ON CORRELATION SURFACES OF SUMS WITH A
CERTAIN NUMBER OF RANDOM ELEMENTS
IN COMMON#*

By
Cart, H. FiscHER

Introduction. 'The study of correlation due to a common
factor has been a more or less familiar one in the literature of
mathematical statistics. Kapteyn,! in an exposition of the Pear-
sonian coefficient of correlation, considered the correlation be-
tween two sums of normally distributed variables, the sums hav-
ing A random elements in common. In 1920, Rietz? devised urn
schemata which yield sums with common items involved in such
a way that the correlation and regression properties can be dealt
by a priori methods. In a later paper, Rietz® considered two vari-
ables, each the sum of two random drawings of elements from a
continuous rectangular distribution, with one of the elements in
common. Here, the emphasis was placed principally upon the
description of the correlation surface. Some other aspects and
extensions of this problem were brought out by Karl Pearson* in
an editorial discussion of Rietz’s paper.

In the literature, the theory of correlation has been discussed
principally in connection with its applications. One of the objects
of some of the above-mentioned papers is the establishment of a
closer connectionr between correlation theory and abstract prob-
alibity theory. Such a connection would give a more precise

*Presented to the American Mathematical Society, Dec. 28, 1931.
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104 CORRELATION SURFACES OF SUMS

meaning to correlation and would tend to make the study of cor-
relation theory more attractive to mathematicians. With this aim
in view, the present paper is concerned with correlation among
sums having common elements, extending and generalizing the
preceding papers in several ways.

We shall assume our drawings made from a continuous uni-
verse characterized by a rather arbitrary law of distribution. We
shall define 77 sums, each of an arbitrary number of elements,
formed in such a manner that any two consecutive sums have
elements in common, and inquire into the correlation between any
two of these sums. The equations of the correlation surfaces
will be expressed in terms of iterated integrals, the regression of
each variable on the other will be shown to be linear, and the
equations of the regression lines will be obtained. The coefficient
of correlation may then be computed from the slopes of these lines.

Throughout this paper we shall understand a probability
function, fﬁ), to be, for all values of # on a range 2, a single-
valued, real-valued, non-negative, continuous function of # . It
is then Riemann integrable on &, and we shall require that

”/?‘ F(t)dt=1. We define the probability that a value of # ,
drawn at random from the range &, lie in the interval (g 4.
b
a and 4 in 2 and b>q, to be _/ f(t)dt . We may then say
a

that 7(%)dtis, to within infinitesimals of higher order, the prob-
ability that a value of ¢ drawn at random lies in the interval
(¢, ¢t +A¢). Bachelier® has classified probabilities into those of
the first, second, and third kinds, and Craig® has extended this to
probability functions, according as &2 is the range (o0, (O ),
and /O, @), respectively. We shall find it convenient to adopt
this classification.

SL. Bachelier, “Calcul des Probabilities.” (1912), p. 155.

6Allen T. Craig, “On the Distribution ~f Certain Statistics,” American
Journal of Mathematics, Vol 54' (1932), pp. 353-366.
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I. Sums of elements drawn from a universe characterized
by a probability function of the first kind.

1. The correlation between two sums having random ele-
ments in common. Let 7(%), a probability function of the first
kind, characterize the distribution of the variable # . Let the
principal variable x, be defined as the sum of 77, independent
values of # drawn at random. Further, let the principal variable
% be defined as the sum of A;‘ random values of the 77, values
of # composing x, and of 7, -4, independent random values of
t taken directly from the universe characterized by FOH).

Theorem I. Given the sums x, and X, as defined above,
with k,, random. elements in common.

a) The marginal distributions of %, and x,are given, respec-
tively, by

AIOGENS fTlIC ) J by N1y

and

G«zéﬁ}-‘[ fozj,)...f/f/»&: )f@» "/:'*’}'“ .f/l:" %! /

4
X -4, Tl Bap s ’i;q,-//d‘f; net 'df;g/d@;‘%

(1.12)

b) The correlation surface, w= Flx,,x,), or the simulta-
neous law of diszibtﬁion of %, and x,, is given by
2y o T8 A -t 1 A )

24307 T 4n/
Xf@z"/,/"""/‘@; tz, 4! “'tz, 4-/}d{;@-/"dé/g/d¢/,§a?r

¢) The regression curves of %, on x, and of %, on %, are
linear, and are given, respectively, by the following equations:

- 4
(131) 5= T sl )M,
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and
(1.32) Z = ’9;’;2 k)M,
a
awhere M= / LAY
-00

Hence, the coefficient of correlation between x, and x, is
4
ry oy = —4-72— .
%% (nn,)

Proof. The proof for the expressions for the marginal dis-
tributions of x, and x, are given by Craig’ and need not be
repeated here. The correlation surface w= (%, x,/is derived
by a simple extension of the same method to two independent
variables.

The regression curve of x, on x, is the locus of the ordinate
of the centroid ¥, of a section of the surface for any given x, .
Thus -

_ [ S 2 P, 5 e,
(14) X, = —2% .
([ 75025 ]
It will be convenient in what follows to use an abbreviated nota-

tion by letting

(15) 6(%.%, ¢ ,,,_,)-f/z:,)--~f/z‘,,,,,-,lf/x,-z:,-~~-f,,,,,-,),

4
which is merely the integrand of the marginal distribution of z, .
Where no ambiguity can result, 6},/ will be used in place of

6/35,, ¢, t}’,;_). Then A/ %, %,) may be written
@ rof ;{,—/
[;';/“aah t/‘/l'“f/‘)yl-/{/..’%! f/t{/)f@-fll‘."-ék -ték¢7.'-24~/)

Now let vs=x,-Z, ---7 by 2, . ,7"-£ net Changing the variable

"2
7Allen T. Craig, loc. cit., pp. 355-356.
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from x,to v, (1.4) becomes

(16) % 5[ Lo/ "‘é’fﬁ*«‘l‘t@w'*"‘

00 a -/
oSSt // V] 6”:/;’; ) f@.}fﬁ«jdé&_/...dt,,dy}

00 a ’k/
/5 -n.../”a%zﬂ it )P, , e, afyg.

It will be noted that the terms in the numerator fall into two
groups: those terms containing the factors 4, (/=12 ... Ko )
and those terms containing the factors v orZ ﬁ:kd/gfz, ----@-1).
Further, since the order of integration here is immaterial, the
equality of the k&, integrals of the first group follows readily.
Similarly, the equality of the 7,- 4,, integrals of the second
group follows. The expression (1.6) may then be written

(17) %{ / /t,, 77 f'ﬂ s, - o,

+lrmyH :Z f/z‘ J)ava,, f,,f

/ 2' fw /” 0;,,, 77 ), - C/,;/}

In (1.7), it is clear that the integrations with respect to each t2
may be effected immediately, making use of / flv)dvel
In the first term of the numerator and in the denominator the
variable v may likewise be integrated out. The denominator is
now equal to (1.11), the marginal distribution function of x,. In
the second term of the m}’merator, v- F(v) is independent of the
remaining factors, and / v#(i v)c/v is a constant which we shall
denote by M. This second term of the numerator is now equal
to / 75 - A, )M times the marginal distribution function of X,
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Hence, we have now reduced the expression (1.7) for %, to the
following form:

(18) Ry byl + (ry-lig) M,

2 270,

[ 4
Lo 800 b b )ttt
00 [ .
A/ Olx, b, b, ),y dE,
AN

4

where /, , =

To evaluate 7, , let 4, =X, -w -2, ----4, , 3 .

Then » o
[~'°"‘/; X,ef’zpu'l/e:"'t/’nl-/)a/tl'ﬂl-/'"df/ldu

‘f”’:
® po
[_[; e(x/'u't/e' l;,»,-/jdtl,n,-/.“ dt/) du

L J L J
Lof wblout, b, )at, - db, au

-90 (.

- - -
/f 8(%, 4ty 1, ,,0at, -ty au
[,

»0
4/ A"[.,tl/' 0%, 4, 2y, - tl,q-/}dt/,n-l"'df,:,d”

’

3 [ ] [ ]
4 3‘[”,.:-/; a/x/: u, t/:l"' t},r)l-/)dzzﬂl-/". d{/l du

The first term in the above expression for /7, is equal to , .
Each of the remaining 7,-Z terms is equal to Z, . Hence

[,,'-x,-/n,-ljl}l ’

and

From (1.8) and (1.9), we have
i = A;‘z’ +/ﬁ;'k,‘)/‘4.

2" 77

In exactly the same manner, we may show that

he X,
T = 22 -k, M.

1= T
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Making use of the fact that in the case of linear regression the
square of the correlation coefficient is equal to the product of the

slopes of the two lines of regression, we obtain
A,

P 2
%%  (n,n, )%
which completes the proof of the theorem.

Corollary. If x and y are each the sum of » independent
random values of a variable # from a universe characterized by
f(t), and have k of these values in common, the coefficient of
correlation between x and y is equal to the ratio of the number
of values of # held in common to the total number composing
each principal variable. Thus, ey = ,/;( .

This corollary of Theorem I was proved by Kapteyn® for
the special case of a normal parent distribution of the variable ¢ .

Illustration. As a simple illustration of the application of
the foregoing theorem, let us consider the case where
X =l +t,, Xa=t,+ by with ¢,, ¢,,,7%, ,as
independent random drawings of # from the Gaussian distribu-
tion,

A o
) =(2rm)% e
From (1.11), the marginal distribution of x, is
.j x2
G, /‘(,)8/4”/ e’ z‘:
Similarly, the marginal distribution of x, is
. -4 ;,f
Gl )=(4n) %e”
The correlation surface. w=/#A7%, x, ] , obtained by applying
(1.2), is xlxx,+€F)

—l 2 =
Flx, %) €

3
(2m-3¥)
a normal correlation surface with Ty " 21. .
2. The correlation among three sums. We now proceed to

extend the preceding theorem to more than two sums. Let us
define a third sum, or principal variable, %, , as the sum of kz:

8. C. Kapteyn, Joc. cit.
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elements taken at random from the 77, values of # composing X,
plus the sum of 77,-4,, independent random values of z drawn
from the parent population. It is apparent, then, that the mar-
ginal distributions of ¥, , x,, and x,, and the correlation sur-
faces A Kr,.ge) and 4 (x ,A{,) will be formed exactly as were
those of z, and x, in Theorem I. From this theorem, we are
at once in a position to write the equations of the lines of regres-
sion and the coefficients of correlation for these surfaces. The
surface w = ~(. x,, X, ) remains to be investigated, as does the
four-dimensional surface, v-= {/ f X,, %,, X, ) , which may be ob-
tained in almost the same manner.

Theorem I1. Given f(%)and X, , X;, %,, as defined above.
Let 6 be deﬁned asin (1.5). Let

¢/ //»" o5 7’ 3, s ?+/ (e/(," {gk +/0""" ‘l’;”a’/)‘
f({‘?k ;4/) f/{‘ak }f/z}k /) f/{"”_/
xfle-2,---- /,/r,-y 4, A A é/g,'{;/g,,*/ ” ’f;n,-/)‘

If #(#)is a probability function of the first kind, then the ex-
pression for the simultaneous distribution of x, and %, is

(2.1)
’7
F (2. 4 f/,,, X% 7/ &I iy
41&!’9*/'."{‘34),'1:8 1" J@-/)da,r)-/"'d{* -/

Xdé";_'."dézkl'f*/ d/’?/ /&2"

where by / S / is understood the number of combinations of ¢
items taken o at a time.

Proof. Let us temporarily require that 4, 2-4,, . We
shall show later that this restriction may be removed. The prob-
ability that z, and x, as defined contain 4, -2, (g=Q 42 - 4,)

elements in common is / // 72" "7 / / 72 /
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The probability of the occurrence of any given pair of values
(x,, %, ), that is, the probability of a point falling into a given
rectangle, /x, , X, +Ax%,, x,, X,+x, ), is the sum of the prob-
abilities of all of the mutually exclusive ways in which it can
occur. Each of the terms in (2:1) multiplied by &%, <x, consists
of the integral, (derived by the method of Theorem I), which is
the probability, to within infinitesimals of higher order, of the
occurrence of a given pair, /%,, %,/ , with a specified number
of values of # in common, times a coefficient which is equal to
the probability of the occurrence of this specified number of
values of # in common. Each of the terms as a whole, then, is
the probability that the given /%,,x,)will occur with a specified
number of values of # in common. Hence, the expression (2.1),
being the sum of the probabilities of all of the mutually exclusive
ways in which ¥, and x, can fall within the desired rectangle,
is the probability that this will occur. This establishes the theorem
when 4,2 k,,.

If k, < k,, , then the maximum number of values of #
which x, and x, can have in common is 4. The expression
for F(x,, 2, ) in this case, then, consists of the sum of all of
the terms of (2.1) beginning with the term where x, and x;
have 4, values of # in common and continuing to include the
term derived from the case where they have no values of # in
common. Egquation (2.1), however, in its present form may be
considered as a correct formal expression for the correlation sur-
face even when 4, < 4, , since in this case all of the coefficients
of the terms where ¥, and x, are to have more than 4,, values
of # in common are zero. This follows from the definition

/;/: 0 if c<a . Thus

SN
(A}.’ = &3- - 4;24 ! 1z < Mas

Hence, we may now remove the restriction that 4, 2 4, . This

establishes the theorem.
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We are now in a position to write down the surface
veiY(x, x, x,)

It is given by the following expression. where, by 2, kgl Z %,
is meant any 9 values of the fa

Vx5, % )'f )/ j /é,f/{",'f’/ (L n/)

#e g

<9 24
dé nyt d{Z L gt dz::q,-/ Tt d{; *u"dé’l'/"‘ 'dI,‘}

Theorem 1II. The regression curves of X, on x, and of %,
on x, for the correlation surface \=/F(%x, %,/ , defined in
Theorem 11, are linear and are given, respectively, by the follow-
ing equations:

221) 5. lwtet (%t hes /M
] 7, 774
and
= Hiz fyy %, ("’/'&"7:*4?3)”
(222) PR o’ .

where M is defined as in Theorem I. Further, the coefficient of
correlation between x, and x, is
A %23
(2.3) ,4'8,3" :W=/"‘r’¥a f:z‘g".
Proof., As in the proof of Theorem I, we set up the expres-
sion for the locus of the ordinate of the centroid of a section of

the surface for a fixed x,. We have
V) d,
= - -0

x
I ﬁ'/&’,, /ddf’
where A/ x,, %, J is given by (2 1). From the definition of a
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4
marginal distribution, we know that / Volf x,, ¥, dk, reduces
&

to (1.11), the marginal distribution of ., . Let us now write the
expression for £, as the sum of 4,,+Z fractions. Thus

o (25 o o

L VI YRR W PR,

‘.‘;/r ! Sk,

_/-?-/a &, ., at,| =
o L & 477 key |

Hereafter, we shall call an expression of the form

i %3 )

a “probability coefficient.” Then (2.4) is the sum of products,
each of which is a probability coefficient times an expression
which is equivalent to the expression for %, for the simple case
where x, would be derived directly from x, by the drawing of
/r”-; values of # from x,. These latter expressions, by the
application of Theorem I, may each be written in the same form
as (1.3). Hence, (2.4) has been reduced to

SRS ARY G ey
AE (o )
) /)

X,

L2
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4, -4
"”[/ AN

2 (k) (o)s) ()

By the use of a well-known theorem of combmatory analys:s,' we
have tha

1&‘ ( ’b 4}( ) ( "X’ ( *a‘i:
”Id’ 'o s 3 "/ "3: / toy! “mmg?
an

k, -4, :7 . ”, .
G '53)’{‘:, ; ( * aj//,‘ ,:i (’{"/fe:)/( é: )'/'?i LAY

Moreover,

By R e el

whlch reduces to

o, Z;j)/( )- oty 04, e

by the same theorem of combinatory analysis.
Hence, (2.5) becomcs

= 4z ‘ia.i % (1 7y-%a ‘izs/‘ ?
x = o+~ .
4 7 7,

In exactly the same manner, we may show that
= biz H2a %3 . (r, my- *I:*JJ}M
! 72 7% LA
We then obtain the coefficient of correlation from the slopes of

these lines. It is
, ig_’iL_z o,
X, %y " 12,07, 730 rx ‘B Y.

This completes the proof of the theorem, since

Ve = A;‘ I's? -'-——-7-‘2’ .

3. The correlation among o© sums. We now extend our
discussion to o principal variables, forming each successive one

9E. Netto, “Lehrbuch der Combinatorik,” (1901), pp. 12-13.
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in the same manner in which %, and x, were formed above; that
is, ¥, (1=23----p),is equal to the sum of 4 ,, ¢ random
drawings of # from the constituent values of # forming X, ,,
plus the sum of 7,-4;, , independent random drawings of #
directly from the universe characterized by F(%) The correlation
surface, w = A/3 X, xp} , can at once be written in the same
manner as the surface considered in Theorem II. That is, each
term of the expression for A/, X, /, multiplied by ax, dy,
consists of an iterated integral which represents the probability,
to within infinitesimals of higher order, of the occurrence of a .
given pair, ﬂu,,xp J, with a specified number of values of # in
common, times a probability coefficient which represents the prob-
ability of the occurrence of this specified number of values of #
in common. This same method may be employed in writing the
correlation surface for any pair of principal variables. The ex-
pressions for the probability coefficients, however, become increas-
ingly complex as the number of ways in which the two principal
variables can have O, Z 2 ---- values of # in common increases.

The following theorem can be proved by mathematical in-
duction. The proof is not difficult, though tedious, and on that
account will not be presented here.

Theorem IV. If F(t)is a probability function of the first
kind, and F(%,, tp/ is the simultaneous law of distribution of
x, and x,,, then the regression of x, on x,and of x,on x, are
linear and are given, respectively, by the following equations:

: A, kK /. Ty Pyeee P2p = K0 Hrpgeookh,
(3.1) ips 2 %, o-1, P 2+ %% 0~ M2 % pol,p"z
o 7% 7% 0y 77 7% - Tp-/
(32) &, = Julor Hetp | e hatoiry
74
%27% " "p M7y N/

Further, the coefficient of correlation between x, and x, is

Kog bag  Fo-1, o

33) = .
3.3) X X, ,’z,*fg /;&‘:,’ G"p—/"’;o.'

=
72 7y e 7t (7 I



116 CORREI.ATION SURFACES OF SUMS

II. Sums of elements drawn from a universe characterized
by a probability function of the second kind.

4, 'The correlations between two sums. Let /7). a prob-
ability function of the second kind, characterize the distribution
of the variable # . Let the principal variable x, be defined as
the sum of 7, independent values of # drawn at random. Fur-
ther, let the principal variable x, be defined as the sum of /"/z
random values of the 7, values of # composing ¥, and of 77,-4,
independent random values of # taken directly from the universe
characterized by 7(Z).

Theorem V. Given the sums ¥, and X, as defined above
with /4, random elements in common.

a) The marginal distributions of %, and x, are given. re-
spectively, by

(4.11) G&):/]

Xfﬂ(,-l‘”-----l'}’”’_//df,',,’_, et dtjn

-, e ¥ tar = ’tl, A3

/ Ft,) 1L, )

and

ey G hges = Y
2 » 'R
(4.12) G;,(@}.//.../
° o (]

Xttty Mt

X flgy-ty-aty, -4 l*/'..-é,’b'ljdt dfl’*’d -

8 72

b) The correlation surface, w:ﬁ'/z;, ), which is in two
distinct parts joined along the plane x, - x, = O, is given by
(4.22)

Y55 - t,----t 4-2, ‘"‘tllr "-t"?:
F& .{,}:// / L 7‘ 72
o
%~ ., .
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X;/x‘l {//""f/*lxl fe’”/:‘/l'..é”"/)df‘:))a‘/ o

¢4

X d’:}"};"’ dz‘/,'o,-/"' d‘:/o

/”,gsx/*'“/;

"'9/‘/’41:"‘4, -//”/‘5-4""";4,,: ‘:54' »/2 "'fzq-//

% 73
Xty oy My oo

(% 5% <e)

¢) The regression curves of %, on x, and of x, on x,
are linear and are given, respectively, by the following equations:
Kz

(1.31) By= 5= -ty )M,
and
. h,x

(1.32) zl:-g’_’_i,«/nl- /(I:)M’

2

o

where M- [ 1) at

o
Hence, the cofficient of correlation between x, and x, is

etz
% %e e/ ’72)3 )

Proof. The proof for the marginal distributions of %, and
of %, are given by Craig'® and need not be repeated here. The
expressions tor the correlation surface are derived by a simple
extension of the same method to two independent variables. The

19Allen T. Craig, loc. cit.,, p. 356.
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limits of integration may be easily verified.

As in the proof of Theorem I, the regression of %, on x,
is given by the locus of the ordinate of the centroid of the section
of the surface for a given x, . However, as the surface here is
in two distinct, but connected, parts, we have two terms in both

~numerator and denominator. The expression for g, is

/xr@,hzfxﬁ@ ey

(4.3) Xy
ﬁ/@,a}dze +A R (%, % )dx,

where /A /Z,,A;) and /4 ﬂr,xz ) are* defined by (4.2a) and

(4.2b), respectively.

In the paragraphs immediately following, we shall be con-
cerned principally with interchanging the order of integration,
with the accompanying changes in the limits. It will be convenient
to write the differential immediately " following its respective
integral sign. Consider the first term of the numerator. Suc-
cessive interchanging the order of integration between inte-
gration with respect to X, and with respect to £, , %, , ... t‘M,”
respectively, and making the appropnate changes in the hmlts, we
get, writing f for #(x,, ¢, - “Lypg Lo hgr -/)

4 G- Tp~ l"/, i/ %
w fatf "
° r* Gt 1k,

%, ----i;,;; Xty -Yn2 R
/ df; ,gz*/ / diz ’3‘/ dé"/
o 0 o
Attty ot R T TP, e
/ a’é 4’,12 ../ d'$’§°/
(] o
Xx%d2,.

Now consider the second term of the numerator of (4.3). As
the limits are constants with respect to the variables of integration
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X 2, ,.... i,k, 2 » We may interchange the order of integration

successively until we have

(4.5)
X%, -ty s /
[of 4]
g--.. t,,, %%, -----f
/ "f//;z*/"/ Tt 1!
o (]

P St b gt
dfz’ k/:’//. dz“ +2 e
(-] (4

R e L
/ 17475 eg fxz .

L Y2 O,

“R*

We may now combine the first and second terms, (4.4) and (4.5),
getting

%Y, 2 A Nl 7N Hg~! @
Pl e [ [
L/
Xy - &p= " "f/lr” ~Gyety ne-2
/ @Y ppt” :o/‘, S

(-

X% "R, Y4~ kg™ Uy bg*!
dt,‘: -/ dé R ce
(-

As the limits of integration are constant with respect to the
variables x, and 7 PR . g n-/» We may at once interchange
successively the orders of integration with respect to £, and with
respect to 22,, /s é PPPIRRR 2; gl respectively, making
the proper changes in the limits. We then have
(4.6)
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The denominator of (4.3) may be reduced to this same form
except for the absence of the factor x, in the integrand.
Let us make the transformation

Ve=Xy-b - f//gz".‘a,k,?*/ f& 5/’

as was done in the proof of Theorem I. The limits 4,+--#4,
to oo on x, now become J to @ on v . We have now re-
duced (4.3) to the following form:

(4.7)

el
/x,/t”r //f i [' ty et

o

=/
*/ / :l %, ./'Hq,«/ ty) ) avat, o

o o

at, . ,,dfm/---dz‘,,}/

¥y p 0 -t
{ e rr f/t‘;//ffv)dvd‘:”;_, 1@ g dz;,}.

o

The denomiinator reduces at once to G(%,/)in (4.11). As in the
proof of Theorem I directly following equation (1.6), it will be
noted that the terms of the numerator fall into two groups: those
k,s terms containing the factor £, (F</ 2 . . 4,3), and
the 7,-4, terms containing the factor v or4, 0- b td.....
As the limits of integration with respect to-each of these letter
variables are 0 and oo, and since complete interchangeability of
the order of integration is then permissible, it is readily seen that
any two of these 57, -4,, terms are equivalent. The sum of the
entire group, then, may be written

(48)

4, - ,_..._g‘/”;_z o
/’72 ,:2/ / dé”/_/[dé%*/-...

/di,%,/dy v, %’ f/ )f(v}
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In (4.8), it is clear that the integrations with respect to each Z, 2/
may be effected immediately by making use of the hypothesis

that / F(%)df=/ . This leaves v F(v,) &, remaining as
the integrand. The / vF£AQ V/a'V is a constant which we shall

(]

designate by M. Removing this constant from under the integral
signs leaves us merely tne expression for the marginal distribu-
tion of x, times Mﬁ;,—l;,} We then have

”/

/ . / vty &y IT , A7)
(49) &,«(7,- @)M*E 2 sy , e
‘a/‘dt/‘/ ""[ dfg -/ 94!,

That each term in the summation in the right member of
(4.9) is equal to any other term in the summation, follows from
the complete interchangeability of the order of integration of any
two consecutive variables, provided a corresponding interchange
between these two variables is likewise carried out in the limits of
integration. By successive interchanges of variables we may put
the original %, , %, , ......z‘,,e in any order we choose. Hence,
the sum of the last 4, terms of (4.9) may be written as 4,
times any one of them. For definiteness, select the one containing
the factor #, in the integrand of the numerator. We may now
integrate out all of the fzj ()= k,zu:...z;r/j and the v exactly

as before. Equation (4.9) then becomes
4Lty

& 47
d‘Z’ ,[ @z, f, Gk,
Xy= (15 o )M+ 4 L ’

/ / T /f Oz,

or z =(;7£ Iz}”f"’ .1

. &,

It is not difficult to show that ]”, = 7;:— Hence, we have
%,

L (b ) M.

In exactly the same manner, we may show that

e %z
71—“ */'7/'/72)"4-

Xz'
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The coefficient of correlation between X, and X, is
A,
7 =
%1%z (r,n,)%

which completes the proof of the theorem.

Illustration. Consider the two sums, X, = ¢, + %, , and
X, = £, + ¢,, ,with £,, £,, £,, ,as random drawmgs
of 7 from the distribution characterized by the function f(t)-é*
for # on the range O to oo . From (4.1i), the marginal distri-
bution of X, is

G (x,)= x, e *
Similarly, the marginal distribution of X, is
G, (%)= x, e “¥e
The correlation surface, obtained by applying (4.2a) and (4.2b),
is
Fla,x,)= e ®(l-e™), (O5x5x);

and

rlx, % )s e"“’/j-e'z’/, (x5 x, < )

5. The correlation among more than two sums. We shall
state, without proof, the following theorems.

Theorem VI. Given a probability function, #(t), of the
second kind, and three principal variables, x, , x,, X, , defined
as for, Theorem 11. Then the correlation surface w=F(%,, x,)
is given by
(5.1a)

1 M 47 Y24 ¥ kg
Al x) 0~ L df/ &y g

(-] (4
Xy Y by f
¢ AP
A L by B
Xy-4, -1, AR "}, Y- -l *"—/df
2439
o
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1 B Sy ok [ ARt
@/"?:/z,)");z— Z;P/e = = d,;'.../ @t
tgs) 72 Ver gl g Mo A %7
fe

%
2 ko9 7
x-t-...-t/ i - - #
/’ “ R VT Y ’
° 24y
/%'é/""'ﬁ/&’-/'i P y
d -
A ] 4:”4-/
etk - ey .
/“l tl ’:/QJ'; 2,/93-?*/ 55"‘},5,4 -&)z_;
° S5/

% %, g o Yoot by G o)

/ x, & X, <o / .
Theorem VII. The regression curves of %, on x, and of
¥, on X, of the correlation surface in Theorem VI are linear
and are givem, respectively, by the following equations:

412 K23 % (722 7%~ A2 bizs ) M
. - 72 %27 % /1

(2.21) s T s ’
and

£, 5.% 0772~ %p 29 )17
(2.22) g = 23

* »
% 7,
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where M is defined as in Theorem V. Further, the coefficient
of correlation between x, and x, is
@ oy TE e

Theorem VIII. The statement of this theorem differs from
that of Theorem IV only in that #/Z)is now to be a probability
function of the second kind.

III. Sums of elements drawn from a universe characterized
by a probability function of the third kind.

6. The correlation between two sums. We shall now con-
sider principal variables defined as the sums of values of # drawn
from a universe characterized by (%), a probability function of
the third kind, defined on the range & to a . and with

/ )t 1.

The correlation surfaces are not developed with the same degree
of generality as were those in the preceding pages because of the
tediousness of the labor involved and the complexity of the cor-
relation surface, which may consist of many sections joined to-
gether. Thus, if x is the sum of 777 values of # and y the sum
of 77, all drawn from a universe characterized by a probabhility
function of the third kind, the correlation surface, w= /7%, y} s
consists of Zﬁm{)sections, each having its own equation. Hence,
only the case where x and )/ each consist of the sum of two
values of # , with one of these held in common, will be considered
here.

Theorem IX. Let /%) a probability function of the third
kind, characterige the distribution of a variable ¢ . Let the prin-
cipal variables x and y be defined by the relations x=¢,+ ¢, ,
Y=Yy v, ,where £,, £, ¢, , are independent random
drawings of ¢ from the umiverse.

a) The marginal distributions of x and of y are given by
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(6.11) .
G ()= [ H)let)eth (0 &5 a);
=/ af/z‘/ Fl-t)at, (a sxS 2a);
and
(6.12)

Y
GG/ =/fﬁ‘/f6/-z‘/df, Osys a);

/ Wi dt (asys ).
Y-a

b) The correlation surface, w = i, y) , is given by
(6.2)

v
Fley)- | 506 t-t) #y-2)att, (05 y5u5a);
=[xfﬂ/ffx~f)f(y-f}df, (0% xsysa);
x
. / @) Fl-t) F -t (asysreaslal;
v-a

St t) £yt (Oswasysa);

x-a

. / % ) (-2) Fly-t)dt, (asysxsZa);
x-a

.L:fﬁ‘)f/x-t) fly-t)at (asx sysla)

In a) and b) above, the subscripts have been omitted from the %,
c) The regression curves of yy on x and of x on y are
linear and are given, respectively, by the following equations:

- X
(6.31) G Eem,
(6.32) and Ze+ M,
where M- [t rit)at.

o
Hence, the coefficient of correlation between x and y is %
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This theorem is a direct generalization of Rietz’s paper in
Biometrika cited in the introduction to this paper. The proof may
be supplied by the reader.

Illustration. Let us consider the rectangular distribution
given by 7(2)- 5‘{, for 7 on the range O to @, and a toO.
This is the parent distribution in Rietz’s case when @-Z7 . From
(6.11), the marginal distribution of x is

G, (x)= g—;. (0<% 2% a);
_/Z:;x)‘ (a $ x £ 2a)
Similarly, the marginal distribution of y is
G () = S (0% ys al;
- f:’%{! (a <yt 2a)
The application of ' (6.2) yields
Fly)« -a'y7. (Osysxsa);
= %,, (Osxsysa);
= /x-,yfa{ (asysx+aslal:
aJ
'@5‘%3{ (Osx-asysa);
-x)
= /—————z‘:: , (asys xs2a);
Ra-y)
=-—?—'! (G§Z§y§2d).

These results, obtained directly by the use of Theorem IX, agree
with those obtained by Rietz in the above-mentioned paper.



