A GENERALIZED ERROR FUNCTION#*
By
ALBERT WERTHEIMER

I. INTRODUCTION

" Given a set of observed values 7; (¢(=1,2,3,...,n.)
obtained from 77 observations assumed to be made on the same
quantity, 7, under the same conditions. We seek to determine

two functions F(B #;)and @( P, {;)such that
£(P, #;)=0, (i=1,2,3,...,7)

defines p as a unique value assigned to the observed quantity; and
PP £; )df gives to within infinitesimals of higher order the
probability that if another observation is made, the observed value
will lie in the interval

L5t st 1

Gauss determined the ¢ function to be the so-called normal
error law namely,

orPt) = ce’b‘(p' s

on the basis of the following assumptions,

(a) The product 77 @(P£)is to be a maximum with respect to p.
Thus

Z 55ty P(RE)=0,

»

I 52 log @(R1,) }O.
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(b) The unique value p is the arithmetic mean of the observa-
tions. Thus

F(R4,)-Z (P-t).

(c) The probability function is a function of (P-#;). Thus
PRt )=P(P-£;).

Poincaré} on the basis of the first two assumptions only ob-
tained the error function

GIR 2;)=6(L)e" ™ L VIF)

aw, dv

dP adP
In this paper we assume the unique value p to be defined by
a function satisfying certain conditions, and obtain on the basis of
assumption (a) a more general error function from which the so-
called normal error law, the Poincare function, and other forms

of the error function as well as the Pearson curves are obtained

where

as special cases.

2. The unique value p.

We now make the following assumptions:

I: 'The unique value o is defined explicitly as a function of the
observed values in the region @< £<b. Thus

P-F(?Y, fz. le, -, {rl)‘oa

where £ is single valued, continuous with continuous deriva-
tives up to the second order.

II: The value of p is independent of the order in which the obser-
vations are obtained. Thus /" is a symmetric function.

I11: The change in p due to a change in one of the observed values,
say Z; , is a function of o and 7; only. Thus

F'i =F:’/ (F t;).

1H, Poincare, Calcul des Probabilites (1912), p. 171.
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IV:If p is regarded as a function of a single variable, say 7;,
while all the others are regarded as constants, then with re-
spect to this variable p is a monotonic function and is not
constant in any portion of the interval in which it is defined.
Thus

F)‘, ¥0
for all i’s.
We have then for the determination of the ¢ function the
two equations

M F Spteg@(R ;)0
(2) P-F(t, 1, 2, -, 4,)0,

which must be simultaneously satisfied for any set of values in
the region defined.

3. The g function.
We will now show by means of the following theorems that
if /7 satisfies the given conditions, then there exists a unique func-
tion g('P ;) such that the equation

Zg(R )0

is identical with equation (2).

THEOREM 1.

Given a function of » variables,
n
P(Z,’X:'t;"r' . X ):

continuous with continuous non-vanishing first derivatives in the
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region defined, such that
Fui=YlF, x*);

then ¥ (F, x*) must be in the form of a product of a function
of F and a function of Z;. Thus

ViR x) e (F) B xY).

Proof :
We have . .
Faiyi Wt (F 2D (F, x9),
and
F.xl.x‘- - WFJ(F: xi) wt/ﬁ-: Zi}.
Hence:
USmx) Yme) Y TEE)
ViR x) YiFx)) V7R x")

=n(F)

Integrating, we get
tog¥ (5 x*)= [ (I F+ £ "),

from which it follows that
VAF 2 )= ()8 ).
THEOREM 1II.

Given a -function of 77 variables,

Flxx?x2. .., x7)

continuous with continuous non-vanishing first derivatives in the
region defined, then in order that there shall exist a unique func-
tion £ (&) such that
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EF)=E ui(xt)

it is necessary and sufficient that

F:zl i .,
s (x) < (2),
Foi
Proof :
Necessary conditions:—
If the £ function exists then the functioral matrix

] 2 3 n
U,y U a Ugs ©  ©  Ugn
R F e T

must be of rank one. Hence

i Wby L,
- = — =t ) i),
Fyi wly

Sufficient conditions:—
We assume that

)}
Fei
Then we have the following identities :

o4 A
a) dzl' dx/ fog F.'/ o}
b) LiL L, L

Fi Fre P’
fork, #./ or/ and

) Ay {Fui B~ Fig Py} = Fi § Fujie Fi- Ry Pyl
where for convenience of notation,

fy o= s, Frp=Fyiyk, etc.
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Making use of a), b), and c), it is easily shown that the
functional matrix

2 (Fy o pl/ . _d_ Fij
Ox' F:F/' Oxt F‘F'
, Ao A

is of rank one. It follows that

Fy

Y QF).

d) 7 (F)

Now the differential equation that defines the § function is
E;‘j =€, FF+EFy =0,

or

Q;Fz__/i'/_'_,
& A7 3 (P) from d).

Hence § (/) is uniquely determined, namely,
Em)=kfe A apos g

where A and ~ are constants of integration.

Now, for our problem, if # satisfies the given conditions,
we can apply the two theorems in succession and we have that
there éxists a unique function

ECF)= ul(t).

But due to the symmetry of / all the u* functions will be the
same and we have

EF)= ul(t;).

If we now define

slo )zt E(p)-ut),
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we have

Z.g9(p.2i)=ECR)-E(F)=0.

4, General Error Function
We may now write equations (1) and (2) in the form re-

spectively
Z §5 tog @(p,1,)=0,

Z9(pt;)=0.

These equations must be simultaneously satisfied for an arbitrary
set of values Z; in the region defined. Tt follows that they are
identical. Thus

55 tog Plo,4,) = Vg, )

where ¥ (o) is an arbitrary function.
Integrating, we get

B)  Plpl)-6rt)e/VPmli)dp

where &/7,)is an arbitrary function. This is our general error
function. In order to insure a maximum we must have

4 Vip)g, #o.

5. A Generalised Normal Funmction
If we now make the additional assumption that

P(e {1)=¢{?(P; %)},

we have
% ¢I;
/) 94

20
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Expanding and simplifying, we get
6’[ _ W‘/p)g/,o: {;'
6g { Ip

. Jvio)ap.

Differentiating with respect to Z;, we get

—1— [0 6{. ) W//o) p
g.{‘ 87-1 Sg i/ gp

Integrating and substituting in (3), we get
P@)-ce*?”

From (4) we have
Kg; *o,

Hence

(5) Plg)<ce™"Y".

We shall refer to this function as the “Generalizéd Normal Error
Function”.

5. Application to Special Cases
If p is defined as the arithmetic mean, then the region con-
sidered is -~ o < Z; <+ o, and

9lp t;)=p-1;.

The normal law is obtained directly from (5), and from (4) we
have

D )= 6(t;) e’ VP p-ti)ap
=Bt eIl P
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where

aw av_
dp +p dp—o’

which is the same as the Poincare’ function.
- For the geometric mean, the region considered is

O< fi<oco

and
g(p.1;)="1og p- fog 1.

Hence, from (3)
Dlo, #,)=0(t,)e /PP 1bog - tog ¥ }atp

and from (4)
@ ftog p- tog /; }=ce

The Geometric mean as the most probable value, as well as its
generalized normal curve are used for certain astronomical photo-
metric measurements.!

For the harmonic mean, the region considered is

-h*{tog p-tog & }*

(O<?{; < 00)

and

9(p. 4)=(5-%).
Then from (3), we have

Plp 1) =6

and from (4), we have 2
YRR NR o 108
P{5-7}=ce 28
7. Remarks About the Generalized Normal Curves

Let us consider briefly some characteristics of the generalized
normal curves corresponding to the following three special cases.

)e ¥ b3 }r

1 Whittaker & Robinson, Calculus of observations (1924), p. 218.
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(a) Arithmetic mean: Here

Dipt)-ce (P

From this equation we see that

Pp.p+€*)-Plpp-€°),
P t) “Plp+€f 1+€°),

Pl 0) =ce "’2"’2,
¢{,0, w) =0

(b) Harmonic mean: In this case
Dnt) ce 5 1)

from which we see that
Ppp-€9<Plpp+€)
Pipnt) <« Pipr€ 2+€%)

diz0) =0,
2
Dlpw) =ce 5z
(c) Geometric Mean: Here

e-/y"ffovp-f@/z}z

Pdipt) =c
and

Pipp- €% Plo p+€*).

Vint) <Plor€fl€%)

Plpd) =0, '

Plow) =0,

Instead: of treating these normal functions as three distinct

error laws referred to the same measuring scale, we can regard
them as a single error law with reference to three different measur-
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ing scales (seesketch). This viewpoint helps to explain the above
mentioned characteristics of these laws.

The law for the arithmetic mean applies when an object is
measured with a uniformly graduated scale inp. The char-
acteristics for this law follow directly from the consideration that
the scale is everywhere the same.

The law for the harmonic mean holds when an object is
measured with a reciprocally graduated scale, as for instance
measuring the volume. of a gas with a pressure gauge graduated
for volume. In this case the scale becomes crowded as p in-
creases, and hence

¢/p+€z, f*fz) >¢/p,f),

and also

Pl p+€%)>Plp p-€7

For large values of o it would take only a small error in the read-
ing of the scale to make an inﬁnitely‘ large error in the value of o
and hence @ (o, ) does not necessarily vanish. On the other
hand the zero point is at an infinite distance and hence ¢( 0,0 )=0,
The law for the geometric mean holds for measuring objects
with a logarithmically graduated scale. The same remarks as for
the harmonic mean apply here, except that in this case it would
take an infinitely large error in the reading of the scale to make
an infinitely large error in the value of p. Hence @(p, @)=0.

8. The Pearson Curves
Leaving out the subscripts in (3), we have for the general
error function

mIglp,?) 4
W(p,{)-eff)effpgp 7
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Remembering that
g(p. )=t E(p)-urt),
we have

g;_ﬂ = p{Lteurt)fitip) dp),

Thus for a given pthe curve approaches the 7 axis asymptotically.
Let us now impose the condition that

a¢
Py

Z=p "o

then

)
Stu uth fUt)

Integrating, we get

o) ce TOWOI 1t
so that
©6) Ao t)-ce“? {fectiatyat oy (p)g(p, 2)dp
and

9 au, [Fyctar,

where ¢ is a variable of integration. If we now take as a special
case '

W/t}'l:
wy = {b,*b,/* b‘fi }-Il
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we have

.‘2‘_0-¢ p-Z
0t T b, +51+5,7%

which is the differential equation defining the Pearson system of
frequency curves. For this case, (6) reduces to

4 ,
/4 ' > adl+ 4
;0,/)=cef o * O+ 0, % [E@ap

from which we see that by a proper choice of { (&) we can
choose the value of o for which the product 4 Pp, ;)
shall be a maximum.

It may be noted that the differential equation defining the
Pearson curves is often derived on the basis of the assumptions
that the curve shall approach the Z axis asymptotically, and have
only one maximum point.

In conclusion, it appears that if we restrict the function that
defines to satisfy the assumptions given in this paper, and also
impose the condition that,o shall be the most probable value in the
sense, that the product

rPip, b)

shall be a maximum with respect too, then (3) is the most general
form of the error function.
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Scales, corresponding to the arithmetic, geometric, and
harmonic means.

LB 1 | || ] ] 1
S 8 % & 3 R & R § & 8
Arithmetic Mean — Uniform Scale
f T T T T 1 T 111
= “ R BRI
P Geometric Mean — Logarithmic Scale

3

! s Iy

Harmonic- Mean — Reciprocal Scale

abhet (e TReccccec



