AN APPLICATION OF ORTHOGONALIZATION PROCESS TO THE
THEORY OF LEAST SQUARES

By Y. K. Wone
Introduction

The present paper is an outgrowth of the writer’s attempt to fill a lacuna in the
discussion of the Gauss method of substitution as given by many writers. For
illystration, let us cite Brunt’s Combination of Observations. In Chapter VI,
we find:

Let the normal equations be

[aalz 4 [ably + [acle — [al] = O
(bbly + [bclz — [b]] = O (@)
[eclz — [el] = 0.
From this equation we find

[ab] [ac] , [al] (i)

*= " faal? " faal® T [aal”

Substituting, we obtain
[bblly + [bel]z — [bl1] = O
[eclle — [ell] =0 (iii)
where
[bb1] = [bb] — [ab] [ab]/[aal, etc. >iv)
From the first equation in (iii),

[bel] [bl1]
TR

In connection with equations (ii) and (v), the question naturally arises as to
whether or not these numbers [aa], [bb1], .- - are all different from zero. Since
[aa] = Za.a;, one can see that [aa] # 0if a; = 0 for every 2. However, to show
the non-vanishing of [bb.1], [cc.2], ete. is by no means simple. Many writers do
not give a demonstration on this point. We know that a system of non-homo-
geneous linear equations has a solution if the system of equations is linearly
independent. Brunt gives a discussion of the independence of the normal equa-
tions in Chapter V, Art. 36, but he does not state clearly a condition for inde-
pendence. He says: “The condition of independence is in general satisfied in
53
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54 Y. K. WONG

the problems which arise in practice. We can then proceed to the formation
and solution of the normal equations.” It is one of the aims of this paper to
give a necessary and sufficient condition for the independence of the normal
equations and to show [aa], [bb.1], etc. are all different from zero when the condi-
tion is satisfied.

In the theory of least squares, there is the classical method of the derivation of
normal equations by an application of the notion of minimum in differential
calculus. After the normal equations are secured, the Gauss method of substi-
tution is applied to obtain the solution. Doolittle modifies the Gauss method of
substitution so as to facilitate the labor of computation. However, when the
number of parameters (or unknowns) exceeds 4, Doolittle’s method is quite
complicated. In the present paper the writer wishes to present a mathematical
discussion of a method obtained through an application of the Gram-Schmidt
orthogonalization process. This method furnishes us a new procedure for deter-
mining the most probable values of the parameters (or unknowns). The formu-
lation of the system of normal equations will be omitted in this new procedure,
which is particularly effective in fitting curves to time series. The paper can
be roughly divided into three parts. The first part gives an algebraic derivation
of the normal equations. The second part derives a condition for a set of
observation data so that the Gauss method of substitution is applicable. The
third part gives a relationship between the Gauss method of substitution and the
orthogonalization process. A practical application of the results of this paper
will be found in a later paper.

The process of orthogonalization has been used in the 19th century, and has
been applied extensively in the theory of integral equations and linear trans-
formations in Hilbert space. In classical analysis, if ¢1(z), p5(2), - - - , defined
on (0, 1), is a normally orthogonalized system, and if f(z), defined on (0, 1), is
such that f? is Lebesgue integrable, then the system of Fourier coefficients

fr = ‘Alf(x)ﬁor(x)dx (7‘ = 1; 2, ot ')

has certain interesting properties, one of which is that

%[ (@) —Z’n:fmr)2dx=0-

The preceding notion has a close connection with the theory of least squares as
outlined in many texts on statistics. In section III, the reader will find how
this notion is applied in the derivation of the normal equations. Since the
number of dimensions is finite, the integration process reduces to a summation
process and furthermore no limiting process is used. This new derivation of
normal equations has the advantage that (1) differential calculus is not used,
(2) a new form of normal equations is obtained, (3) the solution of the unknowns
or parameters can be immediately obtained without further application of the
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Gauss Method of Substitution or the Doolittle Method, and (4) the formula for
the “quadratic residual” is obtained as a simple corollary.

From the results in section I1I, we see immediately what condition should be
imposed upon the set of observation data so that the Gauss method of substitu-
tion may be applicable. In section VI, we find a necessary and sufficient condi-
tion for the independence of the system of normal equations (3.9), and also the
fact that when this condition s fulfilled, then, due to the special nature of the
coefficients of the unknowns, we see that the matrix is properly positive. It is
on account of this fact that we are able to show that the numbers [aa], [bb.1], etc.
are all different from zero. The demonstration of this point is found in section
VII. In thissection, we lay down a fundamental hypothesis for Gauss’s method
of substitution, namely, the set of observations 4; = (@i, ---,ain) 2 = 1,
2, ..., r, is linearly independent. Lemma 7.3 may be called the fundamental
lemma for Gauss’s method of substitution. Some interesting properties of the

numbers [4,A4;-h], where s, ¢ = 1, -.. , r, and & is less than the smaller one of
(s, t), are demonstrated.
From the properties of the numbers [4,4,-k], where s,t = 1, ..., rand h is

less than the smaller one of (s, f), and in comparison of the system of equa-
tions (3.7°) with the final form of equations obtained through the application
of the Gauss method of substitution, we can see the relationship between the
Gauss method and the Gram-Schmidt orthogonalization process. If we should
like to give some credit to Gauss, we may say that the orthogonalization proc-
ess was known by him, but was stated in a different form.

The writer wishes to remark that certain theorems together with proofs in
section IT, IV, V and VI are obtained from E. H. Moore’s lecture notes. How-
ever the writer should be responsible for any defect. Finally, I should empha-
size that the use of the notion of positive matrices is only for convenience.

1. Vectors, Inner Products, and Linear Independence
In this paper, we shall consider vectors of the form!?
(1.10) (v1, v2) - -+ , ).

For convenience, we shall use capital letters to denote vectors of the type
(1.10).

Let V= (v, 0 -+ ,0,) and U = (wy, ug, --- , us), then we say V = U if
v = u;for every <.

We define V 4 U by

(1.11) V4+U= @04 u,vs+ s -, 00 + us),
and sV, where s is a number, by
(1.12) sV = (svy, svg, - -+, 80,) .
1 If we write v; as v(¢), where ¢ = 1, 2, - -- , n, then v({) may be considered as a function
of one variable whose range consists of a set of positive integers, (1, 2, ---, n). E. H.

Moore defines a vector as a function of one variable.



56 Y. K. WONG

Hence, sV = Vs. In particular, when s = —1. we shall put —V = (=1)V.
Then U — V becomes a special instance of (1.11) and (1.12).
From (1.11) and (1.12), we see that addition is commutative and associative.

InNER PrODUCTS: The inner product of two vectors V.= (vy, - .., v,) and
U= (uy ---, un) is defined? to be
(1.2) V,U0) = X vus.
1

The norm of a vector V is defined by n(V) = (V, V); and the modulus of a
vector V is defined by mod (V) = + v/n(V) .
From (1.11), (1.12), and (1.2), we can easily prove the following theorem:
TaEOREM 1. The symbol (, ) has the following properties:
S) (U, V) = (V, U) for every V, U; (symmetric property)
(Ly) sV, U) = s(V, U) = (V, sU) for every V, U and every number s;
(Ly) (U, (V+ W) = (U, V) + (U, W) for every U, V, W; (linear property)
(P) (V, V) = 0 for every V; (positive property)
(Po) (V, V) = 04f and only if V is a zero vector; (properly positive property)
LiNear INDEPENDENCE. A set of vectors Vi, ..., V, is said to be linearly
dependent in case there exist constants ¢,, - - - , ¢, not all equal to 0 such that

01V1+ vee +C,Vr = 0,
where 0 is a zero vector.
A set of vectors V1, ---, V. is said to be linearly independent in case, if the
constants ¢, - - - , ¢, satisfy

01V1+ +CrVr = 0}
each constant ¢; = 0.
THEOREM 2. If the set Vi, ---, V, is linearly independent, then none of the
veclors s a zero vector, and hence the norm of every vector must be different from zero.
For if V, is a zero vector, then set ¢, = 1, and ¢; = 0 forz > s. It is obvious
that
o-Vi+---+0Vu +1.V,+0.Veu+ .- +0.V. =0,

which show that the set of vectors Vi, ..., V, is linearly dependent, contra-
dictory to the hypothesis.

A more general theorem is stated in

TaEOREM 3. If the set Vi, -- -, V, is lineurly independent, then every subset’
18 also linearly independent.

We shall prove this theorem by a contrapositive form. The contrapositive
form is as follows: If in the set Vi, - - - , V., there exists a subset which is linearly

2 The notation (, ) was introduced by D. Hilbert. In treatises on least squares, the
notation [ ]is used. The present writer reserves the latter notation for other purposes.

3 Consider a set of integers (1, 2, --- , n). Then any combination of this set of n distinct
integers taken r < n at a time is called a subset of the set (1,2, --- , n). Likewise, we call
any combination of the set of vectors Vi, Vy, ---, V, taken r < n at a time a subset of the
whole set.
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dependent, then the whole set is also linearly dependent. Without losing any
generality, let us suppose the subset V, --- , ¥, (s < r) to be linearly depend-
ent. Then there exist cj, - - - , ¢, such that

01V1+ ... +C,V.=0.

If s = r, then the whole set is linearly dependent. If s < r, then let ¢; = 0
fori=s—1,8s —2,...,r. Then

T

Z CiV.‘=0,

1
which shows the whole set is linearly dependent.
THEOREM 4.* A necessary and sufficient condition for the set Vi = (va, - - - , i),
t =1, ... ,rto be linearly independent is that there exists a non-vanishing deter-
minant of order r in the array
Vi, V12, =+, V1a

Vo1, Vagy ¢ ¢« , VU2q

e o o o o
vrl, vr2, M ,vm

II. Gram-Schmidt’s Orthogonalization Process

For the present section and the sequel, we shall adopt the notation 4; =
(@i, -+, @in), Bi = (b, -+« ,bin), and Cis = (cary -+ , €in) fori = 1,2, ..., 1.

THEOREM 5. For every set of vectors Ay, - - - , A,, there exists uniquely a set of
vectors By, - .., B, such that

5.1) (By B,) = 0 (¢ 5 s). »

5.2) For every t satisfying the relation 1 < t < r, then A, is a linear combina-
tion of By, - - - , B,; and B, is a linear combination of A, - - - , A,.

53) By = Ay; and for t > 1, (B, — A,) is a linear combination of
B,, .- -, Biy, and is also a linear combination of Ay, --- , Ay

5.4) Ift > 1, then (4,, B:) = 0 for every s < t.

5.5) (A B)) = (B, B)) = (B, A,) for every t.

To prove this theorem, let us define

B, = 4,,
B, = A, if n(Bl),= 0
2.1) = A; — (ﬁz’Bl;l) B, if n(B) #0
t—1
By = A, — Y huB; A=st=sn),
i1

4 See Dickson, Modern Algebraic Theories, p. 55; Bocher, Higher Algebra, p. 36.
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where

(211) his = (4y, Bi)/n(B), if n(B) =0,

=0, if n(B)=0.

We proceed to show that this set has the properties stated in the theorem.
To prove 5.1), let us suppose ¢t < s. This assumption is permissible since the
operator (, ) has the symmetric property. First, if A; = 0, then B; = 0, and

. (By, Bs) = (41, 42) = (0, 42) = 0.
Secondly, if 4, # 0, then B; £ 0 and

(A2; Bl)

(By, By) = (Ay, A2 — hyy B)) = (4,, 45) — (44, By)
n(By)

= (4;, 42) — (41, A1) (42, A1) /n(4y) = 0.

Assume 5.1) is true fort = s — 1, then
s —1 s —1
(Bb Ba) = (Bt; Ac - Z haiB|'> = (Bt, Aa) - Z hn‘(Bt; B:) .
1 1

The sum on the right hand side reduces to h,(B:, B;), since the other terms
vanish by assumption. Now if (B;, B;) # 0 then by (2.11), k.(B:, B:) = (4., By),
and by the symmetric property of (, ), we obtain

(Bh Bl) = (Bh As) - (Aa’ Bt) =0.

If (B, B;) = 0, then by the Py-property of (,), we find that B, is a zero
vector, and hence (B;, B,) = 0.

5.2) follows from the definition of B,.

That (4 — B, is a linear combination of By, ..., B,_, for t > 1 follows
from the definition of B,. Since B, is a linear combination of (44, --- , 4,.1),
we secure the second part of 5.3).

By 5.2), we can determine g, such that 4, = Y g.Bi.. Thus for every
1
§ < t, we have by 5.1)
(A” Bi) = (Z gat'Bt'; Bt) = Z g,.-(B.', B;) =.0
1 1
t—1
By 5.3), there exist g,; such that 4, — ‘B, = D g.B; and hence 4, = B, +
1
t—1
> guBi. Thus by 5.1), we have
1
t—1 t—1
(4, B) = (Bt + ; 9::B;, Bt>' = (B, B)) + E 9:(B;, By)
1

= (Bty Bt) .
By the symmetric property of (, ), we secure (4, B;) = (B, By).
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For the proof of uniqueness, let us suppose there exists a second set of vectors
Bi, ---, B] having the properties 5.1), 5.2), 5.3), 5.4), and 5.5). By 5.3), we
see that B, = A, = B;. Assuming the uniqueness holds true for r = ¢, we
proceed to show that it is also true for r = t 4+ 1. By 5.3) there exist con-
stants s;, ; ({ = 1, --. , ¢) such that

t

Biy = Aa + ) sid;
T
¢

Bipr = A+ 2 sids.
1

Thus
t

Bt+1 - B,¢+1 = E (ss — SZ)Ai-

1

From this, we secure
t
(B — B,¢+17 By — B,t+1) = (Bt+1 - Ble+1; E (s — 3:)1‘1‘)
1

t
= ; (3.' - 8:)'(Bt+1 - B:+1, As) =0,

by virtue of 5.4). Hence by Po-property of (, ), we have By — By = 0
and hence B,;; = B',,;.

The set By, ..., B, with the properties stated in Theorem 5 is called the
orthogonalized set of A,, --. , A,. This process is called Gram-Schmidt’s orthog-
onalization process.

The set By, - - -, B, is called the normally orthogonalized set of Ay, --- , A, in
case the former set enjoys the properties 5.1), 5.2), 5.3), 5.4), and if

5.5n) (A4, B) = (B, B) = (B, A;) = 1 for every t.

THEOREM 6. If a subset Ax, -+, Agw(l Sk = -+ =k, S 1) in the sel
Ay, ---, A, 1s linearly independent, then there is a subset By, ---, By, which
has the properties stated in Theorem 5, and it is also linearly independent.

Let h = kw — k1 + 1. To prove the theorem, we may assume %y, - - - , kn to
be 1, ...,k < r, for otherwise, we may renumber the vectors. We construct

the B vectors in the same way as given in equation (2.1) and (2.11). By
Theorem 5, we have

s—1
(2.2) B, = A1, B. = A: + E gu’A\' (8 = 2) R | h) .
1

Suppose the constants ¢y, - - - , ¢4 be such that

clBl+ e +C;.Bh =0.
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Then by (2.2), we secure
h h 8—1
0= ClAl + Z CsBs = ClAl + ch (A.s + Z gsiAi)
2 2 1
= (c1+cogm, + -+ + cagn1) A1 + (2 + cagse + -+ - eagn2) A2 + - -+ + crda.
Since A, - - -, A; are linearly independent, we have
€1 — Coffor — -+ — Cufny = 0,
C2 S p— chgh = 0
2.3) P
Chp = 0.
But the determinant of the coefficients of ¢;(z = 1, - -. , h) is
1 gn ga -+ gn
0 1 g e g
32 h2 _ 1 )
00 0 ... 1

Hence by a theorem in the theory of equations,® the only solution that satisfies
(23)isthat ky = k; = --- = k» = 0. Thus the subset By, - - - , B is linearly
independent.

CoroLLARY. The orthogonalized set By, - - - , B, is linearly independent if and
only if the set Ay, - - - , A, is linearly independent.

THEOREM 7a. If a set of vectors Ay, - - - , A, 1s linearly independent, then the
set can be normally orthogonalized.

Let B; be the orthogenalized set of A;. Since 4 ;is a linearly independent set,
then the set B; is also linearly independent by Theorem 6. Hence by Theorem
2, the norm of every vector B; is non-vanishing. Define C; = B;/mod (B.).
Then this set C; enjoys the properties 5.1), 5.2), 5.3), 5.4) and 5.5n).

TueoreM 7b. If a set of vectors, Vi, - - -, V, is normally orthogonal, i.e. if
1 (=3
(24) Vi, V) = { .
0, (@ #j),

then Vi, - .., V, is linearly independent.
For suppose
aVi+ - +aV.=0.
Then

r

EC.'(V.’,V,')=O, (j=1,2,°-',7').

=1

5 Dickson, First Course in the Theory of Equations (1922), p. 119.
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By condition (2.4), the preceding expression reduces to
ci=0’ (j=1,2,--~,7‘),
which shows the linear independence of Vy, ..., V,.
III. Algebraic Derivation of the Normal Equations

Consider a linear function
3.1 l = pity + potta + -+ + Py = ;' DiTsi .
Let the set of observations of z; and I be
3.2) Ai = (@, -++,aim), L=, -, =1 .-..,r;n=7)
respectively, then the residual v; is

T
vi:zpiaii"’li; (i;=1}"'}n)°
i=1

In vector notation,
V = ‘21' p,'A,' — L.
=

The theory of least squares requires us to find the values for py, - - - , p, 50 as to
make (V, V) a minimum, or
(3.3° OCpid; — L, >_piA; — L) = a minimum.

Let A,, - - ., A, belinearly independent. By Theorem 7, the vectors 4,, --- , 4,
can be normally orthogonalized. Let Cy, ..., C. be the normally orthog-
onal set. Then every A, (t = 1, --.,r) is expressible as a linear combination
of Cy, .-, C,. Let us write

(33) ; p,'A,' = ;kiC,‘.

Our problem now is equivalent to that of finding the values k(¢ =1, ..., 7) soas
to render the inner product

(3.4) (X k€ — L, 2 kC; — L)
a minimum. Expression (3.4) can be written in the form

(L, L) — 2 23(L, Cks + 2 (kCi, K,C5)

142
(3.5) = (L, L) — 2 2 (L, Cki + 2k}
= (L) L) - E (L; Ci)z "l“ Z (ko - (Ct') L)‘)2°
Hence (3.4) gives a minimum if and only if the last summation vanishes, i.e.,

(3.6) ki = (Cy, L) G=1--+,7).
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The Bessel’s inequality
k=D
1

is obtained from (3.6), (3.4), and (3.5).
To solve for p;, we make use of (3.3) and (3.6), and secure

S Ape= 3 (€ 1)C,
whence -
(C,,, Z,: A,p,-) - (ck, ; (Cy L) C.-).
On the right hand side we have
(Cr, 22(Cy, L)C:) = 22(C, L) (Ci, C) = (Ci, L),
since (Ci, C;) = 0 when ¢ & k, and (Ci, C;) = 1 when?¢ = k.  On the left hand

side, we have

(o0 3 4m) = £ @ dipi = X @4 40,
1= 1= 1=

since (Cx, 4;) = 0 when j < k. Hence the values for p,, --- , p, are given by
3.7 z;c (Cy, A)dpi = (Cky L) (k = L...,n,

where (C;, 4;) = (C;, Cy) = 1.

Equations (3.7) are called the normal equations, which are derived without
using any notion in differential calculus.

From (3.6) and (3.5), we secure the value for the ‘quadratic residual’ (V, V):

3.8) V,V) = (L, L) - z @, ¢,

which is a positive quantity by virtue of the Bessel’s inequality.

Let By, - - - , B, be an orthogonalized set of Ay, --- , A,. Then every vector
B; has a non-vanishing norm, and B; = mod (B;)-Ci.. Hence from (3.7) and
(3.8), we have

(3.70) z;;‘ (Bk, A.')p." = (Bk, L); (k =12..., 7) ’
(3.8°) W, V) = (L, L) — ;1 (L, B)2/n(B) .

Thus we have proved the following
THEOREM 8. Given a linear function (3.1). Let the set of observations of z;
and 1 be

A = (@qa, -+, Gin), L=(0,---,1) G=1...mn=7)
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respectively. Let Ay, --- , A, be linearly independent, By, - - - , B, be the orthog-
onalized set, and Ci, --. ,C,, the normally orthogonalized set of A, --- , A,.
Then the set of values py, - - - , p, will minimize (3.3°) if and only if the system of

equations (3.7°) or (3.7) holds true; in other words, ). piA: — L is orthogonal
i=1

to C; or to B; for every j. The quadratic residual (V, V) is given by (3.8°) or (3.8).

From (3.7), we can secure the solution for py, ... , p, immediately without
further application of the Gauss method of substitution.

The proof of the following theorem does not make use of the orthogonalization
process.®

THEOREM 8°. Let F = Z p;A;, where every A; is not a zero vector. The set of
values py, - - - , pr will minimize (3.3°) if and only if (F — L, A;) = 0 for every
i, i.e., F — L 1s orthogonal to every A;.

The condition is necessary. To prove this, we show that if (F — L, A;) = 0
for every 7, then we can find another set ¢i, -- -, g- such that n(F — L) >
n(G — L), where G = Z ¢;A;. Forif (F — L, A;) = 0 for every ¢, then we can
find a vector A, such that (F — L, A,) ¢ 0. Since 4, = 0, we let ¢ =
(F—-L,A)/n(A,)and G = F — ed, = Z q;A;. Then

(@ — L) = n(F — ey — L) = n(F — L) — (F — L, 4,)*/n(4.),

which shows that n(G — L) < n (F — L).

To prove the sufficiency, we show that for every set ¢y, - - - , ¢, different from
P, -+, pr then n(G — L) > n(F — L), where G = Z ¢:4;. Let s; = qi — ps,
and H = £ s;4;. ThenG = F + H. Nowif (F — L, A:) = 0 for every ¢, it
follows that

T

(F—L,H)= Z (F—L,A.;)S.'=0.

i=1

Thus
n(G — L) = n(F — L) + n(H) .

Since n(H) > 0,we haven(G — L) > n(F — L).

The preceding theorem does not require the linear independence of the
vectors Ay, -+, A,. By Theorem 7a and 7b we see that it is necessary and
sufficient for the set 44, - - . , 4, to be linearly independent in order to solve the
equations (F — L,4,) =0,(:=1,2, ... ,7),0r

(A, A)pr + (A, Ao)pe + -+ + (44, 4, )P = (A4, L)
(3.9) .................................................
(A, ADp1 + (A, A2)p2 + -+ - + (4, A))p, = (A, L) .

8 The proof is based on the same type of reasoning as used by Jackson. See Dunham
Jackson’s Theory of Approzimation, pp. 151-152.
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If 4y, ---, A, are linearly independent, the conclusion in Theorem 8° can be
deduced from Theorem 8. For by Theorem 7a) A; = Y s,C,, and hence
t

(F —_ L, A,) = (F —_ L, Z S,'[Cg) = Z Su(F —_ L, Cg) =0.
t t
Also, Theorem 8 can be deduced from Theorem 8°.

IV. Matrices and Their Reciprocals

An ordered array of numbers of the form

i, Q12y - Qim

Qg1y Qg22y - - - QA2m
(4.1) a = (a;i) =

anl, anz; oo Opm

is a matrix. If we write a(¢, j) = ay;, then the array of numbers (4.1) may be
considered as a function of two variables 7, j on the ranges of positive integers
1,2 .-.--,n),(1,2 ---,m).” Thus a vector is a special instance of a matrix.
We shall use Greek letters to denote matrices throughout this paper unless other-
wise specified. When n = m, i.e. the number of rows is the same as the number
of columns, we have a square matrix. Associated with every n-row square
matrix, «, a determinant can be defined, and for simplicity, we shall adopt the
following notation:

Qny =+ Opp

An identity matrix, denoted by & = (di;), is a square matrix of which the
elements in the principal diagonal are 1 and elsewhere 0, i.e. dij = 0 (¢ # j),
di; = 1. A zero matrix, indicated by w, is one such that every one of its ele-
ments is 0. The transposed matrix, o', of a is formed by interchanging the
rows and columns. We say two matrices a = (a;) and 8 = (b;;) are equal in
case a; = by for every 7, 7. A matrix « is symmetric in case «’ = . The 7t
column of « is indicated by «(., 7), the 7** row of 8 by 8(, .) and the element in
the 7t row and j** column by « (¢, j). Hence a(z, j) = ai;.

ApprtioN: Let a be a matrix given by (1) and 8 = (b;;) a matrix of the same
number of rows and columns as @. Then

a4 B = (a;+ b .

7 E. H. Moore defines a matrix as a function of two variables.
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We note that « + 8 = 8 4+ a. If v is a matrix of the same number of rows and
columns as a, then (a + 8) +v =a + B + 7).

MurtipLICATION: Let o = (as;) be defined by (1), and 8 = (b;x) be a matrix
of m row and r columns, then the product = = of is defined by

™= (pa) = (Zl a.'ﬂ’;‘k) .
=

Thus = is a matrix of m rows and r columns.

The multiplication of two matrices is not necessarily commutative.

If « is a matrix of n rows and m columns, 8 of m rows and r columns, and y of
r rows and s columns, then a(By) = (af)y. If ais a matrix of n» rows and m
columns, and B3, v are matrices of m rows and r columns, then a(8 + v) =
aff + ay.

ScALAR MuLTIPLICATION: Let s be a number, and « be a matrix of » rows and
m columns, then

s-a= (sa;) = a-s.

Let 8, denote a square matrix of n rows in which the elements in the principal
diagonal are s, and 0 elsewhere. Then 8, = s, where § is an n row identity
matrix. We note from the associative law of multiplication that

Sa = 000 = a-0,.

In particular, let s = —1, then we have —1a. For convenience, we write
—a = —la. From the definition of addition, we obtain a definition of sub-
traction for two matrices of the same number of rows and columns.

REeciprocALS OF MATRICES: Let @ be a matrix of » rows and m columns.
Then a matrix o of m rows and n columns is said to be a reciprocal of « in case

a.al=9¢, and o l.a = dm,

where 6%, 6™ are identity matrices of order n, m respectively. If a matrix « has
a reciprocal o, we can prove o' is unique. It can be shown that when « has a
reciprocal, it must be a square matriz.®

A matrix is said to be non-singular in case it has a reciprocal, otherwise it is
said to be singular.® It is evident that every zero matrix is singular, and an
identity matrix is non-singular.

Suppose « is a square matrix of order n. Let us denote the cofactor of the
element a;; of « by ¢;;. Then ‘

is called the adjoint matrix of c.

8 For the proof of this statement, see Moore, Vector, Matrices, and Quaternions.
9 This definition is due to E. H. Moore.
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If « is symmetric, then e is also symmetric. Since aue; 4+ - -+ 4 Aies =
D(a) or 0 according as 7 = j or ¢ # j, we secure the following:
THEOREM 9. Let a be a square matriz and e its adjoint, then

ae = ea = [D(a)]s.

TueoreM 10. If the determinant of « is different from zero, then there exisis a
reciprocal o™, and o' = adj a/D(a).

This theorem follows from theorem 5.

The converse of Theorem 6 is also true.

V. Symmetric Matrices of Positive Type!

Let a = (a;;) be a matrix of » rows and m columns; and let ¢ = (ky, - - - , k»)
and p = (b, - -+, hn) be integers among the sets (1, --- , n) and (1, --- , m)
respectively. The subsets ¢ and p may be equal to the whole sets (1, --- , n)

and (1, - - - , m) respectively. Then

(3) alo,p) =1l

is called a minor of . In notation we write this minor as a(s, p) indicating the
ranges to be ¢ and p.

The minor a(—g, —p), which is obtained by striking out all the kit (7 = 1,
«..,m) columns and A;jt* (j = 1,--., m) rows from e, is called the com-
plementary minor of a (o, p).

If « is a square matrix of order n, then a(o, ) is called a principal minor of a.

Let a and B be matrices of n rows and m columns; and let ¢, p have the same
meaning as above. Then a(s, p), B(s, p) are called corresponding minors in
a, B respectively.

A symmetric matrix « = (a;;) of order n is said to be of positive type in case
the determinant of every principal minor of « is positive, and issaid to be of properly
positive type in case the determinant of every principal minor of « is greater than
zero.

CoroLLARY V1. Every element in the principal diagonal of a positive, sym-
melric malriz is positive. ‘

For, let ¢ consist of a single integer 7, then a(s,0) = ai;s = 0.

CorOLLARY V2. If a symmetric matriz is properly positive, then every element
in the principal diagonal is greater than 0.

TrEOREM 11. If a symmelric matrixz o of order n is (properly) positive, then its
adjoint matriz € is also symmetric and (properly) positive.

10 We follow the terminology of E. H. Moore. Moore developed this notion quite
extensively.
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The symmetry of eis evident. Let o be a subset of (1, - - - , n) and let p be
the number of integersin . Consider any principal minor ¢(o, o) in the adjoint
matrix e. By a theorem in the theory of determinants, we have!!

Die(o, 0)] = (=1)*-D[a(—0a, ~0)]-[D(x)]7,

where & is an integer depending on the set . By hypothesis « is positive (prop-
erly positive); hence D[a(—o, —0o)] and [D(a)]>! are positive (greater than 0),
and it follows that D[e(s, 0)] is positive (greater than 0).

THEOREM 12. If a symmetric matriz is properly positive, then D(a) is different
Jrom zero, and a has a reciprocal o™, which is also symmetric and properly positive.

For take o to be the whole set (1, - - - , ) in the definition of proper positive-
ness, and we see that D(a) > 0. The theorem now follows from Theorems 10
and 11.

VI. Gramian Matrices

In this section, we shall study the matrices of the normal equations (3.9).
The main result is that if the set of observations Ay, - -+, A, is linearly inde-
pendent, then the matrix (called Gramian matrix) is properly positive and has:a.
reciprocal which is also properly positive. 1

THEOREM 13. Let Ay, ---, A, be a set of vectors, and let B,, --., B, be the
orthogonalized set of vectors. Then the matriz

(44, 4y) --- (44, 4,)
(6.1) C(Ay, «oo JA) = coeeeiei
(Ar, Al) cee (Ar, Ar)
has the following properties:
13.1) symmetry
13.2) D[¢(Ay, - -+, A))] = n(B)n(By) - -- n(B,),
13.3) positiveness.
A matrix of the form (6.1) is called a Gramian matrix.
In fact, the symmetric property follows from the fact that (4:,4;) = (4,,4)
for every 1, j.
We shall prove 13.2) by induction. For r = 1, we have by Theorem 5

(4., A1) = (By, B)) = n(By).

Assume the equality is true for » = ¢, we shall show it is true for r = ¢ + 1.
The (¢ + 1)-row determinant is as follows:

(4y, A1) - (4, A) (4, Aii)

..............................

(6.2) Dis(4s, ---, 4] = (4, 4 --- (A, A) (A4, Aep)
(Ay Arpa) -+ (Aey Aen) (A, Arya)

MIncaseo = (1, -+, n), —o is a null class A (a class which contains no element); then
we define D[a(—o, —0)] = 1. For the proof of this theorem, see Bocher, p. 31.
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By Theorem 5, there exist constants s;(i = 1, - - - , ) such that
Ay = B 4+ iz;; 8iA;.
Substituting this value into the last row, we find the element in the 7th column is
(Ag Aupr) = (A,., B + Z‘,l 5 A,.) = (4, Bu) + z;;l 5:(4y A))
_ G=1,---,t,t+1).
The second term on the right is a linear combination of the first ¢ elements in the

1** column of the determinant (6.2) and hence by the theory of determinants,?
we secure

(41, 4)) --- (4, A) (A4, Aup)

..............................

Dit(Ay - Al =1(4, 4) - (Ay 4) (A Aupr)
(Al: Bt+l) ce (At, Bt+l) (At+1, Bt+l)

By Theorem 5, we find that (A:, Bia) = 0 fori = 1, ..., ¢, and (Au, Biya)
= (B4, Bi11), and hence the preceding determinant reduces to a form in which
the first ¢ elements in the (¢ 4 1)* row are zero. Thus

(4y, 4) --- (44 A)

..................

(A, A)) --- (44 4)
= n(B)n(Bs) - - - n(By)n(Bu41)

D[{(Al; ceey At+l)] = ’n(Bt+l)

which proves 13.2).
Consider any subset ¢ = (ky, - -, km) of the set (1, ---, r). By the same
argument as above, we find that the determinant of any principal minor

(Akl} Akz) s (Akly Akm)

......................

(Akm) Akl) cec (Akm’ Akm)

By Theorem 1, the number on the right is positive. Thus the matrix ¢ is
positive.

TaEOREM 14. The following three assertions are equivalent:

14.1) the set Ay, - - - , A, 1s linearly independent;

14.2) the Gramian matriz (6.1) is properly positive;

14.3) The determinant of the Gramian matriz (6.1) is different from zero.

We shall prove that 14.1) implies 14.2); 14.2) implies 14.3); and 14.3) implies
14.1). We thus prove the three statements are equivalent.

(6.3) = n(By) - - - n(By,).

12 Dickson, First Course in the Theory of Equations (1922), p. 113.
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Let By, - -+, B, be the orthogonalized set of the set Ay, --., A,. Since the
set Ay, - -, A, is linearly independent, then every subset

Akl)""A’fm(léklé ékmér)

is also linearly independent, and hence n(Bz;) > 0fori = 1,2, ... , m. By the
same argument as given in the demonstration of Theorem 11, we find that the
determinant of any principal minor (6.3) is greater than zero. This proves the
matrix (6.1) is properly positive.

If the matrix (6.1) is properly positive, then by Theorem 10 the determinant
of (6.1) is different from zero.

To prove 14.3) implies 14.1), suppose ki(z = 1, - - . , r) are such that

kA4 - + kA, = 0.
Then
(krdr + -+ + ke Ary A) = ka(Ay, A) + -+ + (4, 4) = 0

fori =1, ..., r. Since (4ds, 4;) = (4j, 45), and D(¢) = 0, the set of con-
stants k; must be all equal to 0.3
From Theorem 14, and Theorem 10, we may state the following
CoroLLARY: If the set of observations Ay, - - -, A, is linearly independent, then
the Gramian matriz ¢ has a reciprocal which is properly positive.

VII. Gauss Method of Substitution

Lemma 7.1) Let ¢ = (si) be an r-row symmelric matriz such that sy = 0.
Then there exists an r-row square matriz T whose determinant is unity such that
¥ = (ri) = 7 has the following properties:

a) ra = 0for< > 1, and ri; = s1; for every i;

b) the first minor of ru is symmetric;

c) the determinant of every principal minor in y of the form

S1181k2 ¢ ¢ * Sikm

(7.1) 0 Tigey -« - Thokm |, R=Zk=-- Skn=<r)

0 Tigkm *** Thmkm

18 equal to the determinant of the corresponding principal minor in o.
To prove this lemma, let us define

(7.2) r=08+ Fi.Dy,
where D; is the first row of an r-row identity matrix §, and Fy(1) = 0,
Fy(n). = —s1a/sn (n>1).

(Thus F, D, is an r-row square matrix in which the first column is F; and every-
where else 0.) It is clear that 7 thus defined is a square matrix of order r, and

13 See footnote 5.
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D(r) = D(§ + Fi1D)) = 1. By multiplication of these two matrices, ¢, we
obtain a new matrix such that ri; = sy, 74 = 0 for ¢ > 1, and ry; = &; for
every ¢, and further

(73) Ti = Sij — sli-su/su fOI"I: > 1, ] > 1.

To prove property (b), we note that s; = s;, since ¢ is symmetric. Thus for
1 > 1,7 > 1, we note from 7.3) that

Ty = 8 — slisli/ Su = 8§ — slisli/ S = 7.

For the proof of the last property, we note that the corresponding minor of
(7.1) in ¢ is of the form

[811 Sik2 - v Sikp

(7.4) Sikg Skok2 ** * Skokm
l_slkm Skokm * * * Skmkm,
Since ¢ is symmetric, we have by (7.3),
Thikj = Skikj — S1k; S1k;/Sn E>1,j>1),
0 = Sk — Sk Su/su @>1).

Thus by a theorem in the theory of determinants, the determinants of (7.1) and
(7.4) are equal.

LemMa 7.2) Leto = (s;) (5,5 = 1, -- -, r) be a symmetric matriz of positive
type, and sy # 0. Then there exists an r-row square matriz v whose determinant
is unity such that ¢ = (r;;) = v¢ has the properties stated in Lemma 7.1) and
JSurthermore the minor of ri in 7.1) s of positive type.

To prove the positiveness of the minor of ry;, let the determinant of any one
of its principal minors be

Thokm * * * Tkmkm
where rix; = i (4, J = 2, -+ -, m) due to the symmetry. Now consider the
bordered determinant

T Tikg *** Tikm

0 Trgkm *** Thmkm

which by property (a) in Lemma 7.1) gives M, = ruM, = suM,. By property
(c) in Lemma 7.1), M, is equal to the determinant of the form (7.4), which by
hypothesis is positive. Thus sy M; = 0. Since sy > 0, we conclude that
Ml = Mz/su g 0.
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Lemma 73). Let ¢ = (si) (6,5 = 1,2, --- , 1) be a symmelric matriz of
properly positive type. Then there exists an r-row square matrixz v whose deler-
manant 1s unity such that ¢ = (i) = 7o has the properties stated in Lemma 7.1)
and furthermore the minor of ri in ¥ is properly positive.

Since ¢ is properly positive, we find that s;; > 0. The proof of this lemma is
similar to that of Lemma 7.2).

Suppose that the set of observations Ay, ..., A4, is linearly independent.
Then by Theorem 14, the Gramian matrix (6.1) is symmetric and properly
positive, .and hence (4, 4;)) > 0. By Lemma 7.3), the matrix (6.1) can be
reduced to the form

[A14,-0] [A142-0] ««cvvnnennnn. [A:A4,-0]
(7.5) 0 [A24:-1] [A245-1] --- [424,-1]

0 [A2Ar’1] [AaAr’I] o [ArAr’l]

where
[AlAtO] = (Al; At) = [AIAIO] (t = 1’ b ,7')
[A:14,-0][4.4,-0] — [4,4,-0][4,4,-0]
4:4,-1] = [4,4,-0] '

It is evident that [4:4:-0] = (4,, 41) > 0, since the matrix (6.1) is properly
positive. By Lemma 7.3) the value of D (¢) and the determinant of (7.5) are
equal, and furthermore the minor of the element [4:4,-0] is a symmetric matrix
of properly positive type. Thus [A24.-1] > 0, and [4.4,-1] = [4,4.-1].

The minor of [4,4,.0] surely satisfies all the conditions in Lemma 7.3). We
may, therefore, apply a transformation of the form (7.2) to the minor of [4:4,-0],
and secure another matrix of the same character as (7.5). In other words, we
may multiply on the left of the matrix (7.5) by

(7.6) 7o = 0 + FuD,
where D, is the second row of the r row identity matrix §, and
[AZAn * 1]
= < M = - — .
F(n) =0 (n=2); | Fa(n) A, 1] (n>2)

In general, let
(7.7) i =98 + FiD; G=1---,7r—1),
where D; is the 7*h row of the r row identity matrix 8, and
(7.) F) =0 (si); Fm=-Gd-izll oy
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Continuous application of this type of transformation ultimately reduces the
matrix (6.1) to the form

[AlAl‘O] [A1A2'O] [AIAS‘O] M [AlAr‘O] -I
0  [A24:-1][4245-1] - - [424,-1]

(7.9) =1 o 0 [Asds2] --- [4s4,-2]
0 0 0 ... [4,4,-r — 1]
where
[A,4s-h — 1[AA,-h-1] — [ApArh — 1] [A,A,-h-1]
AA,-h] = b
(rgy AAH i — 1]
Gs=1,...,r; 0 < h < smft, s).1

In the matrix (7.9), we see by virtue of Lemma 7.3) that [4:4;-7 — 1] > 0 for
every ¢, and [4,A4,-h] = [4,A;-h] for every s, t and 0 < h = sm(, 5). If
h = smf(t, s), then [4:4,-h] = 0.

Let + = 7,_1-7y—2 --- 71. Then by the associative law of multiplication of
matrices, we see that

(7.10) 7= (rr—1--+ 1){ = 78,

Thus we prove

THEOREM 15. If the set of vectors Ay, - - - , A, is linearly independent, then there
exists a square matrix v of order such that v is of the form (7.9) where all ele-
ments below the principal diagonal are 0; every element in the principal diagonal
[A;A;-i — 1] (¢ = 1, ---, 1), is greater than zero; and [A,A,-h] = [A,A,-h] for
t=1,--.,r,and h < sm(t,s). Furthermore the determinants of the mairices
(6.1) and (7.9) are equal.

We now prove the following lemma which will be useful in the later section.

LemMa 7.4). If [A:A:-i — 1] is different from zero for every © 2 0, then for
every pair of integers (s, t), wheres,t = 1, ... ,r, and n = sm(l, s), we have

[A Ag ’l — 1]
) [4:A,-n] = (4, A.) — 2 A1y Asdei = 1.
b) [At(Ao + Au)'n] = [AtAa‘n] + [AtAu'n] ) (u = 1’ DR ] T) .
c) [(cAs)A,-n] =c[A:A,-n], (¢ = a constant).

To prove a), take every pair (s, £). We find the lemma is true for n = 0.
Assuming it is true for every (s, t) and for n = h < sm(s,t), wefindthat b 4+ 1 <
sm(s, t), and

h+1

[AAg’l/—l]
(4, .)—E[AA g (i = 1)

14 gm (s, £) read ‘“‘the smaller one of (¢, 5).”
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— (4, 4) - Z[AA”"”[AA i) - Wb M, gy

[4:4;-7 — 1] [ArAn-R]
_ [Anssdi-H] _
- [AlAt'h] - m [Ah+lAc'h] = [AtAc'h + 1] ’

for every s, .
Parts b) and c¢) are true for n = 0. Now make use of the equality in a) and
prove by induction.

VIII. Gauss’s Method of Substitution and its Relation to Gramian Schmidt’s
Orthogonalization Process

Let us write the set of observations in the form:

From Theorems 5 and 6, we find that there exists a transformation « given by an
r-row square matrix such that 8 = xa. Thus by the associative law of multi-
plication of matrices, we have

Ba’ = (xa)a’ = (aa).
Now the matrix aa’ is the Gramian matrix (6.1). Thus
8.1) Ba’ = .
The composite matrix fa’ is of the form
(By, A1)(By, 4) --- (By, 4,)
(By, A1)(By, A5) -+ (By, 4,)
(Br, A1) (B, 4s) --- (B,, 4))

By Theorems 5 and 6, we note that (B,, 4,) = 0 fors > ¢, and (B,, 4,) =
(B., B,) for every s. Thus the preceding matrix can be written in the form

(Bl) Bl)(Bly A2)(Bly A3) e (Bly Ar)
0 (Bﬁl B2)(B2) A3) b (Bz, Ar)

(8.2)

(8.3)

.............................
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We have proved the following theorem:

THEOREM 16. Let Ai, ---, A, be a set of vectors, and Bi, ---, B, be the
orthogonalized set; and let « = (ay;), B = (bi;). Then there exists a square r-row
matriz k such that B = «a, and koo’ is a matriz of the form (8.3) where all the
elements below the principal diagonal are zeros and every element in the principal
diagonal is positive. If the set Ay, ---, A, is linearly independent, then every
element in the principal diagonal is greater than zero.

TaEoREM 17. Let Ay, ---, A, be a set of vectors and By, ---, B, be the
orthogonalized set; and let « = (ay;), B = (bi;). Then D(Ba’) = D(ac’).

For by equations (2.1), we note that D(k) = 1. Thus

D(Ba') = D(kaa’) = D(k)D(aa’) = D(aa’).

THEOREM 18. If the set of vectors, Ay, --- , A, is linearly independent, the
matriz k arising from Gram-Schmidt’s orthogonalization process is identical with
the matriz T defined by (7.10).

To prove this theorem, we first establish the following

LemwMma 8.5): If the set Ay, - - -, A, be linearly independent, and By, - - - , B, be
the orthogonalized set, then for every t, h, we have

(Bi, A1) = [Asde-h — 1].

By Theorem 10, the set B; is linearly independent, and hence n(B;) > 0 for
every ¢. Thelemma is evidently true for every tand A = 1. Assuming it is true
for every t and h = s, we shall prove it is also true for everytand h = s — 1.
Now

A,, B; O [4:4,-1 — 1
Bupn = At — ZtEB B))B A — Et{A—_AHB.-.
1y Dy = Wi el

Thus by the linear property of ( , ) we secure, for every ¢

B 40 = (A~ 3y iU )

1=1

= (Ao, 4) — 2 =1 @, 4)

[A:A4,-7 — 1]
(AH.], t) - 2 [AA Y 1] [AiAt"L - 1]

=1
= [Ac+lAt's]

by virtue of lemma 4.4).
From this leinma, we conclude at once that the matrices (7.9) and (8.3) are
equal. Thus by (8.1), we have

kK =PBa’ =75, or (k — 7){ = w.
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Since ¢ is non-singular (by Theorem 12), we have
w=(k—7)¢C1=(k —7)d =.K—1’,

which proves the theorem.

From Lemma 8.5), we have

Lemma 8.6). Let L = (I, ---, l,). Suppose the set 4,, --- , 4, to be
linearly independent, and B, ..., B, to be the orthogonalized set. Then for
every h,

[AiL-h — 1] = (B, L) .

Theorems 16, 17, and 18 furnish us a new method for finding the most prob-
able values of the unknowns in the theory of least squares. The formulation of
the system of normal equations may be omitted in this new procedure, which
may be described briefly as follows: After we obtain a set of observations

4,, --., A,, we orthogonalize this set by means of Gram-Schmidt’s process.
Let L be a non-zero vector. The product

by .- bia - @y — b
brl e brn Q1n * - arm _ln
will give us the result as desired by Gauss’s method of substitution.

AcCADEMIA SINICA,
PerpiNg, CHINA.



