ON SAMPLING FROM COMPOUND POPULATIQNS*

By
GEORGE MIDDLETON BROWN

Introduction.

The decided asymmetry or the multimodality of certain fre-
quency distributions may have prompted the idea of the possibility
of the existence of frequency curves, apparently single in charac-
ter, but which, on further investigation, might be shown to be
actually composite. In other words, apparently homogeneous ma-
terial may prove to be heterogeneous, or divisible into two or more
distinct homogeneous groups.

The above ideas lead naturally to the problem of dissecting a
compound. fi'equency function into its various components. Karl
Pearson’ successfully solved such a problem, using the method of
moments, on the assumption that the compound parent population
was composed of two normal components. Each component eurve
has three parameters, the mean (or position of axis), the standard
deviation, and the area (or total frequency). One requires there-
fore, six relations between the parameters of the given compound
frequency curve, and those of its two components, in order to deter-
mine six unknowns. The ultimate solution of the problem turns on
the determination of the zeros of a nonic equation, the location of
whose real roots is obtained, to successive approximations, by
means of the so-called Sturm’s functions.

The dissection problem was taken up later, first in a paper by
Charlier,? then in a joint paper by Charlier and Wicksell* who

* A dissertation submitted in partial fulfillment of the réquirements for
the degree of Doctor of Science in the University of Michigan. June, 1933.

! On the dissection of frequency curves into normal curves, Karl Pear-
son. Phil. Trans. Roy. Soc. Lond. Vol. 185, Pt 1, pp. 71-110. 1894A.

2 Researches into the theory of probability, C. V. L. Charlier. Meddel-
anden frau Lunds Astron. Observ. Sec, 2, Bd 1. 1906,

3 On the dissection of frequency functions. C, V. L. Charlier, and S. D
Wicksell. Arkiv. fur Matematik. Astron. och Fysik. (Meddelande) Band
18. No. 6. 1923.
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considerably simplified the theory, finally arriving, however, at the
fundamental nonic due to Pearson, for the solution of which, they
suggested the use of a graphical method. They also studied special
cases of the more general problem, e.g. the means of the two com-
ponents assumed known, the compound curve assumed symmetri-
cal, or the standard deviations of the two components supposed
equal. In addition, they extended the problem to the case of fre-
quency functions of two variates.

In the present paper, 1 propose to investigate the sampling
problem in the case of compound distribution functions, and from
a consideration of the dissection problem, one is led to a division
of the present investigation into two main parts, for the following
reasons.

On the one hand, in sampling from a compound population,
if we do not know the proportion contributed to the total f requency
of the sample by each of the two components of the parent popula-
tion, we are essentially sampling from a single population. That is,
random samples of N are drawn from a single composite parent
population made up of two components. Hence, the previously
obtained results for sampling from a single parent population will
be available if we derive expressions for the parameters of the
compound parent in terms of the parameters of its components.
This is done in Part 1.

On the other hand, however, if we know the proportion con-
tributed to the total frequency of a sample by each of the two
components, the situation differs entirely from that studied in Part
1. Here we are concerned with sampling from two distinct parent
populations, and in Part 2, I develop a method for dealing with
this problem. Thus, in Part 2, it is assumed that samples of r
and s respectively are drawn from two distinct parent popula-
tions, and these two samples are then combined to yield a sample

of r+s=N from the combined populations.
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Therefore in Part 1, we are essentially sampling from a single
parent population, whereas in Part 2, we are sampling fron: mul-
tiple populations.

The developments of Part 2 yield some new sampling results
for sampling from two parent populations. In Section 6, I derive
expressions for the semi-invariants “of moments about a fixed
point” in samples from the compound frequen. function, in terms
of the corresponding semi-invariants of the moments of its compo-
nents. In Section 7, expressions are derived for the semi-invariants
of “moments in samples from the compound population about the
mean of the combined sample,” in terms of r and s, and the semi-
invariants of the two components themselves.

The occurrence of a certain class of well-known polynomials
in the development of Section 1, is of especial interest, since these
are, except perhaps for sign, the semi-invariants of the binomial
distribution, and have some rather important properties, and their
further study, although not pertinent to the problem in hand, should
yield some very interesting results.

Section 5 is devoted to the discussion of the case in which a
limiting compound frequency function exists, under certain as-
sumptions regarding the nature of its components, where the num-
ber of the latter is allowed to increase indefinitely. This idea of a
limit frequency function would appear to indicate the possibility
of a new approach to the theory of frequency curves, in which the
variable may now be a complete frequency distribution in itself.

This investigation was begun on the suggestion of Professor
C. C. Craig, of the University of Michigan, U, S. A. to whom I am
indebted for canstant inspiration and guidance during its pursuit.
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PART 1.

Section 1. The semi-invariants of the compound frequency
function, in terms of the semi-invariants of its two normal com-
ponents.

The main object of this first section, is to obtain expressions
for the parameters of a compound population in terms of the para-
meters of its two normal components, and to this end, I shall use
the following definition of the semi-invariants of Thiele.!

+2 3 00
At+A, 21 + t
e TrA2 21 A =/f(x)-ex'.‘dw.
-0

I write therefore

tx)=p- @, )+ q P, (x).

in which f (%) is the compound frequency function, (Pl ), (Pzéa)ar.e
its two normal components, and p+q-= 1.

If L‘i’ L 2 etc. are the semi-invariants of f(x), then

LB, mistl (mym,)t )f
Lt+Lz2‘ a5t +0) z'{i*‘% e MMy +( 2.!}

(1)e™ “upet

where m, My, o' , o‘ , are the means and standard deviations of

(p x),q (x)leqpectnelv For convenience, I write

B 22 q_
m,-m, =a. o, ai-b. p-r.

We wish to express the Ln in (1) in terms of the quantities m

My, O, P or q .
Taking logarithms in (1),

1’

1 Numerous references relating to the theory of semi-invariants may he
found at the end of “An application of Thiele’s semi-invariants to the samn-
pling problem”, C. C. Craig. Metron. Vol. 7, No, 4, 1928, p. 73.
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1
Lyt Lyzivlyg+ .
(2) 2 ( bt
2t
= log p+(m1’r+d1 7 )+ foq i+re. " )

We require now a suitable form for the expansion of the third
term of the right member of (2) in successive powers of t . We

have
t 2

{ogq (1+ re ) fog(1+r)+foq si»fq (eat* bl )} .

Further

. ‘_b_‘_t_z . +b12. : "y
3) foq(1+reat+z)=§1qJ(eat 2_1)1(_1)# :

2
ilat+ le )

The complete representation of terms of the type e

in the right member of (3) will be

o K /. 1+i K ) _b_tf
Tz ii)__ﬁ.(f‘) o tatez)
k=1 =0 k L

But

bt . .

i(at w0 i) N

@ e TR L (a2
j=o ! R
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n

Therefore, the coefficient of %T in the right member of (4) is

2j~n b n-j i.j

R 2'” (2j- n)!(n-j)!

where [Q%l]means the largest

integer in

n
Z
p

n
Then, the coefficient of Iﬁ—l in the right member of (3) is

n k ('1)1+l'qk(k)£' na?d i 2
sS)L= & —— . : 0
(5) N k=1 t=1 k v j;[ﬂ_{}] Z""‘(Zj-n)!(n-])!

and this is the relation sought, in which the semi-invariants of the
compound frequency function are expressed in terms of the semi-
invariants of its two normal components. Below, I have written
out in detail the expressions for L, to L.9 inclusive,

Li= m,+aq.

Ly=0%+q [az(i-q)+b:‘ .
Ly= aquq3+ 3abpq.

(6) La= a'Paq,+6a*bpqq +3bpq.
Lg= aquqs + iOaabpqq4+i5ab2pqq3.
L= abpqu +15 a‘*bpqq5+ 45 a"bzpqq4+15 bquqs,

L;= a’pqq, + 2a® bpqq* 105a°t'pqq 5+103a bapqq4.
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Lg= aepqq°+ 28a°bpqq 7+210a4bzpqq é'+4r2()azb“pqq 5+105 l;’pqqd

L 9.a”pqq9+36a7bpqqo+376asb2'pqq +1260c®b'pqq 6t 945qb] pqq.
1 s
in which

q,-1-2q.
q,=1-6q+6q*.

g 1-14q+36q*- 2443
?)
Qe 1-30q+ 150q* 240q%+120q*.

q,- 1-62q+540q* 15609 1800q*- 72097 .

Qg 1-126q+1806¢" 84004°46800q* 151204+ 5040q°.

qq=1-254q +57969™-40824q+126000q* 191520q°
+141120q°-40320q".

The expressions for the Ln in (6) have two properties, which
enable one to write them down readily. In the first place, assuming

that the polynomials in q( orpsi-q) are suppressed, i.e. q"z = qz =
1 .
Pq, q"zpqq 81 9,°PA9, etc., are all set equal to unity, then the

resulting functions in “a” and “b” are readily obtained by means of
g y y
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a well-known recursion formula. Secondly, considering the poly-
nomials q' as coefficients in the several terms of the original com-
plete expressions for the L in (6), for n>2 , and arranging
these expressions so that their corresponding terms appear in col-
umns, the first terms in the first column, the second terms in the
second column, and so on, then every term in any diagonal array
proceéding from upper left to lower right, and consisting of one
and only one term from each of the expressions (6), will have the
same polynomial coefficient.

I proceed now to obtain expressions for the L in (6), in
which the individuality of the polynomials q"z, q; s q'; , etc., has
been suppressed. This time I write

bt ' 2
at+ o bt \¥
(8) foq(i+re 7)=foq {1+r Eo -ik! (at+~i-) J
y ‘
The term in tsin i‘, (a+t-)21: )k is

tS_ auvs. ba-k
(2k-5))(s-k)) 2 5K

Rearranging the series In brace of right hand member of (8)

in successive powers of t ,

O.Zk'5~ bs-k_tS ]

at+9t-2 2 S
tog(1+re - Z)=i’oq<{1+r’ L L 25 @2k-5)! (s-k))

i)
9 , .
= foq(1+r)+ foq{1+61t+%§+~. ce 4 %-’;— - }
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where 0; = q.; (=14,2,3, -

‘ s ‘
Therefore, the coefficient of %, in the series in the brace in the

right member of (9) is O, where

S

(10) §,=q ) %o

Zk-S'.bS-k
Ty 2 @]

From equation (2) and (9) above, we have
t* 13
Lit*LzZ! +L3‘-;!+-~
(11)

) Z{,Z 2
= foq p+ foq(i+r‘)+(mit +%— )+ foq(1+6it+?-£— +)

Therefore, equation (11) becomes

2 2
(12) L t+ in—! +eee =(mit+6:'%gz) + foq(ia-eit +92-%+.. ) .

One might note, in passing, that in (12), the O's.are playing the
role of moments, if one recalls the definition of semi-invariants,
so that it would be possible to write down a second general expres-
sion for the L5, using the well-known formula for semi-invariants

in terms of moments.
The first six O take the following form

6, - qa
0, - q(az+b)

8,- q(a’ 3ab).

8, - q(a*6a*b+3b?)

6, - g(a®10av+15ab?)

6.+ q(a%15a*b + 45a2b% 15b?),
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{f, in the last set of relations, we set q=1 . we then have 0,

and if in the expressions (6), q'z.’ q'a, q,

, etc., be all set equal

to unity, we shall get, for n > 2,

L'n""dn'

I shall now show that the &'s follow the recursion law -

d
(13) ﬁsu‘ at+b S-Q)Ds.

2
Now, putting at+ %L(P(t), we have

a% . e d)(t)’ (a+(b’c)' e o(t)

&%; e ) [b+(a+‘bt)z]- e o)

5‘;; e o) = [3b(o.+ bt)+(q+ bt)SJ e(ﬂ(t).

and ‘n general

(14) g_s_ .e(p(t)=P (b, a+bt). e‘wt)

tS B

where T} (x,y) is a polynomial of degrec & in x and y-.
It is easily shown that \

, .
(15) "’&@c% {B(b,amt)} t ;bg—a{s (b,a+bt)- e(p(

i

t-0
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and that

ot) @
e =aR-e o)

t-0 t=0

d
(16) B T
Now deriving the left member of (14) with respect to t , and then
setting t=0, gives the next /6 , namell/ ,65 o by definition, whilst

the derivative of the right member of (14), and se&ing t=0,
would equal the sum of the right members of (15) and (16), which
establishes the proof.

The second property of the expressions for the L, in (6),
which requires proof, may be stated as a theorem thus—*“The k-th
polynomial coefficient in the expression for the semi-invariant

Lom > m>1, is identically equal to the (k+1)st polynomial co-
efficient in the expression for the semi-invariant L 2mel

For simplicity, T have considered the first and second poly-

nomial coefficients of L 2m and L 2md respectively, the proof going

through in exactly the same manner if perfectly general terms in
these expressions were considered.
From (5), suppose that n= 2m (even). Then

% (i)iﬂ, ()”"(Zm)' ZJZm ZmJ J

2m
17)
L im - st:1§1 k -m sz'j'(zj-zm)!(ij)!

The leading term in L , i.e. the first term in /32 , multiplied
by a polynomial in q , ns obtamed from (17), by setting Ja 2m .

Itis oK
2am k(4 "
D> (__)____Q_(k LgAm. i Rm

k=1 i1 k l
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Therefore the polynomial coefficient of a*Mi.e. the leading co-

efficientin L 2m 18

18
(8 El {:1 K .

i k
am k)it g (k) . 2m
Again, from (5), when n=Zm+1 (odd),

2mi K (.ﬂ’fiq ( )‘m‘l(Zm 1)| 2j- (2m+i) (2m+i) j
b

il Gy ko \b/ma z@mﬂ)l.[zj-(zm+1ﬂ.[zm+1-,]!

The second term in L uis‘ obtained by setting j=Zm. It is

2m+l Kk 1“ k
L Z'. (L) ( ) m(Zm+1)- atmip im,
K=l sl Tk \i

Therefore, the polynomial coefficient of a’Zm-i. b i.e. the second
coefficient in L, .4 is

2mil K - 1*’1, k
(18") T (_1_)_.__3.(k)tz'"
k=i =1 K i

Comparing (18) and (18’), which must be identically equal, if our
theorem is true, it remains to show that

2mdl  mid 1+
Q"™ | (Zm*i)' L Am
Zmi ;.L::i ( 1) i L 0.

but it is well known that this expression is identically zero.®

2 See Hall and Knight. Higher Algebra, p. 259, Ex. 2,
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Section 2. A table of wvalues of @ certain class of poly-
nomials in one variable, for different values of the argument.

In order to facilitate the actual computation of the values for
the semi-invariants L , given in Section 1, in a particular appli-
cation of the theory, when a=my-m,, and b= Oz 012 , are
known, I consider the expressions for the L, as they appear in
the form indicated in (6). Now, when b - 6;2%'7'-0, i.e. the two
components have identical standard deviations, the set of relations

(6) take the form
[ \ 2 ool
(19) L, =mpaq- L, = 0,*+a’*pq iand L,=aqq_ : m2

in which q,s G, etc. have the same significance as in (7). Mak-
ing use of the properties of the expressions (6), which were stated
at the end of Section 1,"from (19) we may write the Ln’ for
n> 4, as follows

L +1o( )nl +15(a L,
Le-L +|5(b) +45(— i +15( )L,

\

L,- L,»,u((1 o+ 105(Q)L 105(a)|_

&
8+ze(a) 7+.210( b) 6+4zo( D), +105(a) L,.

\

b
Ly=Ligs ab(b)L8+373( )L +1zeo( AT 945( oYL,
and so on.
Therefore, for n ? 4, the general semi-invariants L, of (6)

(20)
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iay be expressed in terms of the special semi-invariants L.'_ n
obtained from the former by setting b=0. From (20) in general
we have

o 2F0 K
L-"'=kzl'o L.""" Zk-k‘.‘ '('5) ,
in which
' n-k
‘L,'n-k =a pP9QqQnp.k
because
n-i]
LS k) \k
Ln’f:_oa PAqnk* 2Kkl |a

4
1% nzk k@)
'E’o a ‘b 2K k! 9n-k »

and the last expression, for n >4, is the equivalent of the general
expression (5) for the Ln‘

Further, if we consider the terms in the expressions (20) as
elements in a set of diagonal arrays, as I have indicated, it is evi-
dent that, moving downwards along any particular diagonal. any
term in this diagonal is obtained from the one immediately pre-

ceding it, by the use of a multiplier Mk P g) The formula for the

calculation of the M, , , may be derived as follows.

Consider any term of say L_ , whose numerical coefficient is C
Let this be the (k+1)st term.

Then

k+1,n'

| (2%
k+in - zk‘ Kl

C
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Similarly, take the (k+2)ndterm of L e with numerical coeffi-

cient Ck+ TR Then
(2k+2)
_ (n+d)
Tl kel ()]
and we note that Ck+ in and Ck+ 2,n+t are the numerical co-

efficients of two adjacent terms in one of the diagonal arrays men-
tioned above, Therefore

(n+1)(>n—2k). c

= : 2
K+2,n+d 2(k+1) k+ln nazk

and

_ (n+1)(n-2k)
keln© 2(k+1)

It is of considerable interest to note, that the L'n of (19) (for
132 ), are, except perhaps for sign, the product of the semi-in-
variants )‘n (n>1) of the binomial distribution and appropriate
powers of “a”. To show this, we need only consider the generating

d
function for the L. p » hamely i+q(e -1), and that for the An’ viz.

ot T . . :
[1+p'(e -1)] , with s=1 . Frisch! has ohtained a recursion
formula for the An , which is

d
An“"l'd—p'hn-i , n>1

1 Sur les semi-invariants et moments employés dans I'étude des distri-
butions statistiques. Ragnar Frisch. Skrifter utgitt av Det Norske Viden-
skaps-Akademi i Oslo, 1926. No. 3, Ch. 2, p. 29.
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o [ .
Therefore, it is evident that the Ln obey a corresponding recur-
sion formula

- n d \

Fn=<1 Plggber M2

In fact, the polynomials q pq,q5 Pqq; QfP(H , etc., are the
same functions of g as the 7‘n are functions of p,ie.

An- A (P). ’ q.n = An(cl)' for n22.

To investigate thoroughly the properties of the polynomials?
q«z q q_ , etc., would be irrelevant to the problem in hand, but,
so far as I know such a study has not been carried out. I will,
however, mention a few of these propertles, which appear inter-
esting.

1. The roots of the polynomial q:n (for any n 22 ) are all real
and distinct, and these roots all lie in the interval (0, 1), zero
and unity being roots of every polynomidl

2. The roots of qn separate the roots of q

3. The polynomials q , of even degree in q , are symmetrical
with respect to the lme x-% , whilst those of odd degree in q.
namely q 2nel are symmetrical with respect to the point
(%, 0)

4. An orthogonality property in (0, 1) holds if m#n, and m+n
is odd. That is

1
b/ q'm q'n =0. m#n, m+n(o<ld)

i
\o/ q-rn qn #0. m#£n, rmn@ven)

2 These same polynomials appear as functions of o in a paper by H.
C. Carver on “Fundamentals of the thcory of Sampling.” Amer. Statise.
Assoc, Annals of Math. Statistics. Vol. I, No. 1, Feb. 1930, p. 106.
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5. Further

1
] 'i
/ Yn’ dq=()""B,
0

in which DZn is the Bernoulli number of order Zn .

1
Zq2n+i +dq=0.

In calculating the -actual values of the Ln expressed in the
form (20), it would obviously be very convenient to have at one’s

di 1 a table of val f the pol ials q' = ,q'= ,
isposal a table of values of the polynomials qz Pq »qsP4q,
q:; pqq4, etc., for a range of values of q since the latter, when
multiplied by appropriate powers of “a”, are the I.'_n of (19) and

(20). I-have, therefore, set up such tables, for values of the varia-
ble q ranging from .01 to 1.0 inclusive, at intervals of .01.
It is to be observed that only functional values are recorded

here for .01 & qf .50, since we would merely repeat these values
when .50 gq £ 1.0 , in the case of the polynomials q;n, of even

degree, whilst in the case of those of odd degree, namely q|ln+i ,
there would merely be a change of sign. For it is easily seen that,

writing, q'n = A n (q) ,
?\n(q)='(-i)" )\n(p), (p+q)-1.
Hence
)\Zn (q)"' )‘zn (p).
and
Azn+1(@)= = Azney (.

I have calculated the exact functional values of all the poly-
nomials q'n ,for 24n :.q and these values appear in the tables
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for those cases in which ng 4, but for N> 4 the functional
values are written down correct only to eight decimal places. Fach
polynomial is set out in detail below.

q, =9-9":

q‘3 =q- 3q7'+ 2q°

q, =q-7q*+12q* 6q*.

qy = q-15g* 50q3-60q*+ 24q°.

q, - q-3g*+ 180¢>- 390q* 360 q°-12049°.

d, = q-63q%+602q>2100q* 3360q°-25204°+720q’

qg =4- 127q%+ 1932 q* 10206 4%+ 25200¢3- 31920q°
+20160q- 5040q°.

9 = 4- 255q*+6050q3- 46620 q*+166824 q°

-317520 qP+ 332640q - 1814408+ 40320q?
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| ! | 1

q qz q3 q.4, q5

.01 .0099 .0097 02 .0093 1194 .0085 4940
.02 .0196 .0188 16 .0172 9504 .0143 9048
.03 .0291 .0273 54 .0240 1914 .0178 0198
.04 .0384 .0353 28 .0295 5264 .0190 4886
.05 L0475 .0427 50 .0339 6250 .0183 8250
.06 .0564 .0496 32 .0373 1424 .0160 4106
.07 .0651 .0559 86 .0396 7194 .0122 4974
.08 .0736 .0618 24 .0410 9824 .0072 2104
.09 .0819 0671 58 .0416 5434 .0011 5512
.10 .0900 .0720 00 .0414 0000 —.0057 6000
B .0979 L0763 62 .0403 9354 —.0133 4808
12 .1056 .0802 56 .0386 9184 —.0214 4440
13 L1131 .0836 94 .0363 5034 =.0298 9550
.14 .1204 .0866 88 .0334 2304 —.0385 5882
15 1275 .0892 50 .0299 6250 —.0473 0250
.16 1344 .0913 92 .0260 1984 —.0560 0502
17 .1411 .0931 26 .0216 4474 —.0645 5494
.18 .1476 .0944 64 .0168 8544 —.0728 5064
.19 .1539 .0954 18 .0117 8874 —.0807 9996
.20 .1600 .0960 00 .0064 0000 —.0883 2000
21 .1659 .0962 22 .0007 6314 —.0953 3676
.22 1716 .0960 96 —.0050 7936 —.1017 8488
.23 1771 .0956 34 —.0110 8646 —.1076 0738
.24 .1824 .0948 48 —.0172 1856 —.1127 5530
.25 .1875 .0937 50 —.0234 3750 —.1171 8750
.26 .1924 .0923 52 —.0297 0656 —.1208 7030
.27 .1971 .0906 66 - .0359 9046 —.1237 7722
.28 .2016 .0887 04 —.0422 5536 —.1258 8872
.29 .2059 .0864 78 —.0484 6886 —.1271 9184
.30 .2100 .0840 00 =.0546 0000 —.1276 8000
.31 2139 .0812 82 - .0606 1926 - .1273 5264
.32 .2176 .0783 36 —.0664 9856 - .1262 1496
.33 L2211 .0751 74 —.0722 1126 —.1242 7766
.34 .2244 .0718 08 —.0777 3216 —.1215 5658
.35 2275 .0682 50 =.0830 3750 —.1180 7250 .
.36 .2304 .0645 12 —.0881 0496 —.1138 5078
.37 L2331 .0606 06 —.0929 1366 —.1089 2110
.38 .2356 .0565 44 —.0974 4416 —.1033 1720
.39 2379 .0523 38 -.1016 7846 —.0970 7652
.40 .2400 10480 00 -.1056 0000 —.0902 4000
.41 .2419 .0435 42 -.1091 9366 —.0828 5172
.42 .2436 .0389 76 —.1124 4576 -~ .0749 5864
.43 .2451 .0343 14 —.1153 4406 —.0666 1034
.44 .2464 .0295 68 -.1178 7776 —.0578 5866
.45 .2475 .0247 50 -.1200 3750 — .0487 5750
.46 .2484 .0198 72 -.1218 1536 —.0393 6246
.47 .2491 .0149 46 - .1232 0486 —.0297 3058
.48 .2496 .0099 84 - . 1242 0096 —.0199 2008
.49 .2499 .0049 98 - .1248 0006 —.0099 9000
.50 .2500 .0000 00 - 1250 0000 .0000 0000
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. 1
4 9 4, 9 4
.01 0070 7614 ©.0042 8133 - (008 6757 = .0098 9983
.02 L0089 7874 | =.0007 0941 | - 0168 9834 - 0403 4520
.03 .0066 5276 -.0120 6717 - 0398 1333 = .0700 8269
04 .0009 5797 =.0273 1414 - .0632 2635 =.0843 1166
05 |~.0073 2687 =.0443 6381 - 0823 9570 =.0752 0088
.06 -.0175 0006 -.0614 3082 = .0939 9591 - .0395 8596
.07 ~.0289 3297 -.0772 7439 - .0959 0866 L0219 6545
.08 -.0410 6621 -.0906 2746 - .0870 3171 .1061 3469
.09 -.0534 0591 -.1006 8733 = .0671 0523 .2076 9234
10 =.0655 2000 =.1068 4800 = .0365 5440 +3202 0992
1 -.0770 3465 ~.1087 0989 .0030 5241 4306 5482
12 - .0876 3077 -.1060 5914 .0521 3085 .5498 7950
13 =.0970 4057 ~.0988 4432 .1071 9393 .6530 1537
.14 -.1050 4428 -.0871 5459 .1669 5230 7397 8144
.15 -.1114 6687 -.0711 9919 .2294 0230 .8047 1682
.16 -.1161 7493 -.0512 8831 .2925 0255 .8433 46002
.17 -.1190 7356 -.0278 1528 .3542 3967 .8522 8519
.18 ~.1201 0342 |=-.0012 3997 .4126 8411 .8292 9704
19 -.1192 3784 .0279 2652 .4660 3653 ..7733 0158
.20 —~.1164 8000 .0591 3600 .5126 6560 .6843 4944
21 =.1118 6020 .0918 1615 .5511 3781 .5635 6392
22 -.1054 3324 .1253 8237 .5802 3985 .4130 5748
.23 =.0972 7586 .1592 4855 .5989 9440 .2358 2811
.24 =.0874 8429 .1928 3676 .6066 6961 L0356 4020
.25 -.0761 7187 .2255 85%4 .6027 8320 -.1831 0547
.26 =.0634 6676 .2569 5961 .5871 0148 -.4155 0871
.27 —-.0495 0971 .2864 5266 .5596 3389 -.6563 1025
.28 -.0344 5199 3135 9717 .5206 2368 -.9000 3211
.29 —.0184 5333 .3379. 6740 .4505 3504 -1.1411 1524
.30 [=.0016 8000 .3591 8400 .4100 3760 ~-1.3740 5184
.31 .0156 9709 .3769 1728 .3399 8768 -1.5935 1019
.32 .0335 0413 .3908 8987 .2014 0845 =1.7944 5014
.33 .0515 6609 .4008 7856 .1754 6769 -1.9722 2773
.34 .0697 0833 .4067 1546 .0834 5462 =-2.1226 8757
.35 .0877 5812 .4082 8856 = .0132 4420 =2.2422 4216
.36 .1055 4606 .4055- 4163 - .1131 6952 -2.3279 3728
.37 1229 0738 .3984 7352 =-.2148 1421 -2.3775 0310
.38 .1396 8328 .3871 3695 - .3166 4796 -2.3893 9063
.39 .1557 2201 .3716 3683 -.4171 4155 =2.3627 9368
.40 .1708 8000 .3521 2800 - .5147 9040 -2.2976 5632
.41 .1850 2283 .3288 1262 -.6081 3721 =2.1946 6636
.42 .1980 2614 .3019 3716 =.6957 9341 -2.0552 3535
.43 .2097 7648 .2717 8896 -.7764 5916 -1.8814 5375
44 .2201 7200 .2386 9258 = .8489 4184 -1.6761 0632
.45 2291 2312 .2030 0569 -.9121 7270 -1.4424 9645
.46 .2365 5311 .1651 1489 =-.9652 2163 -1.1845 0081
.47 .2423 9851 .1254 3119 -1.0073 0991 -1.1474 9129
.48 .2466 0959 .0843 8534 -1.0378 2075 -.6129 8577
.49 .2491 5060 .0424 2304 | -1.0563 0756 =.3091 2081
.50 .2500 0000 .0000 0000 i—l.0625 0000 .0000 0000
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Section 3. Approximate expressions for the semi-invariants
of w3, ,, O, insamples from the compound frequency
function.
_In the paper of C. C. Craig, already cited, the author obtained
the following results for sampling from a single parent population.
(1) Expressions' for the sampling characteristics of the correla-
tion functions for Vps vy, and \{z , \/4_ , in terms of N, the
size of the sample, and the characteristics of the population
itself. ‘

(2) Expressions? for the sampling characteristics of the distribu-
tion functions for «5, o4 , and g, in terms of certain “g”
functions, the latter being defined hy

Skt (Vm:Vp)
\/Z!(m+ n

(1) Ao (V)=

in which Sk 2 (\/m, \/n ) are the characteristics of the corre-

lation function for \/m , \/n .

I can now make use of the results indicated above, in conjunc-
tion with the relations (6) of the present paper, in order to deter-
mine approximate expressions for the semi-invariants of &4 , oy ,
G, » in samples from the compound frequency function, retaining
only terms of order — 2 and higher in N in using expressions (1),
and only those “g” functions in using the expressions (2) which

are of order - 2 and higher in N, where S IW) is of order ;nTET
A. The semi-invariants of o« , viz. bi’ bZ,’ b‘3 , etc.

From definition (21) and the relations (1) for m=2, n=3,
and making use of the following notation

1 Loc. Cit. p. 57 et seq.
2 Loc. Cit. p. 50 et seq.
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) B rst. .r .S .t
(22) (Pi— L—; ) @Lk] ‘Cp;"pk'(pj »
Z .

in which the Ln are the same as in (6) of Section 1, 1 obtain the

following set of “g™ functions.

G- [_i‘ i(N-i)} . using for brevity G = Fe V-
Yot =‘%7,§(N-1)(N-2)4)5}.
%, =,%s[(”-1>24)4+ zN(N-i)}.
%y =%a[(N-i)2(N-Z)(PS+6N(N-i)( N 2)4)3}.
“ Gy = I(N-l)z(N-Z)24)6+ IN(N-1)(N-2)°d), +
IN(N-A(N-2)*0" oNF(N-1)(N-2) .
% - e j(n-1)°g 412 N(N-i)"cﬂ,,»m(w-i)(m-z)gieNz(w-ﬂ,
G - %, { (V) (N2) 9, + 1NN (N-2) ¢,
H2N(N-A(N-2)(2V-3) Gy +48N(N-A)(V-2) )]
"7 {(N-i VN2V 2AN(H) (N-2)°d),
+6N(N-D(N-2)*(8N-11)d) 5 + ON(N-1)(N-2)%3N-5) )"

+HBNA(N-1)(N-2)(6N-11) ), BNTNAXN2)ON20) )

+36N 5(N-i)(N-z)}
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%,*ﬁag(m-n Wv2)'gr2rnv-)’(v2)’d), 2N (N2 34,
+2TNOH)N2) (AN-7)), . + 54 N (NAXN-2)*(AN-7) fs

3

62 NA(N-1)N-2)2(5N-12) ), + 36N (N-A)(N-2)(7N 230N +34)4)

+108N °(N-1)(N-2)(5N-12)d), }

and on substituting these values for the “g"”s in the expressions
for the semi-invariants of °‘a from the relatnons (2), I get:—

13,1 (163 6AS 9155, 5385 2, 5
bﬂ‘{mw 2" 6h ) (529085, 93 91+ 234,

245 {1 333 15 8273
+F&;)} § 05 N( 2 <p3 1605 16¢34) Nz( &3
1875 733 '
'%34)5 &3" ; Ehoch 128 4)341)}
by~ { (99+9_9<p4) -Z_3_ﬁ_ 819 225 239, zzsd,sz 2565 z)}
+u,{%,(-m&,—%<g-9<?u)*ﬁz( %1944 +32¢,-224,.4 fls—fo”
.4;5&56.4_5@:4.8_2_'.5 ks .,,@ d);: )} +%‘ ( 24+ 3604+ w6+94)55
189@2 9¢ﬁ) Nz( 90"'13504*‘1084)6"'9&6 27 2 Z331(?3
) 394)52' g’fl‘?sf } %—5 Os *T057 1650345 ’zw‘“’)}
by Fl('%u 3969, 3y, , 5192 6015 )}
+ 3"3 {ﬁl( 35—417&3*' 36 05 ‘9—907 "1"&9‘30“‘ g&%’ Z_’&: +4 7&45)}

+3¢3%;(-s4+13504+.¥d)b %0 S0 &g 4“0, 31«9,,
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-513 4)5 ’1%9(97 - 810 (934_' % 4)9 -108 &36_%7(045 +1710 4)33

9n 891 AP 12
S PG00 L0 B0 F45))

b,-0

In a similar manner I obtain
B. The semi-invariants of Ays viz. ¢, , ¢, , C,, etc.

In this case "‘m=2, n=4, and the “g” functions this time are

910“{(!\! 1)} " for brevity g, = g p (v,, v)

% fiﬁ,fw(wz-mw)cp +3N(N2-2N+1)} .

%, 5N(N 2)d), +2N(IV- 1)}

4, %zj(N-Ww 2(TN-25),+ 6(N-5))s 12(N-z)}.

(24) G §(N -8)Q)+ 4(TN-26)4, +48(1-8)d,+ 2(1TN 128)&

12( 17N-ao)cv,,+7z(3ﬂ-zo)d>;+24(4(1-13)},

% Nz{cp6+12(p4+4<pa +5} |

?21.%‘-2{(%*264)64- 400 +34 @+ 1764, + 1444):»,72}.

2 21
Gur= s [0+ 44 4360, 2000, 116 0] 596 4
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12006 )+ 1512 051564 3+ 28529}, 4176 05+ 768 4)251

i . 2 2
%schpmwocgz»r 2089 39+492%7badg7+46z @'+ 14764,

13844 +13T160),+76480,+ 6280 Q) +25344 4,

+56724) 3114482 344045 +51048 Phugrszd),,

+12456 9% 492484, +110592 @+ 95044, }

Therefore, substituting from (24) into the expressions for

the semi-invariants of o, given by the relations (2) we have—

ci-oc4{-2,+% (p0+210) Jo5, (401+169,-759+ 522 +64 @2)}
' {(@242,)»,% (174-8,-99"-1690,-484)," )+ (1269-9 ),
-92 &6+489c04z+ 154>f- 4zod>;- 3bo¢35+272¢:+1341 04»«44&,6)].

czucj{-iﬁ (te8+64 qz)%z (-1688+724,-462¢1256 %ze&&j)]
+zeo4{-1ﬂ (384-229,-204)- 4084, -13207 )+, (s664-350)
-2824)+26000)% 6808 4,-12004;" 14004), +1464 4,
+240 4>4b+66<pj‘)J+{%,(1320+7c98+z44 0,+094 0% 4 Q5423764
1180004 3360),+160,+9642 J+ £, -32208-1404),-65449,
24400 371924-750000),- 4816841056, + T04 &g
+696&37-5320“+18564252+9536 )2, 322564+ 241928),

2 A, 22- 5
<3844, +16Q, 4433124, +668104)2+122884;-364,5-1840,
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-804;"-28604) +119209-9600 . 842 5044) 12)},
5 .
6y §°(4 (20804644 -6484,%- 1824, + 256 ")
+34(1488-264)-164,+4608 )+ 10592 ¢ + 288 ;
1204,,+3609, +21764,1)+ 34, ((28896+124)_-884),
4

534421524, -36776 467612 ,-377264;-3528 4,

5 24
#5284+ 6120, -20084), +13924/+92164,"+ 74524},

+ 241924, +10144 4], 10800924 33984 4 5011247

-4416 Q5+ TISZ @-484) - 23684),, . -984 11T Q!
-80%480&5}(114912-5%-18&1-530%6%-1040&”
1332(),-36404), 168913805 -367204), 08880,
-39240)7-122404)2- 725 764345@312042:-57240 ot

21 2 124 4 H
-367zoocgss~255m<gu-59b1bocg 34+35568¢g -z46240«9u

-5529604),-475204)" 792 d)-1008¢, +AT064d) 2083

: 2 12 2 31
-10728 ), - 362884), 272164, +3304804,-50976 4,/

2

751684, 19624 2640, 336), + 304826964 *

3 6
3 22 32
- 3576 @) -120964),, - 90724, +1TALAG), ~169924),

250364)3,-4608 ), +720) +4324)5+10084) + 361600,

+3456 0+ 207364, +48384 0, +3054964.+3623048),

4«
V2173440, r 24 Q) 111524 1424, #1512 o;kso:t@:",i&b%)}.

C,-0
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C. The semi-invariants of o, (=;/\7z) yviz. d, , d, , dy, etc

. v,
Now %= %o and 4, (\/z)= é—’;l-(_-;:—) from the relation (21).

€6 9"

Therefore, the functions here are—

{ N- 1)} , for brevity 9?‘ =G (‘/z)
{ N -2) O+ 2(N- 1)}

(26)

A

On substituting from (26) into the expressions for the semi-
invariants of @, from the relations (2) gives—

oL (B4 0) BB
{(2«9) (7+ Qo -49,+207-207) |

Z_'Z
oG (oo st 260),

Section 4. The case in which the compound frequency func-
tion may possess non-sero semi-invariants of all orders.

Instead of the components of the compound frequency func-
tion being considered normal, I now assume that they may possess
non-zero semi-invariants as far as the third order, and [ again
derive expressions for the parameters of the compound in terms
of the parameters of the components. The method of derivation
is entirely analogous to that in Section 1. where the components
were normal. The expressions for the L , the semi-invariants of

the compound are seen to be more complicated in the present case,
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but this complexity is more apparent than real. In fact, I have
succeeded in deducing a rather simple general law, by means of
which, these expressions may be written out, and this law is still
applicable, even if the two components should possess non-zero
semi-invariants of higher orders than the third.

I now write
2 43
t’ 2ttt
Lit+L,Z+L37 - mt+0, 7 A, 3t at + 37 + 3
(27) ZZ 33 =pe 4! 12. 1’ 33 1+|"Q 2! 5.
where
2
a=m,-mg,  b=0,-d] ¢=A M r:%,

and m,, m,, g,,9, have the same significance as in Section’ 1,

andiX3 z)\ 5 »are the third semi-invariants of d)i(x), (pz(x,) respec-

tively, and as before p+q =1 . Taking logarithms in (27), we

have
24
Lt+l,z+L33i+-
28
(28) cfztz btzgyl
=foc3p+(mit+ Jz-ﬂ-—%,— +€oc331+re 3!
Further

at*_!?l‘;@_t_s 1)
227730 {5 Cl {
(29) %og{iwe 3 } El ran 1)“‘{09(1”‘)
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in which

t? ct?
:Daat+bz, + a7 3‘ .

The right member of (29), may be put into the form

{i" Zk. At ( )Z Jba }wo?um

k=4 (=1

n
Therefore equating corresponding coefficients of :t;\'-' in the right

and left members of (28), for n»3, gives

(30)

| (1)1“' k Lj‘n‘.
B e e (LI

k=1 i=1 k *‘/6 !
where the last summation is taken over all values of j, such that
the following diophantine équations are satisfied.
A+Pry =),
4 +2P+3y=n.
Using (30), I obtain, for n =1 to 8 inclusive, the first eight

semi-invariants of the compound as follows,

(31)

Li =m +aq,.
L= of+qfat(1-q)+b}.
La=Ay+ agq'3+ 5abq'z+cq,.

L4= 04%;_* Oazbq"a«&- 3b2'qlz +40cq‘z .
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Ls= asqls +10 aquiﬁ 13ab?q) + iOa.ch"S +10bcq,
3L, - aé’q'b+ 15a*bq’ +45a* b”q'4+ 155G 4+ 20 cfcq,'4

«rOOq,bcq'3 + 1Oc2‘q'2.
L,=a’q +21a%bq, +105a* g + 105 ab’q,

+30 ct"cq'5 +210a* bcq:t+ T0ac 2%; +105b%cq/ 3

\

Lg= G.BCL'&‘D- 28a°bq! + 210 ot q'b-»-4—20 a’b’q

+105b% ] + 56a5cqz)+ 5600a’ bcq'5

2.1,
+ ZBOo,zcqu +840ab%cq, +280 beq, .

in which q; =2q,pq, q;=pqq3, etc.,, and are in fact the same

polynomials that occurred in the discussion of the case for normal
components in Section 1.

The expression for the L in (5) may be put into a form
similar that that of (30), and then, if we compare these two forms,
it is obvious that no new polynomials q‘ will occur, in addition to
those which appeared in (5), and this would be true however many
non-zero semi-invariants the two components may have.

Using the results established for the L. in Section 1, it is
eviCent that, if we consider a particular semi-invariant, say Ln ,
of (5), the terms in the right member can be readily written down,
if we determine all the j part partitions ofn, where | and nare
fixed, using the integers 1 and 2 as part magnitudes. Suppose we
haveog parts, each cqual to 1, and g parts, each equal to 2, where
4+O=j and «+2f=n, then such a partition corresponds to a
term of the type a“'bﬁq'l (omitting the numerical coefficient),
the factor a* b® arising from the last summation of (5). which
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is clearly seen, if the latter be put into the same form as (30). In
addition, it is to be noted that any J part partition of n will be
unique for this case.

Now if we consider the case of the present Section, for N> 3
the L, of (30) will be seen to contain, as well as the same terms
of the corresponding Ln of (5), some additional terms, the latter
appearing on account of the fact that, since the integer 3 is now
admitted along with 1 and 2 as a part magnitude, the J part parti-
tions of n will no longer be unique for every possible value of j .
Thesej part partitions of n will, moreover, give rise to terms of
d bﬁ

the type a c q .where the relations (31) are satisfied. Fur-

ther, the total number of terms in a given L n’ for n not too large,.
can be readily obtained by making use of the so-called “enumerat-
ing function,” discussed in works on combinatorial analysis, which
enables one to determine the number of partitions of a given integer
n, when the number of parts J , and the part magnitudes 1, 2, 3, etc.
are fixed.

It would appear, from the above discussion that the partition
method of obtaining the terms of L could be carried over to the
most general case, in which the components may possess non-zero
semi-invariants of all orders.

I shall now indicate, without going into detail, that, if in the
expressions (30) for ny3 , I set every q'- equal to unity, then
the Ln become functions of a, b, and ¢ only, which I call pn, and
the latter obey a recursion law analogous to the one established for
the ps of (10), namely

(33) pm_f(cu—b——— *C3g )ﬁn,

where now
2 43

n at+ BE C,
[ =q'_- ge 2 )(\ by definition.
" oat” t=0
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3
Putting cp(t) at +b2t‘ + c;c‘

(34) dtn§ 4)()2 =P, (c,brct, arbts & ) ‘p‘t)

where Pn (x,y,z) isan n-th degree polynomial in x, y, and z.
Again, it is readily seen that

ed)(t) d 513 (c bect,a+bt+ & } .

t=0
(35
(b +c_ P (C b+ct, q,+bt+ e Cp(t)\ '
t=0
and that
d
(36) 355 4?(1:)?){0:@.p 90 N

Now deriving the left member of (34), with respect tot, and then
setting 1=O gives the next 8 , viz. Bny1 » Whilst the derivative of

the right member of (34), then setting t=0 , would equal the
sum of the right members of (35) and (36), and thus the law in
this case is established.

It is at once apparent that the recursion formulae of (13)
and (33) may be generalized, so that, if the two components should
possess non-zero semi-invariants of all orders, the law for the Pn
would then be

pml:((ub 5%4—0(-%+ d,g-c+ etc., - - )(5“,
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a, b, ¢, d, etc. being the differences between the 1st, 2nd, etc. semi-
invariants of the two components, respectively. Thus it appears
that the actual writing down of the expressions for the parameters
of a compound frequency function in terms of the parameters
of its two components may be reduced to a partititon process, and a
taking of derivatives.

Section 5. The limiting compound frequency function, when
the number of components is allowed to become indefinitely large.

It is to be noted that if the compound is assumed to be com-
posed of a greater number of components than two, then the
mathematical development besomes heavy, but a rather interesting
case arises, when we consider the form of the limiting compound
frequency function, when its components, infinite in number, and
identical in form, each contribute the same proportion to the total
frequency of the compound, and have their means distributed ac-
cording to the known frequency law f(x).

First of all I consider the compound to be composed of a finite
number of components, say M+1 , of the type indicated, and later
pass to the limit, allowing M to become indefinitely large.

I write now

4 3 2 3
L. t b SO
(@) LT RATE T Ntz e v
1=1 *
in which p: = =— forall i=1,2, 3 etc. and A, A
in which p; = 27 forall i=1,23,..... : i Nz

etc., are the 1st, 2nd, etc. semi-invariants respectively of the i-th
component. The right member of (37) may be written
3
L (M- mi)t}

Ayt +7\11%2+ Ayt A 1+£
e . . m i=1€
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in which m, is the mean ¢{ some component and m; 4 is the mean
of the (i+1)st component.
If we now assume that my = Apy=0, then
ot
eLit+ Lz—z-!+L5-3—! +ee

(38)

by Iiz,,,)\ 1—;-3,*- 14 M+l ¢
o 12 133 -m{i*zze »}‘
=

and the right member of the last relation is the generating function
for the moments of the compound frequency function. Allowing
M to become indefinitely large, we have

t t t
rﬁimw-r—%-;l §1+em"+em5 P em""*‘i AR }
“ xt
-—-/~ e fx)-dx =G, (t).
-00

Therefore the limit of the generating function (the right member
of (38) is given by
3

AN
SELMEE Gy ),

so that the semi-invariants Lr\ of the limiting compound frequency
function are given by

2 43 ., 13
eLi‘t-'- Lz%*l—s%‘! +-- °__e7‘122! +A155!+.“

LG ).
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From this last relation, it will be seen that the mean of the limiting
compound is equal to the mean of the means of the components.
Further, if the means of the components are normally distributed,
and the components themselves are normal, then the limiting com-
pound frequency function is also normal. More generally, if the
components are normal, and their means follow any frequency
law ¥(x), then the limiting compound function also follows this
same law. If now, considering the most general case of all, where
the components may have non-zero semi-invariants of all orders,
and the means of the components are distributed according to the
frequency law F{), then the semi-invariants of the limiting com-
pound frequency function may always be calculated, and will be
given by

Lk= Aik'\a-{K,

in which Lk , )\u( , {k , are the kth semi-invariants of the limiting

compound function, of one of the components, and of F(x)respec-
tively.

This shows that the variate z of the limiting compound fre-
quericy function, is distributed as if it were the sum of two inde-
pendent variates, one of which is distributed according to the law
of the means, and the other according to one of the components.
To write down the actual distribution function for the limiting
compound is quite another matter, but since we may write, in the
limit, when M -~ 00,

8 2 43 £
eLit‘-’ Lzz!+L33!+--;e '\12%!*)13%3*"? . 30“{1‘!" ceee s

then, the distribution function sought, provided it fulfills the neces-
sary conditions, may be given formally by means of the Fourier
Integral Theorem.
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PART 2.

As indicated previously, in the introduction to this paper, we
are concerned in this second part with an entirely new problem,
in which we are now sampling from two distinct parent populations
instead of from only one, as in Part 1. Hence, in order to obtain
‘the desired sampling results, we must have recourse to an entirely
different method of treatment from any we have made use of here-
tofore. I shall suppose that Cpi(x), 4)z(x) , the two parent popula-
tions may possess non-zero semi-invariants of all orders, and that a
random sample of r is taken from the first population, and a ran-
dom sample of § from the second population, these two samples
being then combined to give the composite sample from the com-
bined populations.

Section 6. The semi-invariants of “moments about a fived
point,” in samples from the compound frequency function.
With the above hypotheses, I shall derive in this section, expres-
sions for the semi-invariants of “moments about a fixed point” in
samples from the compound population.

Calling the required semi-invariants S z , 53. arc, we
have, by definition

13
5 't+3 z| *533\"‘

(39)
r+3 n
EB it L £ o 2

jers

2|t

(dx)r‘-t-S

/ /[(P(x)] (x)] e

in which (pi(x) , sz(x) are the initial parent frequency functions,
and iy'l- s z i’ indicates that the variate was taken from the first
and second parent respectively. By a suitable transformation of the
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parameter in the power of the exponential which appears in the
right member of (39), this same¢ member may be put into the re-
quired form

o0 rt 4 r I‘\ o 3t 1”3
R .
[Tt ¥ #5) o foos oy
-0 -

K
On dquating corresponding coefficients of i in the last ex-

pression and the left member of (39), I get

PR Sy (Vi )+ s 5 ()

i
Sk (‘/n)= (r+s)¥

A

in which S, (Vy), 5,(va), 5 (Va) , etc, and 5, ('), 5, (V).

(R ]
3, (\/n' ), etc., are the lIst, 2nd, 3rd, etc., semi-invariants for \4“,
in samples from the two component populations (a(x), and (&(:a),
respectively, the values of which are well known.!

Section 7. The semi-invariants of “moments about the mean”
in samples from the compound frequency function.

Employing the same sampling procedure as in the last section,
I wish now to consider the semi-invariants of “moments in sam-
ples from the combined population, about the mean of the com-
bined sample” and to express them in terms of 661, “,,and B, ,
pz , (the semi-invariants if the component distributions (Pl@c),
Qz(x) respectively), and r and 3.

In order to obtain the desired results, I have made use of a

1 Loc. Cit. pp. 12-13.
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modification and extension of a method originally employed by
C. C. Craig! for the case of sampling from one normal parent pop-
ulation. I shall first develop the theory for my case, on the basis
that the two parent populations may possess non-zero semi-invari-
ants of all orders, imposing the condition of normality only when
actually computing the desired results. The mean of the combined

sample is
r r+§
= Zl X+ I %
= el

.. 8 .
We wish to find the semi-invariants 5 of \/ = Z —t:_l- in

which §; = x;- \/ and r+s=N, for partncular values of n,

and for infinitely many sets of r+s variates, assuming that each
member of each set is independent of all the rest. TheN §sin each

N
set satisfy 2, 6;=0

i=1
Now, let F(& ,6 ---6 )bg the correlation function of the first
N-1 8's. Then F(6 6 -6 1)<‘J.51d.62- d8,_, gives the probability

that the first N-1 &'s fall simultaneously within a cell

i +
(61t2d'61» 6z°% S TR W déN-l)
The semi-invariants of F(ﬁi, 6, 6N_,)are defined by

=1 Lt

o0 N-1

it

=/&63'/A6‘z/j””.‘/d‘éN“i.F(éiidz“.6'N'1)'e§1 v
=00

<1s (_l w) z (z:wc )wi (P-i‘/tti)(?""

1 Loc. Cit. pp. 1 to 35.

N-{ N-1 @), /N4 A3)
L) 1( ) .
o) e(,a xips(Z ) v(EAm) +
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where e.g.

2

()
(41) 5.1 )‘itx) 7\20‘1'11- 2 Aiititz* )‘oztz

Setting N i
= x I X
(SL JE=10"J i O,H ::’1‘.*)
a:: = N0
we have LL N

e(z: A t) 3 (z At l)‘?..

"./d"ié"‘z/“'fde ‘pi(x)Jr[(p.G(,)]s Eijz-:lauzl .
N-L N-1 2
e“i(?:' a-ut) > (E a;it )

wi(Z', atzt) % (l?idtz*i)2+--- L

l=l 1r L)+-—( Q.’r L)

N, B 2
(31({;"1 d‘»””‘)*?{'&(aat.nﬂh) I

8, [Nt 2
B4 Eiat r+2t',)+~zf-' 2:.' a-t, r#zti)* .....
e

: 2
: @1 23 a; r+s L) 2.( Qi ryst )*‘ """"
e
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in which o , &, , etc., are the Ist, 2nd, etc. semi-invariants of the
first componen. cpi(x), and /31 , ,62, etc. are the corresponding
semi-invariants for the second component (Dz(:c). It follows then.

that

iy () N1 K /N-1 K -1 k
Ei)\if[ ""k{(?}io’iiti) +<Eiaiztl)+ e '+('§1°érti> }
N’1 k N-1 k N-i k
+’6"{(§10i.r+1ti) +('§'1ai,r+zti)+' ' -+(.£1a;’ rast L) }

or
ky Ky o Ky, Ky K Knet Ky Kz kN_i}
r

)\Kik[nkN'i“ck {0'110'21 aN-1'1+a_12 Ozz-'~C1N_1,z+-~+airau-~aN_1’

K K K K K
2 ... N 1 2 N
2, ril On-t,ret Y re2 9,042 OIN a2t

Ky
M (5 k {0'1, r‘+1°'

Ky Kz Kn-1
YO s P2 res’ O ras|

where ki+ k2+ ce .+kN_1‘ k
so that
" K, K K
_ . 4 Z. L. N-1
Akykz o+ Ky~ VK {Eiaii % aN-L,;}
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By substituting for the a’s from the relation (41) in the last equa-
tion, the latter may be reduced to the following convenient form,

where, now, ;\kikz.' Akikz ...... Kn ? provided that,

=
“KN-g
at least one of the k; in A, is equal to zero.
i Koy - -+ k'S €4

[ L K-K; Ki
Aklkz' . 'kN=-N—R{°6K (\.231(_1) y (N'i) l‘)

(42)

r+s k-ki ) ki)
oo (B o o)

In the case of one parent population, all A Kyky- - Ky of the
same type, i.e. whose subscripts k 1k2“ Ky 3T€ merely different
permutations of the same set of integers K oK e kN , were
equal. This is no longer true for two parent populations, for we
must now distinguish between the 8's which arise from observa-
tions from the population (pi(x,), and those from 4)2(16). I therefore
introduce, at this point, what I shall call the “bar notation”. For
example, from the relation (42), all Akikz-“kg-l‘(cﬁ.--krnﬁu be
of the same type, and therefore equal, if the first r subscripts are
merely different permutations of the same set of integers k,,k,,-- ky.
whilst, quite apart from the first r subscripts, the last s subscripts
are also different permutations of the same set of integers k4,
kn-z ye o e k,. +s - In writing down the semi-invariants of the cor-
relation function F , using the “bar notation”, for convenience, I
shall suppress zero subscripts. Further, on account of the relation
(42), all Ak kK. Ky OF WhiCh KKyt Kprk oK 2
will vanish, since we are assuming now, that our two parent popula-
tions are normal. As a matter of fact, the only A

. “1":""1~\kur"‘r+s
that I shall require here are the following,
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1
Mo =N gN"“J
i
Mot =N {Npi}'
)\2‘0 =‘tﬁz§ V‘O(/Z+Sﬁz+N(N~Z)°CZ]
AOIZ =—i@jro(,z +sB, + N(N-2) CJZ]
Mo ’%ﬂ'l{""% *5‘32'ZN"7~]
A }_
Olii N2 I"°(/z +Sﬁz 2Nﬁz]
7\1‘1 -Ii;l—-{rnéz »sﬁz N(O(: +ﬁz)}

The above expressions were obtained from (42), after assuming,

(without loss of generality,) that ro .t sﬁfO . If, instead of

this last assumption, I had assumed that ) or A o)y Were equal

1lo
to zero, not only would the symmetry of the final results have been
destroyed, but the amount of labour necessary to obtain them would
also have heen doubled. The symmetric substitution actually made,
required that only half the final number of terms he obtained, the
remaining half in any particular result being readily written down
by interchanging the &4’s and s as well asr and s. N

Now, let 'P(\A) be the probability function for \/ z ﬁ
i=1
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The semi-invariants ot P(\{l) are then defined by

t? 3 )
5,t +5, 7 +53—3—!+... Vot
e = P(\/n).e -dVj,
(43) ~

+00 5”@

=1 L'N

==/d.6i d62~~ d6N-F(6i,6Z-~<5N)Ae‘
)

Regarding the use of F(61'62,"" 6N)in5tead of F(éi,éz,mé”_i)

in the above relation, see paper by C. C. Craig.!

We wish now to express the semi-invariants §) in terms of

the semi-invariants A of the correlation function

kiKZ‘ PN kN
F(éi'bz' . 6N) for the 8's. The semi-invariants L rst ...

. . n
of the correlation function for §; are defined by

N N @) N (3)
oLt ), L : ) i 4 ) an. .
e \idt t L)J'Z!(EiL”tL +3!(§1LL“) *

N n
6t
(44) _—./d,éi/déZ/ ...... /déN F(éi'sz‘“éﬁ)'e E‘i i

- 00

i

@
-1 +(§1 Vnah)+(§1¢nati) M

by expansion of the exponential function. Then, comparing the

1 Loc. Cit. pp. 18 to 19.
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relations in (43) and (44). it is readily seen that

k! L
(45) 5 = _K Z: .
kK N Ik ) KaKgoKp
Kyl k! ool
in which the summation is taken over all values of K, kz' ke
such that

ki+k2+~-+kr, =K.

Making use of the explicit relations for semi-invariants in terms

of moments and vice versa, we have from (44) and (40)

Z3 Lt )(k)

(1)(I"+S+t+ ) [(I"+5+t+ )1J|k)
@!)"(b) S(C‘)t )
[ vt J‘“’] [ vmm“’}
s' il

(46) -LL...L

(£thm

o b

(47) N \ ()» r N (b S
rr G T Epe )]
(@) (bl)3(c)t... rrstit ..

where, in both these relations
a > b >C > - vt
and

ar+bssct+.-- =n

From the relations (46) and (47), the L, can be found in terms
of the moments of ¥, and these, in turn, can be found in terms
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of the semi-invariants of F , by equating the coefficients of like
powers of the t's on both sides of the two equations. Examples
of the kind of relations obtained from (46) and (47) in particular

cases would be as follows,
(5) 3)
(Z.L t \/ &) - z:\/ J (7: \/uh)+2(’3 3 l).

Therefore

ino o‘%zo .0 ‘Qo...o“ézo. .0

) 2
2Y,20...0 Ys0... +2.\4° 0'020..0,

N OA® i O @ /N @)
() ~(Ee) =B~ (B )
N K @13
+ 10[('2 ?\-d:i') ]+ 15 [(E Aty ) J
=4 i=1 .

Therefore

Vao..0= Mzo.. 0 240..0 o200t @ Ns0. . 0Mi0.. 0

2
+02220..0 M 20..0* @2 210..0* 4 A30..0 *1z0... 0
2 2
+3>\zo...o']\ozo...o* 122, 0 2is0...0-

In my work, I actually make use of the following relations obtained
from (47), with certain terms omitted, which vanish when each of
the parent distributions is normal.
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0 (é\/t)(g At - |
(i) @1% @ (M . L)&) [(z: M, )mr
(i) (tz'*fi\/ltl)“) (i;tiAltL “ry chzlxttl) [(Eixttl)} 3‘
o G B e
) (gi\/‘t‘)(s)z15[(i’:1)"‘t1)w]2 (ésxiti) |
*10[(L Nt} EALtL “ [ (2, )]5
(é’i)‘ltl) .) [( )} .
[(1 82 lEpe) HEaw)
(vii)(E Vit; 105[ ZN:)\;cl (l)]z[bi L{)]
a(fu ‘”[(an)] onff) () [
(vili) (z: vt ) 210 [(;: )(,,]z[ z'é;\.tg]tze,(é@ai)(f’ x
y 6 N \@ 3
(B ool(Ene) T TEns oofEe)” - [Eas):

By substituting the expressions for the L's given in (46), into the
right member of (45), a direct expression for the SK'S in terms
of the moments of [ 1is obtained, viz.
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L k! 4 /N )
S Bl ke k. 'N"(EiLi |
L

N
omitting the parameters t; , and in which ( Zi Li)<k) is given by
i=!

(46). From relation (43) to this point, the theory follows exactly
that given in the paper alregdy cited.

A I shall next quote the final expressions A for some of the 5 )
obtained by C. C. Craig,’ in terms of the moments of F , for the
case of one parent population, and then I shall write down the mod-
ified expressions B , when two parent populations are involved

A 150- N o).
2. 52(\4‘)%-4»1\/2“.& N(N-i)\/n.n‘o-Nl\/f"o}.

+5V

o\n}

1 .
2. 5\2(\/")=-N—1 {PVZ'nlo*s%|2n+ \/(r-i)\/n’mo

B. 1 5,0)-% { Nalo

+ s(s-i)s/o‘n q

22 ‘
njo* ¢o|n+ er‘/n\o"/o\n]°

+Zr5‘{‘|n}-[r‘7‘\/z

In the paper mentioned above, expressions were also derived, using
a method similar to the one already indicated, for the semi-invari-
ants of the correlation function of two moments about the mean.
I have made use of a modification of only one of these expressions

as follows,

1 Loc. Cit. p. 22.
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m+n,0

/ 1 B 2
A3, VnVn)eN jw #NNAY L o-N vm’ovn’o]
SR v)-—i— V. DV
B. 3V, V0 = 2 4T m+n|o+5vo|m+n+"("’ m.nlo

+r5\‘/n +r5\/n|m

jmn In

_[rl\/mk) \/n‘°+ 52\/°|m ‘/o|n+"5‘}m|o‘/oln+‘~5‘/o|m ‘/nlo] ]

lere again, for the moments of the correlation function, I
tmploy the “bar notation”, its meaning being exactly the same as

in the case of the )\kikz__ , the discussion regarding

S 'krl“r+£---}‘r+s ) i
identical types of moments and their equality, corresponding also
in every detail. Once more, zero subscripts are suppressed.

. It now becomes necessary to express the modified moments in

the expressions B , for particular values of m and n, in terms of

the A of the correlation function F .

Kekg K | Kpst oo kpas
To this end, I make use of the relations (48), in conjunction with
the so-called “ D operator of Hammond™* which splits off a total
integral part s, made up by addition from any or all of a permu-
tation of integers.

At this point also, it is necessary to modify somewhat the use
o1 the Ds operator, because of the “bar notation” used to designate
he moments and the semi-invariants of the correlation function F ,
+lien two parent populations are being considered. In making up
the total integral part 8, split off from the permutation of integers

B Ma—c.T\iahon——Combinatorial Analysis, Vol. I, p. 27.
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k.

----- Kp | Kppg - Kpis o
integers Kk, .- k. must be kept distinct from those parts

the parts split off from the set of

which are split off from the set of integers K.y, kp,yz,.- ki o and

this same rule applies also to the residual permutations from each
of these two sets, after all the parts, with sum s have been finally
split off. Hence, the use of the “bar notation” to effect this dis-
tinction. To illustrate exactly what is meant here, suppose that I

wish to express \/,_ in terms of )\ In this

32 "L“z"'kr\kmi“' Keas®
case, I shall use the relation (v) of the set of equations (48), and I
shall merely consider the contribution made by the second term in
the right member of (v) to the final expression for \4' 2 , the other
terms of (v) being treated in a similar manner. Now V3|, (omit-
ting a numerical factor) is the coefficient of t:t; in the left mem-
ber of (v). I therefore seek the corresponding coefficient of 1:1 2

in the second term of the right member of (V) this term being

3 @
iO[(éA itiﬂ (élAiti) ‘ . Using the modified form of the D oper-
ator, we have
D,D3 (312) - (210)D2(112)+(0l2)DZ(310)+ (1]1) D2 (211)

- 3(2lo)lo)olt) (olz)(tlo)’* 3(l1)(1]0) {ols)

Now, we are able to write down immediately the terms in

Aki“z“"l‘?"kr+1~ .......Kpys Whicharise. They are

; 3
(49) 322100 A’;,‘ 1+ Aojz Aajo+ Ol Ailofou
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Ordinarily, the numerical coefficients in (49), will need to be mul-

tiplied by an integral factor, obtained as follows. A term t: t: may

N (s) 5!
be chosen from the expansion of ( L Viti) in -Si'—z-‘—or 10 (in
=1 Yad

general, in C‘i) ways. The numerical coefficient of the second term
in the right member of ( V) is also 10 (and in general, is, say C 2 )
The required factor for the above example is unity (or, in general,

C
the quotient Eg'- . It should be noticed in addition, that the sum
1

of the coefficients in the final expression (49) should equal the
numerical coefficient of the second term in the right member of (V) ,
with which we started, and this is seen to be the case.

As a check, one may observe, that if in the results which I

obtain for Sk (\ﬁ), 5k ? (Vm"’n)' the two normal parent populations

are identified, then the results for a single normal parent population
are obtained. Note that, to get the results as usually given for a
single normal parent population, one would further have to set

001=ﬁ1=0.

I derived the following results, which have been checked by
calculating the corresponding results for a single normal parent
population, without assuming that the first order semi-invariants

of the type Aioo----oo are equal to zero,

5+, { (V- s8I (4l ).
31(‘6) - '-1;1 { 3(N-2)( Fo, +3 p,pz )+N( Mf+ s ﬁf)} .

3, (v, ;é-s {[3Nr{N(N-Z)"+r(2N-3)H-9,’+[3Ns{ ra(n-z)is(zn-s)}]p;
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N4(rocf’+ 5B )+6N 2'[r(NEZN+ )+ (N2 2Ns s)6; pz}
+[6Nr‘5(2N-3)}oczﬂz+6N7‘rs[092/5 +oh CSZH

s §r‘(N 2N+r)al+ (N2 IN+s)O)+ 2rs[(re?6, + s, 82)
vy By (st LBy )- 254, By 4 7y 6,6,)] I

104) % i or [N N -5(r% 5Ns) |42+ 0[N N4 NP
o5 SNE) |5 7 3N'rs [(swty e BB, ) (it o 54, B)
-2(s4l4, B ral 6l b, )]+3r'3 [4(5%10‘; By+ r¥, 6, B%)
+8rs(ugy O, By )~2{5(N7’-2N~r)¢262+r(Nz-ZN-s)oozﬁzz}

{[ (O-N)e- 94202, 878+ [N(o-N)s-r)r 257 ]2, 3 }
+{[(20-12N+ 3N%) -N(ZN-10N- 16)]26, o st20 12002300
-N(2N2-10N+lb)]eczp;}JJ,r[rz(sz-lZNJ'ZO)-Nr(sz-30N+48)
NS 20N+32) |3 5 [ (3 2420020) Ns(NE30Ns46)
N(EN 24N 32 | pj’}.

5(%)- —33 {3N"r(7N‘320N LONT+38N5 + ANSA 28N 7)ot
+3N% (TN 20N26NY +38N% + 4N%2_ 28N, Ts )6 4"
+2N rs[(sx L+ ﬁ )+(r~c B+ 5%, 6, °)- 2(5"‘1% B}
realB8,) |+ 3N [Tk AT a2 ) (e B3 B
s B,)+ 12 (%<, ] ﬁz)] 18N s (2ol L Bt 287 )
+12N rs[(N N'r-252)w ey s B, + (NEN- -2 )44 6 J

+6N rs[(5N +2N*r-14Nr +7r2>a¢ 1% B, +(5N%+2N%s
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-14Ns+7s2) 4, pf¢2]+12rs[(-zws-3Nzrs+ 12N
ASNPZSP ol 5, + (-2 N2 3NEs +12N% -15Ns?
+55° )4y B, B; ]+12N2r5 ls(-N2+ AN-r)aal B7 4 (N
+2N-s)w* B, 7 ]+©rs [(3Nzrz-©N % 15N 5 -12Ns? 4388
+Brs?)at o2+ (3NsZ 6N 15N - 12Nr 519
+8r%s )us B ] +36rs {(-Sr‘s‘- N%-N%%3N%-2N3
r3N'r)u, 2B, B,+(-5r%-Nr-N*s*+ 3N - 2N°
+3NS)a, 4, p, BE [+9rs (IN®22N% 36Nrs 4 T2 s
rON'rs)at 67418 s (52 TN 14N N vON*
-29Nr* 43N - ZIN® )ulx2 B, + (553 TN%E 14N s
+N5.8N% 29Ns2 4 3N% - 21N ), 7 ﬁ;}qersl(usf’
+4N%+5N?rs +5r% -19Nr’5)ociz«¢2 (b’zz+(N3+4Nzr
+5NFs+ 5rs2- [9Nrs)« 2B 62]+3r(3br‘3-18Nr3
FTSN* P2 3N* 312 N2 126N+ 28N % 484 N
32N+ ANS 126 NP2 162 N T8N ) g +35 (3053
6N 75N+ 3NS5 12 N's -1 26N +28N'5 +84N*
5 6 2 2 3) 4 4 3
-3ZN+AN-126N. “+162N% -78N )pz+6r(5r‘-39Nr
+ 102 N*r2e 3NN 36 N3 r2 420 N +STN T

-ON} +60N® 42N+ 8N Jal 4 105 (5839 Ns®
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+102N%%+ 3N%2 9N %3 36N 52 121N + 57N
-6N% +60N% 42N 8N ©) 826, 1 6rs (12r2 66NE-5IN?
+T5N%-36Nr?-120Nr +6N* 24 11N 12N 3!“)&2(%
+6r3(125*+66N%- 51N>+ TSN - 36Ns2126Ns + 6N

LN 12N3s) o, ) }

SR =£35 { r[sz(N-3)+N (NEN- s)]ocieo: +s [r’(N-3)
N(NEN-r)] B, A7+ rs[s(3-N)a2Br(3-N)y 67 ]
+ rs[{(N -2)(r-)+25 )4, B, +1( N-2s-r)s2r]a, pz]
#Nrs[(a s )8 )- (s, B0 v, O,

. (reofﬁi B, +5%,%, (512)+(raoi B+ 5%, ﬁ:)}.

°11(Vz-‘i‘ =£—b {3r‘(i3N2.r‘-7N 2N R ANA AN 42103
~ONr)ulu?+ 35 (13N -TN 2 2N % 3N% 4N
+2539Ns?) 66"+ 3r(ONZ+ N* 3r% 5N Nr 2+ AN}
-BNIr) 4+ 35(BN%NY 352 SNLNs% A NK -8Ns) B’
+6rs@rANCeN<T+ZNEN?) 4 428, +6rs (252

-ANs +N%+ZNEN)<, By D:+2Nzr‘s[(5¢:42+f‘p:bg)

-( swfooz @11- rd, f): ﬁz) ~( Syt p:+ rec:(iipz)
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+(rac:'ﬁz+ sd, 514)]+3rs[2(4r5-N3)¢1ocz 6,6,+2(2 r25Nr
fZNz‘szl”)e(,:o(,z (i’)2+2(23‘°’-5Ns+2N7“+ st)oczﬁizﬁz
(N2 2Ns +3rsvs? Rl 62 (N2 2Nr s 3rs+ r? Yol 6]
+(9r-8N+4ANZ 3Nr ol B, +(9s-8N AN SNS)%éiJ}.
sii(va‘v4)=% {Nr(br*’-zbwr + 3TN r+ ANHE gN - ZON?
+7N4)oc:oc;+ Ns(6s>26Ns% 37TN%+ AN*s2- 8N
20N TN} @+ r(TSNF- 07N + 56N 19 ¢
+ONr® 30N%H 54N+ 3N P N4z NG
+8N° )%, +5(T5Ns- 10TN?s + S8N*-195% ON<?
-30N?s?+ 54 N%s + 3N3s2- 6N% - 42N4+6NS)(51523
PNrS[( N NP 258 Ars)et B (N + 21207
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