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ON THE EXISTENCE OF A QUASISTATIONARY MEASURE
FOR A MARKOV CHAIN

By Jean B. Lasserre and Charles E. M. Pearce

LAAS-CNRS and University of Adelaide

We consider a Markov chain on a locally compact metric space with
an absorbing set. Necessary and sufficient conditions are provided for the
existence of a quasistationary probability distribution.

1. Introduction. Consider a Markov chain � on a locally compact sep-
arable metric space X with an absorbing set S ⊂ X; that is, once in S the
chain � remains in S with probability 1.

As absorption can take a long time, one is often interested in the evolution
of the distribution of � conditional on absorption not yet having taken place.

This issue has been investigated in the pioneering papers of Seneta and
Vere-Jones [13] and others for countable state spaces. For a review, see [11].
It has been shown that under various conditions this conditional probability
has a limit distribution, which is called a quasistationary distribution or QSD
for short. For instance, it was shown that the existence of the Yaglom limit for
some initial state x implies the existence of a QSD. For accounts of limiting
conditional distributions, the reader is referred to [8] and [14]–[16].

More recently, still in the countable case and in continuous time, Ferrari,
Kesten, Martinez and Picco [4] have also proved the existence of a QSD using
renewal arguments and under assumptions on the distribution of the absorp-
tion time. Finally, in a recent paper, Hognas [7] considered a parametrized
single-species population model of the Ricker type and proved the existence
of a QSD under easily checked assumptions on the model. He then analyzed
the asymptotic behavior of the QSD as the parameter γ vanishes.

Interestingly enough, two assumptions in [7] and [4] are quite opposite.
Hognas [7] assumes that the one-step probability of absorption goes to unity
as the distance to the absorbing set becomes large, whereas the discrete-time
version of one condition in Ferrari, Kesten, Martinez and Picco [4] implies
that this one-step probability vanishes as the state becomes large! The former
hypothesis is particular to population growth models.

In all of the previously cited works, the state space was countable and the
arguments for proving the existence of a QSD dependent on the discrete nature
of X. Seneta and Vere-Jones [13] and Hognas [7] used the Perron–Frobenius
theory of nonnegative matrices. Ferrari, Kesten, Martinez and Picco [4] made
elegant use of renewal arguments and fixed-point techniques and it is possible
that their approach can be extended to the present context. However, as
acknowledged by the authors, the conditions are annoying for they restrict
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significantly the applicability of the results and therefore weakening those
conditions is highly desirable.

The contribution of this paper is twofold. First, we consider discrete-time
Markov chains on Borel spaces which are not necessarily countable. Second, we
assume only that the substochastic kernel maps C0�X�, the space of bounded
functions that vanish at ∞, into itself. We prove that this condition is implied
by those of Hognas [7] or by the discrete-time version of those of Ferrari,
Kesten, Martinez and Picco [4] and indeed is much weaker than the latter. In
addition, and in the spirit of Lasserre [9], we also obtain a Foster–Liapounov-
type necessary and sufficient condition for existence.

Finally, we consider two particular classes of Markov chains with quite
opposite hypotheses on the distribution of the absorption time. In the first,
we assume that the one-step probability of absorption increases to unity as
�x� → ∞, as with the population growth models of Hognas [7]. In the second,
we assume instead that this one-step probability tends to 0 as �x� → ∞. In
both cases, the requisite existence conditions for a QSD simplify.

2. Preliminaries. Let �X� �� be a measurable space, with X a locally
compact separable metric space and � its usual Borel σ-field. Suppose C�X�
is the Banach space of real-valued bounded continuous functions on X and
C0�X� ⊂ C�X� the Banach space of continuous functions that vanish at ∞,
both endowed with the sup norm.

Let � be the Banach space of finite signed Borel measures on �, endowed
with that total variation norm, and � the subspace of probability meas-
ures on �.

Let � �= 	�0� �1� 	 	 	
 be a discrete-time Markov process with values in X
and stochastic transition kernel P; that is, P�x� ·� is a probability measure on
� for every x ∈X and P�·� B� is a real-valued measurable function on X for
every Borel set B ∈ �.

The chain � is said to be weak Feller if its kernel P maps C�X� into itself;
that is, the function

x 
→ g�x� �=
∫
f�y�P�x� dy� ∈ C�X�

whenever f ∈ C�X�.
We assume that S ∈ � is an absorbing set; that is, if �t ∈ S, then with

probability 1, �t+n ∈ S for all n = 1� 2� 	 	 	 . For instance, if µ is an invariant
probability measure for �, then there is an ergodic class decomposition, in
which one may find at least one absorbing set S ∈ � such that P�x� S� = 1
for all x ∈ S (see, e.g., Hernandez-Lerma and Lasserre [6]). If the chain � is
strong Feller, then S is closed. We are interested in the case when there exists
an S which is a proper subset of X.

Conditional on absorption not yet having taken place, the chain � evolves
on the setX\S with probability 1. AsX\S is also a metric space with a Borel
σ-field �

′
, we may replace �X\S� � ′ � by �X� �� and consider a Markov chain

� on �X� �� with now a substochastic rather than a stochastic kernel P.
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Denote by s�x� the nonnegative function

x 
→ s�x� =
∫
x
P�x� dy� = P�x� X�	(2.1)

Without loss of generality we may assume that s > 0, since the Borel set
	x ∈X� s�x� = 0
 can be taken as part of the absorbing set.

We can regard P as an operator acting on � via

ν 
→ νP�B� �=
∫
P�x� B� ν�dx�� B ∈ ��(2.2)

and an operator acting on C�X� via

f 
→ Pf�x� �=
∫
f�y�P�x� dy�� x ∈X	(2.3)

A probability measure ν ∈ � is said to be a quasistationary distribution or
QSD if and only if

∫
P�x� B� ν�dx�∫
P�x� X� ν�dx� = ν�B�� B ∈ �	(2.4)

Equivalently, νP = �∫ sν�dx��ν; that is, ν is a left eigenvector of P with eigen-
value α �= ∫

sν�dx�.
Finally, given a probability measure ν ∈ � , define the family of probability

measures

µνn�B� �=
∫
Pn�x� B� ν�dx�∫
Pn�x� X� ν�dx� � B ∈ �� n = 1� 2� 	 	 	 	(2.5)

In the case where µνn converges weakly to some µν ∈ � (denoted as usual by
µνn ⇒ µν), we say that µν is the Yaglom limit for the initial distribution ν,
by analogy with the situation for finite and countable spaces. It was proved
by Seneta and Vere-Jones that in that context, if the Yaglom limit exists for
some x ∈X, then this implies the existence of a QSD.

The usual vague convergence of probability measures is denoted by
∗→;

that is,

µn
∗→ µ⇔

∫
fµn�dx� →

∫
fµ�dx� ∀f ∈ C0�X�	

3. Main result. In this section, we discuss the issue of the existence of a
QSD. First, we make the following Feller-like assumption on the kernel P.

Assumption 3.1. The map P takes C0�X� into itself; that is,

x 
→ g�x� �=
∫
f�y�P�x� dy� ∈ C0�X� whenever f ∈ C0�X�	(3.1)

Further, P1 ∈ C�X�.
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3.1. Necessary and sufficient conditions. We provide next various neces-
sary and sufficient conditions for the existence of a QSD. For a discussion on
limiting conditional distributions in an even more general framework, the
interested reader is referred to [15] and [16].

Theorem 3.2. Under Assumption 3	1� the following three propositions are
equivalent:

(a) P has a QSD;
(b) µνn ⇒ µν for some initial probability measure ν ∈ � , in which case the

eigenvalue α is given by

α = lim
n→∞

∫
Pn+1�x� X�ν�dx�∫
Pn�x� X�ν�dx� �(3.2)

(c) for some probability measure ν ∈ � , the limit

α = lim
n→∞

∫
Pn+1�x� X�ν�dx�∫
Pn�x� X�ν�dx�(3.3)

exists, is positive and

0 < lim inf
n→∞

∫
Pn�x� K�ν�dx�∫
Pn�x� X�ν�dx�(3.4)

for some compact set K ∈ �.

The proof is omitted, but the interested reader may find details in [10].

Remark 3.3. (i) The equivalence of (a) and (b) in Theorem 3.2 is true in an
arbitrary metric space with a Feller kernel P. However, to prove that (b) ⇒ (c)
as well as (c) ⇒ (a) requires repeated use of Assumption 3.1 and the fact that
X is locally compact separable.

(ii) From Theorem 3.2, one may see that the existence of a Yaglom limit
for some x ∈ X is a sufficient condition for the existence of a QSD. In this
case the Yaglom limit is itself a QSD. What we have shown in Theorem 3.2 is
that the existence of a nontrivial weak* limit point in the Yaglom sequence is
also a sufficient condition for the existence of a QSD. However, the limit point
itself is not in general a QSD.

3.2. Foster–Liapounov-type conditions. In this section we provide another
necessary and sufficient existence condition based on a totally different
approach. This follows from the observation that a QSD µ exists if and only
if the system

µP=αµ�
µ�X� ≤ 1�

µ�K� ≥β
(3.5)
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has a solution for some compact set K and some positive scalar β. We recall
that a kernel P is weak Feller if Pf is continuous whenever f is bounded
continuous.

Theorem 3.4. Assume that P is weak Feller. Then P has a QSD if and
only if there exist a compact set K, positive scalars β and 0 < α < 1 such that
whenever f ∈ C0�X� and γ ∈ R+ satisfy

Pf− αf+ γ − IK ≥ 0�(3.6)

we have γ ≥ β.

The proof is postponed to the Appendix. It is based on a generalized Farkas
lemma for infinite-dimensional linear systems. An excellent exposition of the
use of the Farkas lemma in proving the existence of invariant measures for
finite Markov chains is given by Franklin [5].

4. Two particular classes. In this section, we particularize our results
to two classes of Markov chains. The first is the one for which the function
s ∈ C0�X�, as in population growth models in the countable case investigated
by Hognas [7]. This condition simply says that the one-step probability of
absorption tends to unity as the initial state �x� → ∞.

The second class is quite different in that the function 1 − s, not s, is in
C0�X�; that is, the one-step probability of absorption vanishes for large initial
state x. This condition is just the discrete-time version of the condition

Px�R < 2� → 0 as �x� → ∞(4.1)

of Ferrari, Kesten, Martinez and Picco [4] (with R the absorption time).

4.1. The case s ∈ C0�X�	 In this section, we consider the case where the
function s ∈ C0�X�, which is a typical situation for population growth models.
For a recent paper in this vein, the reader is referred to Hognas [7]. If s ∈
C0�X� and P is weak Feller, then P maps C0�X� into C0�X�. To see this,
observe that

Pf ≤ �f�P1 = �f�s whenever f ∈ C�X��
so that Pf ∈ C0�X�.

In this case, condition (3.4) in part (c) of Theorem 3.2 can be dropped.
Therefore, as an immediate consequence, a sufficient condition for the exis-
tence of a QSD is that the scalar

α �= lim
n→∞

Pn+1�x� X�
Pn�x� X�

exists and is positive for some initial state x ∈X.
In addition, the Foster–Liapounov-type condition in Theorem 3.4 also sim-

plifies as follows.
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Theorem 4.1. Suppose that P is weak Feller and s ∈ C0�X�. Then P has
a QSD if and only if there is a positive scalar 0 < α < 1 such that whenever
0 ≤ f ∈ C0�X� and γ ∈ R+ satisfy

Pf− αf+ γ − s ≥ 0�(4.2)

we have γ ≥ α.

Proof. P has a QSD if and only if the system

µP≤αµ�
µ�X�≤1�

∫
sµ�dx�≥α

(4.3)

has a nonnegative solution in µ ∈ � . Indeed, if µ ∈ � and µP = αµ, then, evi-
dently, µP�X� = ∫

sµ�dx� = α. Conversely, assume that µ ∈ � satisfies (4.3);
that is, equivalently, µP+ ν = αµ for some ν ∈ � . Integrating the constant 1
in both sides yields

∫
sµ�dx�+ν�X� = αµ�X�, so that

∫
sµ�dx� ≤ α. Therefore,

we must have ν�X� = 0 and fsµ�dx� = α, so that µ ∈ � and µP = αµ; that
is, µ is a QSD.

The rest of the proof is similar to that of Theorem 3.4 in the Appendix. ✷

One may note that function f in Theorem 3.4 is not restricted to be nonneg-
ative as in Theorem 4.1. This is because in (3.5) we have an equality µP = αµ
which can be relaxed into an inequality in (4.3). The Foster–Liapounov-type
conditions are also simpler in Theorem 4.1 for we do not need to introduce
a compact set K to ensure that µ is nontrivial. This is now implied by the
constraint

∫
sµ�dx� ≥ α. However, we can do that because s ∈ C0�X�, so that

the conditions to apply the generalized Farkas lemma are fulfilled.

4.2. The case 1 − s ∈ C0�X�. In this section, we consider the case where
in place of s the function 1 − s is now in C0�X�. It is immediate that with R
the absorption time, this condition is exactly the condition Px�R < 2� → 0 as
�x� → ∞ of Ferrari, Kesten, Martinez and Picco [4], where, in fact, one also has
Px�R < n� → 0 as �x� → ∞ for every n = 2� 3� 	 	 	. In this case, Theorem 3.2(c)
simplifies since we do not need the condition (3.4).

It is worth noting that from Theorem 3.2 a simple sufficient condition for
the existence of a QSD is just that

lim
n→∞

Pn+1�x� X�
Pn�x� X� = α > 0�

since condition (3.4) is useless.
We have also an adapted version of Theorem 3.4 which reads as follows.
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Theorem 4.2. Let Assumption 3	1 hold and suppose that 1 − s ∈ C0�X�.
Then P has a QSD if and only if there is a positive scalar 0 < α < 1 such that
whenever f ∈ C0�X� and γ ∈ R+ satisfy

Pf− αf+ γ + s ≥ 1�(4.4)

one must have γ ≥ 1 − α.

Proof. The existence of a QSD is equivalent to the existence of a nonneg-
ative solution to the linear system

µP=αµ�
µ�X� ≤ 1�

∫
�1 − s�µ�dx� ≥ 1 − α�

(4.5)

where now the constraint
∫ �1 − s�µ�dx� ≥ 1 − α ensures that the solution

is not trivial. The rest of the proof is similar to that of Theorem 3.4 in the
Appendix. ✷

4.3. Discussion of the conditions of Ferrari, Kesten, Martinez and Picco �4�.
We have already seen in the previous section that the discrete-time version
of the condition (4.1) of Ferrari, Kesten, Martinez and Picco [4] implies that
1 − s ∈ C0�X� provided P maps C�X� into itself.

In this section, we prove that their other conditions

Px�R < t� → 0 as �x� → ∞� ∀t = 3� 4� 	 	 	 �(4.6)

and Ex�R� <∞ for all x ∈X imply that Pmaps C0�X� into itself if P is weak
Feller. For this we need only show that for every compactK ∈ �, P�x� K� → 0
whenever �x� → ∞.

Let K be an arbitrary compact set in � and define

K0 �= {
x ∈K�s�x� = 1

}
� Ki �=

{
x ∈Ki−1�Pis�x� = 1

}
� i ≥ 1	

Since P is weak Feller and s is continuous, then so is Pns for each positive
integer n. Thus �Ki� forms a nonincreasing sequence of compact sets. Let
K∗ �= ∩∞

0 Ki and define

B �= {
x ∈X�Pn�x� X� = 1� ∀n = 1� 2� 	 	 	

}
	

Then

Kn = {
x ∈K � Px�R > n+ 1� = 1

}

so that

K∗ = {
x ∈K � Px�R = ∞� = 1

}
�

where R is the absorption time. Likewise

B = {
x ∈X � Px�R = ∞� = 1

}
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The hypothesis Ex�R� <∞ implies that B is empty and so a fortiori that K∗

is empty. By compactness, Kn is empty for all sufficiently large n. Fix such
an n. Then Pns�x� < 1 for all x ∈K. Consequently, if

Bnk �= {
x ∈X � Pns�x� ≤ 1 − k−1}�

then
⋃
k

Bnk = {
x ∈X � Pns�x� < 1

} ⊃K	

It follows that Bnk ⊃K for all k sufficiently large. But 1Bnk ≤ k · �1−Pns�, so
P�x�Bnk� ≤ k · [P�1 −Pn�s�x�] ≤ k · [1 −Pn+1s�x�] = k ·Px�R ≤ n+ 1�	

As, from (4.6), the probability on the extreme right goes to 0 as �x� → ∞, we
must have lim�x�→∞P�x�Bnk� = 0. Thus lim�x�→∞P�x�K� = 0, as desired.

APPENDIX

Proof of Theorem 3.4. Consider the linear system

µP = αµ�
µ�X� ≤ 1�
µ�K� ≥ β

(A.1)

and define the operator T� � ×R2 → � ×R2 by

T�µ�y�w� =


µP− αµ
µ�X� + y
µ�K� −w


	

We have seen that the existence of a QSD is equivalent to that of a nonneg-
ative solution µ ∈ � for the system (A.1), which in turn is equivalent to the
existence of a nonnegative solution �µ�y�w� ∈ � × R2, that is, a solution
�µ�y�w� ∈ !, where ! is the positive cone in � ×R2.

Consider the dual pairs of vector spaces �� �� � and ���� � with � �=
� × R2, � �= B�X� × R2, � �= � × R2 and � �= C0�X� × R2, with
B�X� the Banach space of bounded measurable functions on X. The preced-
ing spaces are equipped with the weak topologies σ�� �� �, σ�� �� �, σ���� �
and σ�� ���, respectively. We view T as a map from � to �.

The adjoint linear mapping T∗� � → � is defined by

T∗�f� s� t� �=


Pf− αf+ s+ t1K

s
−t




and, as obviously T∗�� � ⊂ � , T is continuous with respect to the previously
defined topologies. First, we need the following result.

Proposition A.1. Suppose that P maps C0�X� into itself. Then T�!� is
closed.
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Proof. Note first that the σ���� � topology is the weak∗ topology on �, so
closures of convex sets can be characterized by converging sequences
(cf. Dunford and Schwartz [3], Volume 1, page 437).

Therefore, as ! is obviously convex, consider a sequence 	�µn�yn�wn�
 ∈ !
such that the sequence T�µn�yn�wn� ∈ � converges to some �a� b� c� ∈ �,
that is,

µnP− αµn
∗→a� µn�X� + yn → b� µn�K� −wn → c	(A.2)

As yn ≥ 0, from (A.2), µn�X� ≤ 2b for n sufficiently large, so that by weak∗

sequential compactness of the unit ball in � , there is a nonnegative measure
µ ∈ � and a subsequence 	nk
 such that µnk

∗→µ.
Suppose, if possible, that µ�X� > b. By tightness there is a compact set K

with µ�K� > b. Choose f ∈ C0�X� such that 1K ≤ f ≤ 1. Then

b < µ�K� ≤
∫
fdµ = lim

k

∫
fdµnk ≤ lim sup

n
µn�X� ≤ b�

a contradiction. Hence we must have µ�X� ≤ b.
In addition, as K is compact and µnk

∗→µ we have c ≤ lim supk µnk�K� ≤
µ�K� (see, e.g., Doob [2]).

Finally, as P maps C0�X� into itself, we have µnk�P − αI� ∗→µ�P − αI�.
Therefore, with y �= b−µ�X� ≥ 0 andw �= µ�K�−c ≥ 0, we haveT�µ�y�w� =
�a� b� c�, so that T�!� is closed. ✷

As T�!� is closed, we can apply the generalized Farkas lemma of Craven
and Koliha ([1], Theorem 2, page 987) so that (A.1) has a nonnegative solution
if and only if

T∗�f� γ� t� ∈ !∗ ⇒ ��0�1� β�� �f� γ� t� ≥ 0�(A.3)

with !∗ the “dual” cone in � of the convex cone ! and �·� · the duality bracket
between � and � .

Relation (A.3) simply translates into

Pf− αf+ γ + t1K ≥ 0
γ ≥ 0

−t ≥ 0


 ⇒ γ + tβ ≥ 0	

The only interesting case is when t != 0. Dividing by −t > 0 and relabeling
provides

Pf− αf+ γ − 1K ≥ 0 ⇒ γ ≥ β�

which is the condition in Theorem 3.4.
The proofs of Theorem 4.1 and 4.2 are in the same vein.
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