THE POINT BINOMIAL AND PROBABILITY PAPER
By Frank H. Byron!

1. An approximation to the sum of a number of consecutive terms of the point
binomial may be found graphically and quite expeditiously by means of so-
called “probability paper.” This paper is ruled so that the (z, y) graph of the
equation of the integral of the normal curve
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is a straight line. Let the successive terms of the point binomial be represented
as follows:

P+or=uwt+wm+ -+ U+ -+ Un,y @
where u; = .Cp" ¢ and p 2 ¢q. Then the (z, y) graph of the equation,
t
y=;)ui’ t+'}=x, (3)

i.e., of the sum of first (¢ 4 1) terms of this point binomial, is, in all but extreme
cases, a set of points lying on a gently turning curve, so gently that its form may
be represented closely by two straight lines, each passing through the median
point as will be explained in the next section. As paper of this sort is readily
obtainable, and as this method yields as great accuracy as is really useful in
many problems, it is suggested that its use ought to be quite general.

2. Sheppard’s Corrections. The formulae for the moments of the point
binomial, mean = ¢n, ¢ = pgn, are exact without any corrections such as are
used for grouped material. This fact has led us all (apparently) to assume that
in fitting the curve to the point binomial one would get a better fit by equating
the moments of the curve to the uncorrected moments of the point binomial
rather than to the corrected moments. The studies made in connection with
the preparation of this paper show that when the purpose is to equate areas to
sums of terms the corrected moments should be used. The theoretical basis
for this conclusion is as follows:

To simplify the argument let us suppose that one were seeking that curve of
Charlier type,

F(z) = cpo(z) + ahi(@) + - - - (@), 4)

1 With the assistance of Burton H. Camp.
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(where ¢, is the normal curve and ¢, ¢, - - - its successive derivatives) whose
integral would best fit the graph of (3). Since fitting is required only at the
isolated points z = 3, 13, 23, .- , it is clear that one might obtain this by the
two following steps. First let f(z) be any function whose integral meets exactly
the requirement at these isolated points. What values this integral has at other
points does not for the moment concern us. There are an infinite number of
such f(z) curves. Next let the ¢’s of (4) be so chosen that F(z) will fit f(z) as
nearly as possible. The ordinary derivation of the ¢’s supposes that the fit
between f(z) and F(z) is to be made by least squares, the residuals being weighted
by the factor 1//¢(z). No matter what f(z) is chosen, the ¢’s can be deter-
mined so that the weighted integral of (f(z) — F(z))? will be a minimum, but the
value of this minimum will vary from one f(z) to another. We now desire to
select that f(z) which will make this minimum value as small as possible, and
it is reasonable to suppose that our best selection will be some f(z) which is as
kindred to the nature of F(x) as possible. We shall not therefore choose an
f(z) which oscillates wildly between the points where perfect fitting is required,
(Fig. 1) nor yet an f(z) which is made up of the top bases of the point binomial
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histogram ; we shall prefer a modification (Fig. 2) of that histogram by a smooth-
ing process. Such an f(x) will not have the exact moments of the point binomial,
but, more nearly, those moments corrected for grouping. Then the determina-
tion of the ¢’s will come out in terms of these corrected moments, not in terms of
the uncorrected moments. (In fact the uncorrected moments would be the
exact moments of an f(z) having an oscillatory character between the important
points.)

Of course, when = is large, the difference is too small to be noticed and the use
of Sheppard’s corrections is not worth while, and since n usually is large when
approximations of this sort are needed, the point is not usually important. It
was important in the computation of the tables of §4. Moreover, the use of
Sheppard’s corrections does not invariably yield better results, the gain being
masked sometimes by other effects to be considered in §3. An excellent illus-
tration of uniformly better results is in fitting (3 + 3)° by a curve of Type 4.
The errors in the sums as derived from (4) with and without the corrections, is

given on the following page.
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t 0 1 2 3 4 5 6 7 8 9
With .0002| .0001|— .0003|—.0001| .0000| .0001| .0003|—.0001|—.0002| .0000
Corrections

Without .0007| .0022| .0039| .0036| .0000|— .0036|—.0039|— .0022|— .0007|— .0001

Corrections

3. The Stubby End. The other effects which mask this improvement are
especially noticeable at the stubby end of a point binomial. We have to keep
in mind here that the approximating curve (such as (4)), is required to turn a
sharp corner, for, due to the least square method of fitting, it is just as important
that it be close to zero when ¢ is negative, as it is that it be close to u,, u,, - - -
when ¢ is positive. Therefore, in order to turn this corner it has to dip below the
z-axis in the neighborhood of { = — %. ~ This makes the approximating curve too
low just to the right of ¢ = —3, unless the whole curve be arbitrarily widened.
This arbitrary widening is customarily performed by not using Sheppard’s
correction for ¢, and the result is a betterment of the fit at these points but a
corresponding loss over the rest of the infinite interval. A good example? is

2 4+ 5B, The fit is worse at the left end when Sheppard’s corrections are used
but better over the rest of the interval.

The same difficulty arises in another connection. If we compare the closeness
of fit to a point binomial made by F(z) as written in (4) and by F(z) as it would
be written if ¢, were zero, it often happens (as is well known) that the latter is
actually slightly better on the average. How can this be true if the ¢’s are
chosen by the method of least squares and the best choice as thus indicated
makes ¢, different from zero? The answer is that the ¢’s are chosen so that the
fit is best over the infinite interval, not merely over the interval from { = —3%
tot = n + %, and that furthermore the distant points are weighted more heavily
than those near the center. Thus it might happen that a choice, other than the
least square choice, and one in which ¢; would be zero, might be better for the
restricted interval covered by the point binomial. This does happen especially
when due to the abruptness of the stubby end of a very skew binomial, the
curve has to dip below the axis in order to get by a sharp corner. A good ex-
ample is the problem considered by Fry:? (% + &)™. All the effects men-
tioned are present here. The fit is on the average a little worse if ¢, is not equal
to zero over the point binomial interval, a little better over the infinite interval.

4. For graphical purposes a sufficiently good approximation to the median of
(» + @)™, is given by
M =ng— (p — q)/6.

2 The true values are given on page 220 of Mathematical Part of Elementary Statistics,

by Camp, D. C. Heath and Company, 1931.
3T, C. Fry, Probability and its Engineering Uses, p. 258, Van Nostrand, 1928.
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The following tables enable us to find the first quartile @;, and the ninth decile
Dy. The accuracy to which they can be plotted is only about one-tenth that to
which they are given here. Therefore accurate interpolation is seldom neces-
sary. The values of S.;; are to be read from the graph at the points ¢t 4 %, as
indicated in the directions preceding the tables. The graphical method will be
found efficient if one uses common sense in the computation. Numbers which
are to be plotted should not be computed to a higher degree of accuracy than
can be used graphically. In reading the values of S.,; it is well to remember
that the true values lie on a curve, and that outside the interval from @, to D,,
they are slightly less than those given by the straight line. Once the graph has
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been made, all the values of S;;; can be read quickly; it is not necessary to make
a separate computation for each . This method is therefore specially advan-
tageous when one wishes to find several sums of this sort for the same point
binomial. It should also be noticed that one can tell from the appearance of
the graph about how far the true sum would be from the two straight lines and
s0 estimate the error to which his reading is liable.

5. Illustration. Find the sum of the first 7 terms of (3 + })%.
Heret = 6, M = 8278, @, = 6.726, Dy = 11.369. The graph shows that
13

> = 0.224. The true value is 0.222. So the error is 0.002.
0
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An idea of the accuracy of the method is given by the errors (out of two places)
that would be obtained for this point binomial for various values of ¢, as follows:

t |2l4}6|8’10’12|14|16

Errorsl.OOl.Ol'.OOI.OOI.OOI.OOI.OOI.OO

Direcrions For Usk oF THE TABLEs: Let p = ¢, M = ng — (p — ¢)/6,
Qi = 21 + qn, Dy = 22 + gqn. On the graph draw the lines MQ, and MD,.
Read S;y1att + §.

Values of 71

n
\ 2000 1000 750 500 400 300 200 100 75 50 25
p

.99 —.693 —.701 —.704 —.710 —.714 —.720 —.728 —.747 —.756 —.771 — .804
.98/ —.688 —.693 —.696 —.700 —.703 —.707 —.714 —.728 —.735 —.746 —.770
97| —.685 —.690 —.692 —.696 —.698 —.701 —.707 —.718 —.724 —.734 — .784

.96/ —.684 —.687 —.689 —.693 —.695 —.697 —.702 —.712 —.718 —.726 —.744
.95 —.683 —.686 —.688 —.691 —.692 —.695 —.699 —.708 —.713 —.721 —.737
.94/ —.682 —.685 —.686 —.689 —.691 —.693 —.697 —.705 —.709 —.717 —.732

.93| —.681 —.684 —.685 —.688 —.689 —.691 —.695 —.703 —.707 —.713 —.727
.92 —.681 —.683 —.685 —.687 —.688 —.690 —.693 —.701 —.704 —.710 —.723
91| —.680 —.683 —.684 — .686 —.687 —.689 —.692 —.699 —.702 —.708 —.720

.90| —.680 —.682 —.683 —.685 —.686 —.688 —.690 —.697 —.700 —.704 —.717
.88/ —.679 —.681 —.682 —.684 —.685 —.686 —.689 —.695 —.697 —.702 —.713
.85/ —.679 —.680 —.681 —.682 —.683 —.685 —.687 —.691 —.694 —.698 — .707

.80| —.677 —.679 —.679 —.681 —.681 —.682 —.684 —.688 —.690 —.693 —.700
75| —.677 —.678 —.678 —.679 —.680 —.681 —.682 —.685 —.686 —.689 — .694
70| —.676 —.677 —.677 — .678 —.679 —.679 —.680 —.682 —.683 —.685 —.690

.65| —.676 —.676 —.677 —.677 —.677 —.678 —.678 —.680 —.681 —.682 — .686
.60 —.675 —.676 —.676 —.676 —.676 —.677 —.677 —.678 — .679 —.680 — .682
50| —.675 —.675 —.675 —.675 —.675 —.675 —.675 —.6756 —.675 —.675 —.675

ERRATA
THE ANNALS OF MATHEMATICAL STATISTICS
Volume VI, No. 1, March, 1935
On page 25, in Directions for Use of the Tables, p = gshouldreadp 5 ¢, @ = = + qn

should read @ = 2,0 + qn, Ds = 7, + gn should read Dy = 2y + gn. In the tables of
values of = under p = .97, n = 25, instead of —.784 the number should be —.754.
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Values of z,

n
\ 2000 1000 750 500 400 300 200 100 75 50 25
P\
.99 1.307 1.318 1.325 1.336 1.344 1.356 1.378 1.439 1.481 See Auxiliary
.98 299 307 311 318 323 330 343 376 396 Tables
.97 295 301 304 310 314 319 329 353 367
.96 293 298 301 306 309 313 321 341 352
.95 292 296 299 303 305 309 316 332 342
.94 201 295 297 300 303 306 312 327 335
.93 200 293 295 298 301 304 309 322 329 1.342 1.374
.92 289 292 294 297 299 302 307 318 325 336 365
.91 289 292 293 296 208 300 305 315 321 331 357
.90 288 291 292 295 296 299 303 313 318 325 351
.88 287 290 291 293 205 297 300 309 313 321 341
.85 286 288 289 291 292 294 297 304 308 314 330
.80 285 287 288 280 290 291 293 208 301 306 317
.75 284 285 286 287 288 289 291 294 297 300 308
.70 284 285 285 286 286 287 288 291 293 295 301
.65 283 284 284 285 285 286 286 288 200 292 296
.60 283 283 283 284 284 284 285 286 287 288 291
.50 282 282 282 282 282 282 282 282 282 282 282
Auxiliary Table
n
60 50 40 35 30 25 20
P\
99| 1525 1.575 1.663 1.740 1.871 2.149 3.209
.98 416 435 455 488 520 1.568 1.652
.97 381 394 413 433 445 472 514
.96 362 372 387 397 410 428 457
.95 350 359 370 378 389 405 425
.94 336 349 359 366 375 387 405




