EDITORIAL

FUNDAMENTALS OF THE THEORY OF SAMPLING

I. SamprinGg FrROM A LimITED SUPPLY

We shall consider first a population of s individuals, in which
each individual possesses a common attribute that can be measured
quantitatively. The sum of the associated variates may be expressed
as follows:

S
T, 4T, + Ty - Xy =2‘r:sN-r

From this so-called parcnt population it is possible to select ( ,3;)
different samples, each consisting of 7 individuals, (7=<s ). These
samples may be ordered after any fashion, and the algebraic sum of
the variates for the respective samples may be designated

(1)
z, = x, +x, 4z, -- - -+x,= Qx
L= x, tx, +x - - -+x~,=fx
oo r{2)
Z3)" Ts-rer T s rsz otz )

Thus, while f;r represents the sum of all the g8 variates in the
parent population, 2’ x designates the sum of the » variates occur-
ring in the i th sample.

We face now the problem of describing adequately, from a sta-
tistical point of view, the distribution of these ( ;? ) values of £, that
is to say, we must express the moments- &, , in terms of the moments

of the parent population, s, .

By definition M, = %
r
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102 FUNDAMENTALS OF SAMPLING

Since each value of z will contribute 7 terms to the value of J'#,
this latter expression will consist of p-( ) terms involving each of
the s variates of the parent population alike. Therefore, each variate,
x;(£=1,23, . . . s ), will occur in the expression for J &
exactly si’ .(§) times. Consequently

M M,=% (g)'?r'(’r"){x/"’xz* T}z g 2x=

We shall now investigate the values of

Mne™ Zsﬁ
s

where we choose to represent a deviation from the mean as

L =g,-M,
Observing that
Z=2,-My=zx+x,+ - z2,-rM =2+x X,
we note that

r/ ri/

52 - =z = =

Ef= )+ 2) %73,
[ r2

2:= Y7+ 284,53,

(&)
Therefore
C LI D £, 008 fg )
o Gl beey 255
or, writing
_ ,,(b: rir-N(r-2)- - - - .(r_'l’—j)
T S® T 5 (5 s - ) (s-i-7)
(23) /‘Lz:z= 2! {/0/ —2;7— +/oz Zzi';’ }
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By utilizing further the multinomial theortm, it follows easily that

T’ x ‘z, fx.r.r}

(33) /13:2 = 3', {/ol é! -"/0‘ Z/ /[ ﬂ: //)‘

(40) .= 4/{‘/’,z % Jaraf

4[ +/°z 3’, /./ t 2,)8
PR $5,7,%,7
R T

etc.

The rule for writing down the terms is as follows: The number
of terms in the expression for ¢, , equals the number of partitions
that can be formed from the integer 7 . The subscript of o equals
the number of elements in the corresponding partition, and exponents
of £ and the factorials in the denominators are in fact the elements

of the partitions.

Our next problem is to express the summations in terms of mo-
ments of the parent population, ¢, ...

First order summation

f T=5u.=0
Second order summations
2‘5 =s Mzx
227, Zj=-SH,

since Fzp=0-fz 25 5

Third order summations

=3
Z.x"s/“ax
X; X =Sy,
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3 -4
since ) x? fi =0=7% ?-+f.i~f.i‘,
3 2 5 — S -
and (2 X) =0-—£i"+3£.z','xj+6£xj ¥ T,
Fourth order summations
S
2 T'=sp,.
Seis-
I Sies -5#4:.?
2 f = iz -spu,  t O,
22 x 5} T, = ASpyom su :::

= = - 2
82{ X, Xj XL, X = ~& Sp,..tS 'u::x

Ctilizing these summations, (2a), (3a) and (4a) may be written

@) Moze™ s/“z»az{ 1T/ }
(3) Mo =5pise|a-30+25)
(4) M, , =Sk, W_7/03+/ZA-6/%} +35‘;1,f,{,42-2/% */04],'

Continuing after this fashion, one can show after a lavish use of
symmetric functions that

(5)  py.y = Shyy {/9,"75/%"' 50.,-60p, +24&}
+ /0"2/“::.1-/“1:.: {fz’¢/"gy+5/"4 - 2/0,5 } s

(6)  My.x = S.f 2~ 31541800~ 390, +3600, - 1200,
+/5 32/‘4::‘/“2:3{/2'3/03 /94 -/8/.'1*6/"6}
+ 105217, NP=60+/30-12 2+ 45,)

MR R R PRY R
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(7) phyy= sp, | £-630,+6020,- 2/00,4,+ 3360,,
-2520p, + 720p,]

+ /5%, . /u,,,,-{ 2 ~16,2+650,- 1100,
+84p0, - 24,0, |

+ 35 S z/‘ur/la.»x'iﬂz‘/%.'- 3%_ ‘56/06*42/05 —/2/07}

v 105 5%y 115804957042, | 5

B) fpy= Sty p-1275+/932,, - 10206 p,
+252000,-3/920p,+ 20160,0,- 50400, |

Y285 Yhyy r e\~ 320, 4 2110, - 5700,
+750 o, - 4800, + /20,0, }

+ 5655 5,1 g e\ 20— 18044978~ 2400, +304,0,
- 19Z,0,+ 48, |
+ 35sui | a-/40,+ 730,- 180,04 228 4-/945+363)
+ 210 %, . 11N oS0+ 270~ 370+ 24 0,- 6,
+ 280 5%l 1, 00 70,4 190~ 250, 16,0, 40, |
+ 1053w - tot6p,- 44 |.

It is convenient, at this point, to define the “#n th sampling poly-
nomial” as follows:

(9)  P(e)=D, log (,e*+/ -,o)]__
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If we place y =log (e *+/-p) |, then
9L o (pel-p) % e =
retl-p
Taking the 7 th derivative of both sides by utilizing Leibnitz’
Theorem, we obtain

x
.

(pe/-p)y " () peTy s (Floe <y ... = pe
Placing z = 0 in this cquation yields, by definition,
Pm/(/o)*(?)/-’ﬁz(/")"(g)/’&-, (/o)+ e ER

That is, for z=0, /, 2, --- - -

B(e)=r

B(e)veB(p)=p

By Bl pel)(o =0
B(o)+3eh (p)+3pF (A +pB(0)=p

etc.

Thus:

(B(Q)=p

B(PA =p-p*

Alo) =p-3p0% 202

B p-70041205-6,0%

D) =p-150%+50,0%-600%+ 2 4 p°

B(p) =p-30%+/8003-390,0%+36007-/20 06

(10) |

| BUA) ~ 0-/27/024/932,07-/02060% 25200,0%-3/92 0,0 €
[+ 20160, - 504009

etc.

Rio) =0- 63024602 £2-2/00,0* 33600 *-2520p°+72007



EDITORIAL 107

The law of formation of the coefficients is obvious: for if ¢sn
designates the coefficient of o7 in the expression for 2,(9) ,

cirn= jc:’:n - (j—/)cj-/zn-/
Comparing the polynomials of equations (9) with formulae (2)

to (8) inclusive, suggests writing the expressions for My, 5 in the
following symbolic form:

ULy = 2/{3 fm{

2!
su,.
M= 3‘/{}3 _3_75}
(11) - S He:x Pz S ":(:~
HMy:e = 4! {E 4; +'E?' (/;_/)zg}

2
_ SM;z.x Maz:
e 9B SRR B g

2 2
S . S . . S*uz,
'u:':"'ee /-‘4:/11,:_‘_ P M.

4! 2/ R/ (3N*
P} s3ut.s }
3! (23

[
)

+
etc.

By B, we understand an expression derived from the sampling
polynomial, P, (), by writing /o“ as p; . Thus,

B(P)=p-70%1/50%-60 ?, whereas
B =Pl or

Again, since

P(0)-B(0) Ple)=(o-3p4 200 0 = 0%~ J0%+ 20"
BB = 0,30, 2p,

The number of terms in the expression for u,., will equal the
number of partitions that can be formed from the integer » . The
subscripts of the P and g factors for any selected term correspond
to the elements of the corresponding partition, and the exponent of s
equals the number of elements in the partition. The factorials beneath
the s factors agree with the order of these moments, and the fac-
torials appearing occasionally under the P factors depend upon the
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number of times that any 2 is repeated as a factor in that term. All
terms arising from a partition in which unity is an element have been
neglected, since such terms will contain 4, . as a factor and conse-
quently be equal to zero.

Nlustration I. For the parent population we shall select the fol-
lowing (it will be noted that graphically-the ordinates terminate on the
hypotenuse of an isosceles. right triangle) :

TABLE I
Parent Population
x S
1 24
2 23
3 22
4 21
5 20
22 3
23 2
24 1
Total | 300

The mean, standard deviation and moments about the mean for
this distribution are as follows:

M, = 8666
Haw= 33222 o, = 5.76387
Hye= 108526 %= 506749
Haw = 2642.27 %= 239398
Mow= 20525.2 o= 569279
How= 322570 .= 27.3878

It may well be remarked at this, point that the stanaard variate
corresponding to an observed variate, x; is

x,~M, X;
(12) t,. '—“——‘?i = —O"L °

x x
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and is consequently an abstract number. The 7 th moment of the
standard variates is also without unit, i. e.

. tn / =n 2.
(13) %;—‘gﬂ— = sz’ f-%?‘

In dealing with distributions one should always bear in mind that
the mean and standard deviation determine merely the position of the
centroid vertical and the scale of the distribution, but that the standard
moments are influenced by the shape of the distribution alone. Con-
sequently a study of the mathematical representation of frequency dis-
tributions is essentially an investigation concerning the standard mo-
ments of observed and theoretical distributions.

From the above parent population it would be possible to select

(":,") samples, each consisting of 25 individuals. To describe the

distribution of these sampes, we proceed ws follows:
o= = 08333

24
ﬂ2=Pl'-2E = .0066 8896 32

Fo= Py B = 0005 1626 226

A< Py = 0000 3824 1649

,o‘,:,o‘..% = .0000 0271 3090 0

,0‘=,a,-—2%~= 0000 0018 3938 31
P, = 0766 4437 0 P, = 0450 5692 2
P, = 0642 98% 8 P, = 0032 3772 4%
P = 0424 7628 8 Pi= 0040 5670 98
P2= 005 0468 03  P2= .0004 0949 264
P, = 0065 8261 36

BB= 0048 0969 62
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M, = 216.66
Hay= 763.88 T, = 27.6385
Hgy= 2093.43 %s,= 0991550
Hey= 1730700 Gz = 296594
Hpg= 15647600 o,,= 970228
., = 6503500000 Gy = 14.5000

As a check on this theory, three hundred Hollerith cards were
punched with numbers corresponding to the three hundred variates of
the parent population. The cards were thoroughly shuffled and then
placed in a tabulating machine. After twenty-five cards had run
through this electric tabulator, their total was recorded. By repeating
this procedure one thousand samples were readily obtained and the
results are presented below.

TABLE 11

Distribution of the Totals of Samples of Twenty-five \ariates
Selected at Randon) from the Parent Population of Table 1

Class |Frequency
120~ 6
140- 28
160- 78
180- 179
200- 273
220- 229
240- 124
260- 56
280- 20
300- 7
Total 1000

In this observed distribution it is found that

M =21584 o = 30.8505
3= 1556 56 os= 139471
o, = 3.18939 o = 15.8603
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The significance of the differences that exist between these func-
tions and the values of ,, o; and »,,, given above will be consid-
ered in a subsequent paper.

The unmodified moments, v , for the preceding observed distribu-.
tion were corrected for grouping by means of the following formula:

(n)__..';.‘ V,. +(2 )U_-zﬂ&é) Vipou

(9 e A1CT L2 DR
é /344

where k represents the number-of different equidistant variates that

can appear in each class. Inour case, & = 20. Sheppard’s corrections

will appear as a special case of this formula by permitting 4 to ap-

proac infinity. Thus

(15) /4”=Vn’(g)%z (2)240 n-e” (n) /344 et

At first thought one is apt to be surprised in observing that the
distribution of samples appearing in Table II is so nearly “normal,”
whereas the samples were taken from a right-triangular parent popu-
lation. As an even more extreme case, I may mention that a group of
students chose arbitrarily the following most unusual distribution for

a parent population:

TABLE III
x| fe
15 9
3 2
29 43

405 189

1710 37

Total | 280

*Compare with formulae (2b), page 94, Handbook of Mathematical Statistics.
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and found that the distribution of the totals of 1000 samples of twenty-
five variates each was as follows:

TABLE 1V
Class Freg.
5000~ 2
7000~ 54
9000~ 203
11000~ 310
13000- 254
15000— 130
17000~ 36
19000~ 9
21000~ 2
Total 1000

As a matter of fact, if r is fifty or greater and 8 is at least ten
times as large as p , the parent population has relatively little control
over the shape of the distribution of samples. But before investigat-
ing the limit towards which distributions of samples approach in shape,
it is well to present a second illustration of the theory so far developed.

Hllustration 11. Pearson’s Hypergeometric Series.

If from a bag containing ¢s black and ps white balls, » balls
are withdrawn without replacements, the chances that the » balls
withdrawn will contain 0, 1,2, . . ., 2, . . . r white balls are
given by the successive terms of the hypergeometric series

19 G+ () € (20 9 (7))

A distribution of this type is equivalent to the simplest case that
can arise in accordance with the theory of sampling, that is, by assum-
ing that each variate of the parent population is equal to either zero or
one, and that p denotes the proportion of the s variates that have
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unit value. The moments of the parent population are found as follows :

TABLE V

Parent Population for Hypérgeometric (and Binomial) Series

x S Xfo z-M=% (:c—Mz)"f;. =z°f,

o | (/-p)s 0 -p | p"(/-p)s

/ ps ps /-p p(/-p)-s
Total s ps p-p)s{(/-p)"4 (-1)* p™}
Therefore

(7)) pamPl-D{U-PP 4 Y P =g {q "4/ )" P77}

where (p+q=/)

In numerical problems this formula should be used ordinarily as
it stands, although for algebraic purposes we may use frequently the

forms

Using formulae 2, . . ..

Mo =0

Moz =PT =p-p)

Max =PT (g2 pY)=p(/-pX/-2P)
Moz =PT (%P7 =p(I-p)(/-3p+3p?)

etc.

, we may write the moments for the

hypergeometric series as follows:

Moz = S 2ix {/o/_/of}
/u.’.'I = 3#3:.:- {/ol—.j02+2/osl

etc.
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or if one prefers

Maa™ 3PY {g_ 5@}

3)
Mse= SPY (q p')[:,’-' (e)"’z gu) }

(2) 3 ()
Myg™ 5P9'(73+P9){§‘7 ;m"’ 2 g(n -6 :(0}

f2) P“, 4)
+353P1ql{§(z’ ? 3(” ’;“,}

etc.

These will be found equivalent to those given by Pearson*, namely

= &P (s+x)s+5)
M2 s2(s- /)

= X B(5+x)Xs5+0) (s +2x)(5+28)
Hs 53(5-/Y5-2)

M, = —3—1——1——3)-35_3)&7_72‘;(;?3){5 “+s5°%(3m,+é6m,+ /)

+3s%(m,m,+2m}+2m,)
+3s m, (m,+é6m,)+/8 m;}

where
x& =-r LB =-ps

= 18 m, =0

II. SaMPLING FROM AN UNLIMITED SupPLY

Referring to the formula of the first part of this paper, we observe
that as o approaches infinity, » remaining finite,

*Lond., Edinburgh and Dublin Phil: Mag., Jan.-June, 1899, page 236:
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( My =rM,

Mra™ PHMy o

Mas™ Pis.2

Hox™ Thq.o¥ 37 us

U = Pyt 107 Pty g

Mes= Plg o415 "“3“-,:: Mo et /Or@ul +15r 202

Horid™ Plhnia ¥ 21 P Chyp fly o ¥ 35750
+105 P Py i,

(2)

#&-‘t= r’/“a.-z"' 28 r #6-‘.’0/“‘2:3‘+56P(z)#s:l‘/‘li:.r+35#z 4?-?

\ +?/0"(”/"4:r/‘::r+ 280’.‘3)/“;-:[1‘,_‘."'/05?“’ ;.'z'
From these the following equations may be obtained:

r

Koy = Phae

Hag =Pl

Mg ~3M50= P{ Mo 3123

Mgz IOt gy Hiog = P{ M= 104,y 1y, )

Mot /Sty Haa~101S 1 +3012 ¢ = P .0 151400 1,

(19)9 10+ 30u3 )

Mg~ 2/ g Mg =35 gg Mg+ 210ty ¢ 1} = P{ih,,
R Py My 35 My M T RIO g 5. )

Mo z=88 g [hp.g =56 s s s g~ 3015 420y 1.,
+560 puy e o= 630z, =1 {/"a:: ~R8flgx My x
—56 fu, fhy 3l AP0 p,. i

| HB6OuE - 63011 )

In terms of the standard moments of the distributions these
equations become
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-0, = ,é;

2 { w.‘!r.r_ / 0“3::}

g 150, -~ 10gk, -+ 30= ,,L,{ Oy =150, ~ 10, +30 j
(20 &~ 210%, - 354, 00, + 2000, = Lo o0~ 2/e,
- 55“4.: wg:r+ 2/0“3:1:]

Oy~ R8%,, —560,, &, ~35a; +420, 1564} ~630

- ",15 {wa,-r— 2 8“‘ :x_5 6“4:.1 d!:x_j ‘5“4:x+':¢20w4::+ 56“‘::::- 630}

Ii. without reference to subscripts, we write

( Az = M2
As = Hs
Au= My = 3]
(21 As= H=10 puyp,
Ae= Mg=!I prop, —10p;  +30u;
Az = My =21 phs g = 35y 1, +210ug i3
Ap= Mg= 28y, =56 gty =35 4] + 420 p, i}
{ +560ufu,-630ut

the distribution of samples from an unlimited supply is defined, so far
as moments through the eighth order are concerned, by the relations

(22) M,=pM,_
A‘ﬂ.'l= r /i nx

Working along a different line of approach, Thiele was the first
to realize the importance of these A functions. He made an extensive
study of their unusual properties and was thus both directly and in-
directly responsible for many important contributions to the theory of
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mathematical statistics. These values of A, are the so-called “semi-
Invariants of Thiele.”

Again, we may write

EAKZ
3), 7= -3
7{,,:0‘3-/06"

V= g —/004,- 1005 +30
7, =0, -2/ a,-3504,0,+2/0 o,
7, = Ofy —28 04, ~56 0,04, - 3506 ]+ 4208+ 560K -6 30

and observe that the shape of the distribution of samples is determined
by the relation

(29) Vi Vi

which follows from equations (20).

The values <} are referred to as the “standardized semi-
invariants of Thiele.”

If now r» be permitted to approach infinity as a limit, we observe
that in this limiting situation the shape of the distribution of samples
is entirely independent of the shape of the parent population, since

lim 3, .= 0

reo

that is
Fae= 0
¥y I =0
¥, 0, =0
F,. /5% 10 a7 +30 =0

etc.

Thus the limiting distribution, which is called “‘the Normal Curve,”
must have the following properties:
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(25)
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( dﬁ:l
Lo
r dl’l
L%
2%

\ 0.4

=0
1-3
=0
=1-3-5

=1-3-5.7

THE THEOREM OF BERNOULLI

If p denotes the probability that an event will happen in a single
trial and ¢ =1 - p the probability that it will not happen in that
trial, then the probability that the event will happen exactly = times

during 7 trials is, by Bernoulli’s Theorem

(26)

Bre=(z) e " pP"

From-our point of view we need only regard the problem’ as one
of sampling in which we withdraw samples of » variates from an
infinite parent population, in which ,as per Table V, p designates the
proportion of the variates which are zero in magnitude—the remaining

variates being of unit magnitude. Then since

we see from formulae (18) that

(27)

[ My

HMe:a

N Ms e

Mo =
Mz =

Hoe= P |

rp
rpq

7 P

rpg{g*-p?)
= 7‘P9’{9'3+P’}+ 37‘“’[)’7‘

rpq{g*-p*t 10 roprq2{q2-pt

etc.
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PoissoN’s EXPONENTIAL BINOMIAL LiMmiT

If the probability that each of 1000 individuals die in one year
were .5, then the expected number of deaths in such a group for one
year would be 500. On the other hand, if the probability that each of
10,000 die in the year were .05 then the expected number of deaths
would also be 500. Again 72=100000 and p =.005 or » =1000000
and p =.0005 would give the same value. If we continue after this
fashion to let » approach infinity and p zero, but in such a manner
that the product rp=M remains constant, then it can be shown quite
readily that (26) becomes

~np

(28) lim B, -"{1
r~ao x!
pP>0o :
rpsM

This is known as Poisson’s Exponential Binomial Limit. For a
Poisson distribution it follows from (27) that

[ Map = M,

Moz = M,

Max = M+ 3M;

(29) \ w,, = My+10M;:

Mo = Myr 26MF+ I5M]

Uys = M+ 56 M3+ 105M]

Moz = MA1I9MI+409M] +105M7

\

Substituting these values back in the definitions of the semi-in-
variants (formulae 21), we observe that for a Poisson distribution

(30) Apo=M, (E=2,3-"--" , 8)

DiscussioN oF RESULTS

So far as T know, no general method has been worked out which
will permit one to express complex summations, such as those on pages
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103, 104, in terms of moments. Moreover, I am unable at present to
justify the use of the “sampling polynomials” for the moments of, the
samples of an order higher than the eighth. Laborious computations
have established the fact that the apparent law of the sampling poly-
nomials holds for the first éight moments, and hence we have a simple
method at our disposal of writing down expressions for these moments
of samples withdrawn from finite parent populations. A study of these
sampling polynomials should reveal an entirely different approach to
the problem. This is but one of many interesting problems ef math-
ematical statistics that require further investigation.

Although we utilized the results of sampling from a limited supply
to obtain corresponding formulae for sampling from an unlimited sup-
ply, nevertheless it can be shown that for g=@ a simple method exists
for expressing the moments in’ terms of the moments, &, , as in
formulae (18). Moreover, this law holds for any positive integer, 7 .

Thus

Hozo:a™ % a}*‘u:x'*/aiozl., P g Mgt
2 -_j?,‘f,'—:,, PO e Hyix Mg o0
gy T ke

Since formulae, such as (3a) and (4a) are based on multinomial
considerations, the rule for writing down the values of A« . is valid
for any value of » , when 8=

Proceeding after this fashion, one can show that corresponding
to formulae (25) one can write for the limiting distribution, referred
to as the Normal Curve,

dznil:.= 0
(31) dzm!:‘z_"n)_i
2"(n)

And since the function
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(32) y = et

Ver

satisfies the above conditions, we say that (32) is the equation of the
Normal Curve. In the Theory of Least Squares this equation is usu-
ally* developed on the so-called Hagen's hypothesis, that is “An error
is the algebraic sum of an indefinitely great number of small elementary
errors which are all equal, and each of which is equally likely to be
positive or negative.”

From the results that we have obtained it appears that it is not
necessary to impose the restrictions that the -elementary errors are all
equal and that positive and negative values are equally likely. Tt is
necessary only that

(1) the number of elementary errors be infinite, although of an
order less than that of the number of errors in the parent population.

(2) theerrors be independent. This restriction is really involved
in our assumption that in evaluating summations, each of the g vari- .
ates of the parent population occurs exactly as many times as every
other variate.

Otherwise, the limiting shape of the distribution of samples is in-
dependent of the shape of the parent distribution. The fact that tables
IT and IV, arising from parent distributions that are so extremely
abnormal, exhibit distributions of samples that are fairly normal, seems
to bear out our point in spite of the fact that we employed in each
instance a small value of 7 , i. e. twenty-five.

*See Merriman's Method of Least Squares. John Wiley and Sons, New York City.



