
remark that the proof of Theorem 1 in [7] is constructive, in the sense that
an algorithm is given for choosing X (respectively Y) given η (respectively
�). Additional randomization is not required for Problem B, or for Problem
A when ρ is the reciprocal of an integer. The explicit dependence on ρ in the
bound in Theorem 1(A) is of interest because it allows Theorem 1(B) to be
deduced via an alternative limiting argument.

We will prove the following.

Theorem 3. Let d ≥ 1.

(A) For each 0 < ρ < 1 there exists a solution X to Problem A satisfying

P��X� ≥ t� ≤ c1ρ−1/2t−d/2

where c1 = c1�d� <∞.

(B) There exists a solution Y to Problem B satisfying

P��Y� ≥ t� ≤ c2t−d/2

where c2 = c2�d� <∞.
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Theorem 4. Let d = 2.

(A) Any solution to Problem A satisfies E�X� = ∞.
(B) Any solution to Problem B satisfies E�Y� = ∞.

Our proof of Theorem 3(A) is also constructive, and makes use of the one-
dimensional construction in [7]. The appearance of ρ−1/2 in Theorem 3(A) will
be important because it will allow (B) to be deduced from it via a limiting
argument. As remarked in [7], the technique used to prove Theorem 2 gives
no information in the case d ≥ 2. It does not even rule out the possibility
that X or Y is bounded. Our proof of Theorem 4 uses an entirely different
approach.

Our results provide an almost complete answer to the question posed above
for d = 2. It is natural to ask what can be said for d ≥ 3. In particular, is it the
case that E�X�d/2
E�Y�d/2 must be infinite for all d? For d ≥ 3 we have been
unable to improve on the following obvious lower bounds (see the remarks
in the next paragraph, however). For Problem A, �X� is stochastically greater
than the distance from the origin to the closest occupied site of η. [A site
k ∈ �d is said to be occupied if η�k� = 1.] For Problem B, �Y� is stochastically
greater than the distance from the origin to the closest point of �.

Finally we will prove Theorem 8, a result which strongly suggests that the
tail behavior of �X� in Theorem 3(A) is the best that can be achieved for all d.
Loosely speaking, Theorem 8 can be expressed as follows. If X is constructed
from η by sequentially examining sites according to some algorithm, then the
distance from the origin to the furthest site to be examined has tails of order at
least ct−d/2. In the course of proving this we will make use of another result,
Proposition 9. This latter proposition relates to a natural generalization of
Problem A to permutations of �d.

The following question is natural. Suppose Y is a solution to Problem B.
Can one use it to construct a solution to Problem A? The answer is yes; this
follows from an argument used in the proof of Theorem 4(B).

The paper is organized as follows. Theorems 3(A) and 4(A) are proved in
Sections 2 and 3 respectively. The (B) parts of both theorems are proved in
Section 4. Theorem 8 and Proposition 9 mentioned above are stated and proved
in Section 5.

2. Construction in d dimensions. In this section we prove Theorem
3(A). The following is an appealing idea for solving Problem A for general d
using the solution for d = 1 [Theorem 1(A)]. Let s be an injective mapping
from �1 to �d. Now for η ∈ �0
1	�d , define η1 ∈ �0
1	�1

by η1�k� = η�s�k��,
apply the one-dimensional construction to η1 to obtainX1, and letX = s�X1�.
It seems natural to guess thatX solves Problem A for η, but this is in general
false, as was shown in [7]. An exception is the case when s�k� = �k
0
 � � � 
0�,
but clearly this s will only give an X with the same tail behavior as X1. Our
approach here will be based on the above idea, but s will be a suitably chosen
random mapping.
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Suppose s is a bijection from �1 to �d satisfying s�0� = 0. For y ∈ �d, we
define θys to be ‘s viewed from y’ thus:

θys�k� = s�s−1�y� + k� − y�
Note that θys is also a bijection satisfying θys�0� = 0.

Proposition 5. For any d ≥ 2 there exists a random bijection S satisfying
S�0� = 0 such that


(i) For every y ∈ �d, θyS has the same distribution as S.

(ii) �S�k�� ≤ C�k�1/d for all k ∈ �1 a.s., where C = C�d� < ∞ is a non-
random constant.

We note that Proposition 5 is not obvious, even if restriction (ii) is dropped.
It may be proved using a construction based on space-filling curves. It appears
that this construction has been known for some time; a version in the case
d = 2 appears in [2]. We give a proof of the full result at the end of this section.
We are grateful to Yuval Peres and the anonymous referee for advice on this
point.

We now describe the construction for Theorem 3(A) (followed by the proof
that it works). Let η have distribution νρ�d�. Choose S as in Proposition 5,
independent of η. Define η1 ∈ �0
1	�1

by

η1�k� = η�S�k���
We will use the superscript 1 to denote “1-dimensional” objects throughout. It
is clear that η1 has distribution νρ�1� (we will check this below). Therefore we
may use Theorem 1(A) to find a �1-valued random variable X1 which solves
Problem A for η1. Indeed, choose X1 to be conditionally independent of �η
S�
given η1 [in other words, any additional randomization in the construction of
X1 is taken to be independent of �η
S�]. Now let X = S�X1�.

We will make extensive use of the following simple lemma.

Lemma 6. Let U
V be independent random variables �taking values in
arbitrary spaces� and suppose W = f�U
V�, where W is a random variable
�also taking values in an arbitrary space� and f is a deterministic function.
Suppose that f�U
v� has the same distribution α for every deterministic v in
the support of V. Then V and W are independent, and W has distribution α.

Lemma 6 is of course trivial in the case when V is a discrete random variable.
The general version may be proved by a straightforward application of Fubini’s
theorem. We omit the details.

Proof of Theorem 3(A). For d = 1 the result is exactly Theorem 1(A).
For d ≥ 2 we claim that X as defined above solves Problem A and has the
stated tail behavior.
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First we claim that

η1 and S are independent.(1)

This may be proved by applying Lemma 6 to the independent random variables
η and S. For every deterministic bijection s, the composition η�s�·�� clearly
has distribution νρ, so we deduce that η1 = η�S�·�� and S are independent,
and also that η1 has distribution νρ.

Now by the conditional independence assumption onX1, it follows from (1)
that

�η1
X1� and S are independent.(2)

Define R = θXS. Recall that X = S�X1�, so that R = θS�X1�S, and R�k� =
S�X1 + k� −S�X1�. We claim

�η1
X1� and R are independent.(3)

We will prove this using Lemma 6 and (2). By definition, R is a function of
�η1
X1� and S, and does not depend on η1. Therefore, defining Rx1 = θS�x1�S,
it suffices to prove that Rx1 has the same distribution for each x1. Consider
the event

A = A�m
x1
 r� = �Rx1�k� = r�k� for all −m ≤ k ≤m	 

for m a positive integer and r a bijection. We will prove that for fixed m and
r, P�A� is constant in x1 provided −m ≤ x1 ≤ m, and the above claim then
follows. To check this, observe that if −m ≤ x1 ≤m then A equals the event{

θ−r�−x1�S�k� = r�k� for all −m ≤ k ≤m}
�

[The key point here is that, taking k = −x1 in either expression for the event
and using the fact that Rx1�k� = S�x1+k�−S�x1�, we have that on the event,
S�x1� = −r�−x1� and therefore Rx1 = θ−r�−x1�S]. Hence by Proposition 5 (i)
we have

P�A� = P�S�k� = r�k� for all −m ≤ k ≤m�

which does not depend on x1. Therefore (3) is proved.

Now define γ1 ∈ �0
1	�1
by γ1�k� = η1�X1 + k�. Since X1 solves Problem

A, γ1 has distribution ν∗ρ�1�. Since γ1 is a function of �η1
X1�, (3) implies that

γ1 and R are independent.(4)

We are now ready to check that X has the property required by Problem
A. Define γ ∈ �0
1	�d by γ�k� = η�X+ k�, so that it is required to check that
γ has distribution ν∗ρ�d�. First observe that
γ�k� = η�X+ k� = η1�S−1�X+ k�� = γ1�S−1�X+ k� −X1� = γ1�R−1�k���

Now for any deterministic bijection r with r�0� = 0, it is clear that γ1�r−1�·��
has distribution ν∗ρ�d�, so the required fact follows from Lemma 6 and (4).
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Finally, we check that X has the claimed tail behavior. Since X = S�X1�,
by Proposition 5 (ii) and Theorem 1(A) we have

P��X� ≥ t� ≤ P�C�X1�1/d ≥ t�
= P��X1� ≥ C−dtd�
≤ c1�1�Cd/2ρ−1/2t−d/2� ✷

It remains to prove Proposition 5. The bijection S which we will construct
will have the additional property that

�S�k� −S�l�� = 1 whenever �k− l� = 1�(5)

We will construct S from a doubly-infinite directed path which visits all the
elements of �d. Here is some notation. Elements of �d are called vertices. A
(directed) edge is an ordered pair, written �u
 v�, of vertices u
 v ∈ �d such that
�u−v� = 1. The vertices u
 v are said to be incident to the edge �u
 v�. We write
Ɛ for the set of all edges. A graph is a subset of Ɛ. The vertex set of a graph is
the set of all vertices incident to its edges. For a graph E and a set of vertices
V, E�V� is the set of all edges in E having both incident vertices in V. A
path is a graph of the form ��v1
 v2�
 �v2
 v3�
 � � � 
 �vn−1
 vn�	, where v1
 � � � 
 vn
are distinct. A tour is a graph of the form �� � � 
 �v−1
 v0�
 �v0
 v1�
 �v1
 v2�
 � � �	,
where the vi are distinct, whose vertex set is �d.

We will construct a random tour T, and then use it to define S as fol-
lows. S�0� = 0. For n > 0, S�n� is defined inductively to be the unique ver-
tex such that �S�n − 1�
 S�n�� ∈ T, and similarly S�−n� is defined so that
�S�−n�
 S�−n + 1�� ∈ T. It is clear that S defined in this way is a bijection
from �1 to �d satisfying (5).

We will use the following lemma. For an integer n ≥ 0, and for v ∈ �d, let
Cn�v� be the set of vertices in the cube of side 2n−1 with its minimum corner
at v:

Cn�v� = v+ �0
 � � � 
2n − 1	d ⊆ �d�

For m ≤ n we say that Cm�u� is a descendant of Cn�v� if Cm�u� ⊆ Cn�v� and
all the coordinates of u − v are multiples of 2m. If E is a graph, by a copy of
E we mean an image of E under an isometry of �d.

Lemma 7. Let d ≥ 2. There exists a (deterministic) sequence of graphs Hn
for n ≥ 0 such that


(i) Hn is a path with vertex set Cn�0�.
(ii) If Cm�v� is a descendant of Cn�0�, then Hn�Cm�v�� is a copy of Hm.

We omit the proof of Lemma 7. The required graphs Hn are the polygonal
approximations used in the construction of the Hilbert space-filling curve. For
d = 2 the construction is well known, appearing originally in [5]. Details of
the construction for general d may be found in [3]. For further information
about space-filling curves see [8].
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Proof of Proposition 5. Our aim is to construct a random tour T as de-
scribed above. We write * for the set of all graphs, which we associate in the
usual way with �0
1	Ɛ. We will construct probability measures µn
µ on the
corresponding product σ-algebra. When describing events of *, we will some-
times write G for a typical graph in *. For each n ≥ 1 we will define a random
graph Tn with distribution µn. The graph T with distribution µ will be the
weak limit of this sequence.

The graph Tn is constructed as follows. We choose a cube of side 2n − 1
uniformly among those which contain the origin, and fill it with a copy of Hn
with its orientation chosen uniformly at random. Then we deterministically
fill the remainder of space with disjoint translated copies of this graph. See
Figure 1 for an illustration. Formally, let σ to be an isometry of �d chosen
uniformly at random from the d!2d which preserve Cn�0�, and independently
choose a ∈ Cn�0� uniformly at random. Then define

Tn =
⋃
u∈�d

(
σ�Hn� + a+ 2nu

)
�(6)

Let µn be the distribution of Tn.
Given a graph G ∈ * (which we think of as chosen according to µn), we

say that Cn�v� is an n-box (of G) if G�Cn�v�� is a maximal path in G. [For
G = Tn arising as in (6), this corresponds to v being of the form a+ 2nu.] For
m < n, we also say that Cm�w� is an m-box if it is a descendant of an n-box.
See Figure 1. Thus, in a graph chosen according to µn, for m ≤ n every vertex

Fig. 1. Part of a typical realization of T3 for d = 2. The origin 0 is marked with a blob. Some
3-boxes and 2-boxes are marked with broken lines.
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of �d lies in exactly one m-box almost surely, while for m > n there are no
m-boxes. Furthermore, Lemma 7(ii) implies that if C is anym-box of Tn, then
Tn�C� is a copy of Hm.

Next we show that the sequence µn has a weak limit. Let A be a cylinder
event of *, depending only on a finite set of edgesK. LetWm =Wm�A� be the
event that the vertex set of K lies entirely within a single m-box. Note that
sinceK is finite, ifm is sufficiently large and n ≥m we have 0 < µn�Wm� < 1.
Thus for some m0 (depending on K), if m0 ≤m ≤ n we have

µn�A� = µn�A �Wm�µn�Wm� + µn�A �Wcm��1− µn�Wm���(7)

We claim that for m0 ≤m ≤ n:
(i) µn�Wm� is constant in n, and µm�Wm� → 1 as m→∞.
(ii) µn�A �Wm� is constant in n.
To see (i), note that the set of m-boxes has the same distribution under

each µn with n ≥ m, and when 2m is large compared with the diameter of
K, µm�Wm� is close to 1. For (ii), note that under µn�· �Wm�, the m-box, C
say, which contains K is equally likely to be any cube Cm�v� containing K.
Furthermore, by Proposition 7(ii) and (6), Tn�C� is a copy of Hm, with all
possible orientations being equally likely.

Now letting n→∞ and then m→∞ in (7) and using (i), (ii) yields

lim sup
m→∞

µm�A �Wm� ≤ lim inf
n→∞ µn�A� ≤ lim sup

n→∞
µn�A� ≤ lim inf

m→∞ µm�A �Wm��

Hence the limits limm→∞ µm�A �Wm� and limn→∞ µn�A� exist and are equal.
We let µ be the weak limit of the sequence µn, and let T be a graph with
distribution µ. Thus for A a cylinder event,

µ�A� = lim
m→∞µm�A �Wm�A���(8)

Next we must check that T is a tour almost surely. For a vertex v, let
A = A�v� be the event that T contains edges �u
 v� and �v
w� for some
u �= w, and no other edges incident to v. For vertices u
 v and l > 0, let
B = B�u
 v
 l� be the event that T contains a path of length at most l with
u and v in its vertex set. It is sufficient to check that µ�A�v�� = 1 for all v,
and µ�B�u
 v
 l�� = 1 for all u
 v and some l = l�u
 v�. But it is easily seen
that A�v� and B�u
 v
 l� are cylinder events, and that for suitable l = l�u
 v�,
µm�A �Wm�A�� = µm�B �Wm�B�� = 1 for m sufficiently large. Hence the re-
quired conclusion follows from (8).

Now construct S in terms of T as described earlier. To complete the proof
we must check properties (i) and (ii) in Proposition 5. Property (i) is equivalent
to the assertion that the distribution of T is invariant under translations of
�d, and this follows immediately since Tn has the same property.

We now check (ii). Let G be a graph (chosen according to µ or µn). For
a vertex v ∈ �d, define 1�v� to be the minimum size of a path in G with
0 and v in its vertex set (that is, the ‘distance from 0 to v along G’). For a
positive integer j, let F�j� be the event that every vertex v with 1�v� ≤ j
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satisfies �v� ≤ C�d�j1/d, where C�d� = 2
√
d+ 3. It is sufficient to check that

µ�F�j�� = 1 for all j. Clearly F�j� is a cylinder event, and we will show that
µn�F�j�� = 1 for all n sufficiently large, implying the required result.

Given j, choosem so that 2d�m−1� ≤ j < 2dm, and let G = Tn, where n ≥m.
Suppose v satisfies 1�v� ≤ j < 2dm. By the properties ofHn (Lemma 7), 0 and
v must lie in the same m-box or in adjacent m-boxes (two disjoint m-boxes
C
C′ are said to be adjacent if there exist w ∈ C and w′ ∈ C′ with �w−w′� = 1).
It follows (by Pythagoras’ theorem) that

�v� ≤
√
�d− 1��2m�2 + �2 · 2m�2 ≤ C�d�j1/d�

Hence we have proved that µn�F�j�� = 1 as required. ✷

3. Necessary condition in two dimensions. In this section we prove
Theorem 4(A). We begin with a few comments about the idea behind the proof.
Suppose X is a solution to Problem A. Then the construction that led to X
from η can be applied to the random field relative to siteX to find a second site
known to be occupied. This construction can be repeated to obtain a sequence
of occupied sites. IfX has finite first moment, then the ergodic theorem implies
that this sequence of sites can move away from the origin with at most a linear
rate. In a box of size n there are n2 sites in total, and at least εn of them are
known to be occupied by this argument. Since X solves Problem A, the other
sites should each be occupied with probability ρ. But this should contradict
the central limit theorem for the number of occupied sites in the box viewed
in terms of the original random field.

Proof of Theorem 4(A). The random choice of X necessarily depends on
η, but may also depend on other random choices. In the proof, it will be im-
portant to separate explicitly these two types of dependence. We will therefore
begin by writing X as a function g of η and a random variable V that is in-
dependent of η and uniform on �0
1�. (The choice of the uniform distribution
is made for specificity only–any continuous distribution would work just as
well.) To do so, let k1
 k2
 � � � be any ordering of �2. Define

g 
 �0
1	�2 × �0
1� → �2

as follows: Using the joint distribution of X and η, put

6n�η� = P�X ∈ �k1
 � � � 
 kn	 �η��
This is defined for almost every η, and is monotone in n, so that 6n�η� can
be extended to all η so as to be monotone in n. Now put g�η
 v� = kn if
6n−1�η� < v ≤ 6n�η�� Taking V to be independent of η and uniform on �0
1�,
we see that

P�g�η
V� = kn �η� = P�6n−1�η� < V ≤ 6n�η�� η�
= 6n�η� − 6n−1�η�
= P�X = kn �η� a.s.
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for each n ≥ 1. Therefore, without loss of generality, we may takeX = g�η
V�
in the proof.

Next, we make a construction similar to that used in the proof of Proposition
2.2 of [7]. Let the random variables η0 = η, �σk 
 k ≥ 0	, and �Vk 
 k ≥ 0	 be
all independent, with the following distributions: η0 has distribution νρ, σk is
Bernoulli with parameter ρ, and Vk is uniform on �0
1�. Let X0 = g�η0
V0�,
and then define η1 by

η1�k� =
{
η0�X0 + k�
 if k �= 0


σ0
 if k = 0�

Since X0 solves Problem A, η1 has distribution νρ. Therefore, it is natural to
define X1 = g�η1
V1�. More generally, we define successively Xn and ηn by
Xn = g�ηn
Vn� and

ηn+1�k� =
{
ηn�Xn + k�
 if k �= 0


σn
 if k = 0�

Writing this recursion in the functional form,

ηn+1 = F�Xn
ηn
 σn� = F�g�ηn
Vn�
 ηn
 σn�
exhibits ηn as a Markov process with stationary distribution νρ. Since η0
has this distribution, ηn is a stationary process, and hence so is Xn. Let
Sn =X0+ · · · +Xn−1 be the partial sums of this sequence. We will now check
that the following hold:

(i) η�Sn+1� = 1 a.s. for each n ≥ 0,
(ii) ηn�Xn + ·� has distribution ν∗ρ for each n ≥ 0,
(iii) ηn�Xn + k�

=



η�Sn+1 + k�
 if Sn+1 + k �= Si for all 1 ≤ i ≤ n

σj−1
 if Sn+1 + k = Sj
 but Sn+1 + k �= Si

for all j < i ≤ n�
Property (ii) for general n follows from the case n = 0 (which holds by the
defining property of X0) and the fact that �ηn
Xn� is a stationary process.

The key to checking properties (i) and (iii) is the following fact. If for some
0 ≤ j < n and integer k

Sn+1 + k �= Si for all j < i ≤ n

then ηl

(
Sn+1 + k− Sl

)
is constant in l for j ≤ l ≤ n
 and in particular takes

the same values for l = n and for l = j:
ηn

(
Xn + k

) = ηn(Sn+1 + k−Sn) = ηj(Sn+1 + k−Sj)�
To check this fact, note that for j ≤ l < n, the defining recursion gives

ηl+1
(
Sn+1 + k−Sl+1

) = ηl(Xl +Sn+1 + k−Sl+1) = ηl(Sn+1 + k−Sl)
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since Sn+1 + k−Sl+1 �= 0. If in addition Sn+1 + k = Sj, it follows that
ηn

(
Xn + k

) = ηj(Sn+1 + k−Sj) = ηj�0� = σj−1�
This gives the second part of (iii). If Sn+1 + k �= Si for all 0 < i ≤ n, we can
use the above fact with j = 0 to get

ηn
(
Xn + k

) = η0(Sn+1 + k)

which is the first part of (iii). For (i), we argue as follows. If Sn+1 �= Si for all
1 ≤ i ≤ n then the above fact with k = j = 0 gives

η0
(
Sn+1

) = ηn(Xn) = 1�

On the other hand, if Sn+1 = Si+1 and Sn+1 /∈ �S1
 � � � 
 Si	, then
η0

(
Sn+1� = η0

(
Si+1� = 1

by the previous case.
Now take I = �0
 a�2 for some integer a > 0 to be chosen later, and let

An =
∑
k∈nI

ηn�Xn + k��

By choices to be made later, we will be able to assume that most of the sites
S1
 � � � 
 Sn lie in nI with high probability. By (ii) above, An is binomially
distributed with parameters �nI ∩ �2� and ρ. On the other hand, by (i) and
(iii),

An =
∑

l∈Sn+1+nI

l�=Si ∀ 1≤i≤n

η�l� + ∑
j
1≤j≤n


Sj∈Sn+1+nI

Sj �=Si ∀ j<i≤n

σj−1

= ∑
l∈Sn+1+nI

η�l� − ∑
j
1≤j≤n


Sj∈Sn+1+nI

Sj �=Si ∀ j<i≤n

�1− σj−1�(9)

= Bn −Cn

where Bn and Cn are defined as in the last equality in (9). Our aim is to
show that each of An and Bn is approximately normal with mean n2a2ρ and
variance n2a2ρ�1− ρ�, while Cn is of order n, giving a contradiction.

Assume now for purposes of getting a contradiction that E�X0� < ∞. The
ergodic theorem then implies that

lim
n→∞

Sn
n
= Z(10)

a.s. and in L1 for some random Z ∈ �2. We may assume without loss of
generality that the distribution of X0, and hence of Z, has been modified
by adding any given deterministic h ∈ �2. To see this, suppose g�η
V� is a
solution to Problem A, and define g′ by

g′�η
 v� = g�Thη
 v� + h
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where Th is the shift on �0
1	�2
defined by �Thη��k� = η�h + k�. Define

X′ = g′�η
V� and X = g�Thη
V�. Then X′ =X+ h, and

η�X′ + l� = η�g′�η
V� + l�
= η�g�Thη
V� + h+ l�
= �Thη��g�Thη
V� + l�
= �Thη��X+ l�

so that η�X′ + ·� has distribution ν∗ρ.
The point of the previous observation is that given ε > 0, we may assume

without loss of generality that

P�Z ≤ �−1
−1�� ≥ 1− ε(11)

and

P�Sn = 0 for some n ≥ 1� ≤ ε�(12)

[The first inequality in (11) is understood to be coordinate-wise.] That (11) can
be achieved by adding a constant to g is immediate, since adding a constant
to g has the effect of adding the same constant to Z. To check that (12) also
can be so achieved, note that (10) implies that

sup
n

�Sn�
n
<∞ a.s.


so that for h ∈ �2 with �h� sufficiently large,

P�Sn − nh = 0 for some n ≥ 1� = P
(
Sn
n
= h for some n ≥ 1

)
≤ ε�

By (11), a can be taken sufficiently large so that

P

(
�−a− 1
−a− 1� ≤ Z ≤ �−1
−1�

)
≥ 1− 2ε�(13)

Since

P�−Sj ∈ jI� ≤ P�−Sj ∈ nI�

for j ≤ n, it follows from (10) and (13) that

sup
n/2≤j≤n

P�−Sj /∈ nI� ≤ 3ε(14)

for sufficiently large n.
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Now, we have

ECn =
n∑
j=1
P�σj−1 = 0
 Sj ∈ Sn+1 + nI
Sj �= Si ∀ j < i ≤ n�

≥
�n/2�∑
j=1

[
P�σj−1 = 0� −P�Sj /∈ Sn+1 + nI�

−P�Sj = Si for some j < i ≤ n�
]

=
�n/2�∑
j=1

[
1− ρ−P�−Sn+1−j /∈ nI�

−P�Sk = 0 for some 1 ≤ k ≤ n− j�
]
�

(Here �·� denotes the integer part.) Applying (12) and (14), it follows that

lim inf
n→∞

ECn
n

≥ 1− ρ− 4ε
2

> 0
(15)

provided ε is sufficiently small.
By the central limit theorem,

An − n2a2ρ
n

⇒N�0
 a2ρ�1− ρ���(16)

Here ⇒ denotes convergence in distribution, and N�0
 σ2� is the normal dis-
tribution with mean 0 and variance σ2. We want to prove that also

Bn − n2a2ρ
n

⇒N�0
 a2ρ�1− ρ���(17)

Before proving (17), we note that (9), (15), (16) and (17) are incompatible, so
we will have a contradiction to the assumption that E�X0� < ∞. To see this,
suppose that these four statements are correct. By the definition of Cn in (9),
0 ≤ Cn ≤ n, so the distributions of Cn/n are tight. Passing to a subsequence,
we may assume that (

Bn − n2a2ρ
n



Cn
n

)
⇒ �B
C�


where B is N�0
 a2ρ�1 − ρ�� by (17) and EC > 0 by (15) and the bounded
convergence theorem for convergence in distribution. But by (9),

An − n2a2ρ
n

= Bn − n
2a2ρ

n
− Cn
n
�

The limiting distribution of the right side above is that of B − C, which has
a nonzero mean, while the limit of the left side is normal with mean zero by
(16). This is a contradiction.
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So it remains to prove (17). Let � be the set of rectangles

� = {�a
 b� × �c
 d� 
 a
 b
 c
 d ∈ �
}
�

For A ∈�, let

Wn�A� =
1

n
√
ρ�1− ρ�

∑
l∈nA

�η�l� − ρ�


and letW be the standard Brownian sheet. That is, for A
B ∈�,W�A� has a
normal distribution with mean zero, E�W�A�W�B�� equals the area of A∩B,
andW�A� is a.s. continuous in A. The following invariance principle is proved
in [6]:

Wn ⇒ W
(18)

where now ⇒ denotes weak convergence in the space D, which we define
next. For an integer n ≥ 1, let Dn be the set of all functions on � which, as a
function of A, change only when an edge of A crosses a point in n−1�2. Then
D is the closure of ∪∞n=1Dn in the topology of uniform convergence on compact
sets. Note that D is a complete separable metric space with this topology, and
that it contains the continuous functions. Furthermore, Wn ∈ D. (Actually,
in [6], (18) is proved for a smoothed version of Wn. However, since we are
considering only rectangles A, the smoothed version implies the one we want;
see, e.g., Corollary 4.6 of [1] for more on this point.)

By (10) and (18), the sequence �Wn
Sn/n� is tight in D×�2, and therefore
relatively compact. We will show that

�Wn
Sn/n� ⇒ �W
Z�
(19)

whereW andZ are taken to be independent. By the relative compactness, it is
enough to show that any subsequential limit of �Wn
Sn/n� has independent
components. To simplify notation, we will not distinguish between the full
sequence and a convergent subsequence.

So, let Z be the limit in (10) and let Ln be the following increasing sequence
of squares in �2:

Ln = �−n1/3
 n1/3�2 ∩ �2�

Let �n be the σ-algebra generated by the random variables �η�k� 
 k ∈ Ln	,
�σl 
 l ≥ 0	 and �Vl 
 l ≥ 0	, and put Zn = E�Z ��n�. Then Zn is independent
of �η�k� 
 k /∈ Ln	, andE�Zn−Z� → 0 by the martingale convergence theorem.
It follows from (10) that

E

∣∣∣∣Snn −Zn
∣∣∣∣→ 0�(20)

Now let

W′
n�A� =

1

n
√
ρ�1− ρ�

∑
l∈nA
l/∈Ln

�η�l� − ρ��
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Then

�Wn�A� −W′
n�A�� ≤

�Ln�
n
√
ρ�1− ρ� → 0(21)

as n→∞. Now it follows from (20) and (21) that whenever �Wn
Sn/n� has a
weak limit, so does �W′

n
Zn�, and the limits are the same. But �W′
n
Zn� does

have independent coordinates, since W′
n is a function of �η�l� 
 l /∈ Ln	, and

Zn is independent of these random variables. This completes the verification
of (19).

Finally, note that

Bn − n2a2ρ
n
√
ρ�1− ρ� =Wn

(
Sn+1
n

+ I
)
= >

(
Wn


Sn+1
n

)



where > 
 D× �2 → � is given by

>�w
x� = w�x+ I��
Since > is continuous at all �w
x� for which w is continuous on �, and W is
continuous on �, it follows from (19) that

Bn − n2a2ρ
n
√
ρ�1− ρ� ⇒ >�W
Z�


where W and Z are independent. But

>�W
Z� =W�Z+ I��
Since W�z + I� has distribution N�0
 a2� for each deterministic z, it follows
by Lemma 6 that W�Z+ I� has distribution N�0
 a2� as well. This completes
the proof of (17) as required. ✷

4. Poisson case. In this section we deduce the (B) parts of Theorems 3
and 4 from the (A) parts.

Proof of Theorem 3(B). For n ≥ 1 and k ∈ �d let Kn�k� be the (open)
cube of side n−1 centered at n−1k:

Kn�k� = n−1k+ �−�2n�−1
 �2n�−1�d

(here �·
 ·� denotes an interval of �). Given the Poisson process �, define ηn ∈
�0
1	�d by

ηn�k� = 1 ∧��Kn�k��

where ∧ denotes minimum; thus ηn�k� = 1 if and only if Kn�k� contains at
least one Poisson point. Then ηn has distribution νρn where

ρn = P
(
��Kn�k�� ≥ 1

)
= 1− e−n−d ∼ n−d(22)
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as n → ∞. Using Theorem 3(A), choose Xn solving Problem A for ηn. Then
we have

P�n−1�Xn� ≥ t� = P��Xn� ≥ nt�
≤ c1ρ−1/2n n−d/2t−d/2(23)

≤ c2t−d/2

for some constant c2, by (22).
Let �n be the point process that has a point at n−1k if ηn�k� = 1, and no

others. Let �∗ be a rate-1 Poisson process with an extra point at the origin.
We claim that

�n ⇒ �(24)

and

�n�n−1Xn + ·� ⇒ �∗�·�
(25)

where ⇒ denotes weak convergence in the space � of locally finite measures
on �d. Both statements are consequences of the Poisson approximation to the
Binomial, since �n and �n�n−1Xn+·� are Bernoulli random fields on the grid
of points n−1�d.

By (23) and (24), the sequence ��n
n−1Xn� is tight on�×�d, and therefore
relatively compact by Prohorov’s Theorem ([4], Chapter 18, Theorem 17). Let
��0
Y0� be a weak limit point of this sequence. Then (24) and (25) imply that
�0 and ��Y0+·� have the distributions required by Problem B. Note that these
are simply properties of the joint distribution of the random vector ��0
Y0�,
not of any particular realization of it.

The remaining issue is to see how to use the joint distribution of ��0
Y0�
constructed above to choose an Y with the right properties for a given rate-1
Poisson process �. The solution is simply to use the conditional distribution
of Y0 given �0, and apply this to the the given �: by enlarging the probability
space, one can choose Y via the prescription

P�Y ∈ · ��� = P�Y0 ∈ · ��0�� ✷

Proof of Theorem 4(B). Let � be a rate-1 spatial Poisson process on �2,
and supposeY is a solution to Problem B for � withE�Y� <∞. We will deduce
a contradiction to Theorem 4(A).

Let Q be the unit square �0
1�2 ⊆ �2, and let A have uniform distribution
on Q, independent of ��
Y�. For u ∈ � we write �u� for the greatest integer
less than or equal to u, and �u	 = u − �u�. For v = �v1
 v2� ∈ �2 we write
�v� = ��v1�
 �v2�� and �v	 = ��v1	
 �v2	�. Now define X = �Y +A� and B =
�Y + A	. (We imagine a grid of unit squares with its origin at −A. Square
0 is the square containing 0, and square X is the square containing Y. The
location of Y within square X is B.) Note that

X+B = Y+A�(26)
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We claim that B has uniform distribution on Q, and that it is independent
of ��
Y�. This is proved by an application of Lemma 6 as follows. Since A and
��
Y� are independent, and B = �Y +A	, it suffices to check that �y +A	
is uniform on Q for each fixed y; but this is an elementary property of the
uniform distribution on Q.

Now define η ∈ �0
1	�2
by

η�k� = 1 ∧��Q−A+ k��(27)

[Thus η�k� is 1 if and only if square k contains at least one Poisson point.]
For any fixed a, it is easily seen that ηa defined by ηa�k� = 1 ∧��Q− a+ k�
has distribution ν1−e−1 ; hence Lemma 6 implies that η has distribution ν1−e−1 .

We claim thatX is a solution to Problem A for η. To prove this, define γ by
γ�k� = η�X+ k�, and B by B�·� = ��Y+ ·�. Note that by (26) and (27),

γ�k� = 1 ∧��Q−A+X+ k� = 1 ∧��Q−B+Y+ k� = 1 ∧ B�Q−B+ k�

[compare (27)]. Since B and ��
Y� are independent, B and B are independent,
and since Y solves Problem B, B is a Poisson process with an added point at
0. For any b ∈ Q it is easy to check that γb defined by γb�k� = 1∧B�Q−b+k�
has distribution ν∗1−e−1 (note in particular that 0 ∈ Q−b so γb�0� = 1 a.s.), so a
final application of Lemma 6 shows that γ has distribution ν∗1−e−1 as claimed.

Finally we have E�X� ≤ E�Y� + √2 <∞, contradicting Theorem 4(A). ✷

5. The set of examined sites. LetX be a solution to Problem A. Imagine
that X is constructed from η by some algorithm which sequentially examines
the values η�k� for sites k ∈ �d until some stopping time, finally choosing anX
in the set of examined sites. The algorithm may use additional randomization
if desired. We formalize this idea as follows. Define the box Bn ⊆ �d by

Bn = �−n
 � � � 
 n	d�

Let η have distribution νρ, suppose X is a �d-valued random variable and
suppose N is a non-negative integer-valued random variable. We say that
�X
N� is a stopping solution to Problem A if the following hold:

(i) X is a solution to Problem A.
(ii) For any x
n, the σ-algebra generated by the event �X = x
N = n	

and the random variables �η�k� 
 k ∈ Bn	 is independent of that generated
by �η�k� 
 k /∈ Bn	.

The random set BN should be thought of as the set of examined sites. As a
consequence of (i), (ii), any stopping solution has the additional property

X ∈ BN a.s.(28)
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To see this, note that by (i),

1 = P�η�X� = 1� = P�η�X� = 1 �X ∈ BN�P�X ∈ BN�
+P�η�X� = 1 �X /∈ BN��1−P�X ∈ BN��


but we have P�η�X� = 1 �X /∈ BN� = ρ < 1 by (ii).
From [7] and the proof of Theorem 3(A), it may be seen that for the X

constructed in Theorem 3(A), �X
N� is indeed a stopping solution for some
N. Furthermore thisN can be chosen such that P�N ≥ n� ≤ c′1n−d/2 for some
c′1 = c′1�ρ
d� < ∞. For d = 1, this is achieved by taking N = X in Theorem
1(A); that this is possible follows from the proof in [7]. For general d, the
following extension of Proposition 5 is required. In part (ii) of that result, all
of the sites S�0�
 S�1�
 � � � 
 S�k� lie within distance C�k�1/d of 0. This follows
directly from the proof of Proposition 5.

Theorem 8. Let d ≥ 1 and 0 < ρ < 1. If �X
N� is any stopping solution
to Problem A then

P�N ≥ n� ≥ c3n−d/2

where c3 = c3�ρ
d� > 0.

As remarked in the Introduction, Theorem 8 makes it plausible that the tail
behavior of �X� in Theorem 3(A) is essentially the best possible for all d. This
is because it would be very surprising if the construction of a solution X with
optimal tail behavior required the examination of sites “much further” from
the origin than the final choice of X.

In the proof of Theorem 8 we will make use of Proposition 9 below, which
is of interest in its own right. Let π be a permutation of �d. We define

�π� = min�n ≥ 0 
 π�k� = k for all k /∈ Bn	

where the minimum of the empty set is taken to be ∞. Thus, �π� ≤ n if π
disturbs only sites in Bn. A permutation π acts on elements η of �0
1	�d via
�πη��k� = η�π�k��, and on measures µ on �0
1	�d via �πµ��A� = µ�π−1�A��.
The following result relates to a natural generalization of Problem A to per-
mutations.

Proposition 9. Let η have distribution νρ, and suppose π is a random

permutation of �d with the property that πη has distribution ν∗ρ. Then

P��π� > n� ≥ c4n−d/2

where c4 = c4�ρ
d� > 0.

We remark that the bound in Proposition 9 is essentially optimal; that is,
there exists such a π with P��π� > n� ≤ c5n−d/2, where c5 = c5�ρ
d� <∞. To
prove this, let �X
N� be a stopping solution satisfying the bound of Theorem
3(A), as described above. It will follow from the proof of Theorem 8 that we
can construct a π having the required properties from �X
N�.
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Proof of Proposition 9. Our proof is similar to that of Theorem 3.1 in
[7], which in turn is based on the shift-coupling inequality; see [10], Chapter
7. The total variation norm ! · ! on signed measures is defined as usual by
!µ! = supf
�f�≤1

∫
fdµ. We claim that∥∥∥∥ 1

�Bn�!
∑
α
�α�≤n

ανρ −
1

�Bn�!
∑
α
�α�≤n

αν∗ρ

∥∥∥∥ ≤ 2P��π� > n�
(29)

where each sum is over all �Bn�! permutations α for which �α� ≤ n. Equation
(29) is a variant of the shift-coupling inequality.

To prove (29), note that by the assumptions of the proposition, the left side
equals the supremum over �f� ≤ 1 of

1
�Bn�!

∑
α
�α�≤n

Ef�αη� − 1
�Bn�!

∑
α
�α�≤n

Ef��πα�η�
(30)

where πα is the composition of permutations defined by �πα��k� = π�α�k��.
By conditioning on π, (30) equals

E

(
1

�Bn�!
∑
α
�α�≤n

E�f�αη� �π� − 1
�Bn�!

∑
α
�α�≤n

E�f��πα�η� �π�
)



and we may bound this expression as follows. For every fixed π with �π� ≤ n,
we have �πα 
 �α� ≤ n	 = �α 
 �α� ≤ n	, so the two sums are equal in this case.
On the other hand, each of the two terms is bounded above in absolute value
by 1, for every fixed π. So (30) is at most

0P��π� ≤ n� + 2P��π� > n��
Now taking the supremum over f gives (29).

Next we compute the left side of (29) as follows. Evidently, ανρ = νρ. Fur-
thermore, we have αν∗ρ = ν∗
α

−1�0�
ρ where ν∗
kρ is defined by

ν∗
kρ �·� = νρ�η ∈ · �η�k� = 1��
Hence the left side of (29) equals∥∥∥∥νρ − 1

�Bn�
∑
k∈Bn

ν∗
kρ

∥∥∥∥�(31)

We now proceed as in [7]. The expression above can be written as∫ ∣∣∣∣1− 1
�Bn�

∑
k∈Bn

dν∗
kρ
dνρ

∣∣∣∣dνρ�
But under the measure νρ, the sum in this expression is equal to 1/ρ times
a binomial random variable with parameters �Bn�, ρ. It follows by the central
limit theorem that (31) is asymptotic to

c′�Bn�−1/2 = c′�2n+ 1�−d/2

for some c′ = c′�ρ� > 0. Combining this with (29) yields the required result. ✷
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Proof of Theorem 8. Let η have distribution νρ and let �X
N� be a stop-
ping solution. A cuboid is a subset of �d which is a direct product of sets of the
form �a
 a + 1
 � � � 
 b	. Define R = R�X
N� to be the smallest cuboid which
contains BN ∪ �BN +X� as a subset. (See Figure 2 for an illustration in the
case d = 2). Now define π 
 �d→ �d by

π�k� =
{
X− k
 if k ∈ R

k
 otherwise.

It is easy to check that π is a permutation, and that �π� ≤ 2N [by (28); also
see Figure 2]. We will prove that πη has distribution ν∗ρ. The required result
will then follow immediately from Proposition 9.

Write λ = πη, so that

λ�k� =
{
η�X− k�
 if k ∈ R

η�k�
 otherwise.

Define ξ ∈ �0
1	�d by ξ�k� = η�X − k�. Since η�X + ·� has distribution ν∗ρ,
ξ has this distribution also. We need to prove that λ and ξ have the same
distribution. In fact we will prove the stronger statement

P�λ ∈ ·
X = x
N = n� = P�ξ ∈ ·
X = x
N = n�(32)

for all x
n; this gives the required fact on summing over x
n. It is sufficient to
check (32) for increasing cylinder events, and we therefore proceed as follows.
Fix x and n, and write T for the event �X = x
N = n	. Let K be any
finite subset of �d, and write K′ = K ∩ Bn, K′′ = K ∩ �R�x
n� \ Bn� and
K′′′ =K ∩R�x
n�c. Then we have the chain of equalities

P
(
λ�k� = 1 ∀ k ∈K
T)
= P

(
η�x− k� = 1 ∀ k ∈K′
 η�x− k� = 1 ∀ k ∈K′′


η�k� = 1 ∀ k ∈K′′′
T
)

Fig. 2. The cuboid R.
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= P�η�x− k� = 1 ∀ k ∈K′
T� P�η�x− k� = 1 ∀ k ∈K′′�
×P�η�k� = 1 ∀ k ∈K′′′�

= P�η�x− k� = 1 ∀ k ∈K′
T� P�η�x− k� = 1 ∀ k ∈K′′�
×P�η�x− k� = 1 ∀ k ∈K′′′�

= P
(
η�x− k� = 1 ∀ k ∈K′
 η�x− k� = 1 ∀ k ∈K′′


η�x− k� = 1 ∀ k ∈K′′′
T
)

= P�ξ�k� = 1 ∀ k ∈K
T��
In the second and fourth equalities we have used property (ii) of a stopping
solution, the independence of the random variables �η�k� 
 k ∈ �d	, and the
fact that if k ∈ K′′′ then k
 x − k /∈ R�x
n� ⊇ Bn. We have thus established
(32), as required. ✷
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