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The method of least squares offers a precise method of fitting
a curve describing the relation between two or more related, meas-
urable variables, but certain criteria must be fulfilled to justify its
application. First, the type of equation selected for fitting must
be the true mathematical expression of the law governing the rela-
tionship of the variables. Secondly, all errors of measuremeat,
made in obtaining the observed values of the variables when the
data were collected, must be distributed according to the well-
known laws of probability.!

This paper is concerned with the latter of these two criteria.
The fundamental theory upon which the method of least squares
is based can be found in any text-book on the subject and need
not be elaborated upon here. However, it may be well to point
out a very pertinent, if somewhat elementary, aspect of the theory
which facilitates the ready visualization of the fundamental con-
cepts involved.

1Steinmetz, C. P  Engineering Mathematics. McGraw-Hill Book Co.,
"New York (3917).
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The application of the method of least squares to curve fit-
ting, as ordinarily described in works on the subject, is perfectly
analogous to the calculation of the arithmetic mean of a number
of measurements made upon a single, cotistant quantity. This
may be easily demonstrated as follows:

Let Y = #(X) describe the relation existing between an
independent variable, X , and a dependent variable, Y. If it is
desired to find the most probable value of the dependent variable
when X has some definite value, X 4, the most direct method of
procedure would be to make a number of measurements of Y
at this value of X and calculate their arithmetic mean, provided,
of course, that the errors of measurement were distributed accord-
ing to the laws of probability in a normal frequency distribution.
According to the elementary theory of statistics, the most prob-
able value of the dependent variable, f (X 1) , would be such
that the sum of the squares of the deviations of the actual meas-
urements from this value would be a minimum.

If X is conceived to be varying in value so rapidly that it
is impossible to make more than one measurement of Y at any
value of X , this direct method can not be employed. However,
the most probable value of /(X ;) can still be determined.
Let Y;,Y,, Y;, . . .Y, each represent a measured value
of Y atvalues X,, X,, X;, . . . X, , respectively, of
the independent variable. Since the errors of measurement are
assumed to be distributed according to the law of chance, an
error of a given magnitude is equally likely to occur at any value
of X . In other words, exactly the same errors would be made
in obtaining one measurement of each of the quantities Y, Yz' ,
Y,, . . . Ygasif £(X,;) weremeasured 77 times. These
errors may, therefore, be considered as having been made in meas-
uring a single, constant quantity. Therefore, if #(X) denotes
the most probable value of Y at any value of X and Y de-
notes the corresponding observed value, the most probable values
of the dependent variable which can be calculated from any set of
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data are such that the sum of the squares of the differences,
f(X)-Y ,is a minimum.

It is important to bear in mind that this conception of the
distribution of errors of measurement is justified only when an
error of a given magnitude is equally likely to occur at any value
of X . In actual practice it often happens that this ideal condition
is not realized. The magnitude of the errors of measurement is
often influenced by the magnitude of the quantity which is being
measured. In obtaining the live weights of animals at different
ages, for example, it is common practice to use a less delicate
balance in making the weighings as the animals become larger, and
the magnitude of the errors of measurement increases as the
sensitivity of the balance decreases. Other factors which tend to
increase the magnitude of the errors may also be in operation.
The error, or rather the unreliability, of the weight of a 1,000
pound steer would be greater than that of a 100 pound calf, even
though an equally sensitive balance were used in making both
weighings, because of a greater content of material in the digestive
tract and excretory organs and the increased effect of the move-
ments of the animal.

It is highly probable that in many fields of investigation such
disturbing influences are encountered more frequently than the
ideal conditions which justify the application of the method of
least squares as ordinarily described.

Pearl and Reed recognized the need for modifying the ap-
plication of the method of least squares to compensate for changes
in the probability of the occurrence of an error of any given mag-
nitude and suggested, as stated by Pearl,! that it would be more
logical in many instances to employ residuals of the type fXT)-X .
The use oi such residuals was based on the assumption that if
the errors of measurement were expressed as percentages of the

1Pearl, Raymond. Studies in Human Biology. Williams & Wilkins, Bal-
timore (1924).
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magnitude of the quantities measured, the percentage errors would
be distributed at random according to the law of probability. In
many practical problems this assumption appears to be justifiable.

The study herein reported was made to determine the extent
of the error made when the method of least squares as ordinarily
described is applied to data in which the percentage, rather than
the absolute errors of measurement are distributed according to
the law of chance.

The writer desired a hypothetical set of errors of measure-
ment which, when expressed as percentages of the quantities meas-
ured, would come as near as possible to forming a normal fre-
quency distribution.

TABLE 1

Ideal Frequency Distribution of 41 Throws of 12 Dice in Which
a Throw of 4, 5, or 6 Points Is Considered a Success.

SUCCESSES FREQUENCY
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Millst gives the results of fitting a normal frequency curve
to Weldon's distribution of 4096 throws of 12 dice, described by
Yule,?2 in which a throw of 4, 5, or 6 points was considered a
success. If each frequency, calculated from the fitted curve, is
divided by 100 and the results rounded off to whole numbers,
the frequency distribution given in Table I is obtained.

If hypothetical errors of measurement are substituted for

TABLE II

Ideal Frequency Distribution of 41 Hypothetical Percentage
Errors of Measurement.

ERROR FREQUENCY
(Per cent of quan-
tity measured)

+8
+6
+4
+2

-2

o
= N w00 \© 00 Lt ) e

Total 41

1Mills, F. C. Statistical Methods Applied to Economics and Business.
Henry Holt & Co., New York (1924).

2Yule, G. Udny. Introduction to the Theory of Statistics. Charles Griffin
& Co., Ltd,, London (1927).
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successes in this frequency table, the resulting distribution may be
considered to represent a distribution of random errors of meas-
urement which might be made in obtaining a series of 41 meas-
urements of a variable. The most probable error should obviously
be zero. If the total range in magnitude of the errors is assumed
to be from + 8 per cent to —8 per cent and the precision of meas-
urement is such that each error differs from the next larger or
smaller error by 2 per cent, the distribution of these hypothetical
errors’of measurement should be as given in Table II.

From the simple equation, Y'=100 X2 41 values of Y were
calculated, using values of X from 1 to 41, inclusive. Each
calculated value of Y was then changed by algebraically sub-
tracting the hypothetical errors of measurement given in Table II.
All the percentage errors of each magnitude were arbitrarily dis-
tributed as uniformly as possible throughout the data. These altered
values of Y will hereafter be termed the “observed” values and
the original values, from which they were calculated, the “true”
values. The observed values of Y, together with the true values
and the assumed errors of measurement from which they were
calculated, are given in Table III.

In order to be certain that the errors were-actually distributed
in such a manner that the probability of the occurrence of a per-
centage error of any given magnitude was the same at all values
of X , the writer employed Pearson’s method of square contin-
gency as described by Yule! A 16-cell contingency table was
constructed in which the percentage errors were classified accord-
ing to the values of X at which they occurred. The chi-square
test for contingency was applied to this table.

Table IV shows the actual distribution of the percentage
errors, together with the corresponding theoretical frequencies.
Since there are 4 rows and 4 columns of cells in the table, the
number of algebraically independent differences between theoret-

- 1Loc. cit.
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ical and observed frequencies is (4-1)(4-1)+1 or 10. The
value of X z’ calculated from the data in Table IV, is 1.3171. The
corresponding value of 22, which is the probability that as bad,
or worse, an agreement between observed and theoretical fre-
quencies could occur from the fluctuations of random sampling
is, according to Pearson’s Tables; 0.996911 or almost certainty.
The percentage errors were, therefore, distributed in such a man-
ner as to be uncorrelated with the values of X at which they
were used. )

The equation, Y=A4X 2 , was fitted to the hypothetical set
of data in Table III by the method of least squares as ordinarily
described. If AX? represents a calculated value of the depen-
dent variable and Y represents the corresponding observed value,
the difference between these two values is AX*-Y and the
square of the difference is A*X*-2AX?Y+Y*. The sum
of the squares of all the differences is A*ZX*2AZXHY +Z Y2
The value of this expression will be a minimum when its deriva-
tive with respect to A is equal to zero. Differentiating and
equating to zero yields the following equations for the determina-
tion of A:

(1) 2AZX*2zX%Y =0
(2) A=ZX*Y
>X*

The valye of A calculated from the data in Table I1I by
means of equation (2) is 100.6250.

If residuals of the type suggested by Pearl and Reed are
employed, A is calculated as follows. Let .A4X% represent
a calculated value of the dependent variable, as before, and let Y
represent the corresponding observed value. Then the difference
between the two values, expressed as a fraction of the ubserved

+1Pearson, Karl. Tables for Statisticians and Biometricians. Cambridge
University Press, London (1924).
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TABLE IV

Chi-square test for contingency applied to the distribution of the

percentage errors of measurement.

for each compartment are given in parentheses.

The theoretical frequencies

Value ofX] Magnitude of Error (Per cent)
00to*¥19 [#20to*39 [$40to*5.9 |26.0andover | Total
1t 10 2 4 2 2 10
(2.1951) (3.9024) (2.4390) (1.4634)
11 to 20 2 4 3 1 10
(2.1951) | (3.9024) | (2.4390) | (1.4634)
21 to 30 2 4 2 2 10
(2.1951) | (3.9024) | (2.4390) | (1.4634)
31 to 41 3 4 3 1 11
’(2.4146) (4.2926) (2.6829) (1.6097)
Total 9 16 10 6 41
X%= 13171
” /= 10
P = 0996911
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2

value, is A;XY;I or %‘- - 1. The square of this relative
2
deviation is A’f;‘ .?_4%2(_ +1 and the sum of the squares of the

41 relative deviations is Az.8¥-z -2AZ #— + 41. This expres-
sion will likewise have its minimum value when its derivative with
respect to A is equal to zero. Differentiating and equating to
zero, as before, leads to the following equations for the deter-
mination of A4 :

4 2
3) zar$z-22% -0
2
4) A- —‘3—3{1—

Applying equation (4) to the given set of data gives a value
of 99.7573 for A. This value of A is closer tp the true value
100, than the value which was calculated by 137i;eans of equation
(2) but the improvement was not as great as might be expected.

It occurred to the writer that if the deviations of the cal-
culated, from the observed, values of the dependent variable were
expressed as fractions of the calculated values, a more accurate
value of A could be obtained. axZy

The re]atlve deviation expressed in this manner is— aAxX%

or 1- ——-; The square of this deviation is /- §_4_Z_Z —-i;;

and the sum of the squares of the 41 relatlve dev1at10ns is
2
41- ZA’IZ}(; +A %% ')I({T Differentiating this expression with

respect to.4 and equating to zero yields the following equations
for the determination of A :

_ 2
5y eAxGeaz%-o

() A=Z X7
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The value of A, calculated from the data by means of equa-
tion (6), is 100.1210 which is nearer to the true value than either
of the values calculated by the two preceding methods. However,
it is evident that equation (6) failed to give results as precise as
one would expect, in view of the method by which the observed
values of Y were obtained.

The reason for this discrepancy can be made most apparent by
returning to the analogy existing between the application of the
method of least squares to curve fitting and the calculation of the
arithmetic mean of a number of measurements of a single, con-
stant quantity.

Let 773. 772,. 775, . . . m,, vepresent measured values
of the same constant quantity and let their arithmetic mean be
represented by /7. If each measurement is divided by the arith-
metic mean of all the measurements, the resulting distribution of
these relative values will be normal if the original measurements
were distributed normally. The arithmetic mean of these relative
values will obviously be unity.

Let 7\—77;“, %7,,2, -/\—”47" , .. zjrepresent the relative values of
the measurements, The arithmetic mean of these values is unity.
Therefore, the deviation of any relative value, %; from the
mean s 1 - 77

Let it be assumed that the value of the arithmetic mean of
the original measurement, A7, is unknown and is represented
by Z . Then any measurement, 777, expressed as a fraction of
Z ,is %7 . According to the discussion in the two preceding
paragraphs, it might appear that Z must have such a value that
the sum of the squares of the deviations, 1- %7-, is a minimum.
However, this is not the case. It may be demonstrated that the
value of the expression I (/- gzﬂu {-’z%e ), is a minimum when
Z has some other value than the arithmetic mean of the original
measurements. The sum of the squares of the residuals may be
written, 71-2ZtZ m+Z2Z m? Differentiating this expres-
" sion with respect to Z and equating to zero yields the following
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equations for the determination of Z :

7) 225 m-22 F m3-0
Z 2
®) 25

The value of Z , calculated by means of equation (8), is
obviously not the arithmetic mean of the original measurements.
The fallacy in the deduction of this equation is readily apparent.

Instead of using residuals of the type, /- % , and differ-
entiating the sum of the squares of the residuals with respect to
Z , one should use residuals of the type, V- 1722 , in which V
represents the arithmetic mean of the relative values, —Zﬂl , of the
measurements. The sum of the squares of the residuals should
be differentiated with respect to V' . The square of the residual,
V- 'f_z?' , is V- iﬁ"” %7; and the sum of the squares of all
< gz—VZ m+ é? Z m?
Differentiating with respect to V' and equating to zero yields

the residuals may be written 7V

the following equations for the determination of V' :

©9) ZnV-2Zm-0
Z
(10) V= z&m
n

Since the value of T/ is known to be unity, equation (10)
may be written:

(11) =.é.gm

_from which Z may be readily calculated as follows:
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(12) z=-&r

Equation (12) is obviously nothing more than the simple
formula for the calculation of the arithmetic mean of the orig-
inal measurements, which is sufficient evidence that the reasoning
involved in its deduction is sound.

It is now readily apparent why equation (6) did not yield
results which were consistent with the data in Table III. The
ratio, A—%z , is analogous to the ratio, z—, and residuals of the
type, V- A%(j , should have been used in fitting the equation
instead’ of residuals of the type, 1 ;&z 1 The square of the
residual, V'~ 'Y—z Jis V3 % * }‘/—z? The sum of the
squares of the 41 residuals is 41 V2 2, "Z Xy s -—2 zZ Zz
Differentiating this expression with respect to V' and equating
to zero yields the following equations for the determination of V' :

(13) szv-2r %2 -0
(14) . AZ X
41

Substituting the known value, unity, for V' in equation (14)
yields the following equations for the determination of 4 .

dsXY
(15) 41 A% Xz
(16) Agzgc%
41

- 2
1léemduals of the type, A%_ - 1, are analogous to those of the type,
%5 -~ 1, which also lead to incorrect results.
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Applying equation (16) to the data in Table III gives 4 a
value of 100.0000, which coincides exactly with the true value from
which the data were originally calculated. Equation (16) was,
therefore, the correct equation to use in interpreting the data given
in Table III. Although the use of residuals of the types, A)-g—z -1
and 1- —§;2 gave better approximations to the true values of
A than the use of the simple residuals, AXZ Y, neither of
the two gave results which were entirely in'accord with the deriva-
tion of the data.

Yule! suggested that the geometric mean might often prove
useful in comparing the frequency distributions of different sets
of data, in which the dispersion of the individual measures about
their means was influenced by the magnitude of the means. It
appeared to the writer that the use of residuals of the type,
log A X = log Y, might give a good approximation to the true value
of A in fitting the given equation. It is evident that the ratio,
A}-,& , approaches unity as the residual, log Ax? log Y, ap-
proaches zero.

This logarithmic residual may be written, log 4 +2 log x-
log Y, and its square is (log 4 Y° + 4(logX)? + (log Y)2
+ 4(log. A)(log X )-2(logA)(log Y)~-4(log X )(log Y).
The sum of the squares of the 41 residuals is 41(log .4 )%
+4 Z (log X Y+ Z (g Y ) + 4(logA )X (log X )
-2(log A) Z (log Y) -4 (log X .log Y ). Differentiat-
ing this expression with respect to log A and equating to zero
yields the following equations for the determination of A :

(17)  82(10gA)+ 4Z (103 X)-2Z(10g Y)=0

1 - 1
(18) log A = (log Y) 2457/ og X)

1Loc. cit.
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The value of log A, calculated from the given set of data by
means of equation (18), is 1.9997369, which gives A a value
of 99.9394. This value of 4 comes closer to the true value than
those calculated by means of residuals of the types, 1- J¢
and ~y~ - 1. However, since the use of the geometric mean
is not rigorously justified when the distribution of the measures
about the arithmetic mean is symmetrical, the use of logarithmic
residuals in curve fitting can not give precise results when the
errors of measurement are distributed as they were in the given
set of data.

In any application of the method of least squares to a prac-
tical problem, the procedure of the investigators should be gov-
erned by the nature of the data to which it is being applied. In
many instances the correct procedure can be deduced by a careful
consideration and evaluation of the accuracy of the methods of
measurement used in obtaining the data. Unfortunately, however,
some sources of error are not always readily apparent at the time
the data are collected, and occasionally can not be quantitatively
estimated even though they are known to exist. If the nature of
the mathematical relationship existing between the dependent and
independent variables is known, all that remains is to find the
most probable values of the constants in the equation.

A statistical study of the deviations of the observed values
of the dependent variable from the corresponding calculated val-
ues, obtained after fitting the equation by several different meth-
ods, may be of much help in deciding which method of fitting was
most consistent with the nature of the data. For example, Table
V gives the results of applying the chi-square test for contingency
to the distribution of the deviations of the observed values of Y’
from the calculated values obtained when residuals of the type,
AXZ2-Y | were used in fitting the equation, Y =AX 2 to the
data in Table III. The value of Z is only 0.005061 and a mere
inspection of the table itself shows that large deviations tend to
‘occur more frequently, and small deviations less frequently as
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TABLE V

Chi-square test for contingency applied to the distribution of the
deviations of the type, AX 2-Y. The theoretical frequencies
for each compartment are given in parentheses.

Value of Magnitude of Deviation
X
10 to + 2000 to * 4000 to 1 6000 and
+ 1999 + 3999 * 5999 over Total
1 to 10 10 0 0 0 10

(7.3171) | (1.2197) | (0.9756)| (0.4878)

11 to 20| 10 0 0 0 10
(7.3171) | (1.2197) | (0.9756)| (0.4878)

21to 30| 6 1 3 0 10
(7.3171) | (1.2197) | (0.9756) | (0.4878)

31 to 41 4 | 4 1 2 11

(8.0488) | (1.3415) | (1.0732)| (0.5366)

Total 30 5 4 2 41
X% = 23.5989
n' =10

D = 0.005061
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the values of X increase. If the true nature of the values of
Y in Table III were not known in advance, this distribution of
the deviations would be sufficient evidence that the method of
fitting the equation was not consistent with the accuracy of the
measurements made when the data were collected.

Tables VI, VII, and VIII give, respectively, the distributions
of the deviations of the types, A;;'(‘z - 1,1 —Z\‘;’—(z , and
log AX . log Y , when the corresponding residuals were used
in fitting the equation.! The value of 2 is high in each case, in-
dicating that, although the use of residuals of these types did not
give results which were precisely accurate, nevertheless, they
yielded values of 4 which were well within the limits of the
probable error to be expected in any practical investigation.

As a matter of fact, this is a rather fortunate circumstance,
since the only method of fitting the equation given above which
yielded exactly the correct value of 4 cannot be appiied to
fitting an equation containing more than one undetermined con-
stant. The applicability of residuals of the types, 1 - 1-?7/)?-) and
log A(X)-1log Y is also somewhat limited. However, any
equation which can be fitted by the method of least squares at
all can still be fitted when residuals of the type, -f/TX) -1, are
employed.

SUMMARY AND CONCLUSIONS

The method of least squares can be a more valuable tool in
statistical work when the furidamental theory upon which the
method is based is taken into consideration. The use of residuals
of the type, T(X )-Y, is probably justified in fewer practical

1The distribution of the deviations obtained when the equation was fitted
to the data by means of equation (16) is identical with the distribution of
the errors given in Table IV.
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problems than the use of residuals of some other form. The type
of residual to be employed should be governed by the nature of
the data to which the method of least squares is being applied.

The use of relative residuals of the type suggested by Pearl
and Reed may be of much value in many instances but will not
give results which are precisely accurate, even though the dis-
tribution of the percentage errors of measurement is strictly nor-
mal. The results can be improved by expressing the deviations
of the observed from the calculated values of the dependent vari-
able as fractions of the calculated, rather than the observed, value.!

The use of logarithmic residuals may give more accurate
results than the use of residuals of the type suggested by Pearl
and Reed, even though the distribution of the percentage errors
of measurement is normal. 3

The chi-square test for contingency may be of much help in
selecting the type of residual most consistent with the errors of
measurement made in obtaining the data when sufficient informa-
tion regarding the accuracy of the measurements is not available.

1Residuals of this type have been used by Hendricks, Lee, and Titus at the
U. S. Animal Husbandry Experiment Farm, Beltsville, Maryland, in the
fitting of growth curves.

Hendricks, W. A, A. R. Lee, and H. W. Titus. Early growth of White
Leghorns, Poultry Sci. 8 (6); pp. 315-327 (1929).

Titus, H. W., and W. A. Hendricks. The Early Growth of Chickens as a
Fuaction of Feed Consumption Rather Than of Time. Conference Papers
of the Fourth World’s Poultry Congress, Section B (Nutrition and Rear-
ing) : pp. 285-293 (1930).

The use of such residuals leads to results which appear to give a better
description of the data than when simple residuals of the type, F(X )-Y,
are employed.
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.

TABLE VI

Chi-square test for contingenzcy applied to the distribution of the
deviations of the type, ’—4%(—' ~ 1. The theoretical frequencies
for each compartment are given in parentheses.

Value of Magnitude of Deviation
X
0.000to | * 0.020to | £0.040to | * 0.060 and
* 0.019 + 0.039 + 0.059 over Total
1 to 10 4 3 2 1 10
(4.1463) (3.1707) (1.7073) (0.9756)
11 to 20 4 4 1 1 10
(4.1463) (3.1707) (1.7073) (0.9756)
21 to 31 4 3 1 2 10
(41463) | (3.1707) | (1.7073)| (0.9756)
31 to 41 5 3 3 0 11
(4.3610) (3.4878) (1.8780) (1.0732)
Total 17 13 7 4 41
X*?= 38182
' =10
P =0.921027
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TABLE VII

Chi-square test for contingency applied to the distribution of the
deviations of the type, 1- AXZ - The theoretical frequencies

for each compartment are given in parentheses.

Value of Magnitude of Deviation
X
0.000 to +0.020 to * 0.040 to +0.060 and
$0.019 +0.039 +0.059 over Total
1to 10 3 4 2 1 10
(3.9024) (3.4146) (1.7073) (0.9756)
11 to 20 4 3 2 1 10
(3.9024) (3.4146) (1.7073) (0.9756)
21 to 30 4 3 1 2 10
(3.9024) (3.4146) (1.7073) (0.9756)
31 to 41 5 4 2 0 11
(4.2927) (3.7561) (1.8780) (1.0732)
Total 16 14 7 4 41
X% = 30084
n' = 10
P = 0.959091
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TABLE VIII

Chi-square test for contingency applied to the distribution of the
deviations of the type, log . AX%log Y . The theoretical fre-
quencies for each compartment are given in parentheses.

Value of Magnitude of Deviation
X 0.000 to +0.010 to +0.020 to +(.030 and
+0.009 +0.019 +0.029 over Total
1to 10 6 2 2 0 10
(6.0976) | (2.4390) | (0.9756) | (0.4878)
11 to0 20 6 3 0 1 10
(6.0976) | (2.4390) | (0.9756) | (0.4878)
21 to 30 6 2 1 1 10
(6.0976) | (24390) | (09756) | (0.4878)
31 to 41 7 3 1 0 11
(6.7073) | (2.6829) | (1.0732) | (0.5366)
Total| 25 10 4 2 41
X*?= 44989
7 =10
P = 0.872945



