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THE PEARSON DIFFERENTIAL AND
DIFFERENCE EQUATIONS*

By
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INTRODUCTION

The problem of fitting mathematical curves to statistical data
has commanded the attention of statisticians and mathematicians
for many years. The curves referred to the most by English-
speaking biometricians and mathematicians are perhaps those de-
veloped .by Pearson from 1895-1916.! He showed that a series
of curves could be obtained by assigning various values to the
parameters in a certain first order differential equation. A few
years later, Charlier?, attacking the same question from a differ-

*A dissertation submitted in partial fulfillment of the requirements for the
Degree of Doctor of Philosophy-in the University of Michigan—August,
1931.
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ent angle, showed that any function could probably be approx-
imated by using a certain function and its derivatives in the terms
of the series:

F)-A f0)+ A, Fle A, () 4 -

where the A; are constants.

Charlier found that the constants A p, could be formally de-
termined, the r7 th constant A, being dependent on the moments
of F(x) of order not greater than s7. He illustrated the method
of procedure for the case where y= f (x) was the equation of
the normal curve of error, i. e. one of the Pearson curves. In
fact, the successive derivatives of this particular function gave
rise to a well known system of polynomials, namely the Hermite
polynomials, and the coefficients are dependent upon these poly-
nornials also.

In recent years, Romanovsky! has succeeded in obtaining
similar results for the case in which some of the other of the
Pearson curves are used as the f (x) in the Gram-Charlier
series. The successive derivatives of these other special Pearson
type curve functions also result in systems of polynomials which
bear fundamental relations to each other.

It is the object of this investigation to show:

(1) That the constants obtained by Charlier for his Type
A series can be much more readily obtained by making use of
certain existing biorthogonality conditions;

(2) That if the Type A series be generalized to the form:

2
Fre) - C.Q) £ (20 +C, & Q)T (%) +C, Sxe QG ()

1V. Romanovsky, “Generalization of some types of the frequency curves
of Professor Pearson,” Biometrika, Vol. 16 (1924), pp. 106-117; also
“Sur quelques cldsses nouvelles de Polynomes orthogonaux,” Comptes
Rendus de L’Academie des Sciences, Vol. 188 (1929), pp. 1023-1025.
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where f,, (x) is a polynomial of degree n in x, then the C.,
can also be formally determined and depend upon the moments
of F ( x) of order at most 17 ;

(3) That the form of the polynomials obtained by Charlier
and Romanovsky for certain solutions of the Pearson differential
equation can be found for any solution of this equation and that
the. relations existing between polynomials of the same system
can also be generalized for the general solution and for the most
part obtained without having the explicit form of: the solution;

(4) That results analogous to those obtained in (1) and
(3) can be derived for the Charlier Type B series and the analogue
of Pearson’s differential equation, finite differences replacing the
derivative.

The writer wishes to particularly express his appreciation to
Prof. H. C. Carver for the valuable aid he has given both in the
stimulating instruction characterized by frankness in indicating
unsolved problems in his classes and through direct suggestions
in the preparation of - this paper.
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CHAPTER I

PorynoMmiaLs CoNNECTED WITH THE GRAM-CHARLIER SERIES

1. In the articles entitled ‘“Ueber das Fehlergesetz” and
“Ueber die Darstellung willkiirlicher Funktionen Charlier
proves the following well known theorem:

CHARLIER'S THEOREM FOR SERIES OF TYPE A—If F(x) is
any real valued function of x, which has finite moments of all
orders, then F° (x) may be formally expressed in terms of an-
other function £ (x) and its derivatives as follows:

(A) Flx) A, )+ A Fe+ A F s wA, F s

where £ (x) has the following properties:

(a) 7 (x) and its derivatives are continuous for all real
values of x,

(b) F (x) and its derivatives vanish for  x=+0and -oo
(c) Jim x"f™( x) O forall mandn,

+00

(d) [ f(x)axto.

-0

The conditions (c¢) and (d) are not given in Charlier’s ar-
.ticles, but an eaxmination of the proof shows that he assumes
implicitly that they are satisfied. /(x)= I—f;z satisfies
(a) and (b) without satisfying (c) and (d).

In the first section of the latter paper, Charlier determi: :s
the constants A, Al,Az, ey A,,, . . . He takes - 2
series (A), multiplies it successively by 1, x, z% . . . and
integrates each result between the limits - ¢co to +o02. The fol-

1C. V. L. Charlier, loc. cit.
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lowing equations result:

[ Ftoa-a, [ Froae

[“xFeodx-a, [ xre)dx + A, [ x Fix)dx

+ 00 +00 02 ; . + Qo "
/_ K F)dx <A, / x*f(x)drx+A, / 2*f (ax +A, / wx"f (x)dx
- 00 -00 -

Each of these equations contain a finite number of terms and
the constants A,, A,, A,, . . .may readily be determined by
solving them. 1In fact we find that any constant A may be ex-
pressed as

too
A,-[ B Farx

where P, (x) is a polynomial in x of degree not greater than
7 . An analysic of the underlying facts reveals that what Char-
lier has actually done is to show that under the conditions listed
in the theorem there exists a uniquely determined set of poly-
nomials 7, (x), A (%), . . » B(x), . . . B(x)
at most of degree n, biorthogonal to the set of derivatives or
functions of £ (x), i. e. satisfy the biorthogonality conditions:

S B Gor™dx < 0 for min
=1 for m=n

Further a study of the coefficients of these polynomials shows
that

dF ()
__d;_c.l:_ :—B’_I(Z),

i. e. we have the following theorem:
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TrHEOREM: If f( x) satisfy the conditions (a), (b), (c),
and (d) of Charlier's theorem for series (A) and if R (x),
Pi(x), . . . B (x) . . . isthe system of polynomials
in x, F,(x) of degree at most n , which is biorthogonal to
f (x) and its derivatives, i. e. satisfies the conditions

_[:‘;3,, @ F™(x)dx = 0 for mén
= 1 for m=n

then

dBE

dz n-1 (X)

This can readily be shown to be true directly from a use of
the biorthogonal property. For integrating by parts we obtain:

[ B @t e Bt ™y |75 - [ 560 F a.

The first half of the right hand side of this equation
vanishes due to condition (c) of Charlier’s theorem for series
(A). For the second half we have

-[ R " P)dx = 0 for mén
= 1 for m=n
But we know that
+‘[:/‘D,,,, (%) f('"")(z) dx = 0 for m#¢n
=1 for m=m

determines uniquely the polynomials F,_, (x). It follows that

dP G)fdx =- B, , ()
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A corollary to this last theorem may be stated as follows:

COROLLARY :
If /MOI"; (%) F™(x)dx=0 for m#n
=@,  for m=n
a;#0 (¢=0,1,2, - - . -. ), then
d B (e)/d -~ G2 Foy (¥

The proof is similar to the one just given. Integration by
parts gives the following result:

- / “F ) P,,' (x)dx=0 for m#én
-a, for m=n
But we know that
+00
[TFm ) B (ddx =0 for mén
- 00
=a,, for m-n

Therefore we may conclude that

! dP@ !

-2 - P
e, dx s L &
or
dR a,
dx - a"_l Pﬂ‘l (x)

An illustration of this corollary is the case of the well known
Hermite polynomials which are involved in Charlier’s first paper.!
These satisfy the conditions

-x-b)?
. . . 1 20
1C. V. L. Charlier, loc. cit. Charlier uses as £ (x )~ 4 Znw € . In
this paper we shall use the simpler basic function e-**,
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too )
S Hp) Hy)e ™ dx = 0 for myn
= 2"ni/m for m=n

and

H, (e ™« ()" d" (e =) dx™,

Hence
f*Hm (x)d (e 'xz)/dz 7 ax =0 for m#n

00
=(-2)"n!vrr form=n

If then f (x):e"‘z and @, =(-2)"n!Vr our corollary
applies, i. e. we have

dH, (x)dx -2nH, , (x)

We might further observe that if o, - (-1)7n/ then the
polynomials 7, (x) form a system of Appell polynomials! satis-
fying the relation '

dP (x)/dx-nFE,, (X)

the 77 th polynomial being the coefficient of 4 ”/7/ in the
expansion-of @ (#) e”* where

h H? h?
Qh) =, 5, %, # 55 % + 0t g Ayt

The fact that differentiation of the 7 th pol nomial results
in the negative of the ( m7-1)th polynomial;shows that the 7 h
polynomial may be obtained by integrating the ( 77-1) th cae,

IM. P. Appell, “Sur une classe de Polynomes,” Annales Scientifiques de
L’Ecole Normale Superioure, Vol. IX, series 2 (1880), pp.-119-120.
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which will consequently determine all of the terms of the n th
polynomial except the constant. This constant may be found
from any of the conditions of biorthogonality, The simplest of
these conditions is:

_/_-:27,7(::) fix)dx =0
Setting

F},{x)=~/ox€,_, (x)dx +c

gives [;w('fxe,.l (x)dx+c]lf(x)dx =0

(4

f_:,v[ /oxPM t)dx 1f(x) dx
S ;Uf (x)dx

and so C=

f: T / B, 60 dx]F)dx

sothat B0 =-/ B, ()dx+ —
’ [ fwax

This gives a very simple and elegant method of writing down
successively the polynomials associated with any function f ()
satisfying the conditions of the theorem.

Using the Charlier notation

[o 2" f(x)dx
A, = L=

7!

and observing that P,(x)=1/A,, we obtain the following



388

polynomials:

B x)

Px)

n

R
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:M[/o xE{x)a’x] f(x)dx

- ﬁg(x)dz+ fwf
°© [ F(®)dx
x A,
TA AT
+00 _x
x (. |/), B @az| faydx
./ R)dx + /mf
° [, Twdz
x*  Ax Az A,
A, A A A
. [o [ B {z)d.z] Fle)dx
= '/ B @dx + =2
° S Fedx
x* Ax* Xx Ax N 2AA A,

(-]

Y VY I A I A A

2. Just as the Hermite polynomials, based as they are on

the derivatives of e

x2

, are the starting point for expansions

of the Gram-Charlier type and for the theorem just considered,
so the Laguerre polynomials defined by o "(@+bx)"e */adx 7

suggest an expansion of the type

2
Ft) = C, L0 p()+ C, 2 K0 9(x) = Cy o2 f () Plie

where 7‘,7 (x) is a polynomial in x. As a matter of fact we

can state the following theorem:
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THEOREM: If @ (x) is a function such that

(1) @(x) and all its derivatives are continuous for all
real values of x ,

(2) @ (x) and its derivatives dre zero at x =+00 and - o9,
3 lim, X7 @"(x) <0,
(4) {f,, (x)] is a sequence of polynomials in x such
+60
that [ F, (x)P(x)#£0,

then there exists a unique sequence of polynomials F}, (x),

B, (x) at most of degree m, such that

+ 00

j;o %(z)a%?f,(x);ﬂ(x)dx: 0 for m#n
=1 for m=n

If frr (x) is at most of degree 17 , then the determination of

R, (x) depends at most upon the moments of @ of order 17 .!

The method of proof is modelled on Charlier’s proof for the

preceding case. By substituting in the 77 th integration by parts

formula

fa(x)v"”a)dx=uv(”)-u’v (n-9

FU TR - 1)Tu Py

‘ (_1) ‘ml/u (77+1) (X) r(z)a/x .

we have

1The Laguerre polynomials are not a special case of this because there the
interval of integration is ~-a/6 to+oo.
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n-{ -2
I~ < ,,rx)m)dx,{ By ) 23 1,090 ”’“’ L P2
-8
- zlf,,m[ 223 z (x)¢(x)]
d +00
2771 En{“}f” ocx) }.

+(1)’f/ d ] f,000(x)dx

PN ke

d
=(-1)Z L;;; 5, (z)] 5,00 Plx) dx

because of conditions (2) and (3) on @ (x). As a consequence,
if » >mthen-g;7ﬁ- A, (x)=0, so that for 7>

+00 dﬂ
S B ) 2z fy (00 L0022 <0

”
that is to say A, (x) is orthogonal to a%r_” f, (x)? (%)
provided 7 > m Hence % (x) must satisfy only the follow-
ing 77+1 equations:

+»00 d n
/ R,(x)— @) @l)dx-0
dx

+o o P (x)
/ P(x) f(z) PC)dx = (- 1)/ 7, )P ()dx =0
% to g2 P /z)
-[v% (x)dz L) P(x)dx=(-1) / 22 L@ P(x)dx=0

. e . . . . . - . . . - . . . - - -

+00 dﬂ +00 a,n
[ B t,mpmar- 0" =25 B ot o ptan-s
Replacing now A, (x) by @, +ax + ax?+. . -+a,x™
gives us the system of algebraic equations to be satisfied by

a,,a,, - - - C o a, , vz
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+-00 + 6O
a, [ EOPeIdera, [ <t ()Ple)dx
va, [z pader - va, [X7h(0)px)dr=0
o [ % ) dIaxs2a, [ %fi(x) L) v -ma, [ 0 P10

' 20, j (%) P(x)dx+---+1n)a /fo/x)m)a'z 0
(7 2),0172 f,,,_(x) ¢/X)dz+ ) / :lcf,,_2 (x) Plidlx

+— a _[ ey £, (%) P(¥) dle=0

(m-1)!a, / /x)ﬁ(x}dzf a, / /X)¢(z)dx=0
(~/) 77.’0,7‘[1;7 () P)dx=1

We have here a unique determination of a,, if the determinant
of the coefficients is # 0. This is true since the determinant
A=(—l)"(/f;¢)(ff,¢).... / f,,w) is # O because of the
condition (4) on @. If £, (x) is at most of degree N, it is
obvious that the determination of the /), (x) resulting from
the coefficients @, depends at most upon the moments of ¢
of order 7.

The first three polynomials of the type considered in the
last theorem have the following form, the limits of integration
being - co and + o0 in each case.

P (%)= fx¢{x)dx x
! JE e pdx [Pix)dx / 1 ()P)dx

.1 [Sxprwax _x:l
Jtemwdx | Jecxrdx ’

Jxf, 0@ (x)dx [z pr0ax S22 D (x)dx
Th (09x)dx ]t () pradufPre)dx 21, ()pldefpiidx

E(x)=
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_ xfxf(x) Prr)dx x*
b
S powax [ oxyadr 2L (x)@ex)dx

P - S x b perax Jxf, 0P lr)dx [x Plr)d =
? Sty copinde [t r) o)y [ )Py [Plx)ax

_J2* () Pr)dr 2 pre)dx
21 [, AR Ax] % ) P 2)le [P/ )l x

_ St G [P 0)2x
21 [, (P [#,() POl [ ¥)clx

fx3Px)dx Z[27, () I 2)dx 2 [, (2) f (x) dx

() pvax fprear " [F; (P [ (0P [F; () dx

L 2 2 () Pre)ax B (D) P()dx
2! [foopeadde [ () gte)dxe  RU[F, (0 Ple)dx [f,0x) plx)dx

z3

3/ [y (x) P()dx
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CHAPTER 1II

PoLynoMiaLs CONNECTED WITH PEARSON’S DIFFERENTIAL
EquaTiON

1. In the work in mathematical statistics a large number
of the problems that require study involve data properly classified
into groups and about which further information is sought. This
data is often classified to form a frequency distribution. The
frequency distribution when grouped may appear to lie on a cer-
tain curve. If it can be shown that this curve is a mathematical
curve, i. e. one for which we are able to set up an equation, then
this frequency distribution can be readily examined and studied.

There are very few frequency distributions which actually
conform to known mathematical equations. However, there are
certain curves which seem to lend themselves much better to
statistical manipulations than others. Among the most commonly
used of these are the so-called Pearson type curves. Pearson!
showed in a series of three articles how he obtained the equations
of twelve distinct curves and this was done by considering the
differential equation

l d a, +a, x

and solving it, after assigning particular values to the parameters

a, ,a, , &, b, ,and b, . The equations of these curves and

o ’
the differential equations from which they were derived are as

follows:

1Karl Pearson, loc. cit.
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The curves most widely used are the normal curve of error, which
Pearson calls Type VII, and the Type III curve.
Suppose a Pearson curve f (x) has been found which

seems to fit a given distribution fairly well. The question ‘may
well be asked: Is it possible by means of analytic methods to

approach even nearer to the given distribution? For example,

would it be possible to use this approximate function
as the 7 (x) in the Charlier series (A) and thus obtain a closer
approximation to -the observed frequency function. :
Charlier in his paper “Ueber die Darstellung willkiirlicher
C . . . / ~(z-0)%
Functionen? considered this question for ¢ (x )= oA =7
i. e. the normal curve of error. He showed that using this

@ (x ) reduced the series (A) to the form:
(A") Flx) =a, prv) +a, @ =) ra, @ Cm)s - +a, @)

the first and second derivative terms vanishing due to the proper
choice of constants. This series (A’) is frequently referred to
as the Gram-Charlier Type A series. It is worthwhile to note
that this @ (x) is the same one whose derivatives we found in
the first chapter resulted in the Hermite polynomials. These poly-
nomials have the following interesting properties?:

(1) a@H,(z)/ax <2nH, (z)
(2)  Hppy(2)-2x Hp(2)+ 2nH,, 4 (2)=0

(3) H)(x)-2xH,y(x)+ Znt, () =0

The first of these relations shows that the derivative of any Her-
mite polynomial corresponds to the preceding polynomial multi-

1C. V. L. Charlier, loc. cit.
+2R. Courant and D. Hilbert, Methoden der Mathematischen Physik, 1,

pp. 76.
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plied by 272 The second equation is a recurrence relation between
the (77+ 1) th, »nth and ( 72- 1) th polynomials, while the third
relation is a differential equation of the second order involving
only the » th polynomial.

The use of the equations of the other Pearson type curves
as the £ (x) in the original Charlier series has in recent years
been studied by Romanovsky. In the first! of two articles, he
discusses the Pearson Type I, II and III curves as well as the
Type VII—the normal curve referred to in the last paragraph.
Just as the normal curve of error requires the use of the Hermite
polynomials, he found that the Type I curve and Type II, which
is a special case of Type I, involved the Jacobi polynomials

1~q,,_ _,e-h 7 [ g+n-1 /;m-q-]
X (1-x) d 5
G”/b’ 7 z)~?(7”)__ ~(g¥n-1) az” x 2 .

The 7 ’'th Jacobi polynomial satisfies the second order differential
equation?.

x(1-2)G,, (2) + [g-cp+1)x] G,; (x) t(ptn)rG,(x)=0

which corresponds to property (3) mentioned for the Hermite
polynomials above. The Type III curve involves the Laguerre
polynomials$ defined by

”n
L,(x)=e z%ﬁ'&'"e'z)

and these in turn satisfy the recurrence relation

1V. Romanovsky: “Generalization of some types of the frequency curves
of Professor Pearson.” op. at pp. 106-117.

2R. Courant and D. Hilbert, op. cit., Vol. I, p. 75.

JR. Courant and D. Hilbert, op. cit., pp. 77-78.
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Lopey (B)=(271#1~2) L (2)# n*L,,  (x)=O

and the differential equation
L;, (x) - 77 Llﬂ_l (z)= -nl, , (%)

In the second article?, Romanovsky reviews the cases of
the Type 1V, V and VI curves. The generalization of the Type
IV curve gives the polynomial

” - -
F,’r(-m,x)-(aﬁxz)me ve _Z_z__,_’[(az*zz) men, \/6]

where O=arc tan %/a. These polynomials possess properties
similar to the other polynomials mentioned, viz.:

Pog(ntl, x)= [Z(??f/-m)z— l/a] £, (7, %)
+2 77 [r7#1-m) @%*29F, ;(n.x)

and

(@*+z%) P:{ﬂ,z) +[2(1-m)z - va]

Bl/nx)- n(n+/—2m)}% (7,%)=0

Similarly for the Type V curve he finds the polynomials

4 Y o7 “hi2m -%)
R (hz)=x e a—;ﬂ(z e .

Also the relations

2V. Romanovsky, “Sur quelques Classes nouvells de Polynomes othogonaux,”
loc. cit.
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By, (n)) = [@nel-p)z + 7| B (riz)e 71 (20 2- ) 2B y(n2)

and

zgp,,"(rl,x)m‘- [z2-p)+ \/:lp,,'fn, z)-nfnel-p) B, (71, 2) =0
hold. :
Finally for the Type VI curve Romanovsky gets the polynomials:

led
p77 (ph'q' z)- (x-a) ‘?l n %ﬂ[{z'd) ?*”z '/’f"l:l

and the relations:

P, (7+1,2)= [~pethz-a)t(q+1) z] E(n z)+z:(z~a)P;; (#,%),

2(2-a) B, (n, )¢ (- ot Nx-a)¢ (. ¢+ Vx| P (n,2)- nfniteg-p)B(n )0

We note, therefore, that if a solution of the Pearson dif-
ferential equation is used as the generating function £ (x) in
the Gram-Charlier series, that a distinct set of polynomials re-
sults in each case and that these polynomials satisfy certain re-
currence relations and differential equations. These properties
are not found in the case of functions such as sech z and
sech 7"z , which were discussed as generating functions by Char-
lier' and by Roa? respectively. The successive derivatives of the

1C. V. L. Charlier, “Ueber die Darstellung willkiirlicher Funktionen,” loc.
cit., pp. 18-22.

2Emeterio Roa, “A Number of new generating Functions with Applica-
tions to Statistics,” Doctor’s Thesis, University of Michigan, 1923.
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sech x do not result in polynomials such as the Hermite or Jacobi
ones.

Since the generalization of the solutions of the Pearson
curves leads to distinct sets of polynomials and since these poly-
nomials satisfy certain fundamental relations, we are led to inquire
whether these polynomiéls are not special cases of a general poly-
nomial and may be obtained from it by specializing the coefficients
and further whether such general polynomials, if they do exist,
will satisfy certain recurrence relations and differential equations.
These problems are among those which we shall consider in this
chapter.

2. Inorder that we may develop the generalized polynomials,
let us consider the Pearson differential equation where the numer-
ator is of the first and the denominator of the second degree, i. e.

L dy. arazx
y dx b, b xrbx*

For convenience we shall denote the numerator by /V and the
denominator by D . We then have the following theorem:
TuEeorREM: If y is a non-identically zero solution of

dy . N
(N “Zx~ D Yy

D7 47 . .
then v %;%, is @ polynomial of degree at most 77.

The proof will proceed by mathematical induction. It is
obvious that the theorem holds for 77=1, P, (x) being V.
Since it is true that

ay.
0 p Ny
we obtain by differentiation

4%y
ax®

*D’ﬁ/aNﬂ+Ny'

2 dx dx
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or using (1) and multiplying the equation through by D we get
D"-—-Z; (N*-ND'+ N'D)y

Since D' is linear and NV' is a constant, it is obvious that
(NV2-ND + N'D) is at most of degree 2.

Assume then that the statement holds for 777 < 77 and we
have

7
@ D74V, =Py
Differentiation gives
- = !
nD7p' 2 Y, +o”g—:~,~m Yy digle)
Multiplying through by D we get

D™ A DR 2 DD LY, +p 2R,

A

and using (1) and (2), we have

D, )y « NB(dy- nD'B, iy + DL 2.,

EVP () -nD P (x) +D M}

The coefficient of y is obviously a polynomial of degree at most
77+1. Incidentally we have derived the relation:

(1) Prst1(¥)=Py(x)(N-nD') + D dP,;(z)

an equation which gives the ( 77+1) th polynomial i;1 terms of
the 77 th polynomial and its first derivative P.,'7 (%).

3. More generally we have:

THEOREM : If y is a non-identically zero solution of (1),

/ -k a”
v P dz

then
, Dy
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is a polynomial B, ( k,x), B, (K, ) is at most of degree
77 in 2. In particular if k=7, we have that

) 7
'5!/' dx Dﬂy'

is 6 polynomial in x of degree at most 71.

This theorem can be proved directly following the lines of
the preceding theorem, but it is simpler to obtain it as an imme-
diate consequence of this theorem and the following.lemma:

LemMma: If y satisfy the differential equation (1) then
D k_y , where K is any real number, satisfies a differential equa-
tion of the same type, viz.:

/
& 0% - 2K i
Let « = Dky

Then logarithmic differentiation gives at once

1 du D', / dy N+kD'
u dx Dy dx D
It follows from this lemma that any resul_’t, which we derive
concerning the polynomials P, (x )=§ D7 %}, where y sat-
isfies D dy/dx=Ny ,is imme,die;}ely extensible to the poly-
nomials , F,(k,x)= § p7k ac;—n'Dkyby replacing /V by
N + kD', In particular relation (I) becomes

dF, (k¢ z)

(L) By ksl x)<[N+(k-ns1)D'] B (ket,2) +0- ZL2L

which for 4= 7 reduces to

! a”h yi
(Iﬂ) P,,*I (77"]‘1}={N*D)27/77*1,Z)f.04ﬁ5;52_,
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We single out the case k=77 because of the fact that this
case parallels most closely the Charlier or Hermite polynomial
case. For in this latter case the 77’th derivative of the generat-
ing function e ~* %is the product of the generating function and
a polynomial of degree 77. So in the case of any solution y of
a Pearson differential equation, the 77 th derivative of D"y
is the product of the generating function y and a polynomial of
degree at most 77.

By means of relation (I), we can write down the successive
polynomials Z,( x), A (x), . . . The first five polynomials
may be written as follows:

P/(z)zlv)

B (2)=(N-D) P, (2)+D L202 - N*ND'+ W'D,

P, (x) =(N~20')Pz(z)+D~ g_}:%éx_)_

=N23N3D'+ SNN'D+2ND'*-2N'D'D -NDD",

dFx)

Pr(x)=(N-3D) Py (x) +D 7

=N eN°D'+6N*N'D 11/ N*D* - 14NN'DD'-4N?DD”

3 / 2 "t 2.2 120
=-6ND +6NDD +6NDD D +3N" D -3N DD,

a Py (x)
Ps(x) = (N-4D) B, (x) +D —gz—

2
~NZ1oN*D'+ 10NN D +35ND'-50N N DD’
p g 2
<1ONDD" 50N D" s7oNN DD’ - 20 NDD'D”
’2 2 1 2 V4 /4 ’ 1 3
HISNN D -25NN DD +24ND" -24N DD

v 2
_36NDD' D" -20N' DD+ 24 N'D*D'D+6NDD"
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4. Following the analogy with Hermite polynomial§, we ob-
tain next a recurrence relation involving the ( 77+ ) th, 77'th
and ( 77-/ ) th polynomials.

Starting with the original differential equation

ay _
=z

we take the 77 th derivative of both sides, which by Leibnitz’s

theorem on the derivative of a product gives us, since Z—ze- =0,

a7y ! 7 y 771~ 1) vd7Yy 7% y a7
+nD + = + 77”
D—————,,,, nD 2 ; 7 =NZ -—%.

Multiplying this last expression by 2D " and collecting terms, we
get:

n-J
D"*I—'foDﬂ(ﬂD N)E%-ID n/ﬂ l) N’ g}_ﬂ)’_’y 0

d”
Replacing now D7 d_xy” by 7, (x) y and dividing through

by y , we get the recurrence relation
(1) P, 1 )+(nD*N)B,(x)+n [:(" j)D'IN]D B,x-0

We note that the coefficients of 2,,,, (x) and P, (x) are

the same as in relation (I) which we found to be

aP, (x)
Py () + By (x)(nD“N) =D 22~

Hence

a R, (x) n[N’ (n-1)

(111) —az " DY) Pyy (%)
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or replacing 77 by 77+ 1 we write:

25,

7t Z < ()N 2D")B, (x)=(ntla,-nb,) B,(x).

This equation is the generalized form of the one for Hermite
polynomials, viz.:

aH,(x)

= =2nH, , (0

5. Relations (I) and (III) may now be used to obtain a

second order differential equation. Differentiating (I), we get:

P'Infl (z) +(nD“N')E, (x) HnD N)B) (x)
-DIPHI(X)‘DP’?”(Z)SO.

Substitution of the value & 7,,, (z)/dx from (III) gives
us:

DB ()+[N-(n-1)D)B,] (x)
(Iv) y
-n [N'— -————("Z)D]Pn (%) =0

We readily see that the relation found for the Hermite poly-
nomials

H! (x) -2z H, (x)+EZnH, (x) =0
is a special case of (IV).
Using the lemma previously proved and replacing N by

N+ kD' we can write (IV) for the polynomials P, (k, x)
and B (7, x):

DB,(K, )+ [N-(n-k-1)D'| B, (k,x)

(Ivy) X
-n ]2\/'- fl_g__k'”D" P, (k, x)=0,
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DR, (nx)+ (N+D")F,' (%)
(IVyp)?

. |:N’+ (n;I)D ] B (rx)=0

We recognize the second order differential equations mentioned
earlier in this chapter for the polynomials of the Pearson Type

1Since D is any expression of the second degree and N is an§ expression
of the first degree, it is obvious that Pn(x) satisfies a linear equation
of the second order of the form:

"
(A, +A,x + A x2)y +(B,+B,x)y'+Cy=0

where C = *77,’(77—1) A, + B,] . It may be shown that if a differ
ential equation of “the form considered has as one solution a polynomial of
degree 77 then C must be of the form specified. For suppose &, ( x )
satisfies the above differential equation for y. Taking the n’th derivative
of this equation we get

72(77-1)

Z7 2 A (nla)+ nB (nla,) +C(nla,)=0

and solving for C that:
C-= *77[(77-/)/1‘2 + B,:] .

It follows from our work that if a differential equation has the foiin
(A, +Asx + A x?)y" + (B, + B, x)y'
-n [{71—1)/12 +sz y=0
then one solution of this differential equation is a polynomial of degiee at
most 77 obtained by finding the solution y of the Pearsor differential
equation

dy | B, +B x - (A+2A%)
ax A':‘-rAlztsar'/l‘,_JtLz

and determining the polynomial

By tmxi=g G (B, oAz 2 4] ]
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IV, V and VI as well as the Jacobi and Laguerre polynomials as
special cases of formula (IVy). Some further illustrations of
(IV,,) are the Tschebycheff' and Legendre? polynomials. The
Tschebycheff polynomials are developed from the differential
equation

ay . _x
ax= T-x= Y
and in this case formula (IV,,) becomes:

(1~xz)Pn”(77,x)-zP,,' (mx)+n®F, (nx) =0

The Legendre polynomials

.2 T
P, ()= e 2L

have as a corresponding differential equation

dy . Oy

dz x2-f

and in turn formula (IVy) is written:

(=% I)Pn" (nx)thP”' (rx)-n(rnl) B, (7,x)=0

6. Just as in formula (II) we established a recurrence re-
lation for the polynomials p (zx), let us now obtain one for
the polynomials P (7x).

Consider once more the first derivative of D y , i e

dz{pkfly) (/(*"IJD .Dy*.Dkfl '

=[Ne(rs1) D] DY

1R. Courant and D. Hilbert, op. cit., pp. 73-74.
2Ibid, pp. 66-69.
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Taking the 77 th derivative of both sides of the equation we get:

AT (DRly)- (<D 2 d D

' nad’”
¢V +(A/+/)0Lz,,_, DY .

Multiplying both sides of the equation by D”* and replacing

D7* %Dk_y by A, ( k,x )y, we have

Pyt (Kel,2)=[N+(K+1)D] P (K x)
(V) B
+ [N+ 1)D"|D-B_, (K, z).
In case we set k=77, we may write
Boet (n#1,%) = [N+ (n+1)D1P, (r2)
+ 77|:IV'+(77+1).D"D ‘B, (nx),

(Vm)

a recurrence relation similar to (II) and involving the poly-
nomials P, (7z+ 1, %), B, (#mx)and P,,(nx).

7. Formula (V) may be written in still another form cor-
responding to formula (I), i. e. a relation consisting of the same
terms as (Vz) except that the ( 77-1) th polynomial B, (7, x)
is replaced by the first derivative of the 77 th polynomial
P, (mx).

In order to obtain this relation we return to formula (III),

a P b / (f]-]} V4
__C_Z_L_(___): ﬂ[/v-—z—ﬁ P”_j(l)

and substitute for NV the value N + kD’ and obtain

ak, (nx) )
(IIIn) ____77__ = 77[_/V L_il.)Dl P 1(7715)
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or

dP
P”_l(ﬂ,Z)' [Nl*(”*l)oj ——-%/”—xi

Substituting the value for P .y ( 77,x) we thus obtain:

B, (7t x)= EV+/77+//D]E7 (nz

. /v’"+/ml)ID” D B, (r1,x)
N'+(72?) D" x

(VD)

From symmetry we might expect the fractional coefficient of the
derivative }37'( 77, ) to be unity, but unfortunately this is not
the case.

8. In looking over the relations existing for the Laguerre
polynomials we find one consisting of the first derivatives of the
77 th and (77- 1) th polynomials, and the ( 7-1)th poly-
nomial,! i. e.

P (mx)-nR., (ng)=-n B (71z)

This relation is a special case of another form of formula (VI)
which we obtain in the following manner:
Differentiation of (VI) gives us:

apP

__nM) [/V+{m1)p:]P(ﬂx)f[/W(ﬂ*’)D]d 2

/V*/ﬂ/l)D pldpfnx) /V*/ﬂf//ﬁ D- d2P, (ny)

N D p” “z /y,,.fnf D* --§—-—

Substituting the value for %%, (7, x ) /dzz found in (V)
changes this last expression to the form:

1R. Courant and D. Hilbert, op. cit., pp. 77-79.



E. H. HILDEBRANDT 409

dBu(nt.) ag’”"’) :Ev’f/m/)ﬂ'j B (nx)+ EV*(nH)D] a %{ f 7x)

N*(m+)D" ‘akB /n X, +{77+ng
* N'+ {_"5_{)0" 4 +(7N/)D

[:(mw) 2502, 5 (mHp +N)P/77,z]

which reduces to

LoD - (01) W' e (1) D7) B fr,2)

(V1)

N's(ntl Y
Z@mm)p] Ve G ut 7;‘,/1’;, /v} 2% a({ ’:*‘) .

The special equation mentioned for the Laguerre polynomials
will be recognized as a special case of formula (VII) if we recall
that for the Laguerre polynomials the differential equation is of
the form

ay  pox
dz x

Y

Substitution of x for D and ( p-x ) for N reduces (VII)
to

Pml (r7+d x) = -(ﬂf/)P [(rmx)+ /77+I)P (nx).
9. In this chapter we have defined two general types of
. D" d 7y
polynomials P, (x)=—y- 7

n-kK ” k
and B,(kx)=- D %32‘»‘ Dy .
The relationships for these polynomials B (x) and E,(k,x)
were derived without using the form of the solution of the dif-
ferential equation. Two fundamental formulas were derived,

for B, (x):

danr,(x)

69) P,,,(x)< (N-nD)P, (%) +D =2
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and for F?? ( 72, %) the corresponding formula:

‘ P
(V1) B, (n+1x)= [A/+(m1)p]e,m,x) ”/;(f;‘gg)_” a5 (nz)

Two successive polynomials were shown to be related by the re-
lations, for P, ( x):

mp ez, [/v ———-—D] > (%)

and for B (77, x):

P ; |
i,y  Ealnx), 77[/\/'+-——-(”2*/D’Pn_,(rzz)

In addition we found that it was possible to set up recurrence
relations involving the ( 727¢#1) th, 27th and ( z-1) th poly-
nomials and found these to be, for 7, (2):

an 7, (x)+(nD-N)P {x)+n|: D"- NJD B, 4(x):0
and for P, (7, x):
(V) B, (netx)=[N+ (nsh) DB (n2) 4[N +(nt DD\ D . 1)

We further succeeded in developing a second order differential
equation for the 72°th polynomial P (x):

(IV) DB, () +[N-(n-1D']| B/ 1) - n[ W"- 22575 x)-0

andforp (zx):

{nfl)

(IV) DE, (0 x)s (N+D )P (2)-n[N'+ 5= D" |, (,x) < O
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We also showed that we could derive a relation between the
derivatives of the polynomials P _, ( 7+1, ), 7P, (mx)
and the polynomial I?T (n=x):

(VID) g’%zﬁ) =(r+1) [N’*(ﬂ#l)D'jP,, (m,x)+

NN+ (e )D" 3 4P (n2)
Finally, we noted that all of these formulas and relations apply
to the Hermite, Jacobi, Tschebycheff and Legendre polynomials
as well as the polynomials derived for the Pearson Type IV, V
and VI curves by Romanovsky.
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CHAPTER 1III

1. So far the discussion in this paper has been limited to
the treatment of the Gram-Charlier series where the constants
A, ALA,, . . LA, . . . depend upon polynomials in
x which are independent of the function /" (x), and the gen-
erating function £ (x ) is a solution of the Pearson differential
equation, the functions #’(x) and f (x) being defined as con-
tinuous functions. The work in mathematical statistics involves
not only the use of the continuous variate and the continuous
function but also the case of the discrete variate and the discon-
tinuous function where this function is defined for equally spaced
values.

In dealing with the continuous variate we make use of the
theory of the differential and integral calculus, or the calculus of
limits, as it is sometimes called. On the other hand, for the dis-
crete variate we turn to the theory of the calculus of finite differ-
ences. Further, it usually happens that there exists a parallelism
between results based on the derivative and integral and those
based on the finite differences and summations. As a consequence,
it seems natural to attempt to derive results for the finite differ-
ence case paralleling those contained in the first half of this paper.
The second part of this paper is devoted to this purpose. The
first of the two following chapters considers matters pertaining
to Charlier’s Type B series which is the finite difference parallel
to the Type A series, while the next chapter is devoted to the
polynomials connected with the finite difference parallel of the
Pearson differential equation.

Charlier in the second half of his article! “Ueber die Dar-
*C. V. L. Charlier, op. cit., pp. 23-35.
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stellung willkiirlicher Funktionen” considers a real valued func-
tion ~'(x) and asserts that it may be formally expanded in
terms of another function and its successive differences. Stated
as a theorem, this may be written as follows:

CHARLIER’S THEOREM FOR SERIES B: Any real valued func-
tion /7 ( x) which vanishes for 2% = o and - oo, may be form-
ally expanded in terms of another function ¢ (x) and its suc-
cessive differences in the form

(B) F(x) B glx)+B Agtx) + B,Ag(x)+ - - -+ B, A9 () -

where g (x) possesses the properlie;:

(a) @ (x) and its differences are defined for all real values
ofx ,

(b) g (x)and its differences vanish for x<+ooand - co ,
() x"A"g9x) If:-O for all real values of mand n .

(d) A'g) |t=# 0.

Paralleling the theory of the first half of his paper, Charlier
determines the constants Bo , B, , Bz s e e e Bﬂ , . . .and
finds that they may be expressed by the equation

By« Z Q) Flx) - 87'Q0x) Fx) |12

where Q,_,( z) is a polynomial in x of degree not greater than
7. Analyzing the answers that he obtains for @ _( x), we find
that these polynomials' form a uniquely determined set of poly-
nomials Qo(x)9 OJ(X)’ "G,(Z)» ) Q,, (), - . o
@,,(x) at most of degree 77, biorthogonal in the sum sense to
the successive differences of the function g (%), i. e. they sat-
isfy the biorthogonality conditions for the inverse of differences:
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- m +00 =0 for 77)(7”
4 Q,(x)A g _, | for n=m.

Charlier does not observe that the polynomials &, ( x) bear a
definite relation to one another, i. e.

AQ, () =-Q,,, (x+1),

a relation similar to the one found for the polynomials Pn (x)
in Chapter I. We may state these facts in the following theorem:
THuEoREM : If g (x) satisfy the conditions (a), (b), (c),
and (d) of Charlier's Theorem for series B and if Q. (x),
Q. (%), . .., Q@,(x), . . . isthe system of polynomials
in x, Q,(x) of degree at most 17, which is biorthogonal to
f (x)and its differences, i. e. satisfies the conditions
= 0 for m#ém

- it
A Ianx)A mgfx) l-,., = 1for mn=m

then
A Q) =-Q, , (x+1).

The proof requires the use of the finite integration by parts
formula:

augvy w87, a7 [ Buy .A"v“,] :
Applying this formula we get
270, a9 |22 <@, (- a™ g0 |12
-2 [aQu a7 g )10

The first term on the right hand side vanishes due to condition
(¢) of the theorem of Charlier. Comparing the term which
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remains, i. e.

-1 m-1 =0 formzem
A AR, (xX)A $27)
[ @) 9t )]“" =1 for n = m.
with the biorthogonality condition
.y m-L #0-0 for ne#m
A [077‘1{)”'1)[1 7k*])]—ao=l for n=m

we conclude that

AQ,(¥)=-Q, ;(x+1)

This theorem enables us to find the terms of the 77 th poly-
nomial by taking the negative of the integral of the ( 77-1) th
polynomial, except for the constant of integration. Following the
suggestion in our first chapter, we may also determine this con-
stant. We have

@, (x)=-A ‘10,,_1 (x+1) I': +C
and the simple biorthogonality condition
ATQ,x)g(x) |1 =o.
It follows that

|+M

AJ[-A ‘10,,,1 (x +1)+C]': g(x)
and solving for C we get

) A"[A" @,y (X*1) ]: gx) lt:

C
Mg |t

We may therefore determine the polynomials ¢/, (x) from the
polynomials next preceding by the formula

a*ag,, (er1)]; gr%) lf:

x
@, M)=-A71Q, ,(x+1)| +
7 - Io At g/z) If:
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If we adopt the Charlier notation

En=Z xTgx)= A x7g(x) |f:

and the common notation x(™= x(x:1)(x-2) - - - - -(%-m+1)
and observe that (), (x)= 1 /€, and that
-1_(m) x (777'/'1)
N
we may obtain the polynomials @, (x), &,(x), . . . .

without much computation as follows:
- - x (74
47 [A 10 (2:4-1):]o g(x) |fw
A gle)| %S

x
0 +

QM = -A71Q, (x+1)

Q= -A1Q, (x+1) £, A2 [A-IO,(XA)J: grx) |f;

A-g)|te
___(z+/)"’ _Gxtl) | 2ER+EE &, 6,
ZE, [ k]

orl2&Q,(x)-E 27~ €, x(26,-€,)+ 26,5 €, &, - € €,
Aﬂ[A'lQ,_ (x+l)]: g(x) It:
Agx)| 3

_r)?® & (xr)T (2&ee €, - £, &, Nx+2)
L€, 2 2283

Qy0%) = - A7 @y (241) I: +

@)

2 2 3 2 2
+ &6 - 3E,E, -6 EEE, +6E7+6E7€C, +2€,6,
L3ESX

or BEQ ) = -£]x 7+ 3 222 (€;€,)

- X (26f-66,6,36,6+6€F)+ETE,+3ELL+2E,6]
~6€,66-66°6,+6¢7
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These results differ slightly from those obtained by Charlier
in his article. This is due to the definition for differences used
by Charlier, viz.:

Agle) =qg(x)-g(x-1)

while we have used the definition
Agix)=glx+1)-g(x) .
Denoting the difference
grx) - g(x-1)by bg(x)

Charlier determines a set of polynomials 7, (x) satisfying the
conditions ,
=0 for m#nm
ST, (x) 6 "gcx))
=1 for m=n
As a consequence by paralleling the reasoning above one proves
easily that the 7',_, ( x ) satisfy the recurrence relation
T, (x+1)-T, (x)=-T,_,(x).
By using this relation and the fact that

6 grx+n)= 47g(x)
it can be shown without much difficulty that

7, (x+n-1) = @, (x)

The theorem proved in Ch. 1, par. 2, could no doubt be
paralleled by using finite difference theory. Since the method of
procedure is obvious there seems to be no need of taking it up
in_detail.
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We have succeeded in showing in this chapter that the prob-
lem of determining the constants for the Charlier Type B series
closely parallels the work of the first chapter and that these con-
stants are readily obtained by using the biorthogonality conditions
for finite differences.
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CHAPTER IV

PoryNoMIALS CONNECTED WITH THE PEARSON DIFFERENCE
EquaTiOoN

1. In Chapter II we referred to certain solutions £ (x)
of the Pearson diiferential equation and noted that graphically,
these functions represented types of curves used in statistical
work. Paralleling this work, we would expect to find that a dif-
ference equation similar in composition to the Pearson differential
equation would have as solutions functions g ( x) which could
be used to represent data consisting of discrete variates.

Carver, in an article in the “Handbook of Mathematical
Statistics,”* suggests the use of a difference equation correspond-
ing to the Pearson differential equation, i. e.:

a, +a, x
XT b, tbxt byxRrbgxis

Au Ux>

a difference equation with a numerator of the first and denom-
inator of any desired degree in x . If we confine our work to a
denominator of degree at most of the second in x, we should be
able to obtain results comparing very favorably with those ob-
tained in the second chapter.

An illustration of a solution of this differénce equation found
in Charlier’s article “Ueber die Darstellung willkiirlicher Funk-
tionen,”? is the well known Poisson exponential function

Yle)- €22 %

1H. C. Carver, “Frequency Curves,” Handbook of Mathematical Statistics
(H. L. Rietz, Editor), Chapter VII, pp. 111-114.
" 2C. V. L. Charlier, op. cit. p. 33.
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This function satisfies the difference equation

A-x-1

Auy~ =757

and this equation is recognized as a special form of the Pearson
difference equation. If we take the successive differences of this
Poisson exponential function, we find that these give rise to a
unique set of polynomials. These polynomials may be written in
the following form:

Qy(X)= A-(x+1),

@, (x) = A*-2A(x+2)+(x+2)(x+1),

or making use of the usual difference notation for
x (7 x(x-1)(x-2)--¢ - - (x-m+1) , we write

Q ()= A% 2A(x+2)+(%+2)®,

(2) 3)

@, (x) = A= 3% (x+3)+ 3A(x+3)* (2+3)7,

or Q,{x-s) =A% 3 A% + 3 AP x(“”,

Q, ()= A" C,A" (xrn) e ,Co A ks m) Zur (- 1) laim)™

or @ (em) <A C AT R b, AT P ),

These polynomials have the same form as that for the bi-
nomial expansion ( A-x )7, particularly if we use the differ-
ence notation for representing powers of x. In other words, we
might look upon the 77th polynomial as being defined as
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)N 77
Q,, (z-1)= [A- x ]
A careful examination of these polynomials brings out the
fact that consecutive ones are related to each other, viz., that we
have,

AQ,(0)<-1Q, ((%+1) .

This relation is similar t. the one found for Hermite polynomials.

The fact that the Charlier Type A. series in Chapter II
consisted of successive derivatives and that the derivatives of the
solutions of the Pearson differential equation led to a system of
polynomials definitely related to one another, gave rise to the the-
ory developed in that chapter. We found that it was not neces-
sary in this theory to consider the form of the solution of the
equation, but that a set of general polynomials could be set up
which satisfied all the properties of the special polynomials. The
Charlier Type B series consists of successive differences of a func-

tion g (x) and it is quite natural for us to suspect that we can
develop for the solutions of the Pearson difference equation a cor-

responding theory on polynomials.
This question of obtaining a system of polynomials from the
solutions of the Pearson difference equation
a, +a x
x" z
b,+b,x + b,z

(1) Au

Uy »
numerator of the first degree and denominator of the second
degree, will concern us in this chapter. We shall further show
that these polynomials are related to one another by means of
first and second order difference relations and by means of re-
currence relations involving the ( 77#1) th, 77th and (77-1) th
polynomials, and shall illustrate these equations with the Poisson
exponential function.
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2. For convenience denote the numerator (e, + o,x) in equa-
tion (1) by /V, and the denominator ( b, + bx + b,x?)
by D, . We may then define a set of polynomials by the follow-

ing theorem:
THEOREM: If «  is a non-identically zero solution of

- X
Aux- u

x
x
then éz D, D, 0, -_Qm_IA’LZis a polynomial of degree

at most 77,1. e. @, (x).

The proof will proceed by mathematical induction. If we
recall the formula for the difference of a product

A[uxvx]=xgtAax+ux”Avx = deux+[uz+dux)ll Ve,

we obtain by differencing
D, Au, = Nyu, = @ (x)u,

the equation

)

x

8%, +Au, D, =@, (x)+ 8Q, () Ay + uy- 4G, ().
Using the value for A« from the original difference equation

and multiplying the equation through by Dx , we obtain:

D, D,,, 8%, =[N, @,()+ D A @)+ Ny AQ,(e)tNAD, J ez,
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Since the coefficient of «, is a polynomial of degree at most 2
in x, we write

2
Dy Dy 47wy =G (x) ey .
Let us now assume that the statement holds for 77 < 7, i. e.

7
Do L1 Lz Lrsns 4ty = Qq/x)“z .
Differencing both sides of this equation gives us

DAL, D,y Ay #(8 e 87, XADD,, DD )

Xt T2 x+77-1 z:fz Z477-.
=@, (Wt +4w, )AE, (x).

Now

AD, L), -D,

x+1

D

a2

D

+1 Eren-?

*(Dis1 " Der 1By D)

Hence by the definition of Q),, (x)
Alp,n

.

-0,
]"D+771A J “ﬂz G (x) ety

x

Substiwuting these values in the above equation as well as the
value for A« from (1) and multiplying by D, , the equation
reduces to

XTXHTXAR X+

DD, B, B,, 4™, [/v @, (19+D, 4], (x)

+N, 44, (x)- X*HO /x)f-QOn{x)]ux.

. The coefficient of «, on the right hand side is a polynomial of
degree at most 77 in x . We therefore conclude that
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ml
0D, By Bty =@y (W)t
We have also succeded in deriving a relatlon similar to relation
(I) of Chapter II, i. e.

@yppg () =(Ny+D,-D,, )@, (x)
(XI)
+(Ny +D,)48,,(x),

a relation which shows that the ( 77+ 1) th polynomial is made up
of the ,7th polynomial and the difference of the 77 th polynomial.
This relation differs from relation (I) in the fact that the co-
efficient of A @ (x) is N,+1D, instead of 2, . This
change seems to be connected with the fact that the original dif-
ference equation

D,Auy=N,u,
can also be written
y ) Nyt D, y
x+! x
D,

Formula (XI) may also be written
(XI ) Qnu (x) =(Ny +D,) @, (x+1) -D‘w,7 &, (%)

since G, (0)+ 48, (x)=&,,, (x).

It seems advisable to adopt a notation for the term

D D, . ., D, Dy, g

x Tx+1 xfa
since it will continue to be involved in the work that is to follow.
The difference notation x - x(x-1)(x-2)- - - -(x-m+1)
+ suggests that we use the symbol 'Dx/ 2 i e
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()
Dy =00 Dy o Lyyeg-

Then we will have

r7)

B, D, Dy " Losn-g = Pornz

and
r) _ . .
a4 Qwr;—z N szn p,un-! Dx;z Dxf/

7-1)

(
“Bon1Binz Lews ) =@~/’7'Q)'-DZ*,,_] .
3. We may also define the general polynomials &), (77 x)
where 777 is any integer, by means of a theorem as follows:
TuEOREM * If &, 1is a non-identically zero solution of the
difference equation (1), then
(1) ” (rr2)
Z?r-rrnn-j 4 [Dx—l ut]
(17)

D, «w,

x-1

is a polynomial G (7 x) ,and & (75 x) is at most
nf degree 77 in x . In particular if 777-7 , we have

A 7[5 (77)
Uy 4 z-/ “x]

is @ polynomial in x of degree at most 77 .
This theorem may be proved by using the following lemma:
LemMa: If «, satisfy the difference equation (1), then
DZZ) «, , where 177 is any positive integer, satisfies a differ-
ence equation of the same type, viz.:
AP w)- B [N "B D]

7
x-m7

The proof proceeds easily by mathematical induction.
For 777=1 we have
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D, ,u =D Au +u, 40, ,

= N)C LLx+ADx_1 w

x

=Dy 1%y

?

[A{\: +D, ‘Dx—J]
x-1
For 7772, we get
"‘x] x,A[D 1“):] D, ,u,AL_,
+A'Dx-1 1"-A'ch-z]
D

X-2

=Dx-2 Dx-l Uy I:Nx

or A[Dw ] D(a) [Nx *Dy ~Dy-2 ]
1 Ne 7Px "LFr-2 |
x-2
Let us assume that it holds for the 77th case, i. e.

A[.D fm) -Dx/;”) "/V +D, -D,. :|
I D

Then
(m) 777) (m)
A[Dx ml ] ‘D [D( x]"'ij x xmz

~‘Dx1u [/V*‘D D QO'Dzm-I]

x-1 D

x-rm-1

=_D,’""1)ux [Nx *Dy Dy vt ] .

Making use of this lemma in proving the last theorem, we

note that

) /m) [N +D, -D,. ]
D J D xD xD X - 777.

xX-m “x~mr+l1

oo [ 1) [Dﬁ") ]-Dﬂ"l Uy [Nx*Dx'Dg-m)

-m " xX-m+]
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and in general that

An[px:")u } D;_’;’Ux [@, (m,x)]

‘n)
Dx-m*n-l
n) n (7) _ (72)
or Dx-m*n-l 4 [Dx-l “x]‘ Dx-1 Ly Qn (777,")-

In particular, if 777- 77, we define the polynomials Qn (7,x)
as A "I:D;Z) ux] =@, (nx) u, which 1:elation is of in-
terest because the A" has no D, as multiplier. Any result de-

rived for the polynomials @), (.7)= E/ D)_,/:’;,_ 4 Zz where «,,
x

is a solution of the difference equation (1) can now be extended
47D nﬂ)u ]
x1 —x] by replaci
DI, y replacing

x
N, by (N,+D_-D, ) adD by D, . Forex

to the polynomials @, (mx) =

ample, rélation (XI) becomes

@y ug(mt ,2) = (Ny +D,, ~Dz_m4-_77_l)Qn(777+1), x)
(XIm)

+(N+D,)AG), (7141, x)

and when 777-=77 , this relation reduces to

@,y (71+4x) = (N, + D, - ), 1)@ (L )HNAB)DQ, (1141, x)

(XI 77)
< (N, +0D, )@, (ns1, )4 (Mys 2)A), (ne] ).

4. 1In analogy with the work of chapter II, we next proceed
to find a recurrence relation involving the ( 77+ 1) th, 77 th and
( 77- 1) th of the polynomials @ (x). We take the 77 th differ.
ence of both sides of the equation

D, Auy, =Ny,
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by making use of the formula for the 7 th difference of a product
A7 [y v)= vy Ay + nAv, A7y,

. "{Z:”Azi;_,ﬁ n—zux+2 P

We then obtain the equation

7744 ” 77&77-1) 2 -7
‘Dxd wy+ndD,A wy, T 27 LA wuy,,=

7 77-1
N A “x*"{%d ULysys
Aan and Asz being equal to zero. Multiplying through
o)
by D we get

x+7n

(7)) ,n+d () n
D, 4" u,+nD.], 4D, 87, ,,

772(77-2) () 2 -1
+ T Dyyg8 D, 4 Uy,

- ) 7 o) ket 4
MDA u,+nD,,, AN, A7 u,,,

But w,, =u, +du, and u,,, = u, *2484, + A%u, .

x+1

Substituting these values in the last equation and using the defiin-
ition for the polynomials & (x) , we obtain:

aD,
Qﬂfl {x)ux* ZLD;X [‘DX{n On (Z) + 0;74.1 /X):] UX

n(n-1) D, A°D, ) x)

+ T2 Df:—j -Dx‘ ['szrz @t 125047 @, f')*omlfz)]uz
W, D,,,, AN, \

D Do @ity t T2L—E(D, @ 007+ Oy ()] 4

Dividing through by ¢, and collecting like terms, this expression
reduces to
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[“ ndD,  n(n-1) 4°D, [np,,,,,ap (- 1)AL,
'DX 2 'DZ "D-JZ i
_ NZJ),H,, nD,,, AN, 0,k () + n(n- I)D 4D
.Dx -Dx Z/D x1r-1""x+11 x
770y, .1 Dy, AN,
- x+71 !D:+n x:l On-l (x)=0
Now we know that
Uy,p =ty tndu, + wd LUy +---
and so we may write D, . and N, _ in this same torm, i. e.
D, =D, +n40, + "7 " 4,

AD)Hn— ADx+ nAZDX ’
and Ny =Ny +71AN,

the third and higher differences of [J, and the second and higher
differences of /V, being equal to zero. The coefficient of

2Dy4n

@,y sy (%) reduces to and the coefficient of

@,, (x) also reduces to a qupler form. Dividing through by

i%zwe finally get the recurrence relation:

x
@, ()+(ndD,,  ,~N,,,. )@, &)

(XT1)
+nD

it 07D, AN, @, -0
i. e. the ( 77+ 1) th polynomial may be obtained from the 7 th and
( 77 - 1) th polynomials.

In Chapter IT we found that relations (I) and (II) were
identical for the first two terms, and as a consequence we cquated
the third terms. and obtained a relation between the derivative of
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a polynomial 2 (x) and the polynomial preceding it. In order
that we may obtain d similar expression for the difference poly-
nomials, we must change the appearance of formula (XII).

By lowering the degree in formula (XI ) from 77 to n-1
and solving for D,, , @, , (x) wefind that

‘Dx+ﬂ~1 &g (%)= (Nx +D,) O, 4 (x+1)-0, (x).

Substitution of this relation in formula XII gives

Gropg (B)=(Nyyy -nAD,,, )@,

+ n[ANx (oD 2p][(/v +D,)Q, , (c+)-Q, =

L=

OF @y (= [V 7 AN, - 74D, +2 G2 2D]0,6)

e n[an-Z2 4DV, )@, , ee).

Just as in Chapter IV, paragraph 3, the coefficient of @, (x) re-
duces and becomes the same as the coefficient of &, (x) in
formula (XI) and we have

@y () =(Ny*D,-D,,, )@, (¥)

(XII')
wafa N, - GV D) (N )G, o

We therefore conclude that

(77—1)

(XIII) AQ,(x)=n[AN, - 2°D, 19, , (x+1),

a relation expressing the difference of a polynomial @,, (x) in
terms of the next preceding polynomial in (x+1), i e
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®,,.; (x+1). For the polynomial @_ (7, x), formula (XII)
may be written in the form

(XIIL)  AQ, (nx)=n[dN,+ ZZL4DNQ, , (nx+),

this relation being obtained by replacing N, by (N, +D,-2), )
and D, by D, _

Formula XIII which was just derived is the general form of
the relation we found to hold for the Poisson exponential function

polynomials, i. e.
AOn({)= - 77077_1 /Z‘/’I).

We find further that these polynomials satisfy a special form of
(XI), i. e. '

Qn” (x)+(x+n+1-2)Q, (x) -A4@, (x) -0

and for formula (XII) we get the special form

[y (x)+(x2+27+1-2)Q,, (x) + 71(x+ 7)@,, ,(%)=0

This recurrence relation is also similar to the one given for La-
guerre polynomials,

5. Turning now to the problem of obtaining a second order
difference relation for the polynomials @, (x) , we proceed to
difference formula (XI), i. e.
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and get
AQ,,, (x)=(AN,+4D,-AD,,,,) 3, (x)

+(N,, ,+D_, -D

X+l wtd Xtr1412

HAN, +AD)A0 )+ (Nyyy + B0y ) A2 @y (2).
Substituting for 4G,,, (= the value

)AQ, (x)

(re1) [AN, - F A‘D,,] [@,(x)+26, (%))

found in formula (XIII), gives us

(me1)[ON, - 78°D,|[6, (0 + 48, (x)]-
BNt +A‘Dx -AD 1;10 (x) + [ ees ? Bt~ Z#ﬂl-l AQ, (x)

+[AN, +4D, ) 8@, 0+ [N, + 2°0,(x).

Collecting the coefficients of like terms and simplifying them, we
finally get

(Nypt * Dyt )@y ) +[Nypyy (1-1) OB, 4@y ()

(XIV)
-n[an, - %2 4°8) @,cx)-0,

a relation very similar in form to formula (IV) and consisting
of the first and second differences of the polynomial @), (x)
This relation when applied to the Poisson exponential function

gives

Aﬁan (x)f(/\-t—l)ﬁ@n(x)l- n@, (x)=0,

an equation which can be checked by substituting the value of
the general Poisson polynomial in it.

The extension of formula (XIV) to the polynomials @,,(7,%)
and @), (»,z) by making the proper substitutions for N,
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and D, results in the following expressions:

(M, X+ Dxﬂ)Azon("'Zt)
(X]Vm) +[x n+ 'Dz-n+1 ~'Dx -rred ~(n-1)4. m]AQ /77714)

- n[dN, +4D,-48, (%) 4°D, )@, (m =)= 0,
which may also be written as:

(N, Y1 1;1)4 @, (mz)

+ [/Yt'-nJ-l */”7'77*1)1’1%

22 2p | 4@, (myx)
-n[ar, - 2L 46, () -0
In particular if »7-77 we have:

(Nyug#D,,,08°@Q, (mz) +

(XIV,)) oA, 20 25

n+4

A,Z.D,]'AO,, (7, %)

- n[A/v, + 222 429,10, (nz)- 0.
6. The next set of relations we shall derive are recurrence
relations for the polynomials @), (77,¥) and &, (7 2)
In the lemma proved in this chapter we found that

z7) )
A/pz’_;”*u,){ rm :][/v +D, x_,,,_,].

Taking the 77 th difference of both sides of the equation gives:

4 "*I(D (rr741) z) =(/Vx*pz-'px-m_1)d ’II:.D;;"} u;l

+n(AN,-4D,-40, ,, l) Pz{m‘)‘xd]'

the second difference of the trinomial (A, + 0,-D), ) being

x-m1-1
" equal to zero. Multiplying this last expression through by
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Dx{ 7+1) and substituting for D (n+1) Am/ﬂ,{’,"ut)f,,

-rn+7-1 x-rm+ -1

the value .D;;'"”Oml (m,x)u,, we get

(e ) ( 77+,

Dx-j 07741 (mrd x)u, = (/vz +'Dx ~Dx'-m-l)'D»:-f 47:7 (m, ”)“x

(m7142)y Ny + D,
+n[A%+AQ-AQ_m_1)Q c %sz)o”’-f{m "‘*I)U,z-

Dividing through by D;_’;”Igz . we get a recurrence relation
involving the polynomials ¢ ., (m+l)x), @, (m, x)
and @, , (77, x+1) , 1. e

Dy 1 (744, )=V 4D, D, 1) ) (r7,2)
(XVar)

+7[ON, +Ore2) 5°D, | (N+D) @, (7 241).
For 777= 17, this expression reduces to:

Qn*l (77*1/'!)=(/\{\£*‘Dz'pz’r7_l)on (7,x)
(XVn)
e [AN, + (n) B°D) (N +D,)R, , (n,z41).

7. Another form of this relation is obtained by substitut-
ing the value found in (XIII,) for @, , (7,2+1) i e

Q. (nxeL) = AQ, (%),

!
77[4/\4 s 22l Azﬂg

in formula (XVy, ), which gives
Qg (7#22)<(Ny#DyD, 1) &, (72)

XVI
( ) A/‘/x*(nH)Az.Dz

ANx"‘ ("*I)Az.Dx

+(N,+D,) 46, (nx),
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a relation very similar to formula (VI).

8. There remains one more formula in Chapter II for which
we have not yet found a parallel in this chapter, i. e. formula VII.
To obtain this parallel expression, we difference formula (XVI),
thereby obtaining:

B,y (11, 2)=(AN, +ADx’ADx-n—1) @, (1x)

#Ness * D

x+1

D, )46, (nx)

AN, +(12+41)A°D, ]
AN, + G 5y @Mt AD)ACs, (7, 2) +(Ny y# Dy, )80, )

In formula (XIV,,) we found a value for

(NXJ-I +Dx*1)42077(73x)

which when substituted in this last expression gives us:

AO’W’I/’HJ'X) [AN *AD AD 77*1)0 /772;)4'( et ” zfl zn)dofﬂlj

ANy +(11+1) A°D 77/774/)
A/\7 - (’7“)AZD (AN 8D+ 2Z28°D N, .y, 4B} A6 f70)

AN +(ne)A% D [AN (77.;1)

Collecting coefficients we get
DGy (141 2 )[AN, + AN +AD, D), , 1+ rirDABY @, (n2)
+[Nx+1 D,w-! x- 77]0 (rx)

AN +(rr41)A% D,
AN, + 7222 2%,

[AV N r7+l+ Z/(ﬂ_;l)_ AZDX]AOn(n’x)
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and by simplifying the coefficients this expression finally reduces
to the formula

DGyt 2)= (s )ON, +(n+1)4°D) @, (r, )

v(ne)aD,- 200D

{ X+1
(XVII)

_rA N, +(ne)A?D, | N 77/77*1) AG’ ()
[an,«(zhan.|| " "2

a relation which is also similar in form to formula VII.

Before concluding this chapter, we might examine the char-
acter of the polynomials @) (77 .x) when the original func-
e a*

x/!

tion is the Poisson exponential function ¢/x)=

We find these polynomials to have the following form:

ze/}

#{X}A Q(4x)=/\-x,

! a2 z(z)e AR®

%’/X)A x! =Q, (2,x)- A2Axsx @

B
V;Z)A'—;‘_A'O(Sx) A% 3%+ 32 P

]_H_x)A-_-—xl PU IR LGN Lo LAY

L2120, .

Substituting the proper values for N, and D, in formula
(XIV,) we get

)\AZO,,{n,x)f-(/}-X+n—l)A0,7/r4'x)+ n@,(n x)=0
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In the same way we find for formula (XI,,) the relation

@ pg (1141, x)=(A-x+11) @, (T x)+AAQ, (7, x)

and for formula (XVII), the reduced relation

AQ,,, (7l x)=-(nt1)Q, (nx),

which is somewhat like the relation obtained for (XIII ).

We might call attention to the fact that these polynomials are
identical with the polynomials obtained by Charlier! satisfying the
relations

e A px e = 0 for m ¢ =

-1 »?
T
6 [,,61:)5 x! d.o - 1for men

9. Summarizing the results of this chapter, we have found
that if the general solution ¢ (x) of the difference equation
a, +r ax
b+ byx + b, x*

Au, = x
is used as the generating function ¢ (x ) in the Charlier Type B
series, that the successive differences give rise to two general
types of polynomials which we defined as follows:

Qﬂ (x)= éx .Dz{n)d ﬂ*l“”

and

O,_, (77,“)=ZLI_ a4 ﬂ.D;:; u, .
x
With the aid of the properties of the A operator, we derived
a set of relations and equations for these polynomials of the fol-
lowing form:

1C. V. L. Charlier : “Ueber die Darstellung willkiirlicher Funktionen,” p. 34.
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(XI) 0714-1 (x)=(/¥z+‘Dz°'Dz+rn )Q; (x) "[A,/g*-pz)A @, ),

(X1,) 0”*](77*1x)=f/\/ +AD )@, (1 x)+(N, +D)AO (nx)

Qg )= (Wyyy 148, . )@, ()

7+l

(XII)
#nD, - F2a) o, , &)
O,,,,(xh( N.+D-D,, )60, (x)
(X11!)
s nfan,- B2 a3D) onen)a , (e42)

(XII) AQ,()- n[an,- 2 a%°D]) @, , fxe1)

(XU1,)AQ, (nx)= n[AN, + Z* 47D,] @, , (n x+1),

Ny * Dy )R, (4[N, ~(7-1)AD) 4@, ()
-nfan,- %P a°n] @, (-0

(Near * tfl)d /"")*[z nes*A0; "/”*I)A -Q]AO (nx)
-nlan,« 22 4%0 )@, (ne)-0

(XIV)

(XIVn)

(XV,) sz /n¢gz)=[/\{z+_D/z -'Dz‘-n—t)on (m,x)

+ n[AN +/77f1}d ](N +D )O,,I/nzi-f)
1 (1l x)= (N,+B-1) z,,j)O ()

AN +(n+1)A%D, )
HN, D) T A%,

xvi) “ns

40, (nx),
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(XVI) AQ,,, (m1x)=(r+1) [AN, +(7+1) 87D @, (r2)

+ +(r21)AD, - 272 42p

)S%.I

d/V +/77+1)A2.D N n/m!j
[A/\/ +{77*1)A3_D][ D{/AO/WZ)

Each of these formulas corresponds and is similar to a for-
mula found in Chapter II. In fact, it seems probable that if we
developed the formulas in this present chapter from the equation

Au, N u
A x D, x

and permitted the 4, to approach zero as a limit, the formulas
of Chapter II would result, the above formulas being the cose
where A, = 1.



