ON A PROPERTY OF THE SEMI-INVARIANTS OF THIELE

By

CECIL C. CRAIG National Research Fellow

Given a general linear form

$$(1) a_1 x_1 + a_2 x_2 + \cdots + a_n x_n$$

of a set of statistical variables, x_1, x_2, \dots, x_n , it is well-known that in case the variables, x_1, x_2, \dots, x_n are independent, in the sense of the theory of probability, that the r'th semi-invariant of this form is simply

(2)
$$a_1^r \lambda_r^{(0)} + a_2^r \lambda_r^{(2)} + \cdots + a_n^r \lambda_r^{(n)},^2$$

in which $\lambda_r^{(i)}$ is the r'th semi-invariant of x_i . This is perhaps the most important and useful property of semi-invariants.

Each semi-invariant is defined as a certain isobaric function of the moments of weight equal to the order of the semi-invariant. The question to which this note is devoted is whether among such isobaric functions, the property given above belongs uniquely to the semi-invariant. This problem is equivalent to another which

¹There is no loss in generality in supposing the origin so chosen for each ∞ , that the constant in the form is zero.

Thiele, T. N., Theory of Observations (C. & E. Layton, London, 1903) p. 39.

seems more difficult to state verbally. The r'th semi-invariant $L_{r,n}$ of the form (1) is itself found in terms of the semi-invariants, $\lambda_{r,s,t}$..., of the n-way probability function $F(x_1, x_2, \dots, x_n)$ by means of a symbolic multinomial expansion. Now in order that the above property may hold generally it is necessary and sufficient that the cross-semi-invariants of $F(x_1, x_2, \dots, x_n)$ should vanish if x_1, x_2, \dots, x_n are independent; that is, that each $\lambda_{r,s,t}$ in which at least two of the quantities r, s, t, \dots are different from zero, should vanish identically. Now are semi-invariants the only such functions of moments, whose "cross" members behave in this way?

The semi-invariants L_r of the given linear form are defined by

(3)
$$= \int_{-\infty,\dots,-\infty}^{\infty,\dots,\infty} dF(x_i,x_i,\dots,x_n) e^{\pm (\sum_{i=1}^{n} a_i x_i)}$$

which is to be regarded as a formal identity in t. And the semi-invariants of x_1, x_2, \dots, x_n are given by

$$e^{(\xi_i^{R}\lambda_i t_i) + \frac{1}{2}(\xi_i^{R}\lambda_i t_i)^{(2)} + \frac{1}{3}i(\xi_i^{R}\lambda_i t_i)^{(2)} + \cdots}$$

(4)
$$= \int \frac{dF(x_{i}, x_{i}, \dots, x_{n})}{dF(x_{i}, x_{i}, \dots, x_{n})} e^{(\tilde{z}_{i}^{n} x_{i} t_{i})}$$

$$= I + (\tilde{z}_{i}^{n} \sqrt{t_{i}}) + \frac{1}{2} (\tilde{z}_{i}^{n} \sqrt{t_{i}})^{(2)} + \frac{1}{3} (\tilde{z}_{i}^{n} \sqrt{t_{i}})^{(2)} + \dots$$

¹We shall observe the distinction between probability functions and frequency functions suggested by H. Cramér in his important memoir: "On the Composition of Elementary Errors," Skandinavisk Aktuarietidskrift, 1928, p. 13. By a probability function we mean what has been called the cumulative frequency function and thus in the above we are using an 77-way Stieltjes integral.

which is also a formal identity in t_1, t_2, \dots, t_n .

The quantities $(\sum_{i}^{n} \lambda_{i} t_{i})^{(r)}$ and $(\sum_{i}^{n} V_{i} t_{i})^{(r)}$ refer to symbolic multinomial expansions, perhaps most easily explained by means of examples. Thus

$$(\sum_{i}^{3} \lambda_{i} t_{i})^{(2)} = \lambda_{200} t_{i}^{2} + \lambda_{020} t_{2}^{2} + \lambda_{002} t_{3}^{2}$$

$$+ 2\lambda_{110} t_{i} t_{2} + 2\lambda_{101} t_{i} t_{3} + 2\lambda_{011} t_{2} t_{3},$$

and

$$(\tilde{Z}\lambda_i t_i)^{(s)} = \lambda_{so} t_i^s + \lambda_{os} t_s^s + 3\lambda_s, t_i^s t_s + 3\lambda_{is} t_i t_s^s$$

in which $\lambda_{koo} = \lambda_k^{(i)}, \lambda_{oko} = \lambda_k^{(2)}, \dots$ in our first used notation, and $\lambda_{11o} = \lambda_{11o}, \dots$, etc. are cross-semi-invariants of x_i and x_2 .

Then by inspection of (3) and (4) it is evident that

(5)
$$L_{k} = \left(\sum_{i=1}^{n} a_{i} \lambda_{i}\right)^{(\kappa)}, \quad k=1,2,3,\cdots$$

In case the variables x_1, x_2, \dots, x_n are all independent of each other $F(x_1, x_2, \dots, x_n)$ splits up into the product $F(x_1)$ $F(x_2)$ $F(x_2)$ $F(x_n)$ of the probability functions of the separate variables, L_k becomes equal to the expression (2), and all the cross-semi-invariants in the expansion of the right member of (4) become identically zero. That the vanishing of these cross-semi-invariants is not only a sufficient but is also a necessary condition that L_k assume the value (2) is evident from the absence of any restrictions on $F(x_1, x_2, \dots, x_n)$ (except that it be an n-way probability function) or on the set a_1, a_2, \dots, a_n

A, a_2 , ..., a_n .

Now each cross-semi-invariant is expressed as a certain isobaric function of moments, some of them cross-moments. But

in the case of independent variables,

$$\sqrt{}$$

and when this is true, the value of each cross-semi-invariant becomes identically zero. To illustrate this and for use in the demonstration that the semi-invariants are the only such functions, let us write out the fourth order semi-invariants of $\mathbb{F}(x_1, x_2, x_3, \dots, x_n)$ in terms of moments. These are obtained by equating coefficients of like terms in

$$(\tilde{\xi}^{2} \lambda_{i} t_{i})^{(4)} = (\tilde{\xi}^{2} \nu_{i} t_{i})^{(4)} - 4(\tilde{\xi}^{2} \nu_{i} t_{i})^{(4)} (\tilde{\xi}^{2} \nu_{i} t_{i})^{(4)} - 3[(\tilde{\xi}^{2} \nu_{i} t_{i})^{(4)}]^{2} + 12(\tilde{\xi}^{2} \nu_{i} t_{i})^{(4)} (\tilde{\xi}^{2} \nu_{i} t_{i})^{2} - 6(\tilde{\xi}^{2} \nu_{i} t_{i})^{4}.$$

Leaving off superfluous zeros in the subscripts, this gives for example

$$\lambda_{40} = \sqrt{4} - 4\sqrt{3} \cdot \sqrt{10} - 3\sqrt{3} + 12\sqrt{20}\sqrt{10} - 6\sqrt{10}^4$$

$$\lambda_{22} = \sqrt{22} - (2\sqrt{21}\sqrt{01} + 2\sqrt{12}\sqrt{10}) - (\sqrt{20}\sqrt{02} + 2\sqrt{12})$$

$$+ (2\sqrt{20}\sqrt{10} + 2\sqrt{20}\sqrt{10} + 8\sqrt{10}\sqrt{10}) - 6\sqrt{10}\sqrt{10}$$

If in the value of λ_{2z} we set $\sqrt{2z} = \sqrt{20} \sqrt{0z}$, $\sqrt{2} = \sqrt{20} \sqrt{0z}$, etc., then $\lambda_{2z} \equiv 0$ as it was already known must happen.

For the sake of simplicity let us suppose, at first, that the component variables in (1) are all "equal," that is, that $F(x_1, x_2, \dots, x_n) = F(x_1, x_2, \dots, x_n)$. In the case of

¹The general formula giving semi-invariants in terms of moments is to be found in several places. See e. g., C. Jordan, Statistique Mathématique (Gauthier-Villars, Paris, 1927), p. 41. For an elementary derivation and also for an extended example of the use of semi-invariants of a correlation function of several variables see the author's "An Application of Thiele's Semi-invariants to the Sampling Problem," Metron, Vol. VII, No. 4 (1928), pp. 3-74.

independence among x_1, x_2, \dots, x_n we can write also $F_1(x_1) = F_2(x_2) = \dots = F_n(x_n) = F(x)$. An equivalent assumption is that all moments and hence all semi-invariants of the same type of $F(x_1, x_2, \dots, x_n)$ are equal. (Moments of the same type are all those with the same combination of digits in their subscripts.) Then the expressions for all the semi-invariants of the fourth order of $F(x_1, x_2, \dots, x_n)$ are equivalent to the following:

$$\lambda_{4a} = \sqrt{4} - 4\sqrt{3} - \sqrt{1} - 3\sqrt{2} + 12\sqrt{2} + \sqrt{2} - 6\sqrt{4} - 6\sqrt{4}$$

Now, our general isobaric function of the moments of weight four can be written

$$f(z_{i}, z_{2}, \dots, z_{s}) = z_{i}(\tilde{z}_{i}^{n} v_{i} t_{i})^{(a)} - 4 z_{2}(\tilde{z}_{i}^{n} v_{i} t_{i})^{(a)}(\tilde{z}_{i}^{n} v_{i} t_{i})$$

$$-3 z_{3} [(\tilde{z}_{i}^{n} v_{i} t_{i})^{(a)}]^{2} + |2 z_{4}(\tilde{z}_{i}^{n} v_{i} t_{i})^{(a)}(\tilde{z}_{i}^{n} v_{i} t_{i})^{2} - 6 z_{3}(\tilde{z}_{i}^{n} v_{i} t_{i})^{4}$$

And in our special case of equal component variables x_1, x_2, \dots, x_n our problem is to determine for what sets of values of z_1, z_2, \dots, z_n the coefficients of $t_1^{-3}t_2$, $t_1^{-2}t_2^{-2}$, $t_2^{-2}t_3^{-2}t_3^{-2}$ and $t_1^{-2}t_2^{-2}t_3^$

By comparison with (7) it is seen that this gives four linear equations with which to determine the five unknowns. But we can add a fifth equation by stating that the coefficient of t, is in general a parameter which in the case of independence is a function of F(x) and x, x, which we shall designate by x. Then we have for the determination of x:

nate by
$$\xi_{A}$$
. Then we have for the determination of \mathbf{Z}_{A} :

$$\begin{aligned}
&\xi_{A} - 4v_{3}v_{1} & -3v_{2}^{2} & |2v_{2}v_{1}^{2} - 6v_{1}^{4}| \\
&0 - (v_{3}v_{1} + 3v_{2}v_{1}^{2}) - 3v_{2}v_{1}^{2} & 6v_{3}v_{1}^{2} + 6v_{1}^{4} - 6v_{1}^{4}| \\
&0 - 4v_{2}v_{1}^{2} - (v_{2}^{2} + 2v_{1}^{4}) & 4v_{3}v_{1}^{2} + 8v_{1}^{4} - 6v_{1}^{4}| \\
&0 - (2v_{2}v_{1}^{2} + 2v_{1}^{4}) - (v_{2}v_{1}^{2} + 2v_{1}^{4}) & 2v_{3}v_{1}^{2} + 8v_{1}^{4} - 6v_{1}^{4}| \\
&0 - 4v_{1}^{4} - 3v_{1}^{4} & |2v_{1}^{4} - 6v_{1}^{4}| \\
&v_{3}v_{1} - (v_{3}v_{1} + 3v_{2}v_{1}^{2}) - 3v_{2}v_{1}^{2} & 6v_{2}v_{1}^{2} + 6v_{1}^{4} - 6v_{1}^{4}| \\
&v_{2}^{2} - 4v_{2}v_{1}^{2} - (v_{2}^{2} + 2v_{1}^{4}) & 4v_{2}v_{1}^{2} + 8v_{1}^{4} - 6v_{1}^{4}| \\
&v_{1}^{2} - (2v_{2}v_{1}^{2} + 2v_{1}^{4}) - (v_{2}^{2}v_{1}^{2} + 2v_{1}^{4}) & 2v_{2}v_{1}^{2} + 8v_{1}^{4} - 6v_{1}^{4}| \\
&v_{1}^{4} - 4v_{1}^{4} - 3v_{1}^{4} & |2v_{1}^{4} - 6v_{1}^{4}| \\
&v_{2}^{4} - 4v_{1}^{4} - 3v_{1}^{4} & |2v_{2}^{4} - 6v_{1}^{4}| \\
&v_{3}^{4} - 4v_{1}^{4} - 3v_{1}^{4} & |2v_{2}^{4} - 6v_{1}^{4}| \\
&v_{1}^{4} - 4v_{1}^{4} - 3v_{1}^{4} & |2v_{2}^{4} - 6v_{1}^{4}| \\
&v_{2}^{4} - 6v_{1}^{4} - 6v_{1}^{4}| \\
&v_{3}^{4} - 6v_{1}^{4} - 6v_{1}^{4}| \\
&v_{4}^{4} - 4v_{1}^{4} - 3v_{1}^{4} - 6v_{1}^{4}| \\
&v_{4}^{4} - 6v_{1}^{4} - 6v_{1}^{4}| \\
&v_{5}^{4} - 6v_{1}^{4}$$

By adding each of the four other columns to the first column in the denominator, we have at once in view of (7),

$$Z_{i} = \frac{\xi_{4}}{\lambda_{A}}$$

unless the identical first minor of numerator and denominator vanishes. But this can happen only if there is linear dependence between the corresponding elements in the four rows of this minor which in turn can happen only if there is a linear relation between the quantities $\bigvee_3\bigvee_i,\bigvee_2^2,\bigvee_2\bigvee_i^2$, and \bigvee_i^4 . (Such a linear dependence would exist if the second or third semi-invariant of F(x) is zero.)

Moreover, it is readily seen that we get $\mathbb{Z}_1 = \mathbb{Z}_2 = \cdots = \mathbb{Z}_3 = \frac{\xi_4}{\lambda_4}$ (Of course we suppose $\lambda_4 \neq 0$ and moreover $\xi_4 = 0$ could hold only for some F(x)'s)

If we no longer suppose the components x_1, x_2, \dots, x_n "equal" in the sense defined above, the quantities in (7) may be replaced by summations of all terms of the same type or summations of all products of terms which are coefficients of similar

terms in t_i 's. Thus in place of λ_{40} , $\sqrt{30}$, $\sqrt{30}$, in the first equation, and λ_{31} and $\sqrt{30}$, $\sqrt{40}$, in the second we now write,

$$\sum \lambda_{40} = \lambda_{40} + \lambda_{04} + \lambda_{004} + \cdots$$

$$\sum \sqrt{40} = \sqrt{40} + \sqrt{64} + \sqrt{604} + \cdots$$

$$\sum \sqrt{30} \sqrt{10} = \sqrt{30} \sqrt{6} + \sqrt{63} \sqrt{61} + \sqrt{603} \sqrt{61} + \cdots$$

$$\sum \lambda_{31} = \lambda_{31} + \lambda_{13} + \lambda_{631} + \lambda_{612} + \cdots$$

$$\sum \sqrt{30} \sqrt{10} = \sqrt{30} \sqrt{10} + \sqrt{30} \sqrt{10} + \sqrt{30} \sqrt{10} + \cdots$$

$$\sum \sqrt{30} \sqrt{10} = \sqrt{30} \sqrt{10} + \sqrt{30} \sqrt{10} + \sqrt{30} \sqrt{10} + \cdots$$

respectively. But otherwise our argument will be the same and lead to the same conclusion.

It is obvious that the argument for weight four is perfectly general and thus that the same kind of conclusions hold for any weight. We conclude that the semi-invariants are the only isobaric functions of the moments of a set of n variables which have the properties described in the first two paragraphs independent of the probability or frequency functions of those variables.

But if when the variables are independent the probability function of each one is such that there is an isobaric relation among the moments of order lower than k, the same for each variable, then there are other isobaric functions of order k and higher which enjoy the property of semi-invariants in question. And it will be shown that the only isobaric relations among the moments of order < k, mentioned above, which lead to the new isobaric functions of this type of order $\ge k$, are obtained by setting semi-invariants of order < k, equal to zero.

Let us return to the case in which the weight is four. Then if $\lambda_3 = \sqrt{3} - 3\sqrt{2} \sqrt{1 + 2} \sqrt{1 = 0}$, the minor D_{ij} , of our denominator D vanishes, and so, of course, does the corresponding minor in the numerator. Then as a matter of fact there is a double infinity of the sought isobaric functions of weight four.

Some of	them	are given	by the	following	sets of	values of	the 🗲	's.
COMIC OF	ALTONA	are Brien	<i>-</i>		2000	101400 01		••

Z,	Z ₂	z,	2,	₹5
5	2	5	2	1
6	3	6	3	2
9	3	9	3	1

as may be verified by actual computation.

Now we also have1

$$\lambda_4 = \sqrt{-\lambda_1} \sqrt{-3\lambda_2} \sqrt{-3\lambda_3} \sqrt{-3\lambda$$

from which we can write in place of (8)

$$f(y_1, \dots, y_4) = y_i \left(\sum_{i=1}^n \sqrt{t_i} t_i \right)^{(4)} - y_2 \left(\sum_{i=1}^n \lambda_i t_i \right) \left(\sum_{i=1}^n \sqrt{t_i} t_i \right)^{(3)}$$

$$-3y_3 \left(\sum_{i=1}^n \lambda_i t_i \right)^{(2)} \left(\sum_{i=1}^n \sqrt{t_i} t_i \right)^{(2)} - 3y_4 \left(\sum_{i=1}^n \lambda_i t_i \right)^{(2)} \left(\sum_{i=1}^n \sqrt{t_i} t_i \right)$$

in which we can seek to find sets of values of y_1, \dots, y_n so that the coefficients of $t_1, t_2, t_3, t_4, t_2, t_2, t_3, t_4$ and t_1, t_2, t_3, t_4 will vanish when the x's are independent. This will give us four homogeneous linear equations in which the determinant of the coefficients vanishes identically since $y_1 = y_2 = y_3 = y_4 = 1$ is a solution. Addition of the second, third and fourth columns to the first gives a new first column of zeros. But if, say, $\lambda_3 = 0$, in addition to λ_2 , and λ_1 , which already vanish if the x's are independent, then the elements of the fourth column are all zeros also, and our determinant is of rank not greater than two. But since the solution of the set of equations arising from (10) is equivalent to that arising from (8), the minor D_{y_1} , of D in (9)

¹Thiele, T. N., loc. cit., p. 25.

must vanish in case $\lambda_{\bullet} = 0$.

But since $\mathbb{Z}_1 = \mathbb{Z}_2 - \cdots = \mathbb{Z}_5 - 1$ is a solution of the equations (8), it is easy to see that if in \mathcal{O}_w , the sum of the last three columns be added to the first column, the resulting first column will be identical, though opposite in sign with the last four elements of the first coulmn of D. Let us indicate the new \mathcal{O}_w by \mathcal{O}_w' .

Now there is a linear dependence between the elements of the rows of \mathcal{O}_{N} . In fact the elements of the first row minus three times the corresponding elements of the third plus twice the corresponding elements of the fourth ($\lambda_{3} = \sqrt{3} - 3\sqrt{2} \sqrt{1 + 2} \sqrt{3}$) must give zero for each element. For suppose there exists another such linear relationship between rows. This linear relationship must hold between the corresponding elements of the first column of \mathcal{O}_{N}^{i} , and we have a new isobaric relation between the moments of x. But a probability function $\mathbf{F}(x)$ can always be found in which

(11)
$$\sqrt{3}\sqrt{3}\sqrt{2}+2\sqrt{4}=\lambda_3\sqrt{4}=0$$

holds and the other relation does not. But for the F(x)'s in which (11) holds D'_n must vanish, and thus the relation between columns must be that given by (11).

Thus D_n contains as factors λ_3 , λ_2 and λ_3 . That it contains no others can easily be verified directly.

The cases of weights two, three, and four are easily handled directly throughout. If the weight is now k greater than four, our argument readily generalizes. The equations now arising from the relation corresponding to (10) are now greater in number than the unknowns y_1, y_2, \dots, y_k , but it is obvious that the matrix of the coefficients is of rank not greater than k-2. And it follows just as before that $\lambda_{k-1}, \lambda_{k-2}, \dots, \lambda_{l}$, are all factors of the new D_k .

The argument above which shows for the weight four, that

 λ_3 is a factor of D_n does not show that there cannot be other linear relations between the elements of the first column which are also factors of D_n . It only shows that if there is such a factor, the corresponding linear dependence holds for certain rows of D_n

Let us consider the case of weight five. The elements of the first column of D are now $\sqrt{2}$, $\sqrt{2}$, $\sqrt{2}$, $\sqrt{2}$, $\sqrt{2}$, $\sqrt{2}$, $\sqrt{2}$, and \sqrt{s} and the elements of the first column of D'_{ij} are the last six of these with opposite sign, and they thus correspond to the partitions of 5. We know that one of the two sets of three rows of \mathcal{O}_{μ} , the second, fourth, and fifth or the third, fifth, and sixth, are connected by the linear relation corresponding to $\sqrt{3} - 3 \sqrt{3} \sqrt{4}$ +2 $\sqrt{3}$ = λ_3 =0 so that λ_3 is at least once a factor of D_n . If we suppose that the first set of three rows are so related, does it follow that this same relation holds for the second set? Now it is easy to see that if in the second row $\sqrt{\epsilon}$ be everywhere substituted for v the resulting row will be identical with the third and that the same is true of the fourth and fitth rows and of the fifth and sixth. Then if a certain linear relation holds for the first set of three rows, by the substitution of $\sqrt{\epsilon}$ for $\sqrt{\epsilon}$ everywhere in it, it follows that the same relation holds for the second set of three rows also. Thus λ_{\bullet} is twice a factor in \mathcal{O}_{μ} for weight five. We note also that the partitions of 3 (counting 3 as a partition of 3) are twice found with common factors among the partitions of 5, that is, 32, 221, 2111; and 311, 2111, 11111.

The argument is readily generalized and in case of O_{ii} of weight k, each semi-invariant of weight r < k is a factor of O_{ii}

¹The general argument is based on the principle that the second row of D is obtained from the process which gives the first by replacing one factor t, by t_2 , the third from the first by replacing t, by t_2 , the fourth from the first by replacing t, and so on (see (6) and (7)). Thus in the case of weight six, to compare the three rows beginning with t_3 , t_2 , t_3 , t_4 , t_5 , with the three beginning with t_5 , we replace the t_5 in the first set which arises as a coefficient of t, by t_5 and the two sets of rows become identical.

as often as the partitions of r are found with common factors among the partitions of k. (We count r as a partition of r.) Thus for weight four, $D_{ii} = \lambda_3 \lambda_2^3 \lambda_i^7$ which gives D_{ii} the correct weight sixteen. In case of weight five, $D_{ij} = \lambda_4 \lambda_5^2 \lambda_4^4 \lambda_5^{\prime 2}$ which again gives D, the correct weight thirty. And it is easy to show by induction that in case of weight k this method gives D₁₁ its proper weight. Among the partitions of k are found all the partitions of k-1 with a part 1 added to each. Thus each of these adds k to the total weight. For the partition k-2, 2, it is seen that the remaining partitions of k-2 with the common additional part 2 will be found among the remaining partitions of k and that the remaining partitions of 2 with the common additional part k-2 will also be found. Thus this partition contributes the weight k to the total. And sim arly it can be seen that every partition of k contributes k to the total weight of D., which was to be proved.

Finally, then, we have the additional result that the necessary and sufficient condition that more than one isobaric function of weight k of the moments of the probability variables x_1, x_2, \dots, x_n exists which has the semi-invariant properties in question. is that the probability functions of x_1, x_2, \dots, x_n in case of independence are such that for some r < k, λ_r vanishes for each of them.

Stanford University.

anoc. any