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ON CONVERGENCE TOWARD AN EXTREME VALUE
DISTRIBUTION IN C[0,1]

By Laurens de Haan and Tao Lin

Erasmus University

The structure of extreme value distributions in infinite-dimensional
space is well known. We characterize the domain of attraction of such
extreme-value distributions in the framework of Giné Hahn and Vatan.
We intend to use the result for statistical applications.

1. Introduction. The two northern provinces, Friesland and Groningen,
of the Netherlands are almost completely below sea level. Since there are no
natural coast defenses like sand dunes, the area is protected against inunda-
tion by a long dike. Since there is no subdivision of the area by dikes, a break
in the dike at any place could lead to flooding of the entire area. This leads to
the following mathematical problem.

Suppose we have a deterministic function f defined on �0�1� (representing
the top of the dike). Suppose we have i.i.d. random functions ξ1� ξ2� � � � defined
on �0�1� (representing observations of high tide water levels monitored along
the coast). The question is: how can we estimate

P�ξi�t� ≤ f�t� for i = 1� � � � � k�0 ≤ t ≤ 1�
= P

{
max
1≤i≤k

ξi�t� ≤ f�t� for 0 ≤ t ≤ 1
}(1.1)

on the basis of n observed independent realizations of the process ξ
(n large)?

Now a typical feature of this kind of problem is that none of the observed
processes ξ come even close to the boundary f that is, during the observa-
tion period there has not been any flooding-damage). This means that we
have to extrapolate the distribution of ξ far into the tail. Since nonparamet-
ric methods cannot be used, we resort to a limit theory; that is we imagine
that n → ∞ but in doing so we wish to keep the essential feature that the
observations are far from the boundary. This leads to the assumption that
f is not a fixed function when n → ∞ but that in fact f depends on n and
moves to the upper boundary of the distribution of ξ when n → ∞. Another
way of expressing this is that we assume that the left-hand side in the second
inequality has a limit distribution after normalization. So in order to answer
this question, we need a limit theory for the pointwise maximum of i.i.d. ran-
dom functions and this is the subject of the present paper. In fact, this theory
of infinite-dimensional extremes is an extension of the corresponding theory
in finite-dimensional space which is by now well understood. A short review
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of finite-dimensional results is useful at this point. For ease of writing we
restrict ourselves to the two-dimensional case.

Suppose �X�Y�� �X1�Y1�� �X2�Y2�� � � � are i.i.d. random vectors with dis-
tribution function F. Suppose also the marginal distribution functions are
continuous.

The convergence �n→∞� of(∨n
i=1Xi − bn

an

�

∨n
i=1Yi − dn

cn

)
(1.2)

in distribution (with norming constants an� cn > 0, bn� dn) is equivalent to the
convergence of (∨n

i=1Xi − bn
an

)
�(1.3)

(∨n
i=1Yi − dn

cn

)
(1.4)

and

1
n

(
n∨

i=1

1
1−F1�Xi�

�
n∨

i=1

1
1−F2�Yi�

)
(1.5)

in distribution, where F1 and F2 are the two marginal distribution functions
of F. Note that 1/�1 −F1�X�� and 1/�1 −F2�Y�� both have the distribution
function 1−�1/x�� x > 1. So for the joint convergence it is sufficient to consider
a standard or “simple” case.

The limit distributions of (1.3) and (1.4) are

exp−�1+ γ1x�−1/γ1 and exp−�1+ γ2x�−1/γ2�
respectively, so there are two real parameters: γ1 for the first component, γ2
for the second one. The limit distribution of (1.5) is

exp
{
−
∫ π/2

0

(
1 ∧ tan θ

x
∨ 1 ∧ cot θ

y

)
��dθ�

}
�

where � is the distribution function of a finite measure on �0� π/2� with∫ π/2

0
�1 ∧ tan θ���dθ� =

∫ π/2

0
�1 ∧ cot θ���dθ� = 1

[de Haan and Resnick (1977), Deheuvels (1978), Pickands (1981)]. The limit
distribution of (1.2) then becomes

exp
{
−
∫ π/2

0

(
1 ∧ tan θ

�1+ γ1x�1/γ1
∨ 1 ∧ cot θ
�1+ γ2x�1/γ2

)
��dθ�

}

depending on two real parameters and a finite measure on �0� π/2�.
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It is useful to say a bit more about the origin of �. Write Ui �=
�1 − F1�Xi��−1 and Vi �= �1 − F2�Yi��−1, i = 1�2� � � � and let F0 be the
joint distribution function. The limit relation

P

{
1
n

n∨
i=1

Ui ≤ x�
1
n

n∨
i=1

Vi ≤ y

}
→ G�x�y�(1.6)

is equivalent to

Fn
0�nx�ny� → G�x�y�(1.7)

and hence to

n�1−F0�nx�ny�� → − logG�x�y��(1.8)

Define for n = 1�2� � � � the measure νn by

νn��s� t�� s > x or t > y� �= n�1−F0�nx�ny���(1.9)

Then (1.8) says that the measures νn converge to a measure ν; that is,

nP�n−1�U1�V1� ∈ A� → ν�A�(1.10)

for any Borel set A ⊂ �0�∞�2 \ ��0�0�� with ν�∂A� = 0. Obviously ν is homo-
geneous, ν�αA� = α−1ν�A�, hence for r > 0 and 0 ≤ θ ≤ π/2,

ν

{
�s� t��s ∨ t > r�

t

s
≤ tan θ

}
= r−1��θ�

with � as before. So � originates from a transformation very similar to the
transformation to polar coordinates. In fact �t→∞�,

tP

{
U ∨V > t�

V

U
≤ tan θ

}
→ ��θ�(1.11)

and convergence of (1.2) is equivalent to convergence of the two marginals
and (1.10).

Note that we have discussed two topics: the characterization of the limit
distribution and for each of those, the characterization of the domain of attrac-
tion. A somewhat more extensive review is contained in de Haan and de Ronde
(1998). The mentioned results form the basis for statistical applications. These
are reviewed in the same paper.

The most direct generalization to the infinite-dimensional case is by gener-
alizing the concept of distribution function. Note that

P

{
max
1≤i≤n

ξi�t� ≤ f�t� for 0 ≤ t ≤ 1
}

= Pn

{
ξ�t� ≤ f�t� for 0 ≤ t ≤ 1

}
�

(1.12)
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That means that we can proceed as in the string of implications
�1�6� ⇒ �1�10� and beyond. But an equality like (1.12) is not valid for proba-
bilities of the type

P

{
max
1≤i≤n

ξi ∈ E
}

(1.13)

so that the connection with convergence of measures is much less obvious.
That is actually the main problem in the extension to the infinite-dimensional
situation. A theorem by Norberg (1984) states that the convergence of

P

{
max
1≤i≤n

ξi�t� ≤ nf�t� for 0 ≤ t ≤ 1
}

for all continuous functions f is equivalent to convergence of n−1 max1≤i≤n ξi
in distribution in the space of upper semicontinuous functions. So this set-up
looks attractive, but there are several problems: we do not always get conver-
gence of marginal distributions, it implies convergence of the probability of too
few sets and it is difficult to communicate the result to nonmathematicians.
So we decided not to use the framework of semicontinuous functions.

Before explaining the framework that we used, we review the two existing
results on the characterization of the limit distributions.

First, note if η has the limit distribution of �∨n
i=1 ξi − bn�/an where an > 0

and bn are norming functions, we have for k = 1�2� � � �,(
k∨

i=1
ηi −Bk

)/
Ak

d=η�(1.14)

where η1� η2� � � � are i.i.d. copies of η and Ak > 0 and Bk norming functions.
Here convergence could be in any metric space. In particular, if bn ≡ 0 and
an ≡ n, then

k−1
k∨

i=1
ηi

d= η�(1.15)

A process satisfying (1.14) is called max-stable and a process satisfying (1.15)
is called simple max-stable.

All random functions are defined on �0�1�.
Proposition 1.1 [de Haan (1984), de Haan and Pickands (1986)]. Suppose

η is continuous in probability. The following are equivalent:

(i) η is simple max-stable.
(ii) There exists a collection of function �gt�t∈�0�1� with gt� �0�1� → R+� gt ∈

L1 for all t and �gt�t∈�0�1� continuous in L1 (i.e., �gtn
− gt�1 → 0 if tn → t)

such that for 0 ≤ t1 < t2 < · · · < tk ≤ 1 and x1� x2� � � � � xk > 0,

P�η�ti� ≤ xi� i = 1�2� � � � � k� = exp
{
−
∫ 1

0

k∨
i=1

gti
�s�
xi

ds

}
�(1.16)
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Proposition 1.2 [Resnick and Roy (1991)]. Moreover, the process η has
continuous sample paths if and only if �gt�t∈�0�1� is continuous in L∞-norm.

The other result is the following.

Proposition 1.3 [Giné, Hahn and Vatan (1990)]. Suppose η is in C�0�1�.
The following are equivalent:

(i) η is simple max-stable.
(ii) There exists a finite Borel measure σ on C+1 �= �f ∈ C�0�1�� f >

0� �f�∞ = 1� with
∫
C+1

f�t�dσ�f� = 1 for t ∈ �0�1� such that for all f ∈
C�0�1�� f > 0,

P�η < f� = exp
{
−
∫
C+1 �0�1�

�g/f�∞ dσ�g�
}

or, equivalently, such that for all compact K1�K2� � � � �Km ⊂ �0�1� and x1,
x2� � � � � xm positive,

P

{
sup
t∈Ki

η�t� ≤ xi� i = 1�2� � � � �m
}
=
∫
C+1 �0�1�

max
1≤i≤m

(supt∈Ki
g�t�

xi

)
dσ�g��

This characterizes the “simple” case.

Corollary 1.4 [Giné, Hahn and Vatan (1990)]. A general max-stable pro-
cess in C�0�1� �i.e., a process satisfying �1�14�� can be represented as

a�t��η�t��
γ�t� − 1

γ�t� + b�t�

with a� b� γ ∈ C�0�1� and, a positive and with ξ as in Proposition 1�3.

Remark 1.5. The proposition and corollary are also true with C�0�1�
replaced by D�0�1� throughout and C+1 �0�1� replaced by D+1 �0�1� �= �f ∈
D�0�1�; �f�∞ = 1� inf t∈�0�1� f�t� > 0�.

The set-up of Proposition 1.1 implies knowledge of (1.13) for very few sets
E. Also the polar coordinate type transformation in Proposition 1.1 is less
tractable than in Proposition 1.3. So we decided to proceed in the framework
of random functions in C�0�1� and D�0�1�.

2. Results. The following has been taken from Daley and Vere-Jones
(1988).

Let X be a complete and separable metric space (CSMS).

Definition 2.1. A Borel measure ν on a CSMS is boundedly finite if
ν�A� <∞ for every bounded Borel set A.

We shall only consider such measures.
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Definition 2.2. A sequence of measures �νk� on a CSMS converges weakly
to a measure ν if νk�A� → ν�A� for each bounded Borel set A with ν�∂A� = 0.

Proposition 2.3. The sequence �νk� converges to ν if and only if there exists
a sequence S�n� of spheres, S�n� ↑ X, such that νk�A� → ν�A� for each n and
each Borel set A ⊂ S�n� with ν�∂A� = 0.

We shall consider measures on the spaces

C+�0�1� �= �f ∈ C�0�1��f > 0��
D+�0�1� �= �f ∈ D�0�1�� inf

t∈�0�1�
f�t� > 0��

By transform,

f↔
(
�f�∞�

f

�f�∞

)
�

C+�0�1� = �+ ×C+1 �0�1��
Note neither �+ nor C+1 �0�1� is CSMS. Define

�C+1 �0�1� �= �f ∈ C�0�1�� f ≥ 0� �f�∞ = 1��
which is a CSMS and �0�∞� is a CSMS under the metric ρ�x�y� = �1/x� −
�1/y�� x� y ∈ �0�∞�. Hence

�C+�0�1� = �0�∞� × �C+1 �0�1� is a CSMS �

We do the same to space D:

�D+�0�1� = �0�∞� × �D+1 �0�1� where

�D+1 �0�1� �= �f ∈ D�0�1�� f ≥ 0� �f�∞ = 1��

Theorem 2.4. Suppose ξ� ξ1� ξ2� � � � are i.i.d. random elements of D+�0�1�.
Consider the following statements:

(i) �1/n�∨n
i=1 ξi

D→η in D+�0�1� �and then η is simple max-stable�.
(ii) νn

w→ν in the space of measures on �D+�0�1� �and then the measure ν is
homogeneous of degree −1� with

νn�E� �= nP�n−1ξ ∈ E� for E ∈ �� �D+�0�1���

(iii) Nn

d→N in the space of random measures on �D+�0�1� where

Nn �=
n∑

i=1
ε�n−1ξi�

and N is Poisson process.
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We have the following implications: �i� ⇒ �ii� ⇔ �iii�; moreover ν �from (ii)�
is the mean measure of the Poisson process in (iii) and, with η from (i), for
n = 1�2� � � �,

P�n ∈ A �K� x̄� = exp−ν
(
Ac
�K� x̄

)
(2.1)

with, for �K = �K1� � � � �Km� compact sets and x̄ = �x1� � � � � xm�,
A �K� x̄ �= �f ∈ �D+�0�1�� f�t� < xi for t ∈Ki� i = 1�2� � � � �m��

Moreover,

� �η� = �

( ∞∨
i=1

ζi

)
�(2.2)

where �ζi�∞i=1 are the points of a realization of N.
Finally, if P�η ∈ C�0�1�� = 1 for the process η from �2�1�, then �ii� ⇒ �i�

also holds.

Remark 2.5. The theorem also holds with D replaced by C everywhere.
Hence for the space C in part (ii) of Theorem 2.4 it is sufficient to require

nP�f1 < n−1ξ < f2� → ν�f�f1 < f < f2�
for arbitrary nonrandom functions f1 and f2 in C+�0�1� and νn�Sε� → ν�Sε�
for all ε > 0 [cf. Billingsley (1968), page 15, Corollary 2].

Remark 2.6. If P�ξ ∈ �C+�0�1�� = 1, then (i) holds in the space C�0�1�.

Remark 2.7. This is the analogue of the equivalence of (1.6) and (1.8).

Theorem 2.4 characterizes convergence to a “simple” max-stable process.
The general case is covered by the next result.

Theorem 2.8. Suppose ξ� ξ1� ξ2� � � � are i.i.d. random elements of C�0�1�.
Suppose Ft�x� �= P�ξ�t� ≤ x� is continuous with respect to t for each x. Define

Ut�s� �= F←t �1− 1/s�� s > 0� 0 ≤ t ≤ 1�

The following three statements are equivalent:

(i) (
n∨

i=1
ξi − bn�t�

)/
an�t�

w→ η̄�

where an�t� > 0 and bn�t� are continuous functions, chosen in such a way that
for each t ∈ �0�1�,

P�η̄�t� ≤ x� = exp
(−�1+ γ�t�x�−1/γ�t�)�

Then γ�t� is a continuous function.
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(ii) (
n∨

i=1
ξi −Ut�n�

)/
an�t�

w→ η̄�

(iiia)

1
n

n∨
i=1

1
1−Ft�ξt�t��

w→�1+ γ�t�η̄�t��1/γ�t�

and the limit is automatically simple max-stable.

(iiib)

Ut�ns� −Ut�n�
an�t�

→ sγ�t� − 1
γ�t� n→∞

uniformly in t and locally uniformly in s ∈ �0�∞� with γ a continuous function
�in ��.

(iv) For each f1� f2 ∈ C+�0�1� and f1 < f2,

nP

(
�f1�t��γ�t� − 1

γ�t� <
ξ −Un�t�

an�t�
<
�f2�t��γ�t� − 1

γ�t�

)
(2.3)

→ ν�f ∈ C+�0�1�� f1 < f < f2��
where ν is a measure on C+�0�1� and

P
{�1+ γ�t�η̄�t��1/γ�t� ∈ A �K� x̄

} = exp−ν(Ac
�K� x̄

)
(2.4)

and for each ε > 0,

nP

(
ξ −Ut�n�

an�t�
!< fε�t�

)
→ ν�Sε��(2.5)

where

fε�t� �=
εγ�t� − 1
γ�t�

and fε�t� = log ε if γ�t� = 0.

Remark 2.9. Part (iv) implies

nP

{(
1+ γ�t�ξ −Un�t�

an�t�

)1/γ�t�
∈ ·
}
→ ν�·�

in the space of weak convergence of finitely bounded measures on the space
C+�0�1�.

Remark 2.10. We can reformulate statement (iiia) using Theorem 2.4.
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Remark 2.11. So, as in the finite-dimensional setting, convergence in the
general case is equivalent to the (uniform) convergence of the marginals plus
the convergence of a “simple” version.

Remark 2.12. The theory goes through for random functions defined on
any compact set S and not just the interval �0�1�.

Let ξ be a random function in C�0�1�. We say that ξ is in the domain of
symmetric attraction of η̄ if Theorem 2.8(i) is true with an�t� ≡ cbn�t� ≡ an

(not depending on t) with c > 0.

Corollary 2.13. ξ ∈ �C+�0�1� is in the domain of symmetric attraction of
η̄ iff for some α > 0,

lim
t→∞

P��ξ�∞ > tr�
P��ξ�∞ > t� = r−α for r > 0(2.6)

and

lim
t→∞

P

(
ξ

�ξ�∞
∈ E|�ξ�∞ > t

)
= σ�f�fα ∈ E�

σ�C+1 �0�1��
(2.7)

for all Borel set E ⊂ �C+1 �0�1� with σ�∂E� = 0, where σ is as in Proposition 1�3.

3. Proofs. We start with a proposition on simple max-stable processes.

Lemma 3.1. Let η be simple max-stable in D�0�1�.
(i) P�η ∈ D+�0�1�� = 1.
(ii) P�⋂m

i=1�supt∈Ki
η�t� < sxi�� = Ps−1�⋂m

i=1�supt∈Ki
η�t� < xi�� for com-

pact sets K1�K2� � � � �Km ⊂ �0�1� and x1� x2� � � � � xm ∈ �1, m = 1�2� � � � and
s > 0.

(iii) P�η < sf� = Ps−1�η < f� for each f ∈ D+�0�1� and s > 0.

Proof. Statements (ii) and (iii) are obvious. For (i), note

D+ = �f ∈ D�0�1�� f�t� > 0� f−�t� �= lim
s↑t

f�s� > 0� t ∈ �0�1���

take A �= �t�η�t� = 0� and B �= �t� lims↑t η�s� �= η−�t� = 0�. By definition
(1.15) the random sets �t� �1/n� ∨ni=1 ηi�t� = 0� = ∩ni=1�t� ηi�t� = 0� have the
same law as A. Moreover, P�t ∈ A� = P�η�t� = 0� = 0 for fixed t. Hence,
Lemma 3.3(i) and Giné, Hahn and Vatan (1990), yields P�A = φ� = 1. In a
similar way we can get P�B = φ� = 1. ✷

Next we isolate the most difficult part of the proof of Theorem 2.4.
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Lemma 3.2. For n = 1�2� � � � let ξn� ξn�1� ξn�2� � � � � ξn�n be i.i.d. random ele-
ment of D+�0�1�. Define for n = 1�2� � � �,

νn�E� �= nP�ξn ∈ E��
νn� ε�E� �= nP�ξn ∈ E ∩Sε�

for all Borel sets E of �D+�0�1� where ε > 0 and

Sε �= �f ∈ �D+�0�1�� �f�∞ ≥ ε��
If

Mn �=
n∨

i=1
ξn�i

D→ η�(3.1)

where η is simple max-stable, then for each positive ε the sequence �νn� ε�∞n=1 is
relatively compact.

Proof. We need to prove two things:

1. The sequence νn� ε� �D+�0�1��� n ≥ 1 is bounded. First note that by (3.1) and
simple max-stability,

lim
n→∞n logP��ξn�∞ < ε�

= lim
n→∞ logP

(∥∥∥ n∨
i=1

ξn� i

∥∥∥
∞

< ε

)

= logP��η�∞ < ε�
= ε−1 logP��η�∞ < 1��

the last equality reflecting the fact that a simple max-stable random vari-
able has distribution function exp�−1/x�� x > 0. Hence

lim
n→∞ νn� ε� �D+�0�1��
= lim

n→∞nP��ξn�∞ > ε�
= lim

n→∞−n logP��ξn�∞ < ε�
= −ε−1 logP��η�∞ < 1��

(3.2)

2. �νn� ε�∞n=1 is tight for each ε > 0.

Note, since νn� ε� �D+�0�1�� has a finite limit as n→∞, we can check tight-
ness for the sequence �νn� ε� as if it were a sequence of probability mea-
sures. According to Theorem 15.3a, Billingsley (1968), this is equivalent to
the following:

(i) For each positive β there exists an α > 0, such that

νn� ε�Sα� ≤ β for all n�
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where

Sε �= �f ∈ �D+�0�1�� �f�∞ ≥ ε� for each ε > 0�

(ii) For each positive β and α, there exists an δ, 0 < δ < 1, and an integer
n0, such that
(iia)

νn�ε��f� ω′′f�δ� ≥ α�� ≤ β for n ≥ n0

with

ω′′f�δ� �= sup
t1≤t≤t2
�t2−t1 �≤δ

min��f�t� − f�t1��� �f�t2� − f�t����

(iib)

νn�ε��f� ωf�0� δ� ≥ α�� ≤ β for n ≥ n0

with

ωf�0� δ� �= sup
0≤s�t<δ

�f�s� − f�t���

(iic)

νn�ε��f� ωf�1− δ�1� ≥ α�� ≤ β for n ≥ n0

with

ωf�1− δ�1� �= sup
1−δ≤s�t<1

�f�s� − f�t���

Now (i) follows from the first part of the proof. Next we prove (iia); the other
parts are similar. Relation (3.1) implies convergence in distribution, hence
tightness, of �Mn ∨ α/2�∞n=1. Consequently

P��ω′′Mn∨α/2�δ� ≥ α/2�� ≤ β∗ for n ≥ n∗0�

Define

Qn�α �= �Mn ∨ α/2�I��ηn� i�≥α/2 for some i� �ηn�j�<α/2 for j !=i��

Since Qn�α is either 0 or Mn ∨ α/2, we have

P�ω′′Qn�α
�δ� ≥ α/2� ≤ P��ω′′Mn∨α/2�δ� ≥ α/2�� ≤ β∗ for n ≥ n∗0�

Hence by the definition of Qn�α,

nPn−1
{
�ηn�∞ <

α

2

}
P
{
ω′′ηn∨α/2�δ� ≥

α

2

}
= P

{
ω′′Qn�α

�δ� ≥ α

2

}
≤ β∗ for n ≥ n∗0

(3.3)

Now

Pn−1
{
�ηn�∞ <

α

2

}
= P�n−1�/n

{
�Mn�∞ <

α

2

}
= P

{
�ξ�∞ <

α

2

}
=� d�(3.4)
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Hence by (3.2), (3.3) and the definition of νn,

ν∗n��f� ω′′f∨α/2�δ� ≥ α/2�� ≤ 2β∗/d =� β for n ≥ n0�

Since

ω′′f�δ� ≤ ω′′f∨α/2�δ� + α/2�

we find

ν∗n��f�ω′′f�δ� ≥ α�� ≤ β for n ≥ n0�

So in particular,

νn� ε��f�ω′′f�δ� ≥ α�� ≤ β for n ≥ n0� ✷

Proof of Theorem 2.4. �i� ⇒ �ii�. Note that Sε is a sequence of closed
spheres in �D+�0�1� and Sε ↑ �D+�0�1� as ε→ 0. Lemma 3.2 tells us that the
sequence �νn� ε�∞n=1 is relatively compact for any ε > 0. Hence by Proposition
A2.6.IV of Daley and Vere-Jones (1988), the sequence �νn�∞n=1 is relatively
compact. Now

lim
n→∞ νn

(
Ac
�K� x̄

)
= lim

n→∞−n logP
{
n−1ξ ∈ A �K� x̄�

= lim
n→∞− logP�n

−1 ∨ni=1 ξi ∈ A �K� x̄�
= − logP�η ∈ A �K� x̄�
=� ν�Ac

�K� x̄
��

(3.5)

In particular, νn�f ∈ �D+�0�1�� �f�∞ ≥ ε� → ν�f ∈ �D+�0�1�� �f�∞ ≥ ε�.
Note that the measure ν is determined by its values on Ac

�K� x̄
for any �K and

x̄. Since the sequence �νn� is relative compact and any convergent subsequence
has the same limit, the proof is complete.
�ii� ⇔ �iii�. By Daley and Vere-Jones [(1988), Lemma 9.1.IV], the statement

in (iii) is equivalent to

�Nn�A1��Nn�A2�� � � � �Nn�Am��
d→ �N�A1��N�A2�� � � � �N�Am��

(3.6)

for each m ∈ � and A1�A2� � � � �Am bounded disjoint N-continuity sets. The
latter means that

P�N�∂Ai�� = 0 ⇔ ν�∂Ai� = E�N�∂Ai�� = 0⇔ Ai is a ν-continuity set.
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Now (3.5) is equivalent to the convergence of

E exp
{
−

m∑
i=1

λiNn�Ai�
}

=
[
E exp

{
−

m∑
i=1

λiI�n−1ξ∈Ai�

}]n

=
[
1+

m∑
i=1

P
{
n−1ξ ∈ Ai

}(
e−λi − 1

)]n

= exp
(
n log

{
1+

m∑
i=1

P
{
n−1ξ ∈ Ai

}(
e−λi − 1

)})
(3.7)

to

E exp
{
−

m∑
i=1

λiN�Ai�
}

= exp
{ m∑

i=1
ν�Ai�

(
e−λi − 1

)}
�

(3.8)

Now clearly (3.6) converges if and only if

exp
( m∑

i=1
nP

{
n−1η ∈ A}(e−λi − 1

))

= exp
m∑
i=1

νn�A��e−λi − 1�

converges to the same limit (3.7). And this convergence is equivalent to

νn�A� → ν�A�
for all bounded Borel sets A of D+�0�1� with ν�∂A� = 0.
�ii� ⇒ �i� under the extra condition P�η ∈ C�0�1�� = 1. The weak conver-

gence νn→ ν implies νn� ε
w→νε with νn� ε from Lemma 3.2 and

νε�E� �= ν�E ∩Sε�
for Borel sets E of �D+�0�1�. Then by the previous part of the proof, we have

Nn�ε→Nε weakly

with Nn�ε �=NnI�f∈Sε� and Nε �=NI�f∈Sε�. Since the map

m∑
i=1

ε�fi� → ε�∨mi=1fi�

is continuous for the point process in C�0�1� (which is not true in space D),
we have

1
n

n∨
i=1

ξi ∨ ε
D→η ∨ ε�0�1�
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for each ε > 0. Hence

1
n

n∨
i=1

ξi
D→η� ✷

Proof of Remarks 2.5–2.7. Since condition of tightness in spaceC�0�1� is
very similar to the condition of tightness in space D�0�1�, the proof is similar
if D is replaced by C everywhere. Hence if P�ξ ∈ C̄+�0�1�� = 1, then P�η ∈
�C+�0�1�� = 1
Note that the measure ν is defined on C+�0�1� and Sε ↑ �C+�0�1�.
The convergence νn→ ν is equivalent to

ν̄n→ ν where ν̄n is the restriction of νn in C+�0�1�
and νn�Sε� → ν�Sε��

(3.9)
✷

Remark 3.3. Note that in the more general situation of Lemma 3.2 the
proof still applies. So the results of Theorem 2.4 and Remarks 2.5–2.7 still
hold if we change ξi to ξn� i.

Proof of Theorem 2.8. �i� ⇒ �ii�. By the convergence in space C and the
representation of the remark after Theorem 1.2, we have

Fn
t �an�t�x+ bn�t�� → exp�−�1+ γ�t�x��−1/γ�t�(3.10)

uniformly in t and locally uniformly in x where

Ft�x� �= P�ξ�t� ≤ x� for t ∈ �0�1��
It follows that

n�1−Ft�an�t�x+ bn�t��� → �1+ γ�t�x�−1/γ�t�(3.11)

uniformly in t and locally uniformly in x. Since convergence of a sequence of
monotone function is equivalent to convergence of their inverses, we have

Ut�ns� − bn�t�
an�t�

→ sγ�t� − 1
γ�t�(3.12)

uniformly in t and locally uniformly in s ∈ �0�∞�. Hence �Ut�n� − bn�t��/
an�t� → 0 and (ii) follows.
�ii� ⇔ �iii�. Relation (iiib) follows immediately from (3.10). Further, (ii) and

the uniformity in (3.9) imply

1
n

n∨
i=1

1
/
�1−Ft�ξi�t���

= 1
/{

1−Ft

(
Ut�n� +

�1/n� ∨ni=1 ξi −Ut�n�
at�n�

at�n�
)}

(3.13)

w→�1+ γ�t�η̄�t��1/γ�t� in C�0�1��



EXTREME VALUE DISTRIBUTIONS 481

Since all elements are in C+�0�1� [cf. Lemma 3.1 and Giné, Hahn and Vatan
(1990), Corollary 3.4], we also have convergence in C+�0�1�. The converse is
similar.
�ii� ⇔ �iv�. Note that η̂ �= �1+ γ�t�η̄�t��1/γ�t� is simple max-stable. Hence,

P�η̄ > f1/n� = P

{�η̂�t��γ�t� − 1
γ�t� >

n−γ�t� − 1
γ�t� for all t

}
→ 1� n→∞�

Hence (ii) is equivalent to∨n
i=1 ξi −Ut�n�

an�t�
∨ f1/n�t�

w→ η̄�(3.14)

Since f�t� → �1+ γ�t�f�t��1/γ�t� is a continuous map, (3.14) is equivalent to

n∨
i=1

ξ̂i� n �=
n∨

i=1

(
1+ γ�t�ξi −Ut�n�

an�t�
∨ f1/n�t�

)1/γ�t�
w→�1+ γ�t�η̄�t��1/γ�t� = η̂�

Define measures ν̂n by

ν̂n�E� �= nP�ξ̂i� n ∈ E� for each Borel set E ∈ C̄+�0�1��
According to Theorem 2.4, Remarks 2.5 and 3.3, it is equivalent to

nP�f1 < n−1ξ̂1� n < f2� → ν�f�f1 < f < f2�
for arbitrary nonrandom functions f1 and f2 in C+�0�1� and ν̂n�Sε� → ν�Sε�
for all ε > 0. This is equivalent to (iv). ✷

Proof of Remark 1�5�i� ⇔ �ii�. Theorem 2.4 tells us that

P�η ∈ A �K� x̄� = exp−ν{Ac
�K� x̄

}
(3.15)

and that for a > 0 and E ∈ ��D+�0�1��,
ν�aE� = a−1ν�E��(3.16)

Now with F an arbitrary set in ��D+1 �0�1��, apply this relation for Er =
�f� �f�∞ > r and f/�f�∞ ∈ F�. Then

ν�Er� = r−1ν�E1��
Define the finite measures σ on ��D+1 �0�1�� by

σ�F� = ν�E1��
Then with f�t� = xi for t ∈Ki and infinite for t outside ∪ki=1Ki,

ν

(
Ac
�K� x̄

)
= ν�h�h�t� > f�t� for some t�

= ν

{
h� �h�∞ > inf

t

(
f
/ h

�h�∞

)}

=
∫
D+1 �0�1�

∥∥∥g
f

∥∥∥
∞

dσ�g��
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�ii� ⇒ �i�. The converse is easy. ✷

Final comments. Considering the content of Theorem 2.8, we intend to
use the results not in the way sketched in the Introduction but more directly
in the following manner [cf. de Haan and Sinha (1999)]: one is interested in
evaluating (1.1) for fixed k (corresponding to one year, e.g.), so we use part (ii)
of Theorem 2.4,

P�ξ�k��t� �= max
i≤k

ξi�t� ≤ f�t� for 0 ≤ t ≤ 1�

= P

{
k

n

1

1−Fk
t �ξ�k��t��

≤ 1

�n/k��1−Fk
t �f�t���

f�t� for 0 ≤ t ≤ 1
}

≈ �k/n�ν
{
g�g�t� ≤ 1

�n/k��1−Fk
t �f�t���

for 0 ≤ t ≤ 1
}
�

where the right-hand side of the last inequality is asymptotically constant.
What we need in order to estimate the right-hand side is an estimator for

the measure ν (possibly via the spectral measure σ from Proposition 1.3) and
asymptotic estimation of �n/k��1 − Fk

t �x�� which can be done more or less
via one-dimensional extreme-value results. The latter requires, for example,
estimation of the function γ�t� from Corollary 1.4 by a continuous function.
Both are objects of present research.
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